add isl_vec_sort
[isl.git] / isl_bernstein.c
blobafeccf68e4c8f74df0faa250b6f24d8eb042e6cc
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_bernstein.h>
26 struct bernstein_data {
27 enum isl_fold type;
28 isl_qpolynomial *poly;
29 int check_tight;
31 isl_cell *cell;
33 isl_qpolynomial_fold *fold;
34 isl_qpolynomial_fold *fold_tight;
35 isl_pw_qpolynomial_fold *pwf;
36 isl_pw_qpolynomial_fold *pwf_tight;
39 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
41 unsigned nvar;
42 unsigned nparam;
43 int i;
45 nvar = isl_basic_set_dim(vertex, isl_dim_set);
46 nparam = isl_basic_set_dim(vertex, isl_dim_param);
47 for (i = 0; i < nvar; ++i) {
48 int r = nvar - 1 - i;
49 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
50 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
51 return 0;
54 return 1;
57 static __isl_give isl_qpolynomial *vertex_coordinate(
58 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
60 unsigned nvar;
61 unsigned nparam;
62 int r;
63 isl_int denom;
64 isl_qpolynomial *v;
66 nvar = isl_basic_set_dim(vertex, isl_dim_set);
67 nparam = isl_basic_set_dim(vertex, isl_dim_param);
68 r = nvar - 1 - i;
70 isl_int_init(denom);
71 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
72 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
74 if (isl_int_is_pos(denom))
75 isl_seq_neg(vertex->eq[r], vertex->eq[r],
76 1 + isl_basic_set_total_dim(vertex));
77 else
78 isl_int_neg(denom, denom);
80 v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
81 isl_int_clear(denom);
83 return v;
84 error:
85 isl_dim_free(dim);
86 isl_int_clear(denom);
87 return NULL;
90 /* Check whether the bound associated to the selection "k" is tight,
91 * which is the case if we select exactly one vertex and if that vertex
92 * is integral for all values of the parameters.
94 static int is_tight(int *k, int n, int d, isl_cell *cell)
96 int i, j;
98 for (i = 0; i < n; ++i) {
99 int v;
100 if (k[i] != d) {
101 if (k[i])
102 return 0;
103 continue;
105 v = cell->ids[n - 1 - i];
106 return vertex_is_integral(cell->vertices->v[v].vertex);
109 return 0;
112 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
113 int *k, int n, int d, struct bernstein_data *data)
115 isl_qpolynomial_fold *fold;
117 fold = isl_qpolynomial_fold_alloc(data->type, b);
119 if (data->check_tight && is_tight(k, n, d, data->cell))
120 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
121 data->fold_tight, fold);
122 else
123 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
124 data->fold, fold);
127 /* Extract the coefficients of the Bernstein base polynomials and store
128 * them in data->fold and data->fold_tight.
130 * In particular, the coefficient of each monomial
131 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
132 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
134 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
135 * multinom[i] contains the partial multinomial coefficient.
137 static void extract_coefficients(isl_qpolynomial *poly,
138 __isl_keep isl_set *dom, struct bernstein_data *data)
140 int i;
141 int d;
142 int n;
143 isl_ctx *ctx;
144 isl_qpolynomial **c = NULL;
145 int *k = NULL;
146 int *left = NULL;
147 isl_vec *multinom = NULL;
149 if (!poly)
150 return;
152 ctx = isl_qpolynomial_get_ctx(poly);
153 n = isl_qpolynomial_dim(poly, isl_dim_set);
154 d = isl_qpolynomial_degree(poly);
155 isl_assert(ctx, n >= 2, return);
157 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
158 k = isl_alloc_array(ctx, int, n);
159 left = isl_alloc_array(ctx, int, n);
160 multinom = isl_vec_alloc(ctx, n);
161 if (!c || !k || !left || !multinom)
162 goto error;
164 isl_int_set_si(multinom->el[0], 1);
165 for (k[0] = d; k[0] >= 0; --k[0]) {
166 int i = 1;
167 isl_qpolynomial_free(c[0]);
168 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
169 left[0] = d - k[0];
170 k[1] = -1;
171 isl_int_set(multinom->el[1], multinom->el[0]);
172 while (i > 0) {
173 if (i == n - 1) {
174 int j;
175 isl_dim *dim;
176 isl_qpolynomial *b;
177 isl_qpolynomial *f;
178 for (j = 2; j <= left[i - 1]; ++j)
179 isl_int_divexact_ui(multinom->el[i],
180 multinom->el[i], j);
181 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
182 n - 1 - i, left[i - 1]);
183 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
184 0, n);
185 dim = isl_qpolynomial_get_dim(b);
186 f = isl_qpolynomial_rat_cst(dim, ctx->one,
187 multinom->el[i]);
188 b = isl_qpolynomial_mul(b, f);
189 k[n - 1] = left[n - 2];
190 add_fold(b, dom, k, n, d, data);
191 --i;
192 continue;
194 if (k[i] >= left[i - 1]) {
195 --i;
196 continue;
198 ++k[i];
199 if (k[i])
200 isl_int_divexact_ui(multinom->el[i],
201 multinom->el[i], k[i]);
202 isl_qpolynomial_free(c[i]);
203 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
204 n - 1 - i, k[i]);
205 left[i] = left[i - 1] - k[i];
206 k[i + 1] = -1;
207 isl_int_set(multinom->el[i + 1], multinom->el[i]);
208 ++i;
210 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
213 for (i = 0; i < n; ++i)
214 isl_qpolynomial_free(c[i]);
216 isl_vec_free(multinom);
217 free(left);
218 free(k);
219 free(c);
220 return;
221 error:
222 isl_vec_free(multinom);
223 free(left);
224 free(k);
225 if (c)
226 for (i = 0; i < n; ++i)
227 isl_qpolynomial_free(c[i]);
228 free(c);
229 return;
232 /* Perform bernstein expansion on the parametric vertices that are active
233 * on "cell".
235 * data->poly has been homogenized in the calling function.
237 * We plug in the barycentric coordinates for the set variables
239 * \vec x = \sum_i \alpha_i v_i(\vec p)
241 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
242 * Next, we extract the coefficients of the Bernstein base polynomials.
244 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
246 int i, j;
247 struct bernstein_data *data = (struct bernstein_data *)user;
248 isl_dim *dim_param;
249 isl_dim *dim_dst;
250 isl_qpolynomial *poly = data->poly;
251 unsigned nvar;
252 int n_vertices;
253 isl_qpolynomial **subs;
254 isl_pw_qpolynomial_fold *pwf;
255 isl_set *dom;
256 isl_ctx *ctx;
258 nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
259 n_vertices = cell->n_vertices;
261 ctx = isl_qpolynomial_get_ctx(poly);
262 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
263 return isl_cell_foreach_simplex(cell,
264 &bernstein_coefficients_cell, user);
266 subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
267 if (!subs)
268 goto error;
270 dim_param = isl_basic_set_get_dim(cell->dom);
271 dim_dst = isl_qpolynomial_get_dim(poly);
272 dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
274 for (i = 0; i < 1 + nvar; ++i)
275 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
277 for (i = 0; i < n_vertices; ++i) {
278 isl_qpolynomial *c;
279 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
280 1 + nvar + i);
281 for (j = 0; j < nvar; ++j) {
282 int k = cell->ids[i];
283 isl_qpolynomial *v;
284 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
285 isl_dim_copy(dim_param));
286 v = isl_qpolynomial_add_dims(v, isl_dim_set,
287 1 + nvar + n_vertices);
288 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
289 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
291 subs[0] = isl_qpolynomial_add(subs[0], c);
293 isl_dim_free(dim_dst);
295 poly = isl_qpolynomial_copy(poly);
297 poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
298 poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
299 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
301 data->cell = cell;
302 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
303 data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
304 data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
305 extract_coefficients(poly, dom, data);
307 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
308 data->fold);
309 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
310 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
311 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
313 isl_qpolynomial_free(poly);
314 isl_cell_free(cell);
315 for (i = 0; i < 1 + nvar; ++i)
316 isl_qpolynomial_free(subs[i]);
317 free(subs);
318 return 0;
319 error:
320 isl_cell_free(cell);
321 return -1;
324 /* Base case of applying bernstein expansion.
326 * We compute the chamber decomposition of the parametric polytope "bset"
327 * and then perform bernstein expansion on the parametric vertices
328 * that are active on each chamber.
330 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
331 __isl_take isl_basic_set *bset,
332 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
334 unsigned nvar;
335 isl_dim *dim;
336 isl_pw_qpolynomial_fold *pwf;
337 isl_vertices *vertices;
338 int covers;
340 nvar = isl_basic_set_dim(bset, isl_dim_set);
341 if (nvar == 0) {
342 isl_set *dom;
343 isl_qpolynomial_fold *fold;
344 fold = isl_qpolynomial_fold_alloc(data->type, poly);
345 dom = isl_set_from_basic_set(bset);
346 if (tight)
347 *tight = 1;
348 return isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
351 if (isl_qpolynomial_is_zero(poly)) {
352 isl_set *dom;
353 isl_qpolynomial_fold *fold;
354 fold = isl_qpolynomial_fold_alloc(data->type, poly);
355 dom = isl_set_from_basic_set(bset);
356 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
357 if (tight)
358 *tight = 1;
359 return isl_pw_qpolynomial_fold_drop_dims(pwf,
360 isl_dim_set, 0, nvar);
363 dim = isl_basic_set_get_dim(bset);
364 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
365 data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim), data->type);
366 data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
367 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
368 vertices = isl_basic_set_compute_vertices(bset);
369 isl_vertices_foreach_disjoint_cell(vertices,
370 &bernstein_coefficients_cell, data);
371 isl_vertices_free(vertices);
372 isl_qpolynomial_free(data->poly);
374 isl_basic_set_free(bset);
375 isl_qpolynomial_free(poly);
377 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
378 if (covers < 0)
379 goto error;
381 if (tight)
382 *tight = covers;
384 if (covers) {
385 isl_pw_qpolynomial_fold_free(data->pwf);
386 return data->pwf_tight;
389 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
391 return data->pwf;
392 error:
393 isl_pw_qpolynomial_fold_free(data->pwf_tight);
394 isl_pw_qpolynomial_fold_free(data->pwf);
395 return NULL;
398 /* Apply bernstein expansion recursively by working in on len[i]
399 * set variables at a time, with i ranging from n_group - 1 to 0.
401 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
402 __isl_take isl_pw_qpolynomial *pwqp,
403 int n_group, int *len, struct bernstein_data *data, int *tight)
405 int i;
406 unsigned nparam;
407 unsigned nvar;
408 isl_pw_qpolynomial_fold *pwf;
410 if (!pwqp)
411 return NULL;
413 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
414 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
416 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
417 isl_dim_set, 0, nvar - len[n_group - 1]);
418 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
420 for (i = n_group - 2; i >= 0; --i) {
421 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
422 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
423 isl_dim_param, nparam - len[i], len[i]);
424 if (tight && !*tight)
425 tight = NULL;
426 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
429 return pwf;
432 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
433 __isl_take isl_basic_set *bset,
434 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
436 isl_factorizer *f;
437 isl_set *set;
438 isl_pw_qpolynomial *pwqp;
439 isl_pw_qpolynomial_fold *pwf;
441 f = isl_basic_set_factorizer(bset);
442 if (!f)
443 goto error;
444 if (f->n_group == 0) {
445 isl_factorizer_free(f);
446 return bernstein_coefficients_base(bset, poly, data, tight);
449 set = isl_set_from_basic_set(bset);
450 pwqp = isl_pw_qpolynomial_alloc(set, poly);
451 pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
453 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
454 tight);
456 isl_factorizer_free(f);
458 return pwf;
459 error:
460 isl_basic_set_free(bset);
461 isl_qpolynomial_free(poly);
462 return NULL;
465 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
466 __isl_take isl_basic_set *bset,
467 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
469 int i;
470 int *len;
471 unsigned nvar;
472 isl_pw_qpolynomial_fold *pwf;
473 isl_set *set;
474 isl_pw_qpolynomial *pwqp;
476 if (!bset || !poly)
477 goto error;
479 nvar = isl_basic_set_dim(bset, isl_dim_set);
481 len = isl_alloc_array(bset->ctx, int, nvar);
482 if (!len)
483 goto error;
485 for (i = 0; i < nvar; ++i)
486 len[i] = 1;
488 set = isl_set_from_basic_set(bset);
489 pwqp = isl_pw_qpolynomial_alloc(set, poly);
491 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
493 free(len);
495 return pwf;
496 error:
497 isl_basic_set_free(bset);
498 isl_qpolynomial_free(poly);
499 return NULL;
502 /* Compute a bound on the polynomial defined over the parametric polytope
503 * using bernstein expansion and store the result
504 * in bound->pwf and bound->pwf_tight.
506 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
507 * the polytope can be factorized and apply bernstein expansion recursively
508 * on the factors.
509 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
510 * bernstein expansion recursively on each dimension.
511 * Otherwise, we apply bernstein expansion on the entire polytope.
513 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
514 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
516 struct bernstein_data data;
517 isl_pw_qpolynomial_fold *pwf;
518 unsigned nvar;
519 int tight = 0;
520 int *tp = bound->check_tight ? &tight : NULL;
522 if (!bset || !poly)
523 goto error;
525 data.type = bound->type;
526 data.check_tight = bound->check_tight;
528 nvar = isl_basic_set_dim(bset, isl_dim_set);
530 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
531 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
532 else if (nvar > 1 &&
533 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
534 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
535 else
536 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
538 if (tight)
539 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
540 else
541 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
543 return 0;
544 error:
545 isl_basic_set_free(bset);
546 isl_qpolynomial_free(poly);
547 return -1;