2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
49 isl_seq_cpy(c
, c
+ n
, rem
);
50 isl_seq_clr(c
+ rem
, n
);
53 /* Drop n dimensions starting at first.
55 * In principle, this frees up some extra variables as the number
56 * of columns remains constant, but we would have to extend
57 * the div array too as the number of rows in this array is assumed
58 * to be equal to extra.
60 struct isl_basic_set
*isl_basic_set_drop_dims(
61 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
63 return isl_basic_map_drop(bset_to_bmap(bset
), isl_dim_set
, first
, n
);
66 /* Move "n" divs starting at "first" to the end of the list of divs.
68 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
69 unsigned first
, unsigned n
)
74 if (first
+ n
== bmap
->n_div
)
77 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
80 for (i
= 0; i
< n
; ++i
)
81 div
[i
] = bmap
->div
[first
+ i
];
82 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
83 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
84 for (i
= 0; i
< n
; ++i
)
85 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
89 isl_basic_map_free(bmap
);
93 /* Drop "n" dimensions of type "type" starting at "first".
95 * In principle, this frees up some extra variables as the number
96 * of columns remains constant, but we would have to extend
97 * the div array too as the number of rows in this array is assumed
98 * to be equal to extra.
100 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
101 enum isl_dim_type type
, unsigned first
, unsigned n
)
111 dim
= isl_basic_map_dim(bmap
, type
);
112 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
114 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
117 bmap
= isl_basic_map_cow(bmap
);
121 offset
= isl_basic_map_offset(bmap
, type
) + first
;
122 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
123 for (i
= 0; i
< bmap
->n_eq
; ++i
)
124 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
126 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
127 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
129 for (i
= 0; i
< bmap
->n_div
; ++i
)
130 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
132 if (type
== isl_dim_div
) {
133 bmap
= move_divs_last(bmap
, first
, n
);
136 if (isl_basic_map_free_div(bmap
, n
) < 0)
137 return isl_basic_map_free(bmap
);
139 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
143 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
144 bmap
= isl_basic_map_simplify(bmap
);
145 return isl_basic_map_finalize(bmap
);
147 isl_basic_map_free(bmap
);
151 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
152 enum isl_dim_type type
, unsigned first
, unsigned n
)
154 return bset_from_bmap(isl_basic_map_drop(bset_to_bmap(bset
),
158 struct isl_map
*isl_map_drop(struct isl_map
*map
,
159 enum isl_dim_type type
, unsigned first
, unsigned n
)
166 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
168 if (n
== 0 && !isl_space_is_named_or_nested(map
->dim
, type
))
170 map
= isl_map_cow(map
);
173 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
177 for (i
= 0; i
< map
->n
; ++i
) {
178 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
182 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
190 struct isl_set
*isl_set_drop(struct isl_set
*set
,
191 enum isl_dim_type type
, unsigned first
, unsigned n
)
193 return set_from_map(isl_map_drop(set_to_map(set
), type
, first
, n
));
197 * We don't cow, as the div is assumed to be redundant.
199 __isl_give isl_basic_map
*isl_basic_map_drop_div(
200 __isl_take isl_basic_map
*bmap
, unsigned div
)
208 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
210 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
212 for (i
= 0; i
< bmap
->n_eq
; ++i
)
213 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
215 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
216 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
217 isl_basic_map_drop_inequality(bmap
, i
);
221 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
224 for (i
= 0; i
< bmap
->n_div
; ++i
)
225 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
227 if (div
!= bmap
->n_div
- 1) {
229 isl_int
*t
= bmap
->div
[div
];
231 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
232 bmap
->div
[j
] = bmap
->div
[j
+1];
234 bmap
->div
[bmap
->n_div
- 1] = t
;
236 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
237 if (isl_basic_map_free_div(bmap
, 1) < 0)
238 return isl_basic_map_free(bmap
);
242 isl_basic_map_free(bmap
);
246 struct isl_basic_map
*isl_basic_map_normalize_constraints(
247 struct isl_basic_map
*bmap
)
251 unsigned total
= isl_basic_map_total_dim(bmap
);
257 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
258 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
259 if (isl_int_is_zero(gcd
)) {
260 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
261 bmap
= isl_basic_map_set_to_empty(bmap
);
264 isl_basic_map_drop_equality(bmap
, i
);
267 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
268 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
269 if (isl_int_is_one(gcd
))
271 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
272 bmap
= isl_basic_map_set_to_empty(bmap
);
275 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
278 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
279 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
280 if (isl_int_is_zero(gcd
)) {
281 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
282 bmap
= isl_basic_map_set_to_empty(bmap
);
285 isl_basic_map_drop_inequality(bmap
, i
);
288 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
289 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
290 if (isl_int_is_one(gcd
))
292 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
293 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
300 struct isl_basic_set
*isl_basic_set_normalize_constraints(
301 struct isl_basic_set
*bset
)
303 isl_basic_map
*bmap
= bset_to_bmap(bset
);
304 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
307 /* Reduce the coefficient of the variable at position "pos"
308 * in integer division "div", such that it lies in the half-open
309 * interval (1/2,1/2], extracting any excess value from this integer division.
310 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
311 * corresponds to the constant term.
313 * That is, the integer division is of the form
315 * floor((... + (c * d + r) * x_pos + ...)/d)
317 * with -d < 2 * r <= d.
320 * floor((... + r * x_pos + ...)/d) + c * x_pos
322 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
323 * Otherwise, c = floor((c * d + r)/d) + 1.
325 * This is the same normalization that is performed by isl_aff_floor.
327 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
328 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
334 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
335 isl_int_mul_ui(shift
, shift
, 2);
336 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
337 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
339 isl_int_add_ui(shift
, shift
, 1);
340 isl_int_neg(shift
, shift
);
341 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
342 isl_int_clear(shift
);
347 /* Does the coefficient of the variable at position "pos"
348 * in integer division "div" need to be reduced?
349 * That is, does it lie outside the half-open interval (1/2,1/2]?
350 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
353 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
358 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
359 return isl_bool_false
;
361 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
362 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
363 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
364 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
365 bmap
->div
[div
][1 + pos
], 2);
370 /* Reduce the coefficients (including the constant term) of
371 * integer division "div", if needed.
372 * In particular, make sure all coefficients lie in
373 * the half-open interval (1/2,1/2].
375 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
376 __isl_take isl_basic_map
*bmap
, int div
)
379 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
381 for (i
= 0; i
< total
; ++i
) {
384 reduce
= needs_reduction(bmap
, div
, i
);
386 return isl_basic_map_free(bmap
);
389 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
397 /* Reduce the coefficients (including the constant term) of
398 * the known integer divisions, if needed
399 * In particular, make sure all coefficients lie in
400 * the half-open interval (1/2,1/2].
402 static __isl_give isl_basic_map
*reduce_div_coefficients(
403 __isl_take isl_basic_map
*bmap
)
409 if (bmap
->n_div
== 0)
412 for (i
= 0; i
< bmap
->n_div
; ++i
) {
413 if (isl_int_is_zero(bmap
->div
[i
][0]))
415 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
423 /* Remove any common factor in numerator and denominator of the div expression,
424 * not taking into account the constant term.
425 * That is, if the div is of the form
427 * floor((a + m f(x))/(m d))
431 * floor((floor(a/m) + f(x))/d)
433 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
434 * and can therefore not influence the result of the floor.
436 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
438 unsigned total
= isl_basic_map_total_dim(bmap
);
439 isl_ctx
*ctx
= bmap
->ctx
;
441 if (isl_int_is_zero(bmap
->div
[div
][0]))
443 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
444 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
445 if (isl_int_is_one(ctx
->normalize_gcd
))
447 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
449 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
451 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
452 ctx
->normalize_gcd
, total
);
455 /* Remove any common factor in numerator and denominator of a div expression,
456 * not taking into account the constant term.
457 * That is, look for any div of the form
459 * floor((a + m f(x))/(m d))
463 * floor((floor(a/m) + f(x))/d)
465 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
466 * and can therefore not influence the result of the floor.
468 static __isl_give isl_basic_map
*normalize_div_expressions(
469 __isl_take isl_basic_map
*bmap
)
475 if (bmap
->n_div
== 0)
478 for (i
= 0; i
< bmap
->n_div
; ++i
)
479 normalize_div_expression(bmap
, i
);
484 /* Assumes divs have been ordered if keep_divs is set.
486 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
487 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
490 unsigned space_total
;
494 total
= isl_basic_map_total_dim(bmap
);
495 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
496 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
497 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
498 if (bmap
->eq
[k
] == eq
)
500 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
504 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
505 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
508 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
509 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
513 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
514 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
515 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
518 for (k
= 0; k
< bmap
->n_div
; ++k
) {
519 if (isl_int_is_zero(bmap
->div
[k
][0]))
521 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
525 /* We need to be careful about circular definitions,
526 * so for now we just remove the definition of div k
527 * if the equality contains any divs.
528 * If keep_divs is set, then the divs have been ordered
529 * and we can keep the definition as long as the result
532 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
533 isl_seq_elim(bmap
->div
[k
]+1, eq
,
534 1+pos
, 1+total
, &bmap
->div
[k
][0]);
535 normalize_div_expression(bmap
, k
);
537 isl_seq_clr(bmap
->div
[k
], 1 + total
);
538 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
542 /* Assumes divs have been ordered if keep_divs is set.
544 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
545 isl_int
*eq
, unsigned div
, int keep_divs
)
547 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
549 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
551 bmap
= isl_basic_map_drop_div(bmap
, div
);
556 /* Check if elimination of div "div" using equality "eq" would not
557 * result in a div depending on a later div.
559 static isl_bool
ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
564 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
565 unsigned pos
= space_total
+ div
;
567 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
568 if (last_div
< 0 || last_div
<= div
)
569 return isl_bool_true
;
571 for (k
= 0; k
<= last_div
; ++k
) {
572 if (isl_int_is_zero(bmap
->div
[k
][0]))
574 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
575 return isl_bool_false
;
578 return isl_bool_true
;
581 /* Eliminate divs based on equalities
583 static struct isl_basic_map
*eliminate_divs_eq(
584 struct isl_basic_map
*bmap
, int *progress
)
591 bmap
= isl_basic_map_order_divs(bmap
);
596 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
598 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
599 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
602 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
603 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
605 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
607 return isl_basic_map_free(bmap
);
612 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
613 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
614 return isl_basic_map_free(bmap
);
619 return eliminate_divs_eq(bmap
, progress
);
623 /* Eliminate divs based on inequalities
625 static struct isl_basic_map
*eliminate_divs_ineq(
626 struct isl_basic_map
*bmap
, int *progress
)
637 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
639 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
640 for (i
= 0; i
< bmap
->n_eq
; ++i
)
641 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
645 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
646 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
648 if (i
< bmap
->n_ineq
)
651 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
652 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
654 bmap
= isl_basic_map_drop_div(bmap
, d
);
661 /* Does the equality constraint at position "eq" in "bmap" involve
662 * any local variables in the range [first, first + n)
663 * that are not marked as having an explicit representation?
665 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
666 int eq
, unsigned first
, unsigned n
)
672 return isl_bool_error
;
674 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
675 for (i
= 0; i
< n
; ++i
) {
678 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
680 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
682 return isl_bool_error
;
684 return isl_bool_true
;
687 return isl_bool_false
;
690 /* The last local variable involved in the equality constraint
691 * at position "eq" in "bmap" is the local variable at position "div".
692 * It can therefore be used to extract an explicit representation
694 * Do so unless the local variable already has an explicit representation or
695 * the explicit representation would involve any other local variables
696 * that in turn do not have an explicit representation.
697 * An equality constraint involving local variables without an explicit
698 * representation can be used in isl_basic_map_drop_redundant_divs
699 * to separate out an independent local variable. Introducing
700 * an explicit representation here would block this transformation,
701 * while the partial explicit representation in itself is not very useful.
702 * Set *progress if anything is changed.
704 * The equality constraint is of the form
708 * with n a positive number. The explicit representation derived from
713 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
714 int div
, int eq
, int *progress
)
716 unsigned total
, o_div
;
722 if (!isl_int_is_zero(bmap
->div
[div
][0]))
725 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
727 return isl_basic_map_free(bmap
);
731 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
732 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
733 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
734 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
735 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
738 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
743 struct isl_basic_map
*isl_basic_map_gauss(
744 struct isl_basic_map
*bmap
, int *progress
)
752 bmap
= isl_basic_map_order_divs(bmap
);
757 total
= isl_basic_map_total_dim(bmap
);
758 total_var
= total
- bmap
->n_div
;
760 last_var
= total
- 1;
761 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
762 for (; last_var
>= 0; --last_var
) {
763 for (k
= done
; k
< bmap
->n_eq
; ++k
)
764 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
772 swap_equality(bmap
, k
, done
);
773 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
774 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
776 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
779 if (last_var
>= total_var
)
780 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
785 if (done
== bmap
->n_eq
)
787 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
788 if (isl_int_is_zero(bmap
->eq
[k
][0]))
790 return isl_basic_map_set_to_empty(bmap
);
792 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
796 struct isl_basic_set
*isl_basic_set_gauss(
797 struct isl_basic_set
*bset
, int *progress
)
799 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
804 static unsigned int round_up(unsigned int v
)
815 /* Hash table of inequalities in a basic map.
816 * "index" is an array of addresses of inequalities in the basic map, some
817 * of which are NULL. The inequalities are hashed on the coefficients
818 * except the constant term.
819 * "size" is the number of elements in the array and is always a power of two
820 * "bits" is the number of bits need to represent an index into the array.
821 * "total" is the total dimension of the basic map.
823 struct isl_constraint_index
{
830 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
832 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
833 __isl_keep isl_basic_map
*bmap
)
839 return isl_stat_error
;
840 ci
->total
= isl_basic_set_total_dim(bmap
);
841 if (bmap
->n_ineq
== 0)
843 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
844 ci
->bits
= ffs(ci
->size
) - 1;
845 ctx
= isl_basic_map_get_ctx(bmap
);
846 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
848 return isl_stat_error
;
853 /* Free the memory allocated by create_constraint_index.
855 static void constraint_index_free(struct isl_constraint_index
*ci
)
860 /* Return the position in ci->index that contains the address of
861 * an inequality that is equal to *ineq up to the constant term,
862 * provided this address is not identical to "ineq".
863 * If there is no such inequality, then return the position where
864 * such an inequality should be inserted.
866 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
869 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
870 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
871 if (ineq
!= ci
->index
[h
] &&
872 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
877 /* Return the position in ci->index that contains the address of
878 * an inequality that is equal to the k'th inequality of "bmap"
879 * up to the constant term, provided it does not point to the very
881 * If there is no such inequality, then return the position where
882 * such an inequality should be inserted.
884 static int hash_index(struct isl_constraint_index
*ci
,
885 __isl_keep isl_basic_map
*bmap
, int k
)
887 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
890 static int set_hash_index(struct isl_constraint_index
*ci
,
891 struct isl_basic_set
*bset
, int k
)
893 return hash_index(ci
, bset
, k
);
896 /* Fill in the "ci" data structure with the inequalities of "bset".
898 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
899 __isl_keep isl_basic_set
*bset
)
903 if (create_constraint_index(ci
, bset
) < 0)
904 return isl_stat_error
;
906 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
907 h
= set_hash_index(ci
, bset
, k
);
908 ci
->index
[h
] = &bset
->ineq
[k
];
914 /* Is the inequality ineq (obviously) redundant with respect
915 * to the constraints in "ci"?
917 * Look for an inequality in "ci" with the same coefficients and then
918 * check if the contant term of "ineq" is greater than or equal
919 * to the constant term of that inequality. If so, "ineq" is clearly
922 * Note that hash_index_ineq ignores a stored constraint if it has
923 * the same address as the passed inequality. It is ok to pass
924 * the address of a local variable here since it will never be
925 * the same as the address of a constraint in "ci".
927 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
932 h
= hash_index_ineq(ci
, &ineq
);
934 return isl_bool_false
;
935 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
938 /* If we can eliminate more than one div, then we need to make
939 * sure we do it from last div to first div, in order not to
940 * change the position of the other divs that still need to
943 static struct isl_basic_map
*remove_duplicate_divs(
944 struct isl_basic_map
*bmap
, int *progress
)
956 bmap
= isl_basic_map_order_divs(bmap
);
957 if (!bmap
|| bmap
->n_div
<= 1)
960 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
961 total
= total_var
+ bmap
->n_div
;
964 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
965 if (!isl_int_is_zero(bmap
->div
[k
][0]))
970 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
973 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
974 bits
= ffs(size
) - 1;
975 index
= isl_calloc_array(ctx
, int, size
);
976 if (!elim_for
|| !index
)
978 eq
= isl_blk_alloc(ctx
, 1+total
);
979 if (isl_blk_is_error(eq
))
982 isl_seq_clr(eq
.data
, 1+total
);
983 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
984 for (--k
; k
>= 0; --k
) {
987 if (isl_int_is_zero(bmap
->div
[k
][0]))
990 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
991 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
992 if (isl_seq_eq(bmap
->div
[k
],
993 bmap
->div
[index
[h
]-1], 2+total
))
1002 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
1005 k
= elim_for
[l
] - 1;
1006 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
1007 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
1008 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
1011 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
1012 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
1015 isl_blk_free(ctx
, eq
);
1022 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
1027 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1028 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
1029 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1033 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
1039 /* Normalize divs that appear in equalities.
1041 * In particular, we assume that bmap contains some equalities
1046 * and we want to replace the set of e_i by a minimal set and
1047 * such that the new e_i have a canonical representation in terms
1049 * If any of the equalities involves more than one divs, then
1050 * we currently simply bail out.
1052 * Let us first additionally assume that all equalities involve
1053 * a div. The equalities then express modulo constraints on the
1054 * remaining variables and we can use "parameter compression"
1055 * to find a minimal set of constraints. The result is a transformation
1057 * x = T(x') = x_0 + G x'
1059 * with G a lower-triangular matrix with all elements below the diagonal
1060 * non-negative and smaller than the diagonal element on the same row.
1061 * We first normalize x_0 by making the same property hold in the affine
1063 * The rows i of G with a 1 on the diagonal do not impose any modulo
1064 * constraint and simply express x_i = x'_i.
1065 * For each of the remaining rows i, we introduce a div and a corresponding
1066 * equality. In particular
1068 * g_ii e_j = x_i - g_i(x')
1070 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1071 * corresponding div (if g_kk != 1).
1073 * If there are any equalities not involving any div, then we
1074 * first apply a variable compression on the variables x:
1076 * x = C x'' x'' = C_2 x
1078 * and perform the above parameter compression on A C instead of on A.
1079 * The resulting compression is then of the form
1081 * x'' = T(x') = x_0 + G x'
1083 * and in constructing the new divs and the corresponding equalities,
1084 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1085 * by the corresponding row from C_2.
1087 static struct isl_basic_map
*normalize_divs(
1088 struct isl_basic_map
*bmap
, int *progress
)
1095 struct isl_mat
*T
= NULL
;
1096 struct isl_mat
*C
= NULL
;
1097 struct isl_mat
*C2
= NULL
;
1100 int dropped
, needed
;
1105 if (bmap
->n_div
== 0)
1108 if (bmap
->n_eq
== 0)
1111 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
1114 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1115 div_eq
= n_pure_div_eq(bmap
);
1119 if (div_eq
< bmap
->n_eq
) {
1120 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
1121 bmap
->n_eq
- div_eq
, 0, 1 + total
);
1122 C
= isl_mat_variable_compression(B
, &C2
);
1125 if (C
->n_col
== 0) {
1126 bmap
= isl_basic_map_set_to_empty(bmap
);
1133 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
1136 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
1137 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1139 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
1141 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
1144 B
= isl_mat_product(B
, C
);
1148 T
= isl_mat_parameter_compression(B
, d
);
1151 if (T
->n_col
== 0) {
1152 bmap
= isl_basic_map_set_to_empty(bmap
);
1158 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
1159 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
1160 if (isl_int_is_zero(v
))
1162 isl_mat_col_submul(T
, 0, v
, 1 + i
);
1165 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
1168 /* We have to be careful because dropping equalities may reorder them */
1170 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
1171 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1172 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1174 if (i
< bmap
->n_eq
) {
1175 bmap
= isl_basic_map_drop_div(bmap
, j
);
1176 isl_basic_map_drop_equality(bmap
, i
);
1182 for (i
= 1; i
< T
->n_row
; ++i
) {
1183 if (isl_int_is_one(T
->row
[i
][i
]))
1188 if (needed
> dropped
) {
1189 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1194 for (i
= 1; i
< T
->n_row
; ++i
) {
1195 if (isl_int_is_one(T
->row
[i
][i
]))
1197 k
= isl_basic_map_alloc_div(bmap
);
1198 pos
[i
] = 1 + total
+ k
;
1199 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1200 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1202 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1204 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1205 for (j
= 0; j
< i
; ++j
) {
1206 if (isl_int_is_zero(T
->row
[i
][j
]))
1208 if (pos
[j
] < T
->n_row
&& C2
)
1209 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1210 C2
->row
[pos
[j
]], 1 + total
);
1212 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1215 j
= isl_basic_map_alloc_equality(bmap
);
1216 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1217 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1226 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1237 static struct isl_basic_map
*set_div_from_lower_bound(
1238 struct isl_basic_map
*bmap
, int div
, int ineq
)
1240 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1242 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1243 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1244 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1245 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1246 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1251 /* Check whether it is ok to define a div based on an inequality.
1252 * To avoid the introduction of circular definitions of divs, we
1253 * do not allow such a definition if the resulting expression would refer to
1254 * any other undefined divs or if any known div is defined in
1255 * terms of the unknown div.
1257 static isl_bool
ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1261 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1263 /* Not defined in terms of unknown divs */
1264 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1267 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1269 if (isl_int_is_zero(bmap
->div
[j
][0]))
1270 return isl_bool_false
;
1273 /* No other div defined in terms of this one => avoid loops */
1274 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1277 if (isl_int_is_zero(bmap
->div
[j
][0]))
1279 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1280 return isl_bool_false
;
1283 return isl_bool_true
;
1286 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1287 * be a better expression than the current one?
1289 * If we do not have any expression yet, then any expression would be better.
1290 * Otherwise we check if the last variable involved in the inequality
1291 * (disregarding the div that it would define) is in an earlier position
1292 * than the last variable involved in the current div expression.
1294 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1297 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1301 if (isl_int_is_zero(bmap
->div
[div
][0]))
1302 return isl_bool_true
;
1304 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1305 bmap
->n_div
- (div
+ 1)) >= 0)
1306 return isl_bool_false
;
1308 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1309 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1310 total
+ bmap
->n_div
);
1312 return last_ineq
< last_div
;
1315 /* Given two constraints "k" and "l" that are opposite to each other,
1316 * except for the constant term, check if we can use them
1317 * to obtain an expression for one of the hitherto unknown divs or
1318 * a "better" expression for a div for which we already have an expression.
1319 * "sum" is the sum of the constant terms of the constraints.
1320 * If this sum is strictly smaller than the coefficient of one
1321 * of the divs, then this pair can be used define the div.
1322 * To avoid the introduction of circular definitions of divs, we
1323 * do not use the pair if the resulting expression would refer to
1324 * any other undefined divs or if any known div is defined in
1325 * terms of the unknown div.
1327 static struct isl_basic_map
*check_for_div_constraints(
1328 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1331 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1333 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1336 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1338 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1340 set_div
= better_div_constraint(bmap
, i
, k
);
1341 if (set_div
>= 0 && set_div
)
1342 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1344 return isl_basic_map_free(bmap
);
1347 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1348 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1350 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1358 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1359 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1361 struct isl_constraint_index ci
;
1363 unsigned total
= isl_basic_map_total_dim(bmap
);
1366 if (!bmap
|| bmap
->n_ineq
<= 1)
1369 if (create_constraint_index(&ci
, bmap
) < 0)
1372 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1373 ci
.index
[h
] = &bmap
->ineq
[0];
1374 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1375 h
= hash_index(&ci
, bmap
, k
);
1377 ci
.index
[h
] = &bmap
->ineq
[k
];
1382 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1383 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1384 swap_inequality(bmap
, k
, l
);
1385 isl_basic_map_drop_inequality(bmap
, k
);
1389 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1390 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1391 h
= hash_index(&ci
, bmap
, k
);
1392 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1395 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1396 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1397 if (isl_int_is_pos(sum
)) {
1399 bmap
= check_for_div_constraints(bmap
, k
, l
,
1403 if (isl_int_is_zero(sum
)) {
1404 /* We need to break out of the loop after these
1405 * changes since the contents of the hash
1406 * will no longer be valid.
1407 * Plus, we probably we want to regauss first.
1411 isl_basic_map_drop_inequality(bmap
, l
);
1412 isl_basic_map_inequality_to_equality(bmap
, k
);
1414 bmap
= isl_basic_map_set_to_empty(bmap
);
1419 constraint_index_free(&ci
);
1423 /* Detect all pairs of inequalities that form an equality.
1425 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1426 * Call it repeatedly while it is making progress.
1428 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1429 __isl_take isl_basic_map
*bmap
, int *progress
)
1435 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1437 if (progress
&& duplicate
)
1439 } while (duplicate
);
1444 /* Eliminate knowns divs from constraints where they appear with
1445 * a (positive or negative) unit coefficient.
1449 * floor(e/m) + f >= 0
1457 * -floor(e/m) + f >= 0
1461 * -e + m f + m - 1 >= 0
1463 * The first conversion is valid because floor(e/m) >= -f is equivalent
1464 * to e/m >= -f because -f is an integral expression.
1465 * The second conversion follows from the fact that
1467 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1470 * Note that one of the div constraints may have been eliminated
1471 * due to being redundant with respect to the constraint that is
1472 * being modified by this function. The modified constraint may
1473 * no longer imply this div constraint, so we add it back to make
1474 * sure we do not lose any information.
1476 * We skip integral divs, i.e., those with denominator 1, as we would
1477 * risk eliminating the div from the div constraints. We do not need
1478 * to handle those divs here anyway since the div constraints will turn
1479 * out to form an equality and this equality can then be used to eliminate
1480 * the div from all constraints.
1482 static __isl_give isl_basic_map
*eliminate_unit_divs(
1483 __isl_take isl_basic_map
*bmap
, int *progress
)
1492 ctx
= isl_basic_map_get_ctx(bmap
);
1493 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1495 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1496 if (isl_int_is_zero(bmap
->div
[i
][0]))
1498 if (isl_int_is_one(bmap
->div
[i
][0]))
1500 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1503 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1504 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1509 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1510 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1512 isl_seq_combine(bmap
->ineq
[j
],
1513 ctx
->negone
, bmap
->div
[i
] + 1,
1514 bmap
->div
[i
][0], bmap
->ineq
[j
],
1515 total
+ bmap
->n_div
);
1517 isl_seq_combine(bmap
->ineq
[j
],
1518 ctx
->one
, bmap
->div
[i
] + 1,
1519 bmap
->div
[i
][0], bmap
->ineq
[j
],
1520 total
+ bmap
->n_div
);
1522 isl_int_add(bmap
->ineq
[j
][0],
1523 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1524 isl_int_sub_ui(bmap
->ineq
[j
][0],
1525 bmap
->ineq
[j
][0], 1);
1528 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1529 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1530 return isl_basic_map_free(bmap
);
1537 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1546 empty
= isl_basic_map_plain_is_empty(bmap
);
1548 return isl_basic_map_free(bmap
);
1551 bmap
= isl_basic_map_normalize_constraints(bmap
);
1552 bmap
= reduce_div_coefficients(bmap
);
1553 bmap
= normalize_div_expressions(bmap
);
1554 bmap
= remove_duplicate_divs(bmap
, &progress
);
1555 bmap
= eliminate_unit_divs(bmap
, &progress
);
1556 bmap
= eliminate_divs_eq(bmap
, &progress
);
1557 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1558 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1559 /* requires equalities in normal form */
1560 bmap
= normalize_divs(bmap
, &progress
);
1561 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1563 if (bmap
&& progress
)
1564 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1569 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1571 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1575 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1576 isl_int
*constraint
, unsigned div
)
1581 return isl_bool_error
;
1583 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1585 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1587 isl_int_sub(bmap
->div
[div
][1],
1588 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1589 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1590 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1591 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1592 isl_int_add(bmap
->div
[div
][1],
1593 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1595 return isl_bool_false
;
1596 if (isl_seq_first_non_zero(constraint
+pos
+1,
1597 bmap
->n_div
-div
-1) != -1)
1598 return isl_bool_false
;
1599 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1600 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1601 return isl_bool_false
;
1602 if (isl_seq_first_non_zero(constraint
+pos
+1,
1603 bmap
->n_div
-div
-1) != -1)
1604 return isl_bool_false
;
1606 return isl_bool_false
;
1608 return isl_bool_true
;
1611 isl_bool
isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1612 isl_int
*constraint
, unsigned div
)
1614 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1618 /* If the only constraints a div d=floor(f/m)
1619 * appears in are its two defining constraints
1622 * -(f - (m - 1)) + m d >= 0
1624 * then it can safely be removed.
1626 static isl_bool
div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1629 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1631 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1632 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1633 return isl_bool_false
;
1635 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1638 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1640 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1641 if (red
< 0 || !red
)
1645 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1646 if (isl_int_is_zero(bmap
->div
[i
][0]))
1648 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1649 return isl_bool_false
;
1652 return isl_bool_true
;
1656 * Remove divs that don't occur in any of the constraints or other divs.
1657 * These can arise when dropping constraints from a basic map or
1658 * when the divs of a basic map have been temporarily aligned
1659 * with the divs of another basic map.
1661 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1668 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1671 redundant
= div_is_redundant(bmap
, i
);
1673 return isl_basic_map_free(bmap
);
1676 bmap
= isl_basic_map_drop_div(bmap
, i
);
1681 /* Mark "bmap" as final, without checking for obviously redundant
1682 * integer divisions. This function should be used when "bmap"
1683 * is known not to involve any such integer divisions.
1685 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1686 __isl_take isl_basic_map
*bmap
)
1690 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1694 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1696 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1698 bmap
= remove_redundant_divs(bmap
);
1699 bmap
= isl_basic_map_mark_final(bmap
);
1703 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1705 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1708 /* Remove definition of any div that is defined in terms of the given variable.
1709 * The div itself is not removed. Functions such as
1710 * eliminate_divs_ineq depend on the other divs remaining in place.
1712 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1720 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1721 if (isl_int_is_zero(bmap
->div
[i
][0]))
1723 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1725 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1732 /* Eliminate the specified variables from the constraints using
1733 * Fourier-Motzkin. The variables themselves are not removed.
1735 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1736 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1747 total
= isl_basic_map_total_dim(bmap
);
1749 bmap
= isl_basic_map_cow(bmap
);
1750 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1751 bmap
= remove_dependent_vars(bmap
, d
);
1755 for (d
= pos
+ n
- 1;
1756 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1757 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1758 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1759 int n_lower
, n_upper
;
1762 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1763 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1765 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1766 isl_basic_map_drop_equality(bmap
, i
);
1774 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1775 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1777 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1780 bmap
= isl_basic_map_extend_constraints(bmap
,
1781 0, n_lower
* n_upper
);
1784 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1786 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1789 for (j
= 0; j
< i
; ++j
) {
1790 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1793 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1794 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1796 k
= isl_basic_map_alloc_inequality(bmap
);
1799 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1801 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1802 1+d
, 1+total
, NULL
);
1804 isl_basic_map_drop_inequality(bmap
, i
);
1807 if (n_lower
> 0 && n_upper
> 0) {
1808 bmap
= isl_basic_map_normalize_constraints(bmap
);
1809 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1811 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1812 bmap
= isl_basic_map_remove_redundancies(bmap
);
1816 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1820 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1822 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1825 isl_basic_map_free(bmap
);
1829 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1830 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1832 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1836 /* Eliminate the specified n dimensions starting at first from the
1837 * constraints, without removing the dimensions from the space.
1838 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1839 * Otherwise, they are projected out and the original space is restored.
1841 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1842 __isl_take isl_basic_map
*bmap
,
1843 enum isl_dim_type type
, unsigned first
, unsigned n
)
1852 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1853 isl_die(bmap
->ctx
, isl_error_invalid
,
1854 "index out of bounds", goto error
);
1856 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1857 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1858 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1859 return isl_basic_map_finalize(bmap
);
1862 space
= isl_basic_map_get_space(bmap
);
1863 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1864 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1865 bmap
= isl_basic_map_reset_space(bmap
, space
);
1868 isl_basic_map_free(bmap
);
1872 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1873 __isl_take isl_basic_set
*bset
,
1874 enum isl_dim_type type
, unsigned first
, unsigned n
)
1876 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1879 /* Remove all constraints from "bmap" that reference any unknown local
1880 * variables (directly or indirectly).
1882 * Dropping all constraints on a local variable will make it redundant,
1883 * so it will get removed implicitly by
1884 * isl_basic_map_drop_constraints_involving_dims. Some other local
1885 * variables may also end up becoming redundant if they only appear
1886 * in constraints together with the unknown local variable.
1887 * Therefore, start over after calling
1888 * isl_basic_map_drop_constraints_involving_dims.
1890 __isl_give isl_basic_map
*isl_basic_map_drop_constraint_involving_unknown_divs(
1891 __isl_take isl_basic_map
*bmap
)
1894 int i
, n_div
, o_div
;
1896 known
= isl_basic_map_divs_known(bmap
);
1898 return isl_basic_map_free(bmap
);
1902 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1903 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
1905 for (i
= 0; i
< n_div
; ++i
) {
1906 known
= isl_basic_map_div_is_known(bmap
, i
);
1908 return isl_basic_map_free(bmap
);
1911 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
1912 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
1916 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
1923 /* Remove all constraints from "map" that reference any unknown local
1924 * variables (directly or indirectly).
1926 * Since constraints may get dropped from the basic maps,
1927 * they may no longer be disjoint from each other.
1929 __isl_give isl_map
*isl_map_drop_constraint_involving_unknown_divs(
1930 __isl_take isl_map
*map
)
1935 known
= isl_map_divs_known(map
);
1937 return isl_map_free(map
);
1941 map
= isl_map_cow(map
);
1945 for (i
= 0; i
< map
->n
; ++i
) {
1947 isl_basic_map_drop_constraint_involving_unknown_divs(
1950 return isl_map_free(map
);
1954 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
1959 /* Don't assume equalities are in order, because align_divs
1960 * may have changed the order of the divs.
1962 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1967 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1968 for (d
= 0; d
< total
; ++d
)
1970 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1971 for (d
= total
- 1; d
>= 0; --d
) {
1972 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1980 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1982 compute_elimination_index(bset_to_bmap(bset
), elim
);
1985 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1986 struct isl_basic_map
*bmap
, int *elim
)
1992 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1993 for (d
= total
- 1; d
>= 0; --d
) {
1994 if (isl_int_is_zero(src
[1+d
]))
1999 isl_seq_cpy(dst
, src
, 1 + total
);
2002 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
2007 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2008 struct isl_basic_set
*bset
, int *elim
)
2010 return reduced_using_equalities(dst
, src
,
2011 bset_to_bmap(bset
), elim
);
2014 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
2015 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2020 if (!bset
|| !context
)
2023 if (context
->n_eq
== 0) {
2024 isl_basic_set_free(context
);
2028 bset
= isl_basic_set_cow(bset
);
2032 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
2035 set_compute_elimination_index(context
, elim
);
2036 for (i
= 0; i
< bset
->n_eq
; ++i
)
2037 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
2039 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2040 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
2042 isl_basic_set_free(context
);
2044 bset
= isl_basic_set_simplify(bset
);
2045 bset
= isl_basic_set_finalize(bset
);
2048 isl_basic_set_free(bset
);
2049 isl_basic_set_free(context
);
2053 /* For each inequality in "ineq" that is a shifted (more relaxed)
2054 * copy of an inequality in "context", mark the corresponding entry
2056 * If an inequality only has a non-negative constant term, then
2059 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
2060 __isl_keep isl_basic_set
*context
, int *row
)
2062 struct isl_constraint_index ci
;
2067 if (!ineq
|| !context
)
2068 return isl_stat_error
;
2069 if (context
->n_ineq
== 0)
2071 if (setup_constraint_index(&ci
, context
) < 0)
2072 return isl_stat_error
;
2074 n_ineq
= isl_mat_rows(ineq
);
2075 total
= isl_mat_cols(ineq
) - 1;
2076 for (k
= 0; k
< n_ineq
; ++k
) {
2080 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
2081 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
2085 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
2092 constraint_index_free(&ci
);
2095 constraint_index_free(&ci
);
2096 return isl_stat_error
;
2099 static struct isl_basic_set
*remove_shifted_constraints(
2100 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2102 struct isl_constraint_index ci
;
2105 if (!bset
|| !context
)
2108 if (context
->n_ineq
== 0)
2110 if (setup_constraint_index(&ci
, context
) < 0)
2113 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
2116 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
2121 bset
= isl_basic_set_cow(bset
);
2124 isl_basic_set_drop_inequality(bset
, k
);
2127 constraint_index_free(&ci
);
2130 constraint_index_free(&ci
);
2134 /* Remove constraints from "bmap" that are identical to constraints
2135 * in "context" or that are more relaxed (greater constant term).
2137 * We perform the test for shifted copies on the pure constraints
2138 * in remove_shifted_constraints.
2140 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
2141 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
2143 isl_basic_set
*bset
, *bset_context
;
2145 if (!bmap
|| !context
)
2148 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
2149 isl_basic_map_free(context
);
2153 context
= isl_basic_map_align_divs(context
, bmap
);
2154 bmap
= isl_basic_map_align_divs(bmap
, context
);
2156 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
2157 bset_context
= isl_basic_map_underlying_set(context
);
2158 bset
= remove_shifted_constraints(bset
, bset_context
);
2159 isl_basic_set_free(bset_context
);
2161 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2165 isl_basic_map_free(bmap
);
2166 isl_basic_map_free(context
);
2170 /* Does the (linear part of a) constraint "c" involve any of the "len"
2171 * "relevant" dimensions?
2173 static int is_related(isl_int
*c
, int len
, int *relevant
)
2177 for (i
= 0; i
< len
; ++i
) {
2180 if (!isl_int_is_zero(c
[i
]))
2187 /* Drop constraints from "bmap" that do not involve any of
2188 * the dimensions marked "relevant".
2190 static __isl_give isl_basic_map
*drop_unrelated_constraints(
2191 __isl_take isl_basic_map
*bmap
, int *relevant
)
2195 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2196 for (i
= 0; i
< dim
; ++i
)
2202 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2203 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2204 bmap
= isl_basic_map_cow(bmap
);
2205 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2206 return isl_basic_map_free(bmap
);
2209 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2210 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2211 bmap
= isl_basic_map_cow(bmap
);
2212 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2213 return isl_basic_map_free(bmap
);
2219 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2221 * In particular, for any variable involved in the constraint,
2222 * find the actual group id from before and replace the group
2223 * of the corresponding variable by the minimal group of all
2224 * the variables involved in the constraint considered so far
2225 * (if this minimum is smaller) or replace the minimum by this group
2226 * (if the minimum is larger).
2228 * At the end, all the variables in "c" will (indirectly) point
2229 * to the minimal of the groups that they referred to originally.
2231 static void update_groups(int dim
, int *group
, isl_int
*c
)
2236 for (j
= 0; j
< dim
; ++j
) {
2237 if (isl_int_is_zero(c
[j
]))
2239 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2240 group
[j
] = group
[group
[j
]];
2241 if (group
[j
] == min
)
2243 if (group
[j
] < min
) {
2244 if (min
>= 0 && min
< dim
)
2245 group
[min
] = group
[j
];
2248 group
[group
[j
]] = min
;
2252 /* Allocate an array of groups of variables, one for each variable
2253 * in "context", initialized to zero.
2255 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2260 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2261 ctx
= isl_basic_set_get_ctx(context
);
2262 return isl_calloc_array(ctx
, int, dim
);
2265 /* Drop constraints from "bmap" that only involve variables that are
2266 * not related to any of the variables marked with a "-1" in "group".
2268 * We construct groups of variables that collect variables that
2269 * (indirectly) appear in some common constraint of "bmap".
2270 * Each group is identified by the first variable in the group,
2271 * except for the special group of variables that was already identified
2272 * in the input as -1 (or are related to those variables).
2273 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2274 * otherwise the group of i is the group of group[i].
2276 * We first initialize groups for the remaining variables.
2277 * Then we iterate over the constraints of "bmap" and update the
2278 * group of the variables in the constraint by the smallest group.
2279 * Finally, we resolve indirect references to groups by running over
2282 * After computing the groups, we drop constraints that do not involve
2283 * any variables in the -1 group.
2285 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2286 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2295 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2298 for (i
= 0; i
< dim
; ++i
)
2300 last
= group
[i
] = i
;
2306 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2307 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2308 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2309 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2311 for (i
= 0; i
< dim
; ++i
)
2313 group
[i
] = group
[group
[i
]];
2315 for (i
= 0; i
< dim
; ++i
)
2316 group
[i
] = group
[i
] == -1;
2318 bmap
= drop_unrelated_constraints(bmap
, group
);
2324 /* Drop constraints from "context" that are irrelevant for computing
2325 * the gist of "bset".
2327 * In particular, drop constraints in variables that are not related
2328 * to any of the variables involved in the constraints of "bset"
2329 * in the sense that there is no sequence of constraints that connects them.
2331 * We first mark all variables that appear in "bset" as belonging
2332 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2334 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2335 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2341 if (!context
|| !bset
)
2342 return isl_basic_set_free(context
);
2344 group
= alloc_groups(context
);
2347 return isl_basic_set_free(context
);
2349 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2350 for (i
= 0; i
< dim
; ++i
) {
2351 for (j
= 0; j
< bset
->n_eq
; ++j
)
2352 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2354 if (j
< bset
->n_eq
) {
2358 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2359 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2361 if (j
< bset
->n_ineq
)
2365 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2368 /* Drop constraints from "context" that are irrelevant for computing
2369 * the gist of the inequalities "ineq".
2370 * Inequalities in "ineq" for which the corresponding element of row
2371 * is set to -1 have already been marked for removal and should be ignored.
2373 * In particular, drop constraints in variables that are not related
2374 * to any of the variables involved in "ineq"
2375 * in the sense that there is no sequence of constraints that connects them.
2377 * We first mark all variables that appear in "bset" as belonging
2378 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2380 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2381 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2387 if (!context
|| !ineq
)
2388 return isl_basic_set_free(context
);
2390 group
= alloc_groups(context
);
2393 return isl_basic_set_free(context
);
2395 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2396 n
= isl_mat_rows(ineq
);
2397 for (i
= 0; i
< dim
; ++i
) {
2398 for (j
= 0; j
< n
; ++j
) {
2401 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2408 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2411 /* Do all "n" entries of "row" contain a negative value?
2413 static int all_neg(int *row
, int n
)
2417 for (i
= 0; i
< n
; ++i
)
2424 /* Update the inequalities in "bset" based on the information in "row"
2427 * In particular, the array "row" contains either -1, meaning that
2428 * the corresponding inequality of "bset" is redundant, or the index
2429 * of an inequality in "tab".
2431 * If the row entry is -1, then drop the inequality.
2432 * Otherwise, if the constraint is marked redundant in the tableau,
2433 * then drop the inequality. Similarly, if it is marked as an equality
2434 * in the tableau, then turn the inequality into an equality and
2435 * perform Gaussian elimination.
2437 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2438 __isl_keep
int *row
, struct isl_tab
*tab
)
2443 int found_equality
= 0;
2447 if (tab
&& tab
->empty
)
2448 return isl_basic_set_set_to_empty(bset
);
2450 n_ineq
= bset
->n_ineq
;
2451 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2453 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2454 return isl_basic_set_free(bset
);
2460 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2461 isl_basic_map_inequality_to_equality(bset
, i
);
2463 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2464 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2465 return isl_basic_set_free(bset
);
2470 bset
= isl_basic_set_gauss(bset
, NULL
);
2471 bset
= isl_basic_set_finalize(bset
);
2475 /* Update the inequalities in "bset" based on the information in "row"
2476 * and "tab" and free all arguments (other than "bset").
2478 static __isl_give isl_basic_set
*update_ineq_free(
2479 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2480 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2481 struct isl_tab
*tab
)
2484 isl_basic_set_free(context
);
2486 bset
= update_ineq(bset
, row
, tab
);
2493 /* Remove all information from bset that is redundant in the context
2495 * "ineq" contains the (possibly transformed) inequalities of "bset",
2496 * in the same order.
2497 * The (explicit) equalities of "bset" are assumed to have been taken
2498 * into account by the transformation such that only the inequalities
2500 * "context" is assumed not to be empty.
2502 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2503 * A value of -1 means that the inequality is obviously redundant and may
2504 * not even appear in "tab".
2506 * We first mark the inequalities of "bset"
2507 * that are obviously redundant with respect to some inequality in "context".
2508 * Then we remove those constraints from "context" that have become
2509 * irrelevant for computing the gist of "bset".
2510 * Note that this removal of constraints cannot be replaced by
2511 * a factorization because factors in "bset" may still be connected
2512 * to each other through constraints in "context".
2514 * If there are any inequalities left, we construct a tableau for
2515 * the context and then add the inequalities of "bset".
2516 * Before adding these inequalities, we freeze all constraints such that
2517 * they won't be considered redundant in terms of the constraints of "bset".
2518 * Then we detect all redundant constraints (among the
2519 * constraints that weren't frozen), first by checking for redundancy in the
2520 * the tableau and then by checking if replacing a constraint by its negation
2521 * would lead to an empty set. This last step is fairly expensive
2522 * and could be optimized by more reuse of the tableau.
2523 * Finally, we update bset according to the results.
2525 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2526 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2531 isl_basic_set
*combined
= NULL
;
2532 struct isl_tab
*tab
= NULL
;
2533 unsigned n_eq
, context_ineq
;
2535 if (!bset
|| !ineq
|| !context
)
2538 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2539 isl_basic_set_free(context
);
2544 ctx
= isl_basic_set_get_ctx(context
);
2545 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2549 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2551 if (all_neg(row
, bset
->n_ineq
))
2552 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2554 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2557 if (isl_basic_set_plain_is_universe(context
))
2558 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2560 n_eq
= context
->n_eq
;
2561 context_ineq
= context
->n_ineq
;
2562 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2563 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2564 tab
= isl_tab_from_basic_set(combined
, 0);
2565 for (i
= 0; i
< context_ineq
; ++i
)
2566 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2568 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2571 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2574 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2575 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2579 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2581 if (isl_tab_detect_redundant(tab
) < 0)
2583 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2584 isl_basic_set
*test
;
2590 if (tab
->con
[n_eq
+ r
].is_redundant
)
2592 test
= isl_basic_set_dup(combined
);
2593 if (isl_inequality_negate(test
, r
) < 0)
2594 test
= isl_basic_set_free(test
);
2595 test
= isl_basic_set_update_from_tab(test
, tab
);
2596 is_empty
= isl_basic_set_is_empty(test
);
2597 isl_basic_set_free(test
);
2601 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2603 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2605 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2606 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2609 isl_basic_set_free(combined
);
2615 isl_basic_set_free(combined
);
2616 isl_basic_set_free(context
);
2617 isl_basic_set_free(bset
);
2621 /* Extract the inequalities of "bset" as an isl_mat.
2623 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2632 ctx
= isl_basic_set_get_ctx(bset
);
2633 total
= isl_basic_set_total_dim(bset
);
2634 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2640 /* Remove all information from "bset" that is redundant in the context
2641 * of "context", for the case where both "bset" and "context" are
2644 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2645 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2649 ineq
= extract_ineq(bset
);
2650 return uset_gist_full(bset
, ineq
, context
);
2653 /* Remove all information from "bset" that is redundant in the context
2654 * of "context", for the case where the combined equalities of
2655 * "bset" and "context" allow for a compression that can be obtained
2656 * by preapplication of "T".
2658 * "bset" itself is not transformed by "T". Instead, the inequalities
2659 * are extracted from "bset" and those are transformed by "T".
2660 * uset_gist_full then determines which of the transformed inequalities
2661 * are redundant with respect to the transformed "context" and removes
2662 * the corresponding inequalities from "bset".
2664 * After preapplying "T" to the inequalities, any common factor is
2665 * removed from the coefficients. If this results in a tightening
2666 * of the constant term, then the same tightening is applied to
2667 * the corresponding untransformed inequality in "bset".
2668 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2672 * with 0 <= r < g, then it is equivalent to
2676 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2677 * subspace compressed by T since the latter would be transformed to
2681 static __isl_give isl_basic_set
*uset_gist_compressed(
2682 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2683 __isl_take isl_mat
*T
)
2687 int i
, n_row
, n_col
;
2690 ineq
= extract_ineq(bset
);
2691 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2692 context
= isl_basic_set_preimage(context
, T
);
2694 if (!ineq
|| !context
)
2696 if (isl_basic_set_plain_is_empty(context
)) {
2698 isl_basic_set_free(context
);
2699 return isl_basic_set_set_to_empty(bset
);
2702 ctx
= isl_mat_get_ctx(ineq
);
2703 n_row
= isl_mat_rows(ineq
);
2704 n_col
= isl_mat_cols(ineq
);
2706 for (i
= 0; i
< n_row
; ++i
) {
2707 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2708 if (isl_int_is_zero(ctx
->normalize_gcd
))
2710 if (isl_int_is_one(ctx
->normalize_gcd
))
2712 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2713 ctx
->normalize_gcd
, n_col
- 1);
2714 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2715 isl_int_fdiv_q(ineq
->row
[i
][0],
2716 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2717 if (isl_int_is_zero(rem
))
2719 bset
= isl_basic_set_cow(bset
);
2722 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2726 return uset_gist_full(bset
, ineq
, context
);
2729 isl_basic_set_free(context
);
2730 isl_basic_set_free(bset
);
2734 /* Project "bset" onto the variables that are involved in "template".
2736 static __isl_give isl_basic_set
*project_onto_involved(
2737 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2741 if (!bset
|| !template)
2742 return isl_basic_set_free(bset
);
2744 n
= isl_basic_set_dim(template, isl_dim_set
);
2746 for (i
= 0; i
< n
; ++i
) {
2749 involved
= isl_basic_set_involves_dims(template,
2752 return isl_basic_set_free(bset
);
2755 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2761 /* Remove all information from bset that is redundant in the context
2762 * of context. In particular, equalities that are linear combinations
2763 * of those in context are removed. Then the inequalities that are
2764 * redundant in the context of the equalities and inequalities of
2765 * context are removed.
2767 * First of all, we drop those constraints from "context"
2768 * that are irrelevant for computing the gist of "bset".
2769 * Alternatively, we could factorize the intersection of "context" and "bset".
2771 * We first compute the intersection of the integer affine hulls
2772 * of "bset" and "context",
2773 * compute the gist inside this intersection and then reduce
2774 * the constraints with respect to the equalities of the context
2775 * that only involve variables already involved in the input.
2777 * If two constraints are mutually redundant, then uset_gist_full
2778 * will remove the second of those constraints. We therefore first
2779 * sort the constraints so that constraints not involving existentially
2780 * quantified variables are given precedence over those that do.
2781 * We have to perform this sorting before the variable compression,
2782 * because that may effect the order of the variables.
2784 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2785 __isl_take isl_basic_set
*context
)
2790 isl_basic_set
*aff_context
;
2793 if (!bset
|| !context
)
2796 context
= drop_irrelevant_constraints(context
, bset
);
2798 bset
= isl_basic_set_detect_equalities(bset
);
2799 aff
= isl_basic_set_copy(bset
);
2800 aff
= isl_basic_set_plain_affine_hull(aff
);
2801 context
= isl_basic_set_detect_equalities(context
);
2802 aff_context
= isl_basic_set_copy(context
);
2803 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2804 aff
= isl_basic_set_intersect(aff
, aff_context
);
2807 if (isl_basic_set_plain_is_empty(aff
)) {
2808 isl_basic_set_free(bset
);
2809 isl_basic_set_free(context
);
2812 bset
= isl_basic_set_sort_constraints(bset
);
2813 if (aff
->n_eq
== 0) {
2814 isl_basic_set_free(aff
);
2815 return uset_gist_uncompressed(bset
, context
);
2817 total
= isl_basic_set_total_dim(bset
);
2818 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2819 eq
= isl_mat_cow(eq
);
2820 T
= isl_mat_variable_compression(eq
, NULL
);
2821 isl_basic_set_free(aff
);
2822 if (T
&& T
->n_col
== 0) {
2824 isl_basic_set_free(context
);
2825 return isl_basic_set_set_to_empty(bset
);
2828 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2829 aff_context
= project_onto_involved(aff_context
, bset
);
2831 bset
= uset_gist_compressed(bset
, context
, T
);
2832 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2835 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2836 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2841 isl_basic_set_free(bset
);
2842 isl_basic_set_free(context
);
2846 /* Return the number of equality constraints in "bmap" that involve
2847 * local variables. This function assumes that Gaussian elimination
2848 * has been applied to the equality constraints.
2850 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2858 if (bmap
->n_eq
== 0)
2861 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2862 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2865 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2866 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2873 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2874 * The constraints are assumed not to involve any local variables.
2876 static __isl_give isl_basic_map
*basic_map_from_equalities(
2877 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2880 isl_basic_map
*bmap
= NULL
;
2885 if (1 + isl_space_dim(space
, isl_dim_all
) != eq
->n_col
)
2886 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
2887 "unexpected number of columns", goto error
);
2889 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
2891 for (i
= 0; i
< eq
->n_row
; ++i
) {
2892 k
= isl_basic_map_alloc_equality(bmap
);
2895 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
2898 isl_space_free(space
);
2902 isl_space_free(space
);
2904 isl_basic_map_free(bmap
);
2908 /* Construct and return a variable compression based on the equality
2909 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2910 * "n1" is the number of (initial) equality constraints in "bmap1"
2911 * that do involve local variables.
2912 * "n2" is the number of (initial) equality constraints in "bmap2"
2913 * that do involve local variables.
2914 * "total" is the total number of other variables.
2915 * This function assumes that Gaussian elimination
2916 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2917 * such that the equality constraints not involving local variables
2918 * are those that start at "n1" or "n2".
2920 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2921 * then simply compute the compression based on the equality constraints
2922 * in the other basic map.
2923 * Otherwise, combine the equality constraints from both into a new
2924 * basic map such that Gaussian elimination can be applied to this combination
2925 * and then construct a variable compression from the resulting
2926 * equality constraints.
2928 static __isl_give isl_mat
*combined_variable_compression(
2929 __isl_keep isl_basic_map
*bmap1
, int n1
,
2930 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
2933 isl_mat
*E1
, *E2
, *V
;
2934 isl_basic_map
*bmap
;
2936 ctx
= isl_basic_map_get_ctx(bmap1
);
2937 if (bmap1
->n_eq
== n1
) {
2938 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2939 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2940 return isl_mat_variable_compression(E2
, NULL
);
2942 if (bmap2
->n_eq
== n2
) {
2943 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2944 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2945 return isl_mat_variable_compression(E1
, NULL
);
2947 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
2948 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
2949 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
2950 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
2951 E1
= isl_mat_concat(E1
, E2
);
2952 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
2953 bmap
= isl_basic_map_gauss(bmap
, NULL
);
2956 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
2957 V
= isl_mat_variable_compression(E1
, NULL
);
2958 isl_basic_map_free(bmap
);
2963 /* Extract the stride constraints from "bmap", compressed
2964 * with respect to both the stride constraints in "context" and
2965 * the remaining equality constraints in both "bmap" and "context".
2966 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2967 * "context_n_eq" is the number of (initial) stride constraints in "context".
2969 * Let x be all variables in "bmap" (and "context") other than the local
2970 * variables. First compute a variable compression
2974 * based on the non-stride equality constraints in "bmap" and "context".
2975 * Consider the stride constraints of "context",
2979 * with y the local variables and plug in the variable compression,
2982 * A(V x') + B(y) = 0
2984 * Use these constraints to compute a parameter compression on x'
2988 * Now consider the stride constraints of "bmap"
2992 * and plug in x = V*T x''.
2993 * That is, return A = [C*V*T D].
2995 static __isl_give isl_mat
*extract_compressed_stride_constraints(
2996 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
2997 __isl_keep isl_basic_map
*context
, int context_n_eq
)
3001 isl_mat
*A
, *B
, *T
, *V
;
3003 total
= isl_basic_map_dim(context
, isl_dim_all
);
3004 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3007 ctx
= isl_basic_map_get_ctx(bmap
);
3009 V
= combined_variable_compression(bmap
, bmap_n_eq
,
3010 context
, context_n_eq
, total
);
3012 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
3013 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
3014 0, context_n_eq
, 1 + total
, n_div
);
3015 A
= isl_mat_product(A
, isl_mat_copy(V
));
3016 T
= isl_mat_parameter_compression_ext(A
, B
);
3017 T
= isl_mat_product(V
, T
);
3019 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3020 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
3022 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
3023 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
3024 A
= isl_mat_product(A
, T
);
3029 /* Remove the prime factors from *g that have an exponent that
3030 * is strictly smaller than the exponent in "c".
3031 * All exponents in *g are known to be smaller than or equal
3034 * That is, if *g is equal to
3036 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3038 * and "c" is equal to
3040 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3044 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3045 * p_n^{e_n * (e_n = f_n)}
3047 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3048 * neither does the gcd of *g and c / *g.
3049 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3050 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3051 * Dividing *g by this gcd therefore strictly reduces the exponent
3052 * of the prime factors that need to be removed, while leaving the
3053 * other prime factors untouched.
3054 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3055 * removes all undesired factors, without removing any others.
3057 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
3063 isl_int_divexact(t
, c
, *g
);
3064 isl_int_gcd(t
, t
, *g
);
3065 if (isl_int_is_one(t
))
3067 isl_int_divexact(*g
, *g
, t
);
3072 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3073 * of the same stride constraints in a compressed space that exploits
3074 * all equalities in the context and the other equalities in "bmap".
3076 * If the stride constraints of "bmap" are of the form
3080 * then A is of the form
3084 * If any of these constraints involves only a single local variable y,
3085 * then the constraint appears as
3095 * Let g be the gcd of m and the coefficients of h.
3096 * Then, in particular, g is a divisor of the coefficients of h and
3100 * is known to be a multiple of g.
3101 * If some prime factor in m appears with the same exponent in g,
3102 * then it can be removed from m because f(x) is already known
3103 * to be a multiple of g and therefore in particular of this power
3104 * of the prime factors.
3105 * Prime factors that appear with a smaller exponent in g cannot
3106 * be removed from m.
3107 * Let g' be the divisor of g containing all prime factors that
3108 * appear with the same exponent in m and g, then
3112 * can be replaced by
3114 * f(x) + m/g' y_i' = 0
3116 * Note that (if g' != 1) this changes the explicit representation
3117 * of y_i to that of y_i', so the integer division at position i
3118 * is marked unknown and later recomputed by a call to
3119 * isl_basic_map_gauss.
3121 static __isl_give isl_basic_map
*reduce_stride_constraints(
3122 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
3130 return isl_basic_map_free(bmap
);
3132 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3133 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3137 for (i
= 0; i
< n
; ++i
) {
3140 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
3142 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
3143 "equality constraints modified unexpectedly",
3145 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
3146 n_div
- div
- 1) != -1)
3148 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
3150 if (isl_int_is_one(gcd
))
3152 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
3153 if (isl_int_is_one(gcd
))
3155 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
3156 bmap
->eq
[i
][1 + total
+ div
], gcd
);
3157 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
3165 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3170 isl_basic_map_free(bmap
);
3174 /* Simplify the stride constraints in "bmap" based on
3175 * the remaining equality constraints in "bmap" and all equality
3176 * constraints in "context".
3177 * Only do this if both "bmap" and "context" have stride constraints.
3179 * First extract a copy of the stride constraints in "bmap" in a compressed
3180 * space exploiting all the other equality constraints and then
3181 * use this compressed copy to simplify the original stride constraints.
3183 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
3184 __isl_keep isl_basic_map
*context
)
3186 int bmap_n_eq
, context_n_eq
;
3189 if (!bmap
|| !context
)
3190 return isl_basic_map_free(bmap
);
3192 bmap_n_eq
= n_div_eq(bmap
);
3193 context_n_eq
= n_div_eq(context
);
3195 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3196 return isl_basic_map_free(bmap
);
3197 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3200 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3201 context
, context_n_eq
);
3202 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3209 /* Return a basic map that has the same intersection with "context" as "bmap"
3210 * and that is as "simple" as possible.
3212 * The core computation is performed on the pure constraints.
3213 * When we add back the meaning of the integer divisions, we need
3214 * to (re)introduce the div constraints. If we happen to have
3215 * discovered that some of these integer divisions are equal to
3216 * some affine combination of other variables, then these div
3217 * constraints may end up getting simplified in terms of the equalities,
3218 * resulting in extra inequalities on the other variables that
3219 * may have been removed already or that may not even have been
3220 * part of the input. We try and remove those constraints of
3221 * this form that are most obviously redundant with respect to
3222 * the context. We also remove those div constraints that are
3223 * redundant with respect to the other constraints in the result.
3225 * The stride constraints among the equality constraints in "bmap" are
3226 * also simplified with respecting to the other equality constraints
3227 * in "bmap" and with respect to all equality constraints in "context".
3229 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
3230 struct isl_basic_map
*context
)
3232 isl_basic_set
*bset
, *eq
;
3233 isl_basic_map
*eq_bmap
;
3234 unsigned total
, n_div
, extra
, n_eq
, n_ineq
;
3236 if (!bmap
|| !context
)
3239 if (isl_basic_map_plain_is_universe(bmap
)) {
3240 isl_basic_map_free(context
);
3243 if (isl_basic_map_plain_is_empty(context
)) {
3244 isl_space
*space
= isl_basic_map_get_space(bmap
);
3245 isl_basic_map_free(bmap
);
3246 isl_basic_map_free(context
);
3247 return isl_basic_map_universe(space
);
3249 if (isl_basic_map_plain_is_empty(bmap
)) {
3250 isl_basic_map_free(context
);
3254 bmap
= isl_basic_map_remove_redundancies(bmap
);
3255 context
= isl_basic_map_remove_redundancies(context
);
3259 context
= isl_basic_map_align_divs(context
, bmap
);
3260 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3261 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3262 extra
= n_div
- isl_basic_map_dim(bmap
, isl_dim_div
);
3264 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3265 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3266 bset
= uset_gist(bset
,
3267 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3268 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3270 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3271 isl_basic_set_plain_is_empty(bset
)) {
3272 isl_basic_map_free(context
);
3273 return isl_basic_map_overlying_set(bset
, bmap
);
3277 n_ineq
= bset
->n_ineq
;
3278 eq
= isl_basic_set_copy(bset
);
3279 eq
= isl_basic_set_cow(eq
);
3280 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
3281 eq
= isl_basic_set_free(eq
);
3282 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
3283 bset
= isl_basic_set_free(bset
);
3285 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3286 eq_bmap
= gist_strides(eq_bmap
, context
);
3287 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3288 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3289 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3290 bmap
= isl_basic_map_remove_redundancies(bmap
);
3294 isl_basic_map_free(bmap
);
3295 isl_basic_map_free(context
);
3300 * Assumes context has no implicit divs.
3302 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3303 __isl_take isl_basic_map
*context
)
3307 if (!map
|| !context
)
3310 if (isl_basic_map_plain_is_empty(context
)) {
3311 isl_space
*space
= isl_map_get_space(map
);
3313 isl_basic_map_free(context
);
3314 return isl_map_universe(space
);
3317 context
= isl_basic_map_remove_redundancies(context
);
3318 map
= isl_map_cow(map
);
3319 if (!map
|| !context
)
3321 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
3322 map
= isl_map_compute_divs(map
);
3325 for (i
= map
->n
- 1; i
>= 0; --i
) {
3326 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3327 isl_basic_map_copy(context
));
3330 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3331 isl_basic_map_free(map
->p
[i
]);
3332 if (i
!= map
->n
- 1)
3333 map
->p
[i
] = map
->p
[map
->n
- 1];
3337 isl_basic_map_free(context
);
3338 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3342 isl_basic_map_free(context
);
3346 /* Drop all inequalities from "bmap" that also appear in "context".
3347 * "context" is assumed to have only known local variables and
3348 * the initial local variables of "bmap" are assumed to be the same
3349 * as those of "context".
3350 * The constraints of both "bmap" and "context" are assumed
3351 * to have been sorted using isl_basic_map_sort_constraints.
3353 * Run through the inequality constraints of "bmap" and "context"
3355 * If a constraint of "bmap" involves variables not in "context",
3356 * then it cannot appear in "context".
3357 * If a matching constraint is found, it is removed from "bmap".
3359 static __isl_give isl_basic_map
*drop_inequalities(
3360 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3363 unsigned total
, extra
;
3365 if (!bmap
|| !context
)
3366 return isl_basic_map_free(bmap
);
3368 total
= isl_basic_map_total_dim(context
);
3369 extra
= isl_basic_map_total_dim(bmap
) - total
;
3371 i1
= bmap
->n_ineq
- 1;
3372 i2
= context
->n_ineq
- 1;
3373 while (bmap
&& i1
>= 0 && i2
>= 0) {
3376 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3381 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3391 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3392 bmap
= isl_basic_map_cow(bmap
);
3393 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3394 bmap
= isl_basic_map_free(bmap
);
3403 /* Drop all equalities from "bmap" that also appear in "context".
3404 * "context" is assumed to have only known local variables and
3405 * the initial local variables of "bmap" are assumed to be the same
3406 * as those of "context".
3408 * Run through the equality constraints of "bmap" and "context"
3410 * If a constraint of "bmap" involves variables not in "context",
3411 * then it cannot appear in "context".
3412 * If a matching constraint is found, it is removed from "bmap".
3414 static __isl_give isl_basic_map
*drop_equalities(
3415 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3418 unsigned total
, extra
;
3420 if (!bmap
|| !context
)
3421 return isl_basic_map_free(bmap
);
3423 total
= isl_basic_map_total_dim(context
);
3424 extra
= isl_basic_map_total_dim(bmap
) - total
;
3426 i1
= bmap
->n_eq
- 1;
3427 i2
= context
->n_eq
- 1;
3429 while (bmap
&& i1
>= 0 && i2
>= 0) {
3432 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3435 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3436 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3437 if (last1
> last2
) {
3441 if (last1
< last2
) {
3445 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3446 bmap
= isl_basic_map_cow(bmap
);
3447 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3448 bmap
= isl_basic_map_free(bmap
);
3457 /* Remove the constraints in "context" from "bmap".
3458 * "context" is assumed to have explicit representations
3459 * for all local variables.
3461 * First align the divs of "bmap" to those of "context" and
3462 * sort the constraints. Then drop all constraints from "bmap"
3463 * that appear in "context".
3465 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3466 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3468 isl_bool done
, known
;
3470 done
= isl_basic_map_plain_is_universe(context
);
3471 if (done
== isl_bool_false
)
3472 done
= isl_basic_map_plain_is_universe(bmap
);
3473 if (done
== isl_bool_false
)
3474 done
= isl_basic_map_plain_is_empty(context
);
3475 if (done
== isl_bool_false
)
3476 done
= isl_basic_map_plain_is_empty(bmap
);
3480 isl_basic_map_free(context
);
3483 known
= isl_basic_map_divs_known(context
);
3487 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3488 "context has unknown divs", goto error
);
3490 bmap
= isl_basic_map_align_divs(bmap
, context
);
3491 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3492 bmap
= isl_basic_map_sort_constraints(bmap
);
3493 context
= isl_basic_map_sort_constraints(context
);
3495 bmap
= drop_inequalities(bmap
, context
);
3496 bmap
= drop_equalities(bmap
, context
);
3498 isl_basic_map_free(context
);
3499 bmap
= isl_basic_map_finalize(bmap
);
3502 isl_basic_map_free(bmap
);
3503 isl_basic_map_free(context
);
3507 /* Replace "map" by the disjunct at position "pos" and free "context".
3509 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3510 int pos
, __isl_take isl_basic_map
*context
)
3512 isl_basic_map
*bmap
;
3514 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3516 isl_basic_map_free(context
);
3517 return isl_map_from_basic_map(bmap
);
3520 /* Remove the constraints in "context" from "map".
3521 * If any of the disjuncts in the result turns out to be the universe,
3522 * then return this universe.
3523 * "context" is assumed to have explicit representations
3524 * for all local variables.
3526 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3527 __isl_take isl_basic_map
*context
)
3530 isl_bool univ
, known
;
3532 univ
= isl_basic_map_plain_is_universe(context
);
3536 isl_basic_map_free(context
);
3539 known
= isl_basic_map_divs_known(context
);
3543 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3544 "context has unknown divs", goto error
);
3546 map
= isl_map_cow(map
);
3549 for (i
= 0; i
< map
->n
; ++i
) {
3550 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3551 isl_basic_map_copy(context
));
3552 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3555 if (univ
&& map
->n
> 1)
3556 return replace_by_disjunct(map
, i
, context
);
3559 isl_basic_map_free(context
);
3560 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3562 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3566 isl_basic_map_free(context
);
3570 /* Replace "map" by a universe map in the same space and free "drop".
3572 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3573 __isl_take isl_map
*drop
)
3577 res
= isl_map_universe(isl_map_get_space(map
));
3583 /* Return a map that has the same intersection with "context" as "map"
3584 * and that is as "simple" as possible.
3586 * If "map" is already the universe, then we cannot make it any simpler.
3587 * Similarly, if "context" is the universe, then we cannot exploit it
3589 * If "map" and "context" are identical to each other, then we can
3590 * return the corresponding universe.
3592 * If either "map" or "context" consists of multiple disjuncts,
3593 * then check if "context" happens to be a subset of "map",
3594 * in which case all constraints can be removed.
3595 * In case of multiple disjuncts, the standard procedure
3596 * may not be able to detect that all constraints can be removed.
3598 * If none of these cases apply, we have to work a bit harder.
3599 * During this computation, we make use of a single disjunct context,
3600 * so if the original context consists of more than one disjunct
3601 * then we need to approximate the context by a single disjunct set.
3602 * Simply taking the simple hull may drop constraints that are
3603 * only implicitly available in each disjunct. We therefore also
3604 * look for constraints among those defining "map" that are valid
3605 * for the context. These can then be used to simplify away
3606 * the corresponding constraints in "map".
3608 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
3609 __isl_take isl_map
*context
)
3613 int single_disjunct_map
, single_disjunct_context
;
3615 isl_basic_map
*hull
;
3617 is_universe
= isl_map_plain_is_universe(map
);
3618 if (is_universe
>= 0 && !is_universe
)
3619 is_universe
= isl_map_plain_is_universe(context
);
3620 if (is_universe
< 0)
3623 isl_map_free(context
);
3627 equal
= isl_map_plain_is_equal(map
, context
);
3631 return replace_by_universe(map
, context
);
3633 single_disjunct_map
= isl_map_n_basic_map(map
) == 1;
3634 single_disjunct_context
= isl_map_n_basic_map(context
) == 1;
3635 if (!single_disjunct_map
|| !single_disjunct_context
) {
3636 subset
= isl_map_is_subset(context
, map
);
3640 return replace_by_universe(map
, context
);
3643 context
= isl_map_compute_divs(context
);
3646 if (single_disjunct_context
) {
3647 hull
= isl_map_simple_hull(context
);
3652 ctx
= isl_map_get_ctx(map
);
3653 list
= isl_map_list_alloc(ctx
, 2);
3654 list
= isl_map_list_add(list
, isl_map_copy(context
));
3655 list
= isl_map_list_add(list
, isl_map_copy(map
));
3656 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3659 return isl_map_gist_basic_map(map
, hull
);
3662 isl_map_free(context
);
3666 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3667 __isl_take isl_map
*context
)
3669 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
3672 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
3673 struct isl_basic_set
*context
)
3675 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3676 bset_to_bmap(context
)));
3679 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3680 __isl_take isl_basic_set
*context
)
3682 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3683 bset_to_bmap(context
)));
3686 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3687 __isl_take isl_basic_set
*context
)
3689 isl_space
*space
= isl_set_get_space(set
);
3690 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3691 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3692 return isl_set_gist_basic_set(set
, dom_context
);
3695 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3696 __isl_take isl_set
*context
)
3698 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3701 /* Compute the gist of "bmap" with respect to the constraints "context"
3704 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3705 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3707 isl_space
*space
= isl_basic_map_get_space(bmap
);
3708 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3710 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3711 return isl_basic_map_gist(bmap
, bmap_context
);
3714 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3715 __isl_take isl_set
*context
)
3717 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3718 map_context
= isl_map_intersect_domain(map_context
, context
);
3719 return isl_map_gist(map
, map_context
);
3722 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3723 __isl_take isl_set
*context
)
3725 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3726 map_context
= isl_map_intersect_range(map_context
, context
);
3727 return isl_map_gist(map
, map_context
);
3730 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3731 __isl_take isl_set
*context
)
3733 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3734 map_context
= isl_map_intersect_params(map_context
, context
);
3735 return isl_map_gist(map
, map_context
);
3738 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3739 __isl_take isl_set
*context
)
3741 return isl_map_gist_params(set
, context
);
3744 /* Quick check to see if two basic maps are disjoint.
3745 * In particular, we reduce the equalities and inequalities of
3746 * one basic map in the context of the equalities of the other
3747 * basic map and check if we get a contradiction.
3749 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3750 __isl_keep isl_basic_map
*bmap2
)
3752 struct isl_vec
*v
= NULL
;
3757 if (!bmap1
|| !bmap2
)
3758 return isl_bool_error
;
3759 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
3760 return isl_bool_error
);
3761 if (bmap1
->n_div
|| bmap2
->n_div
)
3762 return isl_bool_false
;
3763 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3764 return isl_bool_false
;
3766 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3768 return isl_bool_false
;
3769 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3772 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3775 compute_elimination_index(bmap1
, elim
);
3776 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3778 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3780 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3781 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3784 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3786 reduced
= reduced_using_equalities(v
->block
.data
,
3787 bmap2
->ineq
[i
], bmap1
, elim
);
3788 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3789 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3792 compute_elimination_index(bmap2
, elim
);
3793 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3795 reduced
= reduced_using_equalities(v
->block
.data
,
3796 bmap1
->ineq
[i
], bmap2
, elim
);
3797 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3798 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3803 return isl_bool_false
;
3807 return isl_bool_true
;
3811 return isl_bool_error
;
3814 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3815 __isl_keep isl_basic_set
*bset2
)
3817 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3818 bset_to_bmap(bset2
));
3821 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3823 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3824 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3825 __isl_keep isl_basic_map
*bmap2
))
3830 return isl_bool_error
;
3832 for (i
= 0; i
< map1
->n
; ++i
) {
3833 for (j
= 0; j
< map2
->n
; ++j
) {
3834 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3835 if (d
!= isl_bool_true
)
3840 return isl_bool_true
;
3843 /* Are "map1" and "map2" obviously disjoint, based on information
3844 * that can be derived without looking at the individual basic maps?
3846 * In particular, if one of them is empty or if they live in different spaces
3847 * (ignoring parameters), then they are clearly disjoint.
3849 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3850 __isl_keep isl_map
*map2
)
3856 return isl_bool_error
;
3858 disjoint
= isl_map_plain_is_empty(map1
);
3859 if (disjoint
< 0 || disjoint
)
3862 disjoint
= isl_map_plain_is_empty(map2
);
3863 if (disjoint
< 0 || disjoint
)
3866 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
3867 map2
->dim
, isl_dim_in
);
3868 if (match
< 0 || !match
)
3869 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3871 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
3872 map2
->dim
, isl_dim_out
);
3873 if (match
< 0 || !match
)
3874 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3876 return isl_bool_false
;
3879 /* Are "map1" and "map2" obviously disjoint?
3881 * If one of them is empty or if they live in different spaces (ignoring
3882 * parameters), then they are clearly disjoint.
3883 * This is checked by isl_map_plain_is_disjoint_global.
3885 * If they have different parameters, then we skip any further tests.
3887 * If they are obviously equal, but not obviously empty, then we will
3888 * not be able to detect if they are disjoint.
3890 * Otherwise we check if each basic map in "map1" is obviously disjoint
3891 * from each basic map in "map2".
3893 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
3894 __isl_keep isl_map
*map2
)
3900 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3901 if (disjoint
< 0 || disjoint
)
3904 match
= isl_map_has_equal_params(map1
, map2
);
3905 if (match
< 0 || !match
)
3906 return match
< 0 ? isl_bool_error
: isl_bool_false
;
3908 intersect
= isl_map_plain_is_equal(map1
, map2
);
3909 if (intersect
< 0 || intersect
)
3910 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3912 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
3915 /* Are "map1" and "map2" disjoint?
3917 * They are disjoint if they are "obviously disjoint" or if one of them
3918 * is empty. Otherwise, they are not disjoint if one of them is universal.
3919 * If the two inputs are (obviously) equal and not empty, then they are
3921 * If none of these cases apply, then check if all pairs of basic maps
3924 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
3929 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
3930 if (disjoint
< 0 || disjoint
)
3933 disjoint
= isl_map_is_empty(map1
);
3934 if (disjoint
< 0 || disjoint
)
3937 disjoint
= isl_map_is_empty(map2
);
3938 if (disjoint
< 0 || disjoint
)
3941 intersect
= isl_map_plain_is_universe(map1
);
3942 if (intersect
< 0 || intersect
)
3943 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3945 intersect
= isl_map_plain_is_universe(map2
);
3946 if (intersect
< 0 || intersect
)
3947 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3949 intersect
= isl_map_plain_is_equal(map1
, map2
);
3950 if (intersect
< 0 || intersect
)
3951 return isl_bool_not(intersect
);
3953 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
3956 /* Are "bmap1" and "bmap2" disjoint?
3958 * They are disjoint if they are "obviously disjoint" or if one of them
3959 * is empty. Otherwise, they are not disjoint if one of them is universal.
3960 * If none of these cases apply, we compute the intersection and see if
3961 * the result is empty.
3963 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3964 __isl_keep isl_basic_map
*bmap2
)
3968 isl_basic_map
*test
;
3970 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
3971 if (disjoint
< 0 || disjoint
)
3974 disjoint
= isl_basic_map_is_empty(bmap1
);
3975 if (disjoint
< 0 || disjoint
)
3978 disjoint
= isl_basic_map_is_empty(bmap2
);
3979 if (disjoint
< 0 || disjoint
)
3982 intersect
= isl_basic_map_plain_is_universe(bmap1
);
3983 if (intersect
< 0 || intersect
)
3984 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3986 intersect
= isl_basic_map_plain_is_universe(bmap2
);
3987 if (intersect
< 0 || intersect
)
3988 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
3990 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
3991 isl_basic_map_copy(bmap2
));
3992 disjoint
= isl_basic_map_is_empty(test
);
3993 isl_basic_map_free(test
);
3998 /* Are "bset1" and "bset2" disjoint?
4000 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
4001 __isl_keep isl_basic_set
*bset2
)
4003 return isl_basic_map_is_disjoint(bset1
, bset2
);
4006 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
4007 __isl_keep isl_set
*set2
)
4009 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
4012 /* Are "set1" and "set2" disjoint?
4014 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
4016 return isl_map_is_disjoint(set1
, set2
);
4019 /* Is "v" equal to 0, 1 or -1?
4021 static int is_zero_or_one(isl_int v
)
4023 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
4026 /* Check if we can combine a given div with lower bound l and upper
4027 * bound u with some other div and if so return that other div.
4028 * Otherwise return -1.
4030 * We first check that
4031 * - the bounds are opposites of each other (except for the constant
4033 * - the bounds do not reference any other div
4034 * - no div is defined in terms of this div
4036 * Let m be the size of the range allowed on the div by the bounds.
4037 * That is, the bounds are of the form
4039 * e <= a <= e + m - 1
4041 * with e some expression in the other variables.
4042 * We look for another div b such that no third div is defined in terms
4043 * of this second div b and such that in any constraint that contains
4044 * a (except for the given lower and upper bound), also contains b
4045 * with a coefficient that is m times that of b.
4046 * That is, all constraints (execpt for the lower and upper bound)
4049 * e + f (a + m b) >= 0
4051 * Furthermore, in the constraints that only contain b, the coefficient
4052 * of b should be equal to 1 or -1.
4053 * If so, we return b so that "a + m b" can be replaced by
4054 * a single div "c = a + m b".
4056 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
4057 unsigned div
, unsigned l
, unsigned u
)
4063 if (bmap
->n_div
<= 1)
4065 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4066 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
4068 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
4069 bmap
->n_div
- div
- 1) != -1)
4071 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
4075 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4076 if (isl_int_is_zero(bmap
->div
[i
][0]))
4078 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
4082 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4083 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
4084 isl_int_sub(bmap
->ineq
[l
][0],
4085 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4086 bmap
= isl_basic_map_copy(bmap
);
4087 bmap
= isl_basic_map_set_to_empty(bmap
);
4088 isl_basic_map_free(bmap
);
4091 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4092 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4097 for (j
= 0; j
< bmap
->n_div
; ++j
) {
4098 if (isl_int_is_zero(bmap
->div
[j
][0]))
4100 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
4103 if (j
< bmap
->n_div
)
4105 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4107 if (j
== l
|| j
== u
)
4109 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
])) {
4110 if (is_zero_or_one(bmap
->ineq
[j
][1 + dim
+ i
]))
4114 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
4116 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
4117 bmap
->ineq
[j
][1 + dim
+ div
],
4119 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
4120 bmap
->ineq
[j
][1 + dim
+ i
]);
4121 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
4122 bmap
->ineq
[j
][1 + dim
+ div
],
4127 if (j
< bmap
->n_ineq
)
4132 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4133 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4137 /* Internal data structure used during the construction and/or evaluation of
4138 * an inequality that ensures that a pair of bounds always allows
4139 * for an integer value.
4141 * "tab" is the tableau in which the inequality is evaluated. It may
4142 * be NULL until it is actually needed.
4143 * "v" contains the inequality coefficients.
4144 * "g", "fl" and "fu" are temporary scalars used during the construction and
4147 struct test_ineq_data
{
4148 struct isl_tab
*tab
;
4155 /* Free all the memory allocated by the fields of "data".
4157 static void test_ineq_data_clear(struct test_ineq_data
*data
)
4159 isl_tab_free(data
->tab
);
4160 isl_vec_free(data
->v
);
4161 isl_int_clear(data
->g
);
4162 isl_int_clear(data
->fl
);
4163 isl_int_clear(data
->fu
);
4166 /* Is the inequality stored in data->v satisfied by "bmap"?
4167 * That is, does it only attain non-negative values?
4168 * data->tab is a tableau corresponding to "bmap".
4170 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4171 struct test_ineq_data
*data
)
4174 enum isl_lp_result res
;
4176 ctx
= isl_basic_map_get_ctx(bmap
);
4178 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4179 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4180 if (res
== isl_lp_error
)
4181 return isl_bool_error
;
4182 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4185 /* Given a lower and an upper bound on div i, do they always allow
4186 * for an integer value of the given div?
4187 * Determine this property by constructing an inequality
4188 * such that the property is guaranteed when the inequality is nonnegative.
4189 * The lower bound is inequality l, while the upper bound is inequality u.
4190 * The constructed inequality is stored in data->v.
4192 * Let the upper bound be
4196 * and the lower bound
4200 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4203 * - f_u e_l <= f_u f_l g a <= f_l e_u
4205 * Since all variables are integer valued, this is equivalent to
4207 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4209 * If this interval is at least f_u f_l g, then it contains at least
4210 * one integer value for a.
4211 * That is, the test constraint is
4213 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4217 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4219 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4220 * then the constraint can be scaled down by a factor g',
4221 * with the constant term replaced by
4222 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4223 * Note that the result of applying Fourier-Motzkin to this pair
4226 * f_l e_u + f_u e_l >= 0
4228 * If the constant term of the scaled down version of this constraint,
4229 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4230 * term of the scaled down test constraint, then the test constraint
4231 * is known to hold and no explicit evaluation is required.
4232 * This is essentially the Omega test.
4234 * If the test constraint consists of only a constant term, then
4235 * it is sufficient to look at the sign of this constant term.
4237 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4238 int l
, int u
, struct test_ineq_data
*data
)
4240 unsigned offset
, n_div
;
4241 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4242 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4244 isl_int_gcd(data
->g
,
4245 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4246 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4247 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4248 isl_int_neg(data
->fu
, data
->fu
);
4249 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4250 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4251 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4252 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4253 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4254 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4255 isl_int_add_ui(data
->g
, data
->g
, 1);
4256 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4258 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4259 if (isl_int_is_zero(data
->g
))
4260 return isl_int_is_nonneg(data
->fl
);
4261 if (isl_int_is_one(data
->g
)) {
4262 isl_int_set(data
->v
->el
[0], data
->fl
);
4263 return test_ineq_is_satisfied(bmap
, data
);
4265 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4266 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4267 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4268 return isl_bool_true
;
4269 isl_int_set(data
->v
->el
[0], data
->fl
);
4270 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4271 offset
- 1 + n_div
);
4273 return test_ineq_is_satisfied(bmap
, data
);
4276 /* Remove more kinds of divs that are not strictly needed.
4277 * In particular, if all pairs of lower and upper bounds on a div
4278 * are such that they allow at least one integer value of the div,
4279 * then we can eliminate the div using Fourier-Motzkin without
4280 * introducing any spurious solutions.
4282 * If at least one of the two constraints has a unit coefficient for the div,
4283 * then the presence of such a value is guaranteed so there is no need to check.
4284 * In particular, the value attained by the bound with unit coefficient
4285 * can serve as this intermediate value.
4287 static struct isl_basic_map
*drop_more_redundant_divs(
4288 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4291 struct test_ineq_data data
= { NULL
, NULL
};
4292 unsigned off
, n_div
;
4295 isl_int_init(data
.g
);
4296 isl_int_init(data
.fl
);
4297 isl_int_init(data
.fu
);
4302 ctx
= isl_basic_map_get_ctx(bmap
);
4303 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4304 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4305 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4314 for (i
= 0; i
< n_div
; ++i
) {
4317 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4323 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4324 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4326 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4328 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4329 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4331 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4333 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4337 if (data
.tab
&& data
.tab
->empty
)
4342 if (u
< bmap
->n_ineq
)
4345 if (data
.tab
&& data
.tab
->empty
) {
4346 bmap
= isl_basic_map_set_to_empty(bmap
);
4349 if (l
== bmap
->n_ineq
) {
4357 test_ineq_data_clear(&data
);
4364 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4365 return isl_basic_map_drop_redundant_divs(bmap
);
4368 isl_basic_map_free(bmap
);
4369 test_ineq_data_clear(&data
);
4373 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4374 * and the upper bound u, div1 always occurs together with div2 in the form
4375 * (div1 + m div2), where m is the constant range on the variable div1
4376 * allowed by l and u, replace the pair div1 and div2 by a single
4377 * div that is equal to div1 + m div2.
4379 * The new div will appear in the location that contains div2.
4380 * We need to modify all constraints that contain
4381 * div2 = (div - div1) / m
4382 * The coefficient of div2 is known to be equal to 1 or -1.
4383 * (If a constraint does not contain div2, it will also not contain div1.)
4384 * If the constraint also contains div1, then we know they appear
4385 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4386 * i.e., the coefficient of div is f.
4388 * Otherwise, we first need to introduce div1 into the constraint.
4397 * A lower bound on div2
4401 * can be replaced by
4403 * m div2 + div1 + m t + f >= 0
4409 * can be replaced by
4411 * -(m div2 + div1) + m t + f' >= 0
4413 * These constraint are those that we would obtain from eliminating
4414 * div1 using Fourier-Motzkin.
4416 * After all constraints have been modified, we drop the lower and upper
4417 * bound and then drop div1.
4419 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
4420 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4424 unsigned dim
, total
;
4427 ctx
= isl_basic_map_get_ctx(bmap
);
4429 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4430 total
= 1 + dim
+ bmap
->n_div
;
4433 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4434 isl_int_add_ui(m
, m
, 1);
4436 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4437 if (i
== l
|| i
== u
)
4439 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
4441 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
4442 if (isl_int_is_pos(bmap
->ineq
[i
][1 + dim
+ div2
]))
4443 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4444 ctx
->one
, bmap
->ineq
[l
], total
);
4446 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4447 ctx
->one
, bmap
->ineq
[u
], total
);
4449 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
4450 bmap
->ineq
[i
][1 + dim
+ div1
]);
4451 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
4456 isl_basic_map_drop_inequality(bmap
, l
);
4457 isl_basic_map_drop_inequality(bmap
, u
);
4459 isl_basic_map_drop_inequality(bmap
, u
);
4460 isl_basic_map_drop_inequality(bmap
, l
);
4462 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4466 /* First check if we can coalesce any pair of divs and
4467 * then continue with dropping more redundant divs.
4469 * We loop over all pairs of lower and upper bounds on a div
4470 * with coefficient 1 and -1, respectively, check if there
4471 * is any other div "c" with which we can coalesce the div
4472 * and if so, perform the coalescing.
4474 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4475 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4480 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4482 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4485 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4486 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
4488 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4491 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
4493 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4497 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4498 return isl_basic_map_drop_redundant_divs(bmap
);
4503 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4508 return drop_more_redundant_divs(bmap
, pairs
, n
);
4511 /* Are the "n" coefficients starting at "first" of inequality constraints
4512 * "i" and "j" of "bmap" equal to each other?
4514 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4517 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4520 /* Are the "n" coefficients starting at "first" of inequality constraints
4521 * "i" and "j" of "bmap" opposite to each other?
4523 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4526 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4529 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4530 * apart from the constant term?
4532 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4536 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4537 return is_opposite_part(bmap
, i
, j
, 1, total
);
4540 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4541 * apart from the constant term and the coefficient at position "pos"?
4543 static int is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4548 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4549 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4550 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4553 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4554 * apart from the constant term and the coefficient at position "pos"?
4556 static int is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4561 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4562 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4563 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4566 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4567 * been modified, simplying it if "simplify" is set.
4568 * Free the temporary data structure "pairs" that was associated
4569 * to the old version of "bmap".
4571 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4572 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4575 bmap
= isl_basic_map_simplify(bmap
);
4577 return isl_basic_map_drop_redundant_divs(bmap
);
4580 /* Is "div" the single unknown existentially quantified variable
4581 * in inequality constraint "ineq" of "bmap"?
4582 * "div" is known to have a non-zero coefficient in "ineq".
4584 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4588 unsigned n_div
, o_div
;
4591 known
= isl_basic_map_div_is_known(bmap
, div
);
4592 if (known
< 0 || known
)
4593 return isl_bool_not(known
);
4594 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4596 return isl_bool_true
;
4597 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4598 for (i
= 0; i
< n_div
; ++i
) {
4603 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4605 known
= isl_basic_map_div_is_known(bmap
, i
);
4606 if (known
< 0 || !known
)
4610 return isl_bool_true
;
4613 /* Does integer division "div" have coefficient 1 in inequality constraint
4616 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4620 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4621 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4622 return isl_bool_true
;
4624 return isl_bool_false
;
4627 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4628 * then try and drop redundant divs again,
4629 * freeing the temporary data structure "pairs" that was associated
4630 * to the old version of "bmap".
4632 static __isl_give isl_basic_map
*set_eq_and_try_again(
4633 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4635 bmap
= isl_basic_map_cow(bmap
);
4636 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4637 return drop_redundant_divs_again(bmap
, pairs
, 1);
4640 /* Drop the integer division at position "div", along with the two
4641 * inequality constraints "ineq1" and "ineq2" in which it appears
4642 * from "bmap" and then try and drop redundant divs again,
4643 * freeing the temporary data structure "pairs" that was associated
4644 * to the old version of "bmap".
4646 static __isl_give isl_basic_map
*drop_div_and_try_again(
4647 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4648 __isl_take
int *pairs
)
4650 if (ineq1
> ineq2
) {
4651 isl_basic_map_drop_inequality(bmap
, ineq1
);
4652 isl_basic_map_drop_inequality(bmap
, ineq2
);
4654 isl_basic_map_drop_inequality(bmap
, ineq2
);
4655 isl_basic_map_drop_inequality(bmap
, ineq1
);
4657 bmap
= isl_basic_map_drop_div(bmap
, div
);
4658 return drop_redundant_divs_again(bmap
, pairs
, 0);
4661 /* Given two inequality constraints
4663 * f(x) + n d + c >= 0, (ineq)
4665 * with d the variable at position "pos", and
4667 * f(x) + c0 >= 0, (lower)
4669 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4670 * determined by the first constraint.
4677 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4678 int ineq
, int lower
, int pos
, isl_int
*l
)
4680 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4681 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4682 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4685 /* Given two inequality constraints
4687 * f(x) + n d + c >= 0, (ineq)
4689 * with d the variable at position "pos", and
4691 * -f(x) - c0 >= 0, (upper)
4693 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4694 * determined by the first constraint.
4701 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4702 int ineq
, int upper
, int pos
, isl_int
*u
)
4704 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4705 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4706 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4709 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4710 * does the corresponding lower bound have a fixed value in "bmap"?
4712 * In particular, "ineq" is of the form
4714 * f(x) + n d + c >= 0
4716 * with n > 0, c the constant term and
4717 * d the existentially quantified variable "div".
4718 * That is, the lower bound is
4720 * ceil((-f(x) - c)/n)
4722 * Look for a pair of constraints
4727 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4728 * That is, check that
4730 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4732 * If so, return the index of inequality f(x) + c0 >= 0.
4733 * Otherwise, return -1.
4735 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4738 int lower
= -1, upper
= -1;
4743 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4744 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4747 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4750 is_parallel_except(bmap
, ineq
, i
, o_div
+ div
)) {
4755 is_opposite_except(bmap
, ineq
, i
, o_div
+ div
)) {
4760 if (lower
< 0 || upper
< 0)
4766 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4767 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4769 equal
= isl_int_eq(l
, u
);
4774 return equal
? lower
: -1;
4777 /* Given a lower bound constraint "ineq" on the existentially quantified
4778 * variable "div", such that the corresponding lower bound has
4779 * a fixed value in "bmap", assign this fixed value to the variable and
4780 * then try and drop redundant divs again,
4781 * freeing the temporary data structure "pairs" that was associated
4782 * to the old version of "bmap".
4783 * "lower" determines the constant value for the lower bound.
4785 * In particular, "ineq" is of the form
4787 * f(x) + n d + c >= 0,
4789 * while "lower" is of the form
4793 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4794 * is ceil((c0 - c)/n).
4796 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4797 int div
, int ineq
, int lower
, int *pairs
)
4804 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4805 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4806 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4811 return isl_basic_map_drop_redundant_divs(bmap
);
4814 /* Remove divs that are not strictly needed based on the inequality
4816 * In particular, if a div only occurs positively (or negatively)
4817 * in constraints, then it can simply be dropped.
4818 * Also, if a div occurs in only two constraints and if moreover
4819 * those two constraints are opposite to each other, except for the constant
4820 * term and if the sum of the constant terms is such that for any value
4821 * of the other values, there is always at least one integer value of the
4822 * div, i.e., if one plus this sum is greater than or equal to
4823 * the (absolute value) of the coefficient of the div in the constraints,
4824 * then we can also simply drop the div.
4826 * If an existentially quantified variable does not have an explicit
4827 * representation, appears in only a single lower bound that does not
4828 * involve any other such existentially quantified variables and appears
4829 * in this lower bound with coefficient 1,
4830 * then fix the variable to the value of the lower bound. That is,
4831 * turn the inequality into an equality.
4832 * If for any value of the other variables, there is any value
4833 * for the existentially quantified variable satisfying the constraints,
4834 * then this lower bound also satisfies the constraints.
4835 * It is therefore safe to pick this lower bound.
4837 * The same reasoning holds even if the coefficient is not one.
4838 * However, fixing the variable to the value of the lower bound may
4839 * in general introduce an extra integer division, in which case
4840 * it may be better to pick another value.
4841 * If this integer division has a known constant value, then plugging
4842 * in this constant value removes the existentially quantified variable
4843 * completely. In particular, if the lower bound is of the form
4844 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4845 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4846 * then the existentially quantified variable can be assigned this
4849 * We skip divs that appear in equalities or in the definition of other divs.
4850 * Divs that appear in the definition of other divs usually occur in at least
4851 * 4 constraints, but the constraints may have been simplified.
4853 * If any divs are left after these simple checks then we move on
4854 * to more complicated cases in drop_more_redundant_divs.
4856 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
4857 __isl_take isl_basic_map
*bmap
)
4866 if (bmap
->n_div
== 0)
4869 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4870 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
4874 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4876 int last_pos
, last_neg
;
4879 isl_bool opp
, set_div
;
4881 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
4882 for (j
= i
; j
< bmap
->n_div
; ++j
)
4883 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
4885 if (j
< bmap
->n_div
)
4887 for (j
= 0; j
< bmap
->n_eq
; ++j
)
4888 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
4894 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4895 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
4899 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
4904 pairs
[i
] = pos
* neg
;
4905 if (pairs
[i
] == 0) {
4906 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
4907 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
4908 isl_basic_map_drop_inequality(bmap
, j
);
4909 bmap
= isl_basic_map_drop_div(bmap
, i
);
4910 return drop_redundant_divs_again(bmap
, pairs
, 0);
4913 opp
= isl_bool_false
;
4915 opp
= is_opposite(bmap
, last_pos
, last_neg
);
4920 isl_bool single
, one
;
4924 single
= single_unknown(bmap
, last_pos
, i
);
4929 one
= has_coef_one(bmap
, i
, last_pos
);
4933 return set_eq_and_try_again(bmap
, last_pos
,
4935 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
4937 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
4942 isl_int_add(bmap
->ineq
[last_pos
][0],
4943 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4944 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
4945 bmap
->ineq
[last_pos
][0], 1);
4946 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
4947 bmap
->ineq
[last_pos
][1+off
+i
]);
4948 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
4949 bmap
->ineq
[last_pos
][0], 1);
4950 isl_int_sub(bmap
->ineq
[last_pos
][0],
4951 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
4953 return drop_div_and_try_again(bmap
, i
,
4954 last_pos
, last_neg
, pairs
);
4956 set_div
= isl_bool_false
;
4958 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
4960 return isl_basic_map_free(bmap
);
4962 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
4963 return drop_redundant_divs_again(bmap
, pairs
, 1);
4970 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
4976 isl_basic_map_free(bmap
);
4980 /* Consider the coefficients at "c" as a row vector and replace
4981 * them with their product with "T". "T" is assumed to be a square matrix.
4983 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
4990 return isl_stat_error
;
4991 n
= isl_mat_rows(T
);
4992 if (isl_seq_first_non_zero(c
, n
) == -1)
4994 ctx
= isl_mat_get_ctx(T
);
4995 v
= isl_vec_alloc(ctx
, n
);
4997 return isl_stat_error
;
4998 isl_seq_swp_or_cpy(v
->el
, c
, n
);
4999 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5001 return isl_stat_error
;
5002 isl_seq_swp_or_cpy(c
, v
->el
, n
);
5008 /* Plug in T for the variables in "bmap" starting at "pos".
5009 * T is a linear unimodular matrix, i.e., without constant term.
5011 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
5012 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
5017 bmap
= isl_basic_map_cow(bmap
);
5021 n
= isl_mat_cols(T
);
5022 if (n
!= isl_mat_rows(T
))
5023 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5024 "expecting square matrix", goto error
);
5026 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5027 if (pos
+ n
> total
|| pos
+ n
< pos
)
5028 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5029 "invalid range", goto error
);
5031 for (i
= 0; i
< bmap
->n_eq
; ++i
)
5032 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
5034 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
5035 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
5037 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5038 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
5040 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
5047 isl_basic_map_free(bmap
);
5052 /* Remove divs that are not strictly needed.
5054 * First look for an equality constraint involving two or more
5055 * existentially quantified variables without an explicit
5056 * representation. Replace the combination that appears
5057 * in the equality constraint by a single existentially quantified
5058 * variable such that the equality can be used to derive
5059 * an explicit representation for the variable.
5060 * If there are no more such equality constraints, then continue
5061 * with isl_basic_map_drop_redundant_divs_ineq.
5063 * In particular, if the equality constraint is of the form
5065 * f(x) + \sum_i c_i a_i = 0
5067 * with a_i existentially quantified variable without explicit
5068 * representation, then apply a transformation on the existentially
5069 * quantified variables to turn the constraint into
5073 * with g the gcd of the c_i.
5074 * In order to easily identify which existentially quantified variables
5075 * have a complete explicit representation, i.e., without being defined
5076 * in terms of other existentially quantified variables without
5077 * an explicit representation, the existentially quantified variables
5080 * The variable transformation is computed by extending the row
5081 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5083 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5088 * with [c_1/g ... c_n/g] representing the first row of U.
5089 * The inverse of U is then plugged into the original constraints.
5090 * The call to isl_basic_map_simplify makes sure the explicit
5091 * representation for a_1' is extracted from the equality constraint.
5093 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
5094 __isl_take isl_basic_map
*bmap
)
5098 unsigned o_div
, n_div
;
5105 if (isl_basic_map_divs_known(bmap
))
5106 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5107 if (bmap
->n_eq
== 0)
5108 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5109 bmap
= isl_basic_map_sort_divs(bmap
);
5113 first
= isl_basic_map_first_unknown_div(bmap
);
5115 return isl_basic_map_free(bmap
);
5117 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
5118 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
5120 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5121 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
5126 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
5127 n_div
- (l
+ 1)) == -1)
5131 if (i
>= bmap
->n_eq
)
5132 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5134 ctx
= isl_basic_map_get_ctx(bmap
);
5135 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
5137 return isl_basic_map_free(bmap
);
5138 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
5139 T
= isl_mat_normalize_row(T
, 0);
5140 T
= isl_mat_unimodular_complete(T
, 1);
5141 T
= isl_mat_right_inverse(T
);
5143 for (i
= l
; i
< n_div
; ++i
)
5144 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
5145 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
5146 bmap
= isl_basic_map_simplify(bmap
);
5148 return isl_basic_map_drop_redundant_divs(bmap
);
5151 /* Does "bmap" satisfy any equality that involves more than 2 variables
5152 * and/or has coefficients different from -1 and 1?
5154 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
5159 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5161 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5164 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5167 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5168 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5172 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5176 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5177 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5181 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5189 /* Remove any common factor g from the constraint coefficients in "v".
5190 * The constant term is stored in the first position and is replaced
5191 * by floor(c/g). If any common factor is removed and if this results
5192 * in a tightening of the constraint, then set *tightened.
5194 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5201 ctx
= isl_vec_get_ctx(v
);
5202 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5203 if (isl_int_is_zero(ctx
->normalize_gcd
))
5205 if (isl_int_is_one(ctx
->normalize_gcd
))
5210 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5212 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5213 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5218 /* If "bmap" is an integer set that satisfies any equality involving
5219 * more than 2 variables and/or has coefficients different from -1 and 1,
5220 * then use variable compression to reduce the coefficients by removing
5221 * any (hidden) common factor.
5222 * In particular, apply the variable compression to each constraint,
5223 * factor out any common factor in the non-constant coefficients and
5224 * then apply the inverse of the compression.
5225 * At the end, we mark the basic map as having reduced constants.
5226 * If this flag is still set on the next invocation of this function,
5227 * then we skip the computation.
5229 * Removing a common factor may result in a tightening of some of
5230 * the constraints. If this happens, then we may end up with two
5231 * opposite inequalities that can be replaced by an equality.
5232 * We therefore call isl_basic_map_detect_inequality_pairs,
5233 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5234 * and isl_basic_map_gauss if such a pair was found.
5236 * Note that this function may leave the result in an inconsistent state.
5237 * In particular, the constraints may not be gaussed.
5238 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5239 * for some of the test cases to pass successfully.
5240 * Any potential modification of the representation is therefore only
5241 * performed on a single copy of the basic map.
5243 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5244 __isl_take isl_basic_map
*bmap
)
5249 isl_mat
*eq
, *T
, *T2
;
5255 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5257 if (isl_basic_map_is_rational(bmap
))
5259 if (bmap
->n_eq
== 0)
5261 if (!has_multiple_var_equality(bmap
))
5264 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5265 ctx
= isl_basic_map_get_ctx(bmap
);
5266 v
= isl_vec_alloc(ctx
, 1 + total
);
5268 return isl_basic_map_free(bmap
);
5270 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5271 T
= isl_mat_variable_compression(eq
, &T2
);
5274 if (T
->n_col
== 0) {
5278 return isl_basic_map_set_to_empty(bmap
);
5281 bmap
= isl_basic_map_cow(bmap
);
5286 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5287 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5288 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5289 v
= normalize_constraint(v
, &tightened
);
5290 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5293 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5300 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5305 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5307 bmap
= eliminate_divs_eq(bmap
, &progress
);
5308 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5317 return isl_basic_map_free(bmap
);
5320 /* Shift the integer division at position "div" of "bmap"
5321 * by "shift" times the variable at position "pos".
5322 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5323 * corresponds to the constant term.
5325 * That is, if the integer division has the form
5329 * then replace it by
5331 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5333 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5334 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5339 if (isl_int_is_zero(shift
))
5344 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5345 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
5347 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5349 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5350 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5352 isl_int_submul(bmap
->eq
[i
][pos
],
5353 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5355 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5356 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5358 isl_int_submul(bmap
->ineq
[i
][pos
],
5359 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5361 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5362 if (isl_int_is_zero(bmap
->div
[i
][0]))
5364 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5366 isl_int_submul(bmap
->div
[i
][1 + pos
],
5367 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);