2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
31 #include <isl_union_set_private.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
41 #include <isl_val_private.h>
44 * The scheduling algorithm implemented in this file was inspired by
45 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
46 * Parallelization and Locality Optimization in the Polyhedral Model".
48 * For a detailed description of the variant implemented in isl,
49 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
53 /* Internal information about a node that is used during the construction
55 * space represents the original space in which the domain lives;
56 * that is, the space is not affected by compression
57 * sched is a matrix representation of the schedule being constructed
58 * for this node; if compressed is set, then this schedule is
59 * defined over the compressed domain space
60 * sched_map is an isl_map representation of the same (partial) schedule
61 * sched_map may be NULL; if compressed is set, then this map
62 * is defined over the uncompressed domain space
63 * rank is the number of linearly independent rows in the linear part
65 * the rows of "vmap" represent a change of basis for the node
66 * variables; the first rank rows span the linear part of
67 * the schedule rows; the remaining rows are linearly independent
68 * the rows of "indep" represent linear combinations of the schedule
69 * coefficients that are non-zero when the schedule coefficients are
70 * linearly independent of previously computed schedule rows.
71 * start is the first variable in the LP problem in the sequences that
72 * represents the schedule coefficients of this node
73 * nvar is the dimension of the (compressed) domain
74 * nparam is the number of parameters or 0 if we are not constructing
75 * a parametric schedule
77 * If compressed is set, then hull represents the constraints
78 * that were used to derive the compression, while compress and
79 * decompress map the original space to the compressed space and
82 * scc is the index of SCC (or WCC) this node belongs to
84 * "cluster" is only used inside extract_clusters and identifies
85 * the cluster of SCCs that the node belongs to.
87 * coincident contains a boolean for each of the rows of the schedule,
88 * indicating whether the corresponding scheduling dimension satisfies
89 * the coincidence constraints in the sense that the corresponding
90 * dependence distances are zero.
92 * If the schedule_treat_coalescing option is set, then
93 * "sizes" contains the sizes of the (compressed) instance set
94 * in each direction. If there is no fixed size in a given direction,
95 * then the corresponding size value is set to infinity.
96 * If the schedule_treat_coalescing option or the schedule_max_coefficient
97 * option is set, then "max" contains the maximal values for
98 * schedule coefficients of the (compressed) variables. If no bound
99 * needs to be imposed on a particular variable, then the corresponding
101 * If not NULL, then "bounds" contains a non-parametric set
102 * in the compressed space that is bounded by the size in each direction.
104 struct isl_sched_node
{
108 isl_multi_aff
*compress
;
109 isl_multi_aff
*decompress
;
124 isl_multi_val
*sizes
;
125 isl_basic_set
*bounds
;
129 static int node_has_tuples(const void *entry
, const void *val
)
131 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
132 isl_space
*space
= (isl_space
*) val
;
134 return isl_space_has_equal_tuples(node
->space
, space
);
137 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
139 return node
->scc
== scc
;
142 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
144 return node
->scc
<= scc
;
147 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
149 return node
->scc
>= scc
;
152 /* An edge in the dependence graph. An edge may be used to
153 * ensure validity of the generated schedule, to minimize the dependence
156 * map is the dependence relation, with i -> j in the map if j depends on i
157 * tagged_condition and tagged_validity contain the union of all tagged
158 * condition or conditional validity dependence relations that
159 * specialize the dependence relation "map"; that is,
160 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
161 * or "tagged_validity", then i -> j is an element of "map".
162 * If these fields are NULL, then they represent the empty relation.
163 * src is the source node
164 * dst is the sink node
166 * types is a bit vector containing the types of this edge.
167 * validity is set if the edge is used to ensure correctness
168 * coincidence is used to enforce zero dependence distances
169 * proximity is set if the edge is used to minimize dependence distances
170 * condition is set if the edge represents a condition
171 * for a conditional validity schedule constraint
172 * local can only be set for condition edges and indicates that
173 * the dependence distance over the edge should be zero
174 * conditional_validity is set if the edge is used to conditionally
177 * For validity edges, start and end mark the sequence of inequality
178 * constraints in the LP problem that encode the validity constraint
179 * corresponding to this edge.
181 * During clustering, an edge may be marked "no_merge" if it should
182 * not be used to merge clusters.
183 * The weight is also only used during clustering and it is
184 * an indication of how many schedule dimensions on either side
185 * of the schedule constraints can be aligned.
186 * If the weight is negative, then this means that this edge was postponed
187 * by has_bounded_distances or any_no_merge. The original weight can
188 * be retrieved by adding 1 + graph->max_weight, with "graph"
189 * the graph containing this edge.
191 struct isl_sched_edge
{
193 isl_union_map
*tagged_condition
;
194 isl_union_map
*tagged_validity
;
196 struct isl_sched_node
*src
;
197 struct isl_sched_node
*dst
;
208 /* Is "edge" marked as being of type "type"?
210 static int is_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
212 return ISL_FL_ISSET(edge
->types
, 1 << type
);
215 /* Mark "edge" as being of type "type".
217 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
219 ISL_FL_SET(edge
->types
, 1 << type
);
222 /* No longer mark "edge" as being of type "type"?
224 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
226 ISL_FL_CLR(edge
->types
, 1 << type
);
229 /* Is "edge" marked as a validity edge?
231 static int is_validity(struct isl_sched_edge
*edge
)
233 return is_type(edge
, isl_edge_validity
);
236 /* Mark "edge" as a validity edge.
238 static void set_validity(struct isl_sched_edge
*edge
)
240 set_type(edge
, isl_edge_validity
);
243 /* Is "edge" marked as a proximity edge?
245 static int is_proximity(struct isl_sched_edge
*edge
)
247 return is_type(edge
, isl_edge_proximity
);
250 /* Is "edge" marked as a local edge?
252 static int is_local(struct isl_sched_edge
*edge
)
254 return is_type(edge
, isl_edge_local
);
257 /* Mark "edge" as a local edge.
259 static void set_local(struct isl_sched_edge
*edge
)
261 set_type(edge
, isl_edge_local
);
264 /* No longer mark "edge" as a local edge.
266 static void clear_local(struct isl_sched_edge
*edge
)
268 clear_type(edge
, isl_edge_local
);
271 /* Is "edge" marked as a coincidence edge?
273 static int is_coincidence(struct isl_sched_edge
*edge
)
275 return is_type(edge
, isl_edge_coincidence
);
278 /* Is "edge" marked as a condition edge?
280 static int is_condition(struct isl_sched_edge
*edge
)
282 return is_type(edge
, isl_edge_condition
);
285 /* Is "edge" marked as a conditional validity edge?
287 static int is_conditional_validity(struct isl_sched_edge
*edge
)
289 return is_type(edge
, isl_edge_conditional_validity
);
292 /* Is "edge" of a type that can appear multiple times between
293 * the same pair of nodes?
295 * Condition edges and conditional validity edges may have tagged
296 * dependence relations, in which case an edge is added for each
299 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
301 return is_condition(edge
) || is_conditional_validity(edge
);
304 /* Internal information about the dependence graph used during
305 * the construction of the schedule.
307 * intra_hmap is a cache, mapping dependence relations to their dual,
308 * for dependences from a node to itself, possibly without
309 * coefficients for the parameters
310 * intra_hmap_param is a cache, mapping dependence relations to their dual,
311 * for dependences from a node to itself, including coefficients
313 * inter_hmap is a cache, mapping dependence relations to their dual,
314 * for dependences between distinct nodes
315 * if compression is involved then the key for these maps
316 * is the original, uncompressed dependence relation, while
317 * the value is the dual of the compressed dependence relation.
319 * n is the number of nodes
320 * node is the list of nodes
321 * maxvar is the maximal number of variables over all nodes
322 * max_row is the allocated number of rows in the schedule
323 * n_row is the current (maximal) number of linearly independent
324 * rows in the node schedules
325 * n_total_row is the current number of rows in the node schedules
326 * band_start is the starting row in the node schedules of the current band
327 * root is set to the original dependence graph from which this graph
328 * is derived through splitting. If this graph is not the result of
329 * splitting, then the root field points to the graph itself.
331 * sorted contains a list of node indices sorted according to the
332 * SCC to which a node belongs
334 * n_edge is the number of edges
335 * edge is the list of edges
336 * max_edge contains the maximal number of edges of each type;
337 * in particular, it contains the number of edges in the inital graph.
338 * edge_table contains pointers into the edge array, hashed on the source
339 * and sink spaces; there is one such table for each type;
340 * a given edge may be referenced from more than one table
341 * if the corresponding relation appears in more than one of the
342 * sets of dependences; however, for each type there is only
343 * a single edge between a given pair of source and sink space
344 * in the entire graph
346 * node_table contains pointers into the node array, hashed on the space tuples
348 * region contains a list of variable sequences that should be non-trivial
350 * lp contains the (I)LP problem used to obtain new schedule rows
352 * src_scc and dst_scc are the source and sink SCCs of an edge with
353 * conflicting constraints
355 * scc represents the number of components
356 * weak is set if the components are weakly connected
358 * max_weight is used during clustering and represents the maximal
359 * weight of the relevant proximity edges.
361 struct isl_sched_graph
{
362 isl_map_to_basic_set
*intra_hmap
;
363 isl_map_to_basic_set
*intra_hmap_param
;
364 isl_map_to_basic_set
*inter_hmap
;
366 struct isl_sched_node
*node
;
377 struct isl_sched_graph
*root
;
379 struct isl_sched_edge
*edge
;
381 int max_edge
[isl_edge_last
+ 1];
382 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
384 struct isl_hash_table
*node_table
;
385 struct isl_trivial_region
*region
;
398 /* Initialize node_table based on the list of nodes.
400 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
404 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
405 if (!graph
->node_table
)
408 for (i
= 0; i
< graph
->n
; ++i
) {
409 struct isl_hash_table_entry
*entry
;
412 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
413 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
415 graph
->node
[i
].space
, 1);
418 entry
->data
= &graph
->node
[i
];
424 /* Return a pointer to the node that lives within the given space,
425 * an invalid node if there is no such node, or NULL in case of error.
427 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
428 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
430 struct isl_hash_table_entry
*entry
;
436 hash
= isl_space_get_tuple_hash(space
);
437 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
438 &node_has_tuples
, space
, 0);
440 return entry
? entry
->data
: graph
->node
+ graph
->n
;
443 /* Is "node" a node in "graph"?
445 static int is_node(struct isl_sched_graph
*graph
,
446 struct isl_sched_node
*node
)
448 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
451 static int edge_has_src_and_dst(const void *entry
, const void *val
)
453 const struct isl_sched_edge
*edge
= entry
;
454 const struct isl_sched_edge
*temp
= val
;
456 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
459 /* Add the given edge to graph->edge_table[type].
461 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
462 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
463 struct isl_sched_edge
*edge
)
465 struct isl_hash_table_entry
*entry
;
468 hash
= isl_hash_init();
469 hash
= isl_hash_builtin(hash
, edge
->src
);
470 hash
= isl_hash_builtin(hash
, edge
->dst
);
471 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
472 &edge_has_src_and_dst
, edge
, 1);
474 return isl_stat_error
;
480 /* Add "edge" to all relevant edge tables.
481 * That is, for every type of the edge, add it to the corresponding table.
483 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
484 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
486 enum isl_edge_type t
;
488 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
489 if (!is_type(edge
, t
))
491 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
492 return isl_stat_error
;
498 /* Allocate the edge_tables based on the maximal number of edges of
501 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
505 for (i
= 0; i
<= isl_edge_last
; ++i
) {
506 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
508 if (!graph
->edge_table
[i
])
515 /* If graph->edge_table[type] contains an edge from the given source
516 * to the given destination, then return the hash table entry of this edge.
517 * Otherwise, return NULL.
519 static struct isl_hash_table_entry
*graph_find_edge_entry(
520 struct isl_sched_graph
*graph
,
521 enum isl_edge_type type
,
522 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
524 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
526 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
528 hash
= isl_hash_init();
529 hash
= isl_hash_builtin(hash
, temp
.src
);
530 hash
= isl_hash_builtin(hash
, temp
.dst
);
531 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
532 &edge_has_src_and_dst
, &temp
, 0);
536 /* If graph->edge_table[type] contains an edge from the given source
537 * to the given destination, then return this edge.
538 * Otherwise, return NULL.
540 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
541 enum isl_edge_type type
,
542 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
544 struct isl_hash_table_entry
*entry
;
546 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
553 /* Check whether the dependence graph has an edge of the given type
554 * between the given two nodes.
556 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
557 enum isl_edge_type type
,
558 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
560 struct isl_sched_edge
*edge
;
563 edge
= graph_find_edge(graph
, type
, src
, dst
);
565 return isl_bool_false
;
567 empty
= isl_map_plain_is_empty(edge
->map
);
569 return isl_bool_error
;
574 /* Look for any edge with the same src, dst and map fields as "model".
576 * Return the matching edge if one can be found.
577 * Return "model" if no matching edge is found.
578 * Return NULL on error.
580 static struct isl_sched_edge
*graph_find_matching_edge(
581 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
583 enum isl_edge_type i
;
584 struct isl_sched_edge
*edge
;
586 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
589 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
592 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
602 /* Remove the given edge from all the edge_tables that refer to it.
604 static void graph_remove_edge(struct isl_sched_graph
*graph
,
605 struct isl_sched_edge
*edge
)
607 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
608 enum isl_edge_type i
;
610 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
611 struct isl_hash_table_entry
*entry
;
613 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
616 if (entry
->data
!= edge
)
618 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
622 /* Check whether the dependence graph has any edge
623 * between the given two nodes.
625 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
626 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
628 enum isl_edge_type i
;
631 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
632 r
= graph_has_edge(graph
, i
, src
, dst
);
640 /* Check whether the dependence graph has a validity edge
641 * between the given two nodes.
643 * Conditional validity edges are essentially validity edges that
644 * can be ignored if the corresponding condition edges are iteration private.
645 * Here, we are only checking for the presence of validity
646 * edges, so we need to consider the conditional validity edges too.
647 * In particular, this function is used during the detection
648 * of strongly connected components and we cannot ignore
649 * conditional validity edges during this detection.
651 static isl_bool
graph_has_validity_edge(struct isl_sched_graph
*graph
,
652 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
656 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
660 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
663 /* Perform all the required memory allocations for a schedule graph "graph"
664 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
667 static isl_stat
graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
668 int n_node
, int n_edge
)
673 graph
->n_edge
= n_edge
;
674 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
675 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
676 graph
->region
= isl_alloc_array(ctx
,
677 struct isl_trivial_region
, graph
->n
);
678 graph
->edge
= isl_calloc_array(ctx
,
679 struct isl_sched_edge
, graph
->n_edge
);
681 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
682 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
683 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
685 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
687 return isl_stat_error
;
689 for(i
= 0; i
< graph
->n
; ++i
)
690 graph
->sorted
[i
] = i
;
695 /* Free the memory associated to node "node" in "graph".
696 * The "coincident" field is shared by nodes in a graph and its subgraph.
697 * It therefore only needs to be freed for the original dependence graph,
698 * i.e., one that is not the result of splitting.
700 static void clear_node(struct isl_sched_graph
*graph
,
701 struct isl_sched_node
*node
)
703 isl_space_free(node
->space
);
704 isl_set_free(node
->hull
);
705 isl_multi_aff_free(node
->compress
);
706 isl_multi_aff_free(node
->decompress
);
707 isl_mat_free(node
->sched
);
708 isl_map_free(node
->sched_map
);
709 isl_mat_free(node
->indep
);
710 isl_mat_free(node
->vmap
);
711 if (graph
->root
== graph
)
712 free(node
->coincident
);
713 isl_multi_val_free(node
->sizes
);
714 isl_basic_set_free(node
->bounds
);
715 isl_vec_free(node
->max
);
718 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
722 isl_map_to_basic_set_free(graph
->intra_hmap
);
723 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
724 isl_map_to_basic_set_free(graph
->inter_hmap
);
727 for (i
= 0; i
< graph
->n
; ++i
)
728 clear_node(graph
, &graph
->node
[i
]);
732 for (i
= 0; i
< graph
->n_edge
; ++i
) {
733 isl_map_free(graph
->edge
[i
].map
);
734 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
735 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
739 for (i
= 0; i
<= isl_edge_last
; ++i
)
740 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
741 isl_hash_table_free(ctx
, graph
->node_table
);
742 isl_basic_set_free(graph
->lp
);
745 /* For each "set" on which this function is called, increment
746 * graph->n by one and update graph->maxvar.
748 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
750 struct isl_sched_graph
*graph
= user
;
751 int nvar
= isl_set_dim(set
, isl_dim_set
);
754 if (nvar
> graph
->maxvar
)
755 graph
->maxvar
= nvar
;
762 /* Compute the number of rows that should be allocated for the schedule.
763 * In particular, we need one row for each variable or one row
764 * for each basic map in the dependences.
765 * Note that it is practically impossible to exhaust both
766 * the number of dependences and the number of variables.
768 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
769 __isl_keep isl_schedule_constraints
*sc
)
773 isl_union_set
*domain
;
777 domain
= isl_schedule_constraints_get_domain(sc
);
778 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
779 isl_union_set_free(domain
);
781 return isl_stat_error
;
782 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
784 return isl_stat_error
;
785 graph
->max_row
= n_edge
+ graph
->maxvar
;
790 /* Does "bset" have any defining equalities for its set variables?
792 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
797 return isl_bool_error
;
799 n
= isl_basic_set_dim(bset
, isl_dim_set
);
800 for (i
= 0; i
< n
; ++i
) {
803 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
809 return isl_bool_false
;
812 /* Set the entries of node->max to the value of the schedule_max_coefficient
815 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
819 max
= isl_options_get_schedule_max_coefficient(ctx
);
823 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
824 node
->max
= isl_vec_set_si(node
->max
, max
);
826 return isl_stat_error
;
831 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
832 * option (if set) and half of the minimum of the sizes in the other
833 * dimensions. Round up when computing the half such that
834 * if the minimum of the sizes is one, half of the size is taken to be one
836 * If the global minimum is unbounded (i.e., if both
837 * the schedule_max_coefficient is not set and the sizes in the other
838 * dimensions are unbounded), then store a negative value.
839 * If the schedule coefficient is close to the size of the instance set
840 * in another dimension, then the schedule may represent a loop
841 * coalescing transformation (especially if the coefficient
842 * in that other dimension is one). Forcing the coefficient to be
843 * smaller than or equal to half the minimal size should avoid this
846 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
847 struct isl_sched_node
*node
)
853 max
= isl_options_get_schedule_max_coefficient(ctx
);
854 v
= isl_vec_alloc(ctx
, node
->nvar
);
856 return isl_stat_error
;
858 for (i
= 0; i
< node
->nvar
; ++i
) {
859 isl_int_set_si(v
->el
[i
], max
);
860 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
863 for (i
= 0; i
< node
->nvar
; ++i
) {
866 size
= isl_multi_val_get_val(node
->sizes
, i
);
869 if (!isl_val_is_int(size
)) {
873 for (j
= 0; j
< node
->nvar
; ++j
) {
876 if (isl_int_is_neg(v
->el
[j
]) ||
877 isl_int_gt(v
->el
[j
], size
->n
))
878 isl_int_set(v
->el
[j
], size
->n
);
883 for (i
= 0; i
< node
->nvar
; ++i
)
884 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
890 return isl_stat_error
;
893 /* Compute and return the size of "set" in dimension "dim".
894 * The size is taken to be the difference in values for that variable
895 * for fixed values of the other variables.
896 * This assumes that "set" is convex.
897 * In particular, the variable is first isolated from the other variables
898 * in the range of a map
900 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
902 * and then duplicated
904 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
906 * The shared variables are then projected out and the maximal value
907 * of i_dim' - i_dim is computed.
909 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
916 map
= isl_set_project_onto_map(set
, isl_dim_set
, dim
, 1);
917 map
= isl_map_project_out(map
, isl_dim_in
, dim
, 1);
918 map
= isl_map_range_product(map
, isl_map_copy(map
));
919 map
= isl_set_unwrap(isl_map_range(map
));
920 set
= isl_map_deltas(map
);
921 ls
= isl_local_space_from_space(isl_set_get_space(set
));
922 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
923 v
= isl_set_max_val(set
, obj
);
930 /* Compute the size of the instance set "set" of "node", after compression,
931 * as well as bounds on the corresponding coefficients, if needed.
933 * The sizes are needed when the schedule_treat_coalescing option is set.
934 * The bounds are needed when the schedule_treat_coalescing option or
935 * the schedule_max_coefficient option is set.
937 * If the schedule_treat_coalescing option is not set, then at most
938 * the bounds need to be set and this is done in set_max_coefficient.
939 * Otherwise, compress the domain if needed, compute the size
940 * in each direction and store the results in node->size.
941 * If the domain is not convex, then the sizes are computed
942 * on a convex superset in order to avoid picking up sizes
943 * that are valid for the individual disjuncts, but not for
944 * the domain as a whole.
945 * Finally, set the bounds on the coefficients based on the sizes
946 * and the schedule_max_coefficient option in compute_max_coefficient.
948 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
949 __isl_take isl_set
*set
)
954 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
956 return set_max_coefficient(ctx
, node
);
959 if (node
->compressed
)
960 set
= isl_set_preimage_multi_aff(set
,
961 isl_multi_aff_copy(node
->decompress
));
962 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
963 mv
= isl_multi_val_zero(isl_set_get_space(set
));
964 n
= isl_set_dim(set
, isl_dim_set
);
965 for (j
= 0; j
< n
; ++j
) {
968 v
= compute_size(isl_set_copy(set
), j
);
969 mv
= isl_multi_val_set_val(mv
, j
, v
);
974 return isl_stat_error
;
975 return compute_max_coefficient(ctx
, node
);
978 /* Add a new node to the graph representing the given instance set.
979 * "nvar" is the (possibly compressed) number of variables and
980 * may be smaller than then number of set variables in "set"
981 * if "compressed" is set.
982 * If "compressed" is set, then "hull" represents the constraints
983 * that were used to derive the compression, while "compress" and
984 * "decompress" map the original space to the compressed space and
986 * If "compressed" is not set, then "hull", "compress" and "decompress"
989 * Compute the size of the instance set and bounds on the coefficients,
992 static isl_stat
add_node(struct isl_sched_graph
*graph
,
993 __isl_take isl_set
*set
, int nvar
, int compressed
,
994 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
995 __isl_take isl_multi_aff
*decompress
)
1002 struct isl_sched_node
*node
;
1007 ctx
= isl_set_get_ctx(set
);
1008 nparam
= isl_set_dim(set
, isl_dim_param
);
1009 if (!ctx
->opt
->schedule_parametric
)
1011 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
1012 node
= &graph
->node
[graph
->n
];
1014 space
= isl_set_get_space(set
);
1015 node
->space
= space
;
1017 node
->nparam
= nparam
;
1018 node
->sched
= sched
;
1019 node
->sched_map
= NULL
;
1020 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1021 node
->coincident
= coincident
;
1022 node
->compressed
= compressed
;
1024 node
->compress
= compress
;
1025 node
->decompress
= decompress
;
1026 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1027 return isl_stat_error
;
1029 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1030 return isl_stat_error
;
1031 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1032 return isl_stat_error
;
1038 isl_multi_aff_free(compress
);
1039 isl_multi_aff_free(decompress
);
1040 return isl_stat_error
;
1043 /* Construct an identifier for node "node", which will represent "set".
1044 * The name of the identifier is either "compressed" or
1045 * "compressed_<name>", with <name> the name of the space of "set".
1046 * The user pointer of the identifier points to "node".
1048 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
1049 struct isl_sched_node
*node
)
1058 has_name
= isl_set_has_tuple_name(set
);
1062 ctx
= isl_set_get_ctx(set
);
1064 return isl_id_alloc(ctx
, "compressed", node
);
1066 p
= isl_printer_to_str(ctx
);
1067 name
= isl_set_get_tuple_name(set
);
1068 p
= isl_printer_print_str(p
, "compressed_");
1069 p
= isl_printer_print_str(p
, name
);
1070 id_name
= isl_printer_get_str(p
);
1071 isl_printer_free(p
);
1073 id
= isl_id_alloc(ctx
, id_name
, node
);
1079 /* Add a new node to the graph representing the given set.
1081 * If any of the set variables is defined by an equality, then
1082 * we perform variable compression such that we can perform
1083 * the scheduling on the compressed domain.
1084 * In this case, an identifier is used that references the new node
1085 * such that each compressed space is unique and
1086 * such that the node can be recovered from the compressed space.
1088 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1091 isl_bool has_equality
;
1093 isl_basic_set
*hull
;
1096 isl_multi_aff
*compress
, *decompress
;
1097 struct isl_sched_graph
*graph
= user
;
1099 hull
= isl_set_affine_hull(isl_set_copy(set
));
1100 hull
= isl_basic_set_remove_divs(hull
);
1101 nvar
= isl_set_dim(set
, isl_dim_set
);
1102 has_equality
= has_any_defining_equality(hull
);
1104 if (has_equality
< 0)
1106 if (!has_equality
) {
1107 isl_basic_set_free(hull
);
1108 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1111 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1112 morph
= isl_basic_set_variable_compression_with_id(hull
,
1115 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1116 compress
= isl_morph_get_var_multi_aff(morph
);
1117 morph
= isl_morph_inverse(morph
);
1118 decompress
= isl_morph_get_var_multi_aff(morph
);
1119 isl_morph_free(morph
);
1121 hull_set
= isl_set_from_basic_set(hull
);
1122 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1124 isl_basic_set_free(hull
);
1126 return isl_stat_error
;
1129 struct isl_extract_edge_data
{
1130 enum isl_edge_type type
;
1131 struct isl_sched_graph
*graph
;
1134 /* Merge edge2 into edge1, freeing the contents of edge2.
1135 * Return 0 on success and -1 on failure.
1137 * edge1 and edge2 are assumed to have the same value for the map field.
1139 static int merge_edge(struct isl_sched_edge
*edge1
,
1140 struct isl_sched_edge
*edge2
)
1142 edge1
->types
|= edge2
->types
;
1143 isl_map_free(edge2
->map
);
1145 if (is_condition(edge2
)) {
1146 if (!edge1
->tagged_condition
)
1147 edge1
->tagged_condition
= edge2
->tagged_condition
;
1149 edge1
->tagged_condition
=
1150 isl_union_map_union(edge1
->tagged_condition
,
1151 edge2
->tagged_condition
);
1154 if (is_conditional_validity(edge2
)) {
1155 if (!edge1
->tagged_validity
)
1156 edge1
->tagged_validity
= edge2
->tagged_validity
;
1158 edge1
->tagged_validity
=
1159 isl_union_map_union(edge1
->tagged_validity
,
1160 edge2
->tagged_validity
);
1163 if (is_condition(edge2
) && !edge1
->tagged_condition
)
1165 if (is_conditional_validity(edge2
) && !edge1
->tagged_validity
)
1171 /* Insert dummy tags in domain and range of "map".
1173 * In particular, if "map" is of the form
1179 * [A -> dummy_tag] -> [B -> dummy_tag]
1181 * where the dummy_tags are identical and equal to any dummy tags
1182 * introduced by any other call to this function.
1184 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1190 isl_set
*domain
, *range
;
1192 ctx
= isl_map_get_ctx(map
);
1194 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1195 space
= isl_space_params(isl_map_get_space(map
));
1196 space
= isl_space_set_from_params(space
);
1197 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1198 space
= isl_space_map_from_set(space
);
1200 domain
= isl_map_wrap(map
);
1201 range
= isl_map_wrap(isl_map_universe(space
));
1202 map
= isl_map_from_domain_and_range(domain
, range
);
1203 map
= isl_map_zip(map
);
1208 /* Given that at least one of "src" or "dst" is compressed, return
1209 * a map between the spaces of these nodes restricted to the affine
1210 * hull that was used in the compression.
1212 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1213 struct isl_sched_node
*dst
)
1217 if (src
->compressed
)
1218 dom
= isl_set_copy(src
->hull
);
1220 dom
= isl_set_universe(isl_space_copy(src
->space
));
1221 if (dst
->compressed
)
1222 ran
= isl_set_copy(dst
->hull
);
1224 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1226 return isl_map_from_domain_and_range(dom
, ran
);
1229 /* Intersect the domains of the nested relations in domain and range
1230 * of "tagged" with "map".
1232 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1233 __isl_keep isl_map
*map
)
1237 tagged
= isl_map_zip(tagged
);
1238 set
= isl_map_wrap(isl_map_copy(map
));
1239 tagged
= isl_map_intersect_domain(tagged
, set
);
1240 tagged
= isl_map_zip(tagged
);
1244 /* Return a pointer to the node that lives in the domain space of "map",
1245 * an invalid node if there is no such node, or NULL in case of error.
1247 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1248 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1250 struct isl_sched_node
*node
;
1253 space
= isl_space_domain(isl_map_get_space(map
));
1254 node
= graph_find_node(ctx
, graph
, space
);
1255 isl_space_free(space
);
1260 /* Return a pointer to the node that lives in the range space of "map",
1261 * an invalid node if there is no such node, or NULL in case of error.
1263 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1264 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1266 struct isl_sched_node
*node
;
1269 space
= isl_space_range(isl_map_get_space(map
));
1270 node
= graph_find_node(ctx
, graph
, space
);
1271 isl_space_free(space
);
1276 /* Refrain from adding a new edge based on "map".
1277 * Instead, just free the map.
1278 * "tagged" is either a copy of "map" with additional tags or NULL.
1280 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1283 isl_map_free(tagged
);
1288 /* Add a new edge to the graph based on the given map
1289 * and add it to data->graph->edge_table[data->type].
1290 * If a dependence relation of a given type happens to be identical
1291 * to one of the dependence relations of a type that was added before,
1292 * then we don't create a new edge, but instead mark the original edge
1293 * as also representing a dependence of the current type.
1295 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1296 * may be specified as "tagged" dependence relations. That is, "map"
1297 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1298 * the dependence on iterations and a and b are tags.
1299 * edge->map is set to the relation containing the elements i -> j,
1300 * while edge->tagged_condition and edge->tagged_validity contain
1301 * the union of all the "map" relations
1302 * for which extract_edge is called that result in the same edge->map.
1304 * If the source or the destination node is compressed, then
1305 * intersect both "map" and "tagged" with the constraints that
1306 * were used to construct the compression.
1307 * This ensures that there are no schedule constraints defined
1308 * outside of these domains, while the scheduler no longer has
1309 * any control over those outside parts.
1311 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1314 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1315 struct isl_extract_edge_data
*data
= user
;
1316 struct isl_sched_graph
*graph
= data
->graph
;
1317 struct isl_sched_node
*src
, *dst
;
1318 struct isl_sched_edge
*edge
;
1319 isl_map
*tagged
= NULL
;
1321 if (data
->type
== isl_edge_condition
||
1322 data
->type
== isl_edge_conditional_validity
) {
1323 if (isl_map_can_zip(map
)) {
1324 tagged
= isl_map_copy(map
);
1325 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1327 tagged
= insert_dummy_tags(isl_map_copy(map
));
1331 src
= find_domain_node(ctx
, graph
, map
);
1332 dst
= find_range_node(ctx
, graph
, map
);
1336 if (!is_node(graph
, src
) || !is_node(graph
, dst
))
1337 return skip_edge(map
, tagged
);
1339 if (src
->compressed
|| dst
->compressed
) {
1341 hull
= extract_hull(src
, dst
);
1343 tagged
= map_intersect_domains(tagged
, hull
);
1344 map
= isl_map_intersect(map
, hull
);
1347 empty
= isl_map_plain_is_empty(map
);
1351 return skip_edge(map
, tagged
);
1353 graph
->edge
[graph
->n_edge
].src
= src
;
1354 graph
->edge
[graph
->n_edge
].dst
= dst
;
1355 graph
->edge
[graph
->n_edge
].map
= map
;
1356 graph
->edge
[graph
->n_edge
].types
= 0;
1357 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1358 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1359 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1360 if (data
->type
== isl_edge_condition
)
1361 graph
->edge
[graph
->n_edge
].tagged_condition
=
1362 isl_union_map_from_map(tagged
);
1363 if (data
->type
== isl_edge_conditional_validity
)
1364 graph
->edge
[graph
->n_edge
].tagged_validity
=
1365 isl_union_map_from_map(tagged
);
1367 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1370 return isl_stat_error
;
1372 if (edge
== &graph
->edge
[graph
->n_edge
])
1373 return graph_edge_table_add(ctx
, graph
, data
->type
,
1374 &graph
->edge
[graph
->n_edge
++]);
1376 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1377 return isl_stat_error
;
1379 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1382 isl_map_free(tagged
);
1383 return isl_stat_error
;
1386 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1388 * The context is included in the domain before the nodes of
1389 * the graphs are extracted in order to be able to exploit
1390 * any possible additional equalities.
1391 * Note that this intersection is only performed locally here.
1393 static isl_stat
graph_init(struct isl_sched_graph
*graph
,
1394 __isl_keep isl_schedule_constraints
*sc
)
1397 isl_union_set
*domain
;
1399 struct isl_extract_edge_data data
;
1400 enum isl_edge_type i
;
1404 return isl_stat_error
;
1406 ctx
= isl_schedule_constraints_get_ctx(sc
);
1408 domain
= isl_schedule_constraints_get_domain(sc
);
1409 graph
->n
= isl_union_set_n_set(domain
);
1410 isl_union_set_free(domain
);
1412 if (graph_alloc(ctx
, graph
, graph
->n
,
1413 isl_schedule_constraints_n_map(sc
)) < 0)
1414 return isl_stat_error
;
1416 if (compute_max_row(graph
, sc
) < 0)
1417 return isl_stat_error
;
1418 graph
->root
= graph
;
1420 domain
= isl_schedule_constraints_get_domain(sc
);
1421 domain
= isl_union_set_intersect_params(domain
,
1422 isl_schedule_constraints_get_context(sc
));
1423 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1424 isl_union_set_free(domain
);
1426 return isl_stat_error
;
1427 if (graph_init_table(ctx
, graph
) < 0)
1428 return isl_stat_error
;
1429 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1430 c
= isl_schedule_constraints_get(sc
, i
);
1431 graph
->max_edge
[i
] = isl_union_map_n_map(c
);
1432 isl_union_map_free(c
);
1434 return isl_stat_error
;
1436 if (graph_init_edge_tables(ctx
, graph
) < 0)
1437 return isl_stat_error
;
1440 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1444 c
= isl_schedule_constraints_get(sc
, i
);
1445 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1446 isl_union_map_free(c
);
1448 return isl_stat_error
;
1454 /* Check whether there is any dependence from node[j] to node[i]
1455 * or from node[i] to node[j].
1457 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1460 struct isl_sched_graph
*graph
= user
;
1462 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1465 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1468 /* Check whether there is a (conditional) validity dependence from node[j]
1469 * to node[i], forcing node[i] to follow node[j].
1471 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1473 struct isl_sched_graph
*graph
= user
;
1475 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1478 /* Use Tarjan's algorithm for computing the strongly connected components
1479 * in the dependence graph only considering those edges defined by "follows".
1481 static isl_stat
detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1482 isl_bool (*follows
)(int i
, int j
, void *user
))
1485 struct isl_tarjan_graph
*g
= NULL
;
1487 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1489 return isl_stat_error
;
1495 while (g
->order
[i
] != -1) {
1496 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1504 isl_tarjan_graph_free(g
);
1509 /* Apply Tarjan's algorithm to detect the strongly connected components
1510 * in the dependence graph.
1511 * Only consider the (conditional) validity dependences and clear "weak".
1513 static isl_stat
detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1516 return detect_ccs(ctx
, graph
, &node_follows_strong
);
1519 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1520 * in the dependence graph.
1521 * Consider all dependences and set "weak".
1523 static isl_stat
detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1526 return detect_ccs(ctx
, graph
, &node_follows_weak
);
1529 static int cmp_scc(const void *a
, const void *b
, void *data
)
1531 struct isl_sched_graph
*graph
= data
;
1535 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1538 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1540 static int sort_sccs(struct isl_sched_graph
*graph
)
1542 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1545 /* Return a non-parametric set in the compressed space of "node" that is
1546 * bounded by the size in each direction
1548 * { [x] : -S_i <= x_i <= S_i }
1550 * If S_i is infinity in direction i, then there are no constraints
1551 * in that direction.
1553 * Cache the result in node->bounds.
1555 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1558 isl_basic_set
*bounds
;
1563 return isl_basic_set_copy(node
->bounds
);
1565 if (node
->compressed
)
1566 space
= isl_multi_aff_get_domain_space(node
->decompress
);
1568 space
= isl_space_copy(node
->space
);
1569 nparam
= isl_space_dim(space
, isl_dim_param
);
1570 space
= isl_space_drop_dims(space
, isl_dim_param
, 0, nparam
);
1571 bounds
= isl_basic_set_universe(space
);
1573 for (i
= 0; i
< node
->nvar
; ++i
) {
1576 size
= isl_multi_val_get_val(node
->sizes
, i
);
1578 return isl_basic_set_free(bounds
);
1579 if (!isl_val_is_int(size
)) {
1583 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1584 isl_val_copy(size
));
1585 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1589 node
->bounds
= isl_basic_set_copy(bounds
);
1593 /* Drop some constraints from "delta" that could be exploited
1594 * to construct loop coalescing schedules.
1595 * In particular, drop those constraint that bound the difference
1596 * to the size of the domain.
1597 * First project out the parameters to improve the effectiveness.
1599 static __isl_give isl_set
*drop_coalescing_constraints(
1600 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1603 isl_basic_set
*bounds
;
1605 bounds
= get_size_bounds(node
);
1607 nparam
= isl_set_dim(delta
, isl_dim_param
);
1608 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1609 delta
= isl_set_remove_divs(delta
);
1610 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1614 /* Given a dependence relation R from "node" to itself,
1615 * construct the set of coefficients of valid constraints for elements
1616 * in that dependence relation.
1617 * In particular, the result contains tuples of coefficients
1618 * c_0, c_n, c_x such that
1620 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1624 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1626 * We choose here to compute the dual of delta R.
1627 * Alternatively, we could have computed the dual of R, resulting
1628 * in a set of tuples c_0, c_n, c_x, c_y, and then
1629 * plugged in (c_0, c_n, c_x, -c_x).
1631 * If "need_param" is set, then the resulting coefficients effectively
1632 * include coefficients for the parameters c_n. Otherwise, they may
1633 * have been projected out already.
1634 * Since the constraints may be different for these two cases,
1635 * they are stored in separate caches.
1636 * In particular, if no parameter coefficients are required and
1637 * the schedule_treat_coalescing option is set, then the parameters
1638 * are projected out and some constraints that could be exploited
1639 * to construct coalescing schedules are removed before the dual
1642 * If "node" has been compressed, then the dependence relation
1643 * is also compressed before the set of coefficients is computed.
1645 static __isl_give isl_basic_set
*intra_coefficients(
1646 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1647 __isl_take isl_map
*map
, int need_param
)
1652 isl_basic_set
*coef
;
1653 isl_maybe_isl_basic_set m
;
1654 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1660 ctx
= isl_map_get_ctx(map
);
1661 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1663 hmap
= &graph
->intra_hmap_param
;
1664 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1665 if (m
.valid
< 0 || m
.valid
) {
1670 key
= isl_map_copy(map
);
1671 if (node
->compressed
) {
1672 map
= isl_map_preimage_domain_multi_aff(map
,
1673 isl_multi_aff_copy(node
->decompress
));
1674 map
= isl_map_preimage_range_multi_aff(map
,
1675 isl_multi_aff_copy(node
->decompress
));
1677 delta
= isl_map_deltas(map
);
1679 delta
= drop_coalescing_constraints(delta
, node
);
1680 delta
= isl_set_remove_divs(delta
);
1681 coef
= isl_set_coefficients(delta
);
1682 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1687 /* Given a dependence relation R, construct the set of coefficients
1688 * of valid constraints for elements in that dependence relation.
1689 * In particular, the result contains tuples of coefficients
1690 * c_0, c_n, c_x, c_y such that
1692 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1694 * If the source or destination nodes of "edge" have been compressed,
1695 * then the dependence relation is also compressed before
1696 * the set of coefficients is computed.
1698 static __isl_give isl_basic_set
*inter_coefficients(
1699 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1700 __isl_take isl_map
*map
)
1704 isl_basic_set
*coef
;
1705 isl_maybe_isl_basic_set m
;
1707 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1708 if (m
.valid
< 0 || m
.valid
) {
1713 key
= isl_map_copy(map
);
1714 if (edge
->src
->compressed
)
1715 map
= isl_map_preimage_domain_multi_aff(map
,
1716 isl_multi_aff_copy(edge
->src
->decompress
));
1717 if (edge
->dst
->compressed
)
1718 map
= isl_map_preimage_range_multi_aff(map
,
1719 isl_multi_aff_copy(edge
->dst
->decompress
));
1720 set
= isl_map_wrap(isl_map_remove_divs(map
));
1721 coef
= isl_set_coefficients(set
);
1722 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1723 isl_basic_set_copy(coef
));
1728 /* Return the position of the coefficients of the variables in
1729 * the coefficients constraints "coef".
1731 * The space of "coef" is of the form
1733 * { coefficients[[cst, params] -> S] }
1735 * Return the position of S.
1737 static int coef_var_offset(__isl_keep isl_basic_set
*coef
)
1742 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1743 offset
= isl_space_dim(space
, isl_dim_in
);
1744 isl_space_free(space
);
1749 /* Return the offset of the coefficient of the constant term of "node"
1752 * Within each node, the coefficients have the following order:
1753 * - positive and negative parts of c_i_x
1754 * - c_i_n (if parametric)
1757 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1759 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1762 /* Return the offset of the coefficients of the parameters of "node"
1765 * Within each node, the coefficients have the following order:
1766 * - positive and negative parts of c_i_x
1767 * - c_i_n (if parametric)
1770 static int node_par_coef_offset(struct isl_sched_node
*node
)
1772 return node
->start
+ 2 * node
->nvar
;
1775 /* Return the offset of the coefficients of the variables of "node"
1778 * Within each node, the coefficients have the following order:
1779 * - positive and negative parts of c_i_x
1780 * - c_i_n (if parametric)
1783 static int node_var_coef_offset(struct isl_sched_node
*node
)
1788 /* Return the position of the pair of variables encoding
1789 * coefficient "i" of "node".
1791 * The order of these variable pairs is the opposite of
1792 * that of the coefficients, with 2 variables per coefficient.
1794 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1796 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1799 /* Construct an isl_dim_map for mapping constraints on coefficients
1800 * for "node" to the corresponding positions in graph->lp.
1801 * "offset" is the offset of the coefficients for the variables
1802 * in the input constraints.
1803 * "s" is the sign of the mapping.
1805 * The input constraints are given in terms of the coefficients
1806 * (c_0, c_x) or (c_0, c_n, c_x).
1807 * The mapping produced by this function essentially plugs in
1808 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1809 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1810 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1811 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1812 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1813 * Furthermore, the order of these pairs is the opposite of that
1814 * of the corresponding coefficients.
1816 * The caller can extend the mapping to also map the other coefficients
1817 * (and therefore not plug in 0).
1819 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1820 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1825 isl_dim_map
*dim_map
;
1827 if (!node
|| !graph
->lp
)
1830 total
= isl_basic_set_total_dim(graph
->lp
);
1831 pos
= node_var_coef_pos(node
, 0);
1832 dim_map
= isl_dim_map_alloc(ctx
, total
);
1833 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1834 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1839 /* Construct an isl_dim_map for mapping constraints on coefficients
1840 * for "src" (node i) and "dst" (node j) to the corresponding positions
1842 * "offset" is the offset of the coefficients for the variables of "src"
1843 * in the input constraints.
1844 * "s" is the sign of the mapping.
1846 * The input constraints are given in terms of the coefficients
1847 * (c_0, c_n, c_x, c_y).
1848 * The mapping produced by this function essentially plugs in
1849 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1850 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1851 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1852 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1853 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1854 * Furthermore, the order of these pairs is the opposite of that
1855 * of the corresponding coefficients.
1857 * The caller can further extend the mapping.
1859 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1860 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1861 struct isl_sched_node
*dst
, int offset
, int s
)
1865 isl_dim_map
*dim_map
;
1867 if (!src
|| !dst
|| !graph
->lp
)
1870 total
= isl_basic_set_total_dim(graph
->lp
);
1871 dim_map
= isl_dim_map_alloc(ctx
, total
);
1873 pos
= node_cst_coef_offset(dst
);
1874 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1875 pos
= node_par_coef_offset(dst
);
1876 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1877 pos
= node_var_coef_pos(dst
, 0);
1878 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1880 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1883 pos
= node_cst_coef_offset(src
);
1884 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1885 pos
= node_par_coef_offset(src
);
1886 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1887 pos
= node_var_coef_pos(src
, 0);
1888 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1889 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1894 /* Add the constraints from "src" to "dst" using "dim_map",
1895 * after making sure there is enough room in "dst" for the extra constraints.
1897 static __isl_give isl_basic_set
*add_constraints_dim_map(
1898 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1899 __isl_take isl_dim_map
*dim_map
)
1903 n_eq
= isl_basic_set_n_equality(src
);
1904 n_ineq
= isl_basic_set_n_inequality(src
);
1905 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1906 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1910 /* Add constraints to graph->lp that force validity for the given
1911 * dependence from a node i to itself.
1912 * That is, add constraints that enforce
1914 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1915 * = c_i_x (y - x) >= 0
1917 * for each (x,y) in R.
1918 * We obtain general constraints on coefficients (c_0, c_x)
1919 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1920 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1921 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1922 * Note that the result of intra_coefficients may also contain
1923 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1925 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1926 struct isl_sched_edge
*edge
)
1929 isl_map
*map
= isl_map_copy(edge
->map
);
1930 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1931 isl_dim_map
*dim_map
;
1932 isl_basic_set
*coef
;
1933 struct isl_sched_node
*node
= edge
->src
;
1935 coef
= intra_coefficients(graph
, node
, map
, 0);
1937 offset
= coef_var_offset(coef
);
1940 return isl_stat_error
;
1942 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1943 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1948 /* Add constraints to graph->lp that force validity for the given
1949 * dependence from node i to node j.
1950 * That is, add constraints that enforce
1952 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1954 * for each (x,y) in R.
1955 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1956 * of valid constraints for R and then plug in
1957 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1958 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1959 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1961 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1962 struct isl_sched_edge
*edge
)
1967 isl_dim_map
*dim_map
;
1968 isl_basic_set
*coef
;
1969 struct isl_sched_node
*src
= edge
->src
;
1970 struct isl_sched_node
*dst
= edge
->dst
;
1973 return isl_stat_error
;
1975 map
= isl_map_copy(edge
->map
);
1976 ctx
= isl_map_get_ctx(map
);
1977 coef
= inter_coefficients(graph
, edge
, map
);
1979 offset
= coef_var_offset(coef
);
1982 return isl_stat_error
;
1984 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1986 edge
->start
= graph
->lp
->n_ineq
;
1987 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1989 return isl_stat_error
;
1990 edge
->end
= graph
->lp
->n_ineq
;
1995 /* Add constraints to graph->lp that bound the dependence distance for the given
1996 * dependence from a node i to itself.
1997 * If s = 1, we add the constraint
1999 * c_i_x (y - x) <= m_0 + m_n n
2003 * -c_i_x (y - x) + m_0 + m_n n >= 0
2005 * for each (x,y) in R.
2006 * If s = -1, we add the constraint
2008 * -c_i_x (y - x) <= m_0 + m_n n
2012 * c_i_x (y - x) + m_0 + m_n n >= 0
2014 * for each (x,y) in R.
2015 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2016 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
2017 * with each coefficient (except m_0) represented as a pair of non-negative
2021 * If "local" is set, then we add constraints
2023 * c_i_x (y - x) <= 0
2027 * -c_i_x (y - x) <= 0
2029 * instead, forcing the dependence distance to be (less than or) equal to 0.
2030 * That is, we plug in (0, 0, -s * c_i_x),
2031 * intra_coefficients is not required to have c_n in its result when
2032 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2033 * Note that dependences marked local are treated as validity constraints
2034 * by add_all_validity_constraints and therefore also have
2035 * their distances bounded by 0 from below.
2037 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2038 struct isl_sched_edge
*edge
, int s
, int local
)
2042 isl_map
*map
= isl_map_copy(edge
->map
);
2043 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2044 isl_dim_map
*dim_map
;
2045 isl_basic_set
*coef
;
2046 struct isl_sched_node
*node
= edge
->src
;
2048 coef
= intra_coefficients(graph
, node
, map
, !local
);
2050 offset
= coef_var_offset(coef
);
2053 return isl_stat_error
;
2055 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2056 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2059 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2060 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2061 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2063 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2068 /* Add constraints to graph->lp that bound the dependence distance for the given
2069 * dependence from node i to node j.
2070 * If s = 1, we add the constraint
2072 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2077 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2080 * for each (x,y) in R.
2081 * If s = -1, we add the constraint
2083 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2088 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2091 * for each (x,y) in R.
2092 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2093 * of valid constraints for R and then plug in
2094 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2095 * s*c_i_x, -s*c_j_x)
2096 * with each coefficient (except m_0, c_*_0 and c_*_n)
2097 * represented as a pair of non-negative coefficients.
2100 * If "local" is set (and s = 1), then we add constraints
2102 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2106 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2108 * instead, forcing the dependence distance to be (less than or) equal to 0.
2109 * That is, we plug in
2110 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2111 * Note that dependences marked local are treated as validity constraints
2112 * by add_all_validity_constraints and therefore also have
2113 * their distances bounded by 0 from below.
2115 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2116 struct isl_sched_edge
*edge
, int s
, int local
)
2120 isl_map
*map
= isl_map_copy(edge
->map
);
2121 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2122 isl_dim_map
*dim_map
;
2123 isl_basic_set
*coef
;
2124 struct isl_sched_node
*src
= edge
->src
;
2125 struct isl_sched_node
*dst
= edge
->dst
;
2127 coef
= inter_coefficients(graph
, edge
, map
);
2129 offset
= coef_var_offset(coef
);
2132 return isl_stat_error
;
2134 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2135 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2138 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2139 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2140 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2143 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2148 /* Should the distance over "edge" be forced to zero?
2149 * That is, is it marked as a local edge?
2150 * If "use_coincidence" is set, then coincidence edges are treated
2153 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2155 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2158 /* Add all validity constraints to graph->lp.
2160 * An edge that is forced to be local needs to have its dependence
2161 * distances equal to zero. We take care of bounding them by 0 from below
2162 * here. add_all_proximity_constraints takes care of bounding them by 0
2165 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2166 * Otherwise, we ignore them.
2168 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2169 int use_coincidence
)
2173 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2174 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2177 zero
= force_zero(edge
, use_coincidence
);
2178 if (!is_validity(edge
) && !zero
)
2180 if (edge
->src
!= edge
->dst
)
2182 if (add_intra_validity_constraints(graph
, edge
) < 0)
2186 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2187 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2190 zero
= force_zero(edge
, use_coincidence
);
2191 if (!is_validity(edge
) && !zero
)
2193 if (edge
->src
== edge
->dst
)
2195 if (add_inter_validity_constraints(graph
, edge
) < 0)
2202 /* Add constraints to graph->lp that bound the dependence distance
2203 * for all dependence relations.
2204 * If a given proximity dependence is identical to a validity
2205 * dependence, then the dependence distance is already bounded
2206 * from below (by zero), so we only need to bound the distance
2207 * from above. (This includes the case of "local" dependences
2208 * which are treated as validity dependence by add_all_validity_constraints.)
2209 * Otherwise, we need to bound the distance both from above and from below.
2211 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2212 * Otherwise, we ignore them.
2214 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2215 int use_coincidence
)
2219 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2220 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2223 zero
= force_zero(edge
, use_coincidence
);
2224 if (!is_proximity(edge
) && !zero
)
2226 if (edge
->src
== edge
->dst
&&
2227 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2229 if (edge
->src
!= edge
->dst
&&
2230 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2232 if (is_validity(edge
) || zero
)
2234 if (edge
->src
== edge
->dst
&&
2235 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2237 if (edge
->src
!= edge
->dst
&&
2238 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2245 /* Normalize the rows of "indep" such that all rows are lexicographically
2246 * positive and such that each row contains as many final zeros as possible,
2247 * given the choice for the previous rows.
2248 * Do this by performing elementary row operations.
2250 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2252 indep
= isl_mat_reverse_gauss(indep
);
2253 indep
= isl_mat_lexnonneg_rows(indep
);
2257 /* Compute a basis for the rows in the linear part of the schedule
2258 * and extend this basis to a full basis. The remaining rows
2259 * can then be used to force linear independence from the rows
2262 * In particular, given the schedule rows S, we compute
2267 * with H the Hermite normal form of S. That is, all but the
2268 * first rank columns of H are zero and so each row in S is
2269 * a linear combination of the first rank rows of Q.
2270 * The matrix Q can be used as a variable transformation
2271 * that isolates the directions of S in the first rank rows.
2272 * Transposing S U = H yields
2276 * with all but the first rank rows of H^T zero.
2277 * The last rows of U^T are therefore linear combinations
2278 * of schedule coefficients that are all zero on schedule
2279 * coefficients that are linearly dependent on the rows of S.
2280 * At least one of these combinations is non-zero on
2281 * linearly independent schedule coefficients.
2282 * The rows are normalized to involve as few of the last
2283 * coefficients as possible and to have a positive initial value.
2285 static int node_update_vmap(struct isl_sched_node
*node
)
2288 int n_row
= isl_mat_rows(node
->sched
);
2290 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2291 1 + node
->nparam
, node
->nvar
);
2293 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2294 isl_mat_free(node
->indep
);
2295 isl_mat_free(node
->vmap
);
2297 node
->indep
= isl_mat_transpose(U
);
2298 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2299 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2300 node
->indep
= normalize_independent(node
->indep
);
2303 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2308 /* Is "edge" marked as a validity or a conditional validity edge?
2310 static int is_any_validity(struct isl_sched_edge
*edge
)
2312 return is_validity(edge
) || is_conditional_validity(edge
);
2315 /* How many times should we count the constraints in "edge"?
2317 * We count as follows
2318 * validity -> 1 (>= 0)
2319 * validity+proximity -> 2 (>= 0 and upper bound)
2320 * proximity -> 2 (lower and upper bound)
2321 * local(+any) -> 2 (>= 0 and <= 0)
2323 * If an edge is only marked conditional_validity then it counts
2324 * as zero since it is only checked afterwards.
2326 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2327 * Otherwise, we ignore them.
2329 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2331 if (is_proximity(edge
) || force_zero(edge
, use_coincidence
))
2333 if (is_validity(edge
))
2338 /* How many times should the constraints in "edge" be counted
2339 * as a parametric intra-node constraint?
2341 * Only proximity edges that are not forced zero need
2342 * coefficient constraints that include coefficients for parameters.
2343 * If the edge is also a validity edge, then only
2344 * an upper bound is introduced. Otherwise, both lower and upper bounds
2347 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2348 int use_coincidence
)
2350 if (edge
->src
!= edge
->dst
)
2352 if (!is_proximity(edge
))
2354 if (force_zero(edge
, use_coincidence
))
2356 if (is_validity(edge
))
2362 /* Add "f" times the number of equality and inequality constraints of "bset"
2363 * to "n_eq" and "n_ineq" and free "bset".
2365 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2366 int f
, int *n_eq
, int *n_ineq
)
2369 return isl_stat_error
;
2371 *n_eq
+= isl_basic_set_n_equality(bset
);
2372 *n_ineq
+= isl_basic_set_n_inequality(bset
);
2373 isl_basic_set_free(bset
);
2378 /* Count the number of equality and inequality constraints
2379 * that will be added for the given map.
2381 * The edges that require parameter coefficients are counted separately.
2383 * "use_coincidence" is set if we should take into account coincidence edges.
2385 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2386 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2387 int *n_eq
, int *n_ineq
, int use_coincidence
)
2390 isl_basic_set
*coef
;
2391 int f
= edge_multiplicity(edge
, use_coincidence
);
2392 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2399 if (edge
->src
!= edge
->dst
) {
2400 coef
= inter_coefficients(graph
, edge
, map
);
2401 return update_count(coef
, f
, n_eq
, n_ineq
);
2405 copy
= isl_map_copy(map
);
2406 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2407 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2412 copy
= isl_map_copy(map
);
2413 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2414 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2422 return isl_stat_error
;
2425 /* Count the number of equality and inequality constraints
2426 * that will be added to the main lp problem.
2427 * We count as follows
2428 * validity -> 1 (>= 0)
2429 * validity+proximity -> 2 (>= 0 and upper bound)
2430 * proximity -> 2 (lower and upper bound)
2431 * local(+any) -> 2 (>= 0 and <= 0)
2433 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2434 * Otherwise, we ignore them.
2436 static int count_constraints(struct isl_sched_graph
*graph
,
2437 int *n_eq
, int *n_ineq
, int use_coincidence
)
2441 *n_eq
= *n_ineq
= 0;
2442 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2443 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2444 isl_map
*map
= isl_map_copy(edge
->map
);
2446 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2447 use_coincidence
) < 0)
2454 /* Count the number of constraints that will be added by
2455 * add_bound_constant_constraints to bound the values of the constant terms
2456 * and increment *n_eq and *n_ineq accordingly.
2458 * In practice, add_bound_constant_constraints only adds inequalities.
2460 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2461 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2463 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2466 *n_ineq
+= graph
->n
;
2471 /* Add constraints to bound the values of the constant terms in the schedule,
2472 * if requested by the user.
2474 * The maximal value of the constant terms is defined by the option
2475 * "schedule_max_constant_term".
2477 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2478 struct isl_sched_graph
*graph
)
2484 max
= isl_options_get_schedule_max_constant_term(ctx
);
2488 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2490 for (i
= 0; i
< graph
->n
; ++i
) {
2491 struct isl_sched_node
*node
= &graph
->node
[i
];
2494 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2496 return isl_stat_error
;
2497 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2498 pos
= node_cst_coef_offset(node
);
2499 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2500 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2506 /* Count the number of constraints that will be added by
2507 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2510 * In practice, add_bound_coefficient_constraints only adds inequalities.
2512 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2513 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2517 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2518 !isl_options_get_schedule_treat_coalescing(ctx
))
2521 for (i
= 0; i
< graph
->n
; ++i
)
2522 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2527 /* Add constraints to graph->lp that bound the values of
2528 * the parameter schedule coefficients of "node" to "max" and
2529 * the variable schedule coefficients to the corresponding entry
2531 * In either case, a negative value means that no bound needs to be imposed.
2533 * For parameter coefficients, this amounts to adding a constraint
2541 * The variables coefficients are, however, not represented directly.
2542 * Instead, the variable coefficients c_x are written as differences
2543 * c_x = c_x^+ - c_x^-.
2546 * -max_i <= c_x_i <= max_i
2550 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2554 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2555 * c_x_i^+ - c_x_i^- + max_i >= 0
2557 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2558 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2564 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2566 for (j
= 0; j
< node
->nparam
; ++j
) {
2572 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2574 return isl_stat_error
;
2575 dim
= 1 + node_par_coef_offset(node
) + j
;
2576 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2577 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2578 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2581 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2582 ineq
= isl_vec_clr(ineq
);
2584 return isl_stat_error
;
2585 for (i
= 0; i
< node
->nvar
; ++i
) {
2586 int pos
= 1 + node_var_coef_pos(node
, i
);
2588 if (isl_int_is_neg(node
->max
->el
[i
]))
2591 isl_int_set_si(ineq
->el
[pos
], 1);
2592 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2593 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2595 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2598 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2600 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2601 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2604 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2606 isl_seq_clr(ineq
->el
+ pos
, 2);
2613 return isl_stat_error
;
2616 /* Add constraints that bound the values of the variable and parameter
2617 * coefficients of the schedule.
2619 * The maximal value of the coefficients is defined by the option
2620 * 'schedule_max_coefficient' and the entries in node->max.
2621 * These latter entries are only set if either the schedule_max_coefficient
2622 * option or the schedule_treat_coalescing option is set.
2624 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2625 struct isl_sched_graph
*graph
)
2630 max
= isl_options_get_schedule_max_coefficient(ctx
);
2632 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2635 for (i
= 0; i
< graph
->n
; ++i
) {
2636 struct isl_sched_node
*node
= &graph
->node
[i
];
2638 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2639 return isl_stat_error
;
2645 /* Add a constraint to graph->lp that equates the value at position
2646 * "sum_pos" to the sum of the "n" values starting at "first".
2648 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2649 int sum_pos
, int first
, int n
)
2654 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2656 k
= isl_basic_set_alloc_equality(graph
->lp
);
2658 return isl_stat_error
;
2659 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2660 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2661 for (i
= 0; i
< n
; ++i
)
2662 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2667 /* Add a constraint to graph->lp that equates the value at position
2668 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2670 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2676 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2678 k
= isl_basic_set_alloc_equality(graph
->lp
);
2680 return isl_stat_error
;
2681 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2682 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2683 for (i
= 0; i
< graph
->n
; ++i
) {
2684 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2686 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2687 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2693 /* Add a constraint to graph->lp that equates the value at position
2694 * "sum_pos" to the sum of the variable coefficients of all nodes.
2696 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2702 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2704 k
= isl_basic_set_alloc_equality(graph
->lp
);
2706 return isl_stat_error
;
2707 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2708 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2709 for (i
= 0; i
< graph
->n
; ++i
) {
2710 struct isl_sched_node
*node
= &graph
->node
[i
];
2711 int pos
= 1 + node_var_coef_offset(node
);
2713 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2714 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2720 /* Construct an ILP problem for finding schedule coefficients
2721 * that result in non-negative, but small dependence distances
2722 * over all dependences.
2723 * In particular, the dependence distances over proximity edges
2724 * are bounded by m_0 + m_n n and we compute schedule coefficients
2725 * with small values (preferably zero) of m_n and m_0.
2727 * All variables of the ILP are non-negative. The actual coefficients
2728 * may be negative, so each coefficient is represented as the difference
2729 * of two non-negative variables. The negative part always appears
2730 * immediately before the positive part.
2731 * Other than that, the variables have the following order
2733 * - sum of positive and negative parts of m_n coefficients
2735 * - sum of all c_n coefficients
2736 * (unconstrained when computing non-parametric schedules)
2737 * - sum of positive and negative parts of all c_x coefficients
2738 * - positive and negative parts of m_n coefficients
2740 * - positive and negative parts of c_i_x, in opposite order
2741 * - c_i_n (if parametric)
2744 * The constraints are those from the edges plus two or three equalities
2745 * to express the sums.
2747 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2748 * Otherwise, we ignore them.
2750 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2751 int use_coincidence
)
2761 parametric
= ctx
->opt
->schedule_parametric
;
2762 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2764 total
= param_pos
+ 2 * nparam
;
2765 for (i
= 0; i
< graph
->n
; ++i
) {
2766 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2767 if (node_update_vmap(node
) < 0)
2768 return isl_stat_error
;
2769 node
->start
= total
;
2770 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2773 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2774 return isl_stat_error
;
2775 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2776 return isl_stat_error
;
2777 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2778 return isl_stat_error
;
2780 space
= isl_space_set_alloc(ctx
, 0, total
);
2781 isl_basic_set_free(graph
->lp
);
2782 n_eq
+= 2 + parametric
;
2784 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2786 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2787 return isl_stat_error
;
2788 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2789 return isl_stat_error
;
2790 if (add_var_sum_constraint(graph
, 3) < 0)
2791 return isl_stat_error
;
2792 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2793 return isl_stat_error
;
2794 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2795 return isl_stat_error
;
2796 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2797 return isl_stat_error
;
2798 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2799 return isl_stat_error
;
2804 /* Analyze the conflicting constraint found by
2805 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2806 * constraint of one of the edges between distinct nodes, living, moreover
2807 * in distinct SCCs, then record the source and sink SCC as this may
2808 * be a good place to cut between SCCs.
2810 static int check_conflict(int con
, void *user
)
2813 struct isl_sched_graph
*graph
= user
;
2815 if (graph
->src_scc
>= 0)
2818 con
-= graph
->lp
->n_eq
;
2820 if (con
>= graph
->lp
->n_ineq
)
2823 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2824 if (!is_validity(&graph
->edge
[i
]))
2826 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2828 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2830 if (graph
->edge
[i
].start
> con
)
2832 if (graph
->edge
[i
].end
<= con
)
2834 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2835 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2841 /* Check whether the next schedule row of the given node needs to be
2842 * non-trivial. Lower-dimensional domains may have some trivial rows,
2843 * but as soon as the number of remaining required non-trivial rows
2844 * is as large as the number or remaining rows to be computed,
2845 * all remaining rows need to be non-trivial.
2847 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2849 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2852 /* Construct a non-triviality region with triviality directions
2853 * corresponding to the rows of "indep".
2854 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2855 * while the triviality directions are expressed in terms of
2856 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2857 * before c^+_i. Furthermore,
2858 * the pairs of non-negative variables representing the coefficients
2859 * are stored in the opposite order.
2861 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2870 ctx
= isl_mat_get_ctx(indep
);
2871 n
= isl_mat_rows(indep
);
2872 n_var
= isl_mat_cols(indep
);
2873 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2876 for (i
= 0; i
< n
; ++i
) {
2877 for (j
= 0; j
< n_var
; ++j
) {
2878 int nj
= n_var
- 1 - j
;
2879 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2880 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2887 /* Solve the ILP problem constructed in setup_lp.
2888 * For each node such that all the remaining rows of its schedule
2889 * need to be non-trivial, we construct a non-triviality region.
2890 * This region imposes that the next row is independent of previous rows.
2891 * In particular, the non-triviality region enforces that at least
2892 * one of the linear combinations in the rows of node->indep is non-zero.
2894 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2900 for (i
= 0; i
< graph
->n
; ++i
) {
2901 struct isl_sched_node
*node
= &graph
->node
[i
];
2904 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2905 if (needs_row(graph
, node
))
2906 trivial
= construct_trivial(node
->indep
);
2908 trivial
= isl_mat_zero(ctx
, 0, 0);
2909 graph
->region
[i
].trivial
= trivial
;
2911 lp
= isl_basic_set_copy(graph
->lp
);
2912 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2913 graph
->region
, &check_conflict
, graph
);
2914 for (i
= 0; i
< graph
->n
; ++i
)
2915 isl_mat_free(graph
->region
[i
].trivial
);
2919 /* Extract the coefficients for the variables of "node" from "sol".
2921 * Each schedule coefficient c_i_x is represented as the difference
2922 * between two non-negative variables c_i_x^+ - c_i_x^-.
2923 * The c_i_x^- appear before their c_i_x^+ counterpart.
2924 * Furthermore, the order of these pairs is the opposite of that
2925 * of the corresponding coefficients.
2927 * Return c_i_x = c_i_x^+ - c_i_x^-
2929 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2930 __isl_keep isl_vec
*sol
)
2938 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2942 pos
= 1 + node_var_coef_offset(node
);
2943 for (i
= 0; i
< node
->nvar
; ++i
)
2944 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2945 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2950 /* Update the schedules of all nodes based on the given solution
2951 * of the LP problem.
2952 * The new row is added to the current band.
2953 * All possibly negative coefficients are encoded as a difference
2954 * of two non-negative variables, so we need to perform the subtraction
2957 * If coincident is set, then the caller guarantees that the new
2958 * row satisfies the coincidence constraints.
2960 static int update_schedule(struct isl_sched_graph
*graph
,
2961 __isl_take isl_vec
*sol
, int coincident
)
2964 isl_vec
*csol
= NULL
;
2969 isl_die(sol
->ctx
, isl_error_internal
,
2970 "no solution found", goto error
);
2971 if (graph
->n_total_row
>= graph
->max_row
)
2972 isl_die(sol
->ctx
, isl_error_internal
,
2973 "too many schedule rows", goto error
);
2975 for (i
= 0; i
< graph
->n
; ++i
) {
2976 struct isl_sched_node
*node
= &graph
->node
[i
];
2978 int row
= isl_mat_rows(node
->sched
);
2981 csol
= extract_var_coef(node
, sol
);
2985 isl_map_free(node
->sched_map
);
2986 node
->sched_map
= NULL
;
2987 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2990 pos
= node_cst_coef_offset(node
);
2991 node
->sched
= isl_mat_set_element(node
->sched
,
2992 row
, 0, sol
->el
[1 + pos
]);
2993 pos
= node_par_coef_offset(node
);
2994 for (j
= 0; j
< node
->nparam
; ++j
)
2995 node
->sched
= isl_mat_set_element(node
->sched
,
2996 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
2997 for (j
= 0; j
< node
->nvar
; ++j
)
2998 node
->sched
= isl_mat_set_element(node
->sched
,
2999 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
3000 node
->coincident
[graph
->n_total_row
] = coincident
;
3006 graph
->n_total_row
++;
3015 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3016 * and return this isl_aff.
3018 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
3019 struct isl_sched_node
*node
, int row
)
3027 aff
= isl_aff_zero_on_domain(ls
);
3028 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3030 aff
= isl_aff_set_constant(aff
, v
);
3031 for (j
= 0; j
< node
->nparam
; ++j
) {
3032 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3034 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3036 for (j
= 0; j
< node
->nvar
; ++j
) {
3037 if (isl_mat_get_element(node
->sched
, row
,
3038 1 + node
->nparam
+ j
, &v
) < 0)
3040 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3052 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3053 * and return this multi_aff.
3055 * The result is defined over the uncompressed node domain.
3057 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
3058 struct isl_sched_node
*node
, int first
, int n
)
3062 isl_local_space
*ls
;
3069 nrow
= isl_mat_rows(node
->sched
);
3070 if (node
->compressed
)
3071 space
= isl_multi_aff_get_domain_space(node
->decompress
);
3073 space
= isl_space_copy(node
->space
);
3074 ls
= isl_local_space_from_space(isl_space_copy(space
));
3075 space
= isl_space_from_domain(space
);
3076 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3077 ma
= isl_multi_aff_zero(space
);
3079 for (i
= first
; i
< first
+ n
; ++i
) {
3080 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3081 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3084 isl_local_space_free(ls
);
3086 if (node
->compressed
)
3087 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3088 isl_multi_aff_copy(node
->compress
));
3093 /* Convert node->sched into a multi_aff and return this multi_aff.
3095 * The result is defined over the uncompressed node domain.
3097 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3098 struct isl_sched_node
*node
)
3102 nrow
= isl_mat_rows(node
->sched
);
3103 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3106 /* Convert node->sched into a map and return this map.
3108 * The result is cached in node->sched_map, which needs to be released
3109 * whenever node->sched is updated.
3110 * It is defined over the uncompressed node domain.
3112 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3114 if (!node
->sched_map
) {
3117 ma
= node_extract_schedule_multi_aff(node
);
3118 node
->sched_map
= isl_map_from_multi_aff(ma
);
3121 return isl_map_copy(node
->sched_map
);
3124 /* Construct a map that can be used to update a dependence relation
3125 * based on the current schedule.
3126 * That is, construct a map expressing that source and sink
3127 * are executed within the same iteration of the current schedule.
3128 * This map can then be intersected with the dependence relation.
3129 * This is not the most efficient way, but this shouldn't be a critical
3132 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3133 struct isl_sched_node
*dst
)
3135 isl_map
*src_sched
, *dst_sched
;
3137 src_sched
= node_extract_schedule(src
);
3138 dst_sched
= node_extract_schedule(dst
);
3139 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3142 /* Intersect the domains of the nested relations in domain and range
3143 * of "umap" with "map".
3145 static __isl_give isl_union_map
*intersect_domains(
3146 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3148 isl_union_set
*uset
;
3150 umap
= isl_union_map_zip(umap
);
3151 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3152 umap
= isl_union_map_intersect_domain(umap
, uset
);
3153 umap
= isl_union_map_zip(umap
);
3157 /* Update the dependence relation of the given edge based
3158 * on the current schedule.
3159 * If the dependence is carried completely by the current schedule, then
3160 * it is removed from the edge_tables. It is kept in the list of edges
3161 * as otherwise all edge_tables would have to be recomputed.
3163 * If the edge is of a type that can appear multiple times
3164 * between the same pair of nodes, then it is added to
3165 * the edge table (again). This prevents the situation
3166 * where none of these edges is referenced from the edge table
3167 * because the one that was referenced turned out to be empty and
3168 * was therefore removed from the table.
3170 static isl_stat
update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3171 struct isl_sched_edge
*edge
)
3176 id
= specializer(edge
->src
, edge
->dst
);
3177 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3181 if (edge
->tagged_condition
) {
3182 edge
->tagged_condition
=
3183 intersect_domains(edge
->tagged_condition
, id
);
3184 if (!edge
->tagged_condition
)
3187 if (edge
->tagged_validity
) {
3188 edge
->tagged_validity
=
3189 intersect_domains(edge
->tagged_validity
, id
);
3190 if (!edge
->tagged_validity
)
3194 empty
= isl_map_plain_is_empty(edge
->map
);
3198 graph_remove_edge(graph
, edge
);
3199 } else if (is_multi_edge_type(edge
)) {
3200 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3208 return isl_stat_error
;
3211 /* Does the domain of "umap" intersect "uset"?
3213 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3214 __isl_keep isl_union_set
*uset
)
3218 umap
= isl_union_map_copy(umap
);
3219 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3220 empty
= isl_union_map_is_empty(umap
);
3221 isl_union_map_free(umap
);
3223 return empty
< 0 ? -1 : !empty
;
3226 /* Does the range of "umap" intersect "uset"?
3228 static int range_intersects(__isl_keep isl_union_map
*umap
,
3229 __isl_keep isl_union_set
*uset
)
3233 umap
= isl_union_map_copy(umap
);
3234 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3235 empty
= isl_union_map_is_empty(umap
);
3236 isl_union_map_free(umap
);
3238 return empty
< 0 ? -1 : !empty
;
3241 /* Are the condition dependences of "edge" local with respect to
3242 * the current schedule?
3244 * That is, are domain and range of the condition dependences mapped
3245 * to the same point?
3247 * In other words, is the condition false?
3249 static int is_condition_false(struct isl_sched_edge
*edge
)
3251 isl_union_map
*umap
;
3252 isl_map
*map
, *sched
, *test
;
3255 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3256 if (empty
< 0 || empty
)
3259 umap
= isl_union_map_copy(edge
->tagged_condition
);
3260 umap
= isl_union_map_zip(umap
);
3261 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3262 map
= isl_map_from_union_map(umap
);
3264 sched
= node_extract_schedule(edge
->src
);
3265 map
= isl_map_apply_domain(map
, sched
);
3266 sched
= node_extract_schedule(edge
->dst
);
3267 map
= isl_map_apply_range(map
, sched
);
3269 test
= isl_map_identity(isl_map_get_space(map
));
3270 local
= isl_map_is_subset(map
, test
);
3277 /* For each conditional validity constraint that is adjacent
3278 * to a condition with domain in condition_source or range in condition_sink,
3279 * turn it into an unconditional validity constraint.
3281 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3282 __isl_take isl_union_set
*condition_source
,
3283 __isl_take isl_union_set
*condition_sink
)
3287 condition_source
= isl_union_set_coalesce(condition_source
);
3288 condition_sink
= isl_union_set_coalesce(condition_sink
);
3290 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3292 isl_union_map
*validity
;
3294 if (!is_conditional_validity(&graph
->edge
[i
]))
3296 if (is_validity(&graph
->edge
[i
]))
3299 validity
= graph
->edge
[i
].tagged_validity
;
3300 adjacent
= domain_intersects(validity
, condition_sink
);
3301 if (adjacent
>= 0 && !adjacent
)
3302 adjacent
= range_intersects(validity
, condition_source
);
3308 set_validity(&graph
->edge
[i
]);
3311 isl_union_set_free(condition_source
);
3312 isl_union_set_free(condition_sink
);
3315 isl_union_set_free(condition_source
);
3316 isl_union_set_free(condition_sink
);
3320 /* Update the dependence relations of all edges based on the current schedule
3321 * and enforce conditional validity constraints that are adjacent
3322 * to satisfied condition constraints.
3324 * First check if any of the condition constraints are satisfied
3325 * (i.e., not local to the outer schedule) and keep track of
3326 * their domain and range.
3327 * Then update all dependence relations (which removes the non-local
3329 * Finally, if any condition constraints turned out to be satisfied,
3330 * then turn all adjacent conditional validity constraints into
3331 * unconditional validity constraints.
3333 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3337 isl_union_set
*source
, *sink
;
3339 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3340 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3341 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3343 isl_union_set
*uset
;
3344 isl_union_map
*umap
;
3346 if (!is_condition(&graph
->edge
[i
]))
3348 if (is_local(&graph
->edge
[i
]))
3350 local
= is_condition_false(&graph
->edge
[i
]);
3358 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3359 uset
= isl_union_map_domain(umap
);
3360 source
= isl_union_set_union(source
, uset
);
3362 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3363 uset
= isl_union_map_range(umap
);
3364 sink
= isl_union_set_union(sink
, uset
);
3367 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3368 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3373 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3375 isl_union_set_free(source
);
3376 isl_union_set_free(sink
);
3379 isl_union_set_free(source
);
3380 isl_union_set_free(sink
);
3384 static void next_band(struct isl_sched_graph
*graph
)
3386 graph
->band_start
= graph
->n_total_row
;
3389 /* Return the union of the universe domains of the nodes in "graph"
3390 * that satisfy "pred".
3392 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3393 struct isl_sched_graph
*graph
,
3394 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3400 for (i
= 0; i
< graph
->n
; ++i
)
3401 if (pred(&graph
->node
[i
], data
))
3405 isl_die(ctx
, isl_error_internal
,
3406 "empty component", return NULL
);
3408 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3409 dom
= isl_union_set_from_set(set
);
3411 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3412 if (!pred(&graph
->node
[i
], data
))
3414 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3415 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3421 /* Return a list of unions of universe domains, where each element
3422 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3424 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
3425 struct isl_sched_graph
*graph
)
3428 isl_union_set_list
*filters
;
3430 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3431 for (i
= 0; i
< graph
->scc
; ++i
) {
3434 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
3435 filters
= isl_union_set_list_add(filters
, dom
);
3441 /* Return a list of two unions of universe domains, one for the SCCs up
3442 * to and including graph->src_scc and another for the other SCCs.
3444 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3445 struct isl_sched_graph
*graph
)
3448 isl_union_set_list
*filters
;
3450 filters
= isl_union_set_list_alloc(ctx
, 2);
3451 dom
= isl_sched_graph_domain(ctx
, graph
,
3452 &node_scc_at_most
, graph
->src_scc
);
3453 filters
= isl_union_set_list_add(filters
, dom
);
3454 dom
= isl_sched_graph_domain(ctx
, graph
,
3455 &node_scc_at_least
, graph
->src_scc
+ 1);
3456 filters
= isl_union_set_list_add(filters
, dom
);
3461 /* Copy nodes that satisfy node_pred from the src dependence graph
3462 * to the dst dependence graph.
3464 static isl_stat
copy_nodes(struct isl_sched_graph
*dst
,
3465 struct isl_sched_graph
*src
,
3466 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3471 for (i
= 0; i
< src
->n
; ++i
) {
3474 if (!node_pred(&src
->node
[i
], data
))
3478 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3479 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3480 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3481 dst
->node
[j
].compress
=
3482 isl_multi_aff_copy(src
->node
[i
].compress
);
3483 dst
->node
[j
].decompress
=
3484 isl_multi_aff_copy(src
->node
[i
].decompress
);
3485 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3486 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3487 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3488 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3489 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3490 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3491 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3492 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3495 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3496 return isl_stat_error
;
3497 if (dst
->node
[j
].compressed
&&
3498 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3499 !dst
->node
[j
].decompress
))
3500 return isl_stat_error
;
3506 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3507 * to the dst dependence graph.
3508 * If the source or destination node of the edge is not in the destination
3509 * graph, then it must be a backward proximity edge and it should simply
3512 static isl_stat
copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3513 struct isl_sched_graph
*src
,
3514 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3519 for (i
= 0; i
< src
->n_edge
; ++i
) {
3520 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3522 isl_union_map
*tagged_condition
;
3523 isl_union_map
*tagged_validity
;
3524 struct isl_sched_node
*dst_src
, *dst_dst
;
3526 if (!edge_pred(edge
, data
))
3529 if (isl_map_plain_is_empty(edge
->map
))
3532 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
3533 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
3534 if (!dst_src
|| !dst_dst
)
3535 return isl_stat_error
;
3536 if (!is_node(dst
, dst_src
) || !is_node(dst
, dst_dst
)) {
3537 if (is_validity(edge
) || is_conditional_validity(edge
))
3538 isl_die(ctx
, isl_error_internal
,
3539 "backward (conditional) validity edge",
3540 return isl_stat_error
);
3544 map
= isl_map_copy(edge
->map
);
3545 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3546 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3548 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3549 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3550 dst
->edge
[dst
->n_edge
].map
= map
;
3551 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3552 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3553 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3556 if (edge
->tagged_condition
&& !tagged_condition
)
3557 return isl_stat_error
;
3558 if (edge
->tagged_validity
&& !tagged_validity
)
3559 return isl_stat_error
;
3561 if (graph_edge_tables_add(ctx
, dst
,
3562 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3563 return isl_stat_error
;
3569 /* Compute the maximal number of variables over all nodes.
3570 * This is the maximal number of linearly independent schedule
3571 * rows that we need to compute.
3572 * Just in case we end up in a part of the dependence graph
3573 * with only lower-dimensional domains, we make sure we will
3574 * compute the required amount of extra linearly independent rows.
3576 static int compute_maxvar(struct isl_sched_graph
*graph
)
3581 for (i
= 0; i
< graph
->n
; ++i
) {
3582 struct isl_sched_node
*node
= &graph
->node
[i
];
3585 if (node_update_vmap(node
) < 0)
3587 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3588 if (nvar
> graph
->maxvar
)
3589 graph
->maxvar
= nvar
;
3595 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3596 * "node_pred" and the edges satisfying "edge_pred" and store
3597 * the result in "sub".
3599 static isl_stat
extract_sub_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3600 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3601 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3602 int data
, struct isl_sched_graph
*sub
)
3604 int i
, n
= 0, n_edge
= 0;
3607 for (i
= 0; i
< graph
->n
; ++i
)
3608 if (node_pred(&graph
->node
[i
], data
))
3610 for (i
= 0; i
< graph
->n_edge
; ++i
)
3611 if (edge_pred(&graph
->edge
[i
], data
))
3613 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3614 return isl_stat_error
;
3615 sub
->root
= graph
->root
;
3616 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3617 return isl_stat_error
;
3618 if (graph_init_table(ctx
, sub
) < 0)
3619 return isl_stat_error
;
3620 for (t
= 0; t
<= isl_edge_last
; ++t
)
3621 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3622 if (graph_init_edge_tables(ctx
, sub
) < 0)
3623 return isl_stat_error
;
3624 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3625 return isl_stat_error
;
3626 sub
->n_row
= graph
->n_row
;
3627 sub
->max_row
= graph
->max_row
;
3628 sub
->n_total_row
= graph
->n_total_row
;
3629 sub
->band_start
= graph
->band_start
;
3634 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3635 struct isl_sched_graph
*graph
);
3636 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3637 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3639 /* Compute a schedule for a subgraph of "graph". In particular, for
3640 * the graph composed of nodes that satisfy node_pred and edges that
3641 * that satisfy edge_pred.
3642 * If the subgraph is known to consist of a single component, then wcc should
3643 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3644 * Otherwise, we call compute_schedule, which will check whether the subgraph
3647 * The schedule is inserted at "node" and the updated schedule node
3650 static __isl_give isl_schedule_node
*compute_sub_schedule(
3651 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3652 struct isl_sched_graph
*graph
,
3653 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3654 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3657 struct isl_sched_graph split
= { 0 };
3659 if (extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
, data
,
3664 node
= compute_schedule_wcc(node
, &split
);
3666 node
= compute_schedule(node
, &split
);
3668 graph_free(ctx
, &split
);
3671 graph_free(ctx
, &split
);
3672 return isl_schedule_node_free(node
);
3675 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3677 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3680 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3682 return edge
->dst
->scc
<= scc
;
3685 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3687 return edge
->src
->scc
>= scc
;
3690 /* Reset the current band by dropping all its schedule rows.
3692 static isl_stat
reset_band(struct isl_sched_graph
*graph
)
3697 drop
= graph
->n_total_row
- graph
->band_start
;
3698 graph
->n_total_row
-= drop
;
3699 graph
->n_row
-= drop
;
3701 for (i
= 0; i
< graph
->n
; ++i
) {
3702 struct isl_sched_node
*node
= &graph
->node
[i
];
3704 isl_map_free(node
->sched_map
);
3705 node
->sched_map
= NULL
;
3707 node
->sched
= isl_mat_drop_rows(node
->sched
,
3708 graph
->band_start
, drop
);
3711 return isl_stat_error
;
3717 /* Split the current graph into two parts and compute a schedule for each
3718 * part individually. In particular, one part consists of all SCCs up
3719 * to and including graph->src_scc, while the other part contains the other
3720 * SCCs. The split is enforced by a sequence node inserted at position "node"
3721 * in the schedule tree. Return the updated schedule node.
3722 * If either of these two parts consists of a sequence, then it is spliced
3723 * into the sequence containing the two parts.
3725 * The current band is reset. It would be possible to reuse
3726 * the previously computed rows as the first rows in the next
3727 * band, but recomputing them may result in better rows as we are looking
3728 * at a smaller part of the dependence graph.
3730 static __isl_give isl_schedule_node
*compute_split_schedule(
3731 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3735 isl_union_set_list
*filters
;
3740 if (reset_band(graph
) < 0)
3741 return isl_schedule_node_free(node
);
3745 ctx
= isl_schedule_node_get_ctx(node
);
3746 filters
= extract_split(ctx
, graph
);
3747 node
= isl_schedule_node_insert_sequence(node
, filters
);
3748 node
= isl_schedule_node_child(node
, 1);
3749 node
= isl_schedule_node_child(node
, 0);
3751 node
= compute_sub_schedule(node
, ctx
, graph
,
3752 &node_scc_at_least
, &edge_src_scc_at_least
,
3753 graph
->src_scc
+ 1, 0);
3754 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3755 node
= isl_schedule_node_parent(node
);
3756 node
= isl_schedule_node_parent(node
);
3758 node
= isl_schedule_node_sequence_splice_child(node
, 1);
3759 node
= isl_schedule_node_child(node
, 0);
3760 node
= isl_schedule_node_child(node
, 0);
3761 node
= compute_sub_schedule(node
, ctx
, graph
,
3762 &node_scc_at_most
, &edge_dst_scc_at_most
,
3764 is_seq
= isl_schedule_node_get_type(node
) == isl_schedule_node_sequence
;
3765 node
= isl_schedule_node_parent(node
);
3766 node
= isl_schedule_node_parent(node
);
3768 node
= isl_schedule_node_sequence_splice_child(node
, 0);
3773 /* Insert a band node at position "node" in the schedule tree corresponding
3774 * to the current band in "graph". Mark the band node permutable
3775 * if "permutable" is set.
3776 * The partial schedules and the coincidence property are extracted
3777 * from the graph nodes.
3778 * Return the updated schedule node.
3780 static __isl_give isl_schedule_node
*insert_current_band(
3781 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3787 isl_multi_pw_aff
*mpa
;
3788 isl_multi_union_pw_aff
*mupa
;
3794 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3795 "graph should have at least one node",
3796 return isl_schedule_node_free(node
));
3798 start
= graph
->band_start
;
3799 end
= graph
->n_total_row
;
3802 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3803 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3804 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3806 for (i
= 1; i
< graph
->n
; ++i
) {
3807 isl_multi_union_pw_aff
*mupa_i
;
3809 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3811 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3812 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3813 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3815 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3817 for (i
= 0; i
< n
; ++i
)
3818 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3819 graph
->node
[0].coincident
[start
+ i
]);
3820 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3825 /* Update the dependence relations based on the current schedule,
3826 * add the current band to "node" and then continue with the computation
3828 * Return the updated schedule node.
3830 static __isl_give isl_schedule_node
*compute_next_band(
3831 __isl_take isl_schedule_node
*node
,
3832 struct isl_sched_graph
*graph
, int permutable
)
3839 ctx
= isl_schedule_node_get_ctx(node
);
3840 if (update_edges(ctx
, graph
) < 0)
3841 return isl_schedule_node_free(node
);
3842 node
= insert_current_band(node
, graph
, permutable
);
3845 node
= isl_schedule_node_child(node
, 0);
3846 node
= compute_schedule(node
, graph
);
3847 node
= isl_schedule_node_parent(node
);
3852 /* Add the constraints "coef" derived from an edge from "node" to itself
3853 * to graph->lp in order to respect the dependences and to try and carry them.
3854 * "pos" is the sequence number of the edge that needs to be carried.
3855 * "coef" represents general constraints on coefficients (c_0, c_x)
3856 * of valid constraints for (y - x) with x and y instances of the node.
3858 * The constraints added to graph->lp need to enforce
3860 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3861 * = c_j_x (y - x) >= e_i
3863 * for each (x,y) in the dependence relation of the edge.
3864 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3865 * taking into account that each coefficient in c_j_x is represented
3866 * as a pair of non-negative coefficients.
3868 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3869 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3873 isl_dim_map
*dim_map
;
3876 return isl_stat_error
;
3878 ctx
= isl_basic_set_get_ctx(coef
);
3879 offset
= coef_var_offset(coef
);
3880 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3881 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3882 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3887 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3888 * to graph->lp in order to respect the dependences and to try and carry them.
3889 * "pos" is the sequence number of the edge that needs to be carried or
3890 * -1 if no attempt should be made to carry the dependences.
3891 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3892 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3894 * The constraints added to graph->lp need to enforce
3896 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3898 * for each (x,y) in the dependence relation of the edge or
3900 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3904 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3906 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3907 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3908 * taking into account that each coefficient in c_j_x and c_k_x is represented
3909 * as a pair of non-negative coefficients.
3911 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3912 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3913 __isl_take isl_basic_set
*coef
, int pos
)
3917 isl_dim_map
*dim_map
;
3920 return isl_stat_error
;
3922 ctx
= isl_basic_set_get_ctx(coef
);
3923 offset
= coef_var_offset(coef
);
3924 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3926 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3927 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3932 /* Data structure for keeping track of the data needed
3933 * to exploit non-trivial lineality spaces.
3935 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3936 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3937 * "equivalent" connects instances to other instances on the same line(s).
3938 * "mask" contains the domain spaces of "equivalent".
3939 * Any instance set not in "mask" does not have a non-trivial lineality space.
3941 struct isl_exploit_lineality_data
{
3942 isl_bool any_non_trivial
;
3943 isl_union_map
*equivalent
;
3944 isl_union_set
*mask
;
3947 /* Data structure collecting information used during the construction
3948 * of an LP for carrying dependences.
3950 * "intra" is a sequence of coefficient constraints for intra-node edges.
3951 * "inter" is a sequence of coefficient constraints for inter-node edges.
3952 * "lineality" contains data used to exploit non-trivial lineality spaces.
3955 isl_basic_set_list
*intra
;
3956 isl_basic_set_list
*inter
;
3957 struct isl_exploit_lineality_data lineality
;
3960 /* Free all the data stored in "carry".
3962 static void isl_carry_clear(struct isl_carry
*carry
)
3964 isl_basic_set_list_free(carry
->intra
);
3965 isl_basic_set_list_free(carry
->inter
);
3966 isl_union_map_free(carry
->lineality
.equivalent
);
3967 isl_union_set_free(carry
->lineality
.mask
);
3970 /* Return a pointer to the node in "graph" that lives in "space".
3971 * If the requested node has been compressed, then "space"
3972 * corresponds to the compressed space.
3973 * The graph is assumed to have such a node.
3974 * Return NULL in case of error.
3976 * First try and see if "space" is the space of an uncompressed node.
3977 * If so, return that node.
3978 * Otherwise, "space" was constructed by construct_compressed_id and
3979 * contains a user pointer pointing to the node in the tuple id.
3980 * However, this node belongs to the original dependence graph.
3981 * If "graph" is a subgraph of this original dependence graph,
3982 * then the node with the same space still needs to be looked up
3983 * in the current graph.
3985 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
3986 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
3989 struct isl_sched_node
*node
;
3994 node
= graph_find_node(ctx
, graph
, space
);
3997 if (is_node(graph
, node
))
4000 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
4001 node
= isl_id_get_user(id
);
4007 if (!is_node(graph
->root
, node
))
4008 isl_die(ctx
, isl_error_internal
,
4009 "space points to invalid node", return NULL
);
4010 if (graph
!= graph
->root
)
4011 node
= graph_find_node(ctx
, graph
, node
->space
);
4012 if (!is_node(graph
, node
))
4013 isl_die(ctx
, isl_error_internal
,
4014 "unable to find node", return NULL
);
4019 /* Internal data structure for add_all_constraints.
4021 * "graph" is the schedule constraint graph for which an LP problem
4022 * is being constructed.
4023 * "carry_inter" indicates whether inter-node edges should be carried.
4024 * "pos" is the position of the next edge that needs to be carried.
4026 struct isl_add_all_constraints_data
{
4028 struct isl_sched_graph
*graph
;
4033 /* Add the constraints "coef" derived from an edge from a node to itself
4034 * to data->graph->lp in order to respect the dependences and
4035 * to try and carry them.
4037 * The space of "coef" is of the form
4039 * coefficients[[c_cst] -> S[c_x]]
4041 * with S[c_x] the (compressed) space of the node.
4042 * Extract the node from the space and call add_intra_constraints.
4044 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4046 struct isl_add_all_constraints_data
*data
= user
;
4048 struct isl_sched_node
*node
;
4050 space
= isl_basic_set_get_space(coef
);
4051 space
= isl_space_range(isl_space_unwrap(space
));
4052 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4053 isl_space_free(space
);
4054 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4057 /* Add the constraints "coef" derived from an edge from a node j
4058 * to a node k to data->graph->lp in order to respect the dependences and
4059 * to try and carry them (provided data->carry_inter is set).
4061 * The space of "coef" is of the form
4063 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4065 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4066 * Extract the nodes from the space and call add_inter_constraints.
4068 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4070 struct isl_add_all_constraints_data
*data
= user
;
4071 isl_space
*space
, *dom
;
4072 struct isl_sched_node
*src
, *dst
;
4075 space
= isl_basic_set_get_space(coef
);
4076 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4077 dom
= isl_space_domain(isl_space_copy(space
));
4078 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4079 isl_space_free(dom
);
4080 space
= isl_space_range(space
);
4081 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4082 isl_space_free(space
);
4084 pos
= data
->carry_inter
? data
->pos
++ : -1;
4085 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4088 /* Add constraints to graph->lp that force all (conditional) validity
4089 * dependences to be respected and attempt to carry them.
4090 * "intra" is the sequence of coefficient constraints for intra-node edges.
4091 * "inter" is the sequence of coefficient constraints for inter-node edges.
4092 * "carry_inter" indicates whether inter-node edges should be carried or
4095 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4096 __isl_keep isl_basic_set_list
*intra
,
4097 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4099 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4102 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4103 return isl_stat_error
;
4104 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4105 return isl_stat_error
;
4109 /* Internal data structure for count_all_constraints
4110 * for keeping track of the number of equality and inequality constraints.
4112 struct isl_sched_count
{
4117 /* Add the number of equality and inequality constraints of "bset"
4118 * to data->n_eq and data->n_ineq.
4120 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4122 struct isl_sched_count
*data
= user
;
4124 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4127 /* Count the number of equality and inequality constraints
4128 * that will be added to the carry_lp problem.
4129 * We count each edge exactly once.
4130 * "intra" is the sequence of coefficient constraints for intra-node edges.
4131 * "inter" is the sequence of coefficient constraints for inter-node edges.
4133 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4134 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4136 struct isl_sched_count data
;
4138 data
.n_eq
= data
.n_ineq
= 0;
4139 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4140 return isl_stat_error
;
4141 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4142 return isl_stat_error
;
4145 *n_ineq
= data
.n_ineq
;
4150 /* Construct an LP problem for finding schedule coefficients
4151 * such that the schedule carries as many validity dependences as possible.
4152 * In particular, for each dependence i, we bound the dependence distance
4153 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4154 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4155 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4156 * "intra" is the sequence of coefficient constraints for intra-node edges.
4157 * "inter" is the sequence of coefficient constraints for inter-node edges.
4158 * "n_edge" is the total number of edges.
4159 * "carry_inter" indicates whether inter-node edges should be carried or
4160 * only respected. That is, if "carry_inter" is not set, then
4161 * no e_i variables are introduced for the inter-node edges.
4163 * All variables of the LP are non-negative. The actual coefficients
4164 * may be negative, so each coefficient is represented as the difference
4165 * of two non-negative variables. The negative part always appears
4166 * immediately before the positive part.
4167 * Other than that, the variables have the following order
4169 * - sum of (1 - e_i) over all edges
4170 * - sum of all c_n coefficients
4171 * (unconstrained when computing non-parametric schedules)
4172 * - sum of positive and negative parts of all c_x coefficients
4176 * - positive and negative parts of c_i_x, in opposite order
4177 * - c_i_n (if parametric)
4180 * The constraints are those from the (validity) edges plus three equalities
4181 * to express the sums and n_edge inequalities to express e_i <= 1.
4183 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4184 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4185 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4194 for (i
= 0; i
< graph
->n
; ++i
) {
4195 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4196 node
->start
= total
;
4197 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4200 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4201 return isl_stat_error
;
4203 dim
= isl_space_set_alloc(ctx
, 0, total
);
4204 isl_basic_set_free(graph
->lp
);
4207 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
4208 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4210 k
= isl_basic_set_alloc_equality(graph
->lp
);
4212 return isl_stat_error
;
4213 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4214 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4215 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4216 for (i
= 0; i
< n_edge
; ++i
)
4217 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4219 if (add_param_sum_constraint(graph
, 1) < 0)
4220 return isl_stat_error
;
4221 if (add_var_sum_constraint(graph
, 2) < 0)
4222 return isl_stat_error
;
4224 for (i
= 0; i
< n_edge
; ++i
) {
4225 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4227 return isl_stat_error
;
4228 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4229 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4230 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4233 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4234 return isl_stat_error
;
4239 static __isl_give isl_schedule_node
*compute_component_schedule(
4240 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4243 /* If the schedule_split_scaled option is set and if the linear
4244 * parts of the scheduling rows for all nodes in the graphs have
4245 * a non-trivial common divisor, then remove this
4246 * common divisor from the linear part.
4247 * Otherwise, insert a band node directly and continue with
4248 * the construction of the schedule.
4250 * If a non-trivial common divisor is found, then
4251 * the linear part is reduced and the remainder is ignored.
4252 * The pieces of the graph that are assigned different remainders
4253 * form (groups of) strongly connected components within
4254 * the scaled down band. If needed, they can therefore
4255 * be ordered along this remainder in a sequence node.
4256 * However, this ordering is not enforced here in order to allow
4257 * the scheduler to combine some of the strongly connected components.
4259 static __isl_give isl_schedule_node
*split_scaled(
4260 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4270 ctx
= isl_schedule_node_get_ctx(node
);
4271 if (!ctx
->opt
->schedule_split_scaled
)
4272 return compute_next_band(node
, graph
, 0);
4274 return compute_next_band(node
, graph
, 0);
4277 isl_int_init(gcd_i
);
4279 isl_int_set_si(gcd
, 0);
4281 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
4283 for (i
= 0; i
< graph
->n
; ++i
) {
4284 struct isl_sched_node
*node
= &graph
->node
[i
];
4285 int cols
= isl_mat_cols(node
->sched
);
4287 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4288 isl_int_gcd(gcd
, gcd
, gcd_i
);
4291 isl_int_clear(gcd_i
);
4293 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4295 return compute_next_band(node
, graph
, 0);
4298 for (i
= 0; i
< graph
->n
; ++i
) {
4299 struct isl_sched_node
*node
= &graph
->node
[i
];
4301 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4302 node
->sched
->row
[row
][0], gcd
);
4303 isl_int_mul(node
->sched
->row
[row
][0],
4304 node
->sched
->row
[row
][0], gcd
);
4305 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4312 return compute_next_band(node
, graph
, 0);
4315 return isl_schedule_node_free(node
);
4318 /* Is the schedule row "sol" trivial on node "node"?
4319 * That is, is the solution zero on the dimensions linearly independent of
4320 * the previously found solutions?
4321 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4323 * Each coefficient is represented as the difference between
4324 * two non-negative values in "sol".
4325 * We construct the schedule row s and check if it is linearly
4326 * independent of previously computed schedule rows
4327 * by computing T s, with T the linear combinations that are zero
4328 * on linearly dependent schedule rows.
4329 * If the result consists of all zeros, then the solution is trivial.
4331 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4338 if (node
->nvar
== node
->rank
)
4341 node_sol
= extract_var_coef(node
, sol
);
4342 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4346 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4347 node
->nvar
- node
->rank
) == -1;
4349 isl_vec_free(node_sol
);
4354 /* Is the schedule row "sol" trivial on any node where it should
4356 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4358 static int is_any_trivial(struct isl_sched_graph
*graph
,
4359 __isl_keep isl_vec
*sol
)
4363 for (i
= 0; i
< graph
->n
; ++i
) {
4364 struct isl_sched_node
*node
= &graph
->node
[i
];
4367 if (!needs_row(graph
, node
))
4369 trivial
= is_trivial(node
, sol
);
4370 if (trivial
< 0 || trivial
)
4377 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4378 * If so, return the position of the coalesced dimension.
4379 * Otherwise, return node->nvar or -1 on error.
4381 * In particular, look for pairs of coefficients c_i and c_j such that
4382 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4383 * If any such pair is found, then return i.
4384 * If size_i is infinity, then no check on c_i needs to be performed.
4386 static int find_node_coalescing(struct isl_sched_node
*node
,
4387 __isl_keep isl_vec
*sol
)
4393 if (node
->nvar
<= 1)
4396 csol
= extract_var_coef(node
, sol
);
4400 for (i
= 0; i
< node
->nvar
; ++i
) {
4403 if (isl_int_is_zero(csol
->el
[i
]))
4405 v
= isl_multi_val_get_val(node
->sizes
, i
);
4408 if (!isl_val_is_int(v
)) {
4412 v
= isl_val_div_ui(v
, 2);
4413 v
= isl_val_ceil(v
);
4416 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4419 for (j
= 0; j
< node
->nvar
; ++j
) {
4422 if (isl_int_abs_gt(csol
->el
[j
], max
))
4438 /* Force the schedule coefficient at position "pos" of "node" to be zero
4440 * The coefficient is encoded as the difference between two non-negative
4441 * variables. Force these two variables to have the same value.
4443 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4444 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4450 ctx
= isl_space_get_ctx(node
->space
);
4451 dim
= isl_tab_lexmin_dim(tl
);
4453 return isl_tab_lexmin_free(tl
);
4454 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4455 eq
= isl_vec_clr(eq
);
4457 return isl_tab_lexmin_free(tl
);
4459 pos
= 1 + node_var_coef_pos(node
, pos
);
4460 isl_int_set_si(eq
->el
[pos
], 1);
4461 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4462 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4468 /* Return the lexicographically smallest rational point in the basic set
4469 * from which "tl" was constructed, double checking that this input set
4472 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4476 sol
= isl_tab_lexmin_get_solution(tl
);
4480 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4481 "error in schedule construction",
4482 return isl_vec_free(sol
));
4486 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4487 * carry any of the "n_edge" groups of dependences?
4488 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4489 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4490 * by the edge are carried by the solution.
4491 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4492 * one of those is carried.
4494 * Note that despite the fact that the problem is solved using a rational
4495 * solver, the solution is guaranteed to be integral.
4496 * Specifically, the dependence distance lower bounds e_i (and therefore
4497 * also their sum) are integers. See Lemma 5 of [1].
4499 * Any potential denominator of the sum is cleared by this function.
4500 * The denominator is not relevant for any of the other elements
4503 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4504 * Problem, Part II: Multi-Dimensional Time.
4505 * In Intl. Journal of Parallel Programming, 1992.
4507 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4509 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4510 isl_int_set_si(sol
->el
[0], 1);
4511 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4514 /* Return the lexicographically smallest rational point in "lp",
4515 * assuming that all variables are non-negative and performing some
4516 * additional sanity checks.
4517 * If "want_integral" is set, then compute the lexicographically smallest
4518 * integer point instead.
4519 * In particular, "lp" should not be empty by construction.
4520 * Double check that this is the case.
4521 * If dependences are not carried for any of the "n_edge" edges,
4522 * then return an empty vector.
4524 * If the schedule_treat_coalescing option is set and
4525 * if the computed schedule performs loop coalescing on a given node,
4526 * i.e., if it is of the form
4528 * c_i i + c_j j + ...
4530 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4531 * to cut out this solution. Repeat this process until no more loop
4532 * coalescing occurs or until no more dependences can be carried.
4533 * In the latter case, revert to the previously computed solution.
4535 * If the caller requests an integral solution and if coalescing should
4536 * be treated, then perform the coalescing treatment first as
4537 * an integral solution computed before coalescing treatment
4538 * would carry the same number of edges and would therefore probably
4539 * also be coalescing.
4541 * To allow the coalescing treatment to be performed first,
4542 * the initial solution is allowed to be rational and it is only
4543 * cut out (if needed) in the next iteration, if no coalescing measures
4546 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4547 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4552 isl_vec
*sol
= NULL
, *prev
;
4553 int treat_coalescing
;
4558 ctx
= isl_basic_set_get_ctx(lp
);
4559 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4560 tl
= isl_tab_lexmin_from_basic_set(lp
);
4568 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4570 sol
= non_empty_solution(tl
);
4574 integral
= isl_int_is_one(sol
->el
[0]);
4575 if (!carries_dependences(sol
, n_edge
)) {
4577 prev
= isl_vec_alloc(ctx
, 0);
4582 prev
= isl_vec_free(prev
);
4583 cut
= want_integral
&& !integral
;
4586 if (!treat_coalescing
)
4588 for (i
= 0; i
< graph
->n
; ++i
) {
4589 struct isl_sched_node
*node
= &graph
->node
[i
];
4591 pos
= find_node_coalescing(node
, sol
);
4594 if (pos
< node
->nvar
)
4599 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4602 } while (try_again
);
4604 isl_tab_lexmin_free(tl
);
4608 isl_tab_lexmin_free(tl
);
4614 /* If "edge" is an edge from a node to itself, then add the corresponding
4615 * dependence relation to "umap".
4616 * If "node" has been compressed, then the dependence relation
4617 * is also compressed first.
4619 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4620 struct isl_sched_edge
*edge
)
4623 struct isl_sched_node
*node
= edge
->src
;
4625 if (edge
->src
!= edge
->dst
)
4628 map
= isl_map_copy(edge
->map
);
4629 if (node
->compressed
) {
4630 map
= isl_map_preimage_domain_multi_aff(map
,
4631 isl_multi_aff_copy(node
->decompress
));
4632 map
= isl_map_preimage_range_multi_aff(map
,
4633 isl_multi_aff_copy(node
->decompress
));
4635 umap
= isl_union_map_add_map(umap
, map
);
4639 /* If "edge" is an edge from a node to another node, then add the corresponding
4640 * dependence relation to "umap".
4641 * If the source or destination nodes of "edge" have been compressed,
4642 * then the dependence relation is also compressed first.
4644 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4645 struct isl_sched_edge
*edge
)
4649 if (edge
->src
== edge
->dst
)
4652 map
= isl_map_copy(edge
->map
);
4653 if (edge
->src
->compressed
)
4654 map
= isl_map_preimage_domain_multi_aff(map
,
4655 isl_multi_aff_copy(edge
->src
->decompress
));
4656 if (edge
->dst
->compressed
)
4657 map
= isl_map_preimage_range_multi_aff(map
,
4658 isl_multi_aff_copy(edge
->dst
->decompress
));
4659 umap
= isl_union_map_add_map(umap
, map
);
4663 /* Internal data structure used by union_drop_coalescing_constraints
4664 * to collect bounds on all relevant statements.
4666 * "graph" is the schedule constraint graph for which an LP problem
4667 * is being constructed.
4668 * "bounds" collects the bounds.
4670 struct isl_collect_bounds_data
{
4672 struct isl_sched_graph
*graph
;
4673 isl_union_set
*bounds
;
4676 /* Add the size bounds for the node with instance deltas in "set"
4679 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4681 struct isl_collect_bounds_data
*data
= user
;
4682 struct isl_sched_node
*node
;
4686 space
= isl_set_get_space(set
);
4689 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4690 isl_space_free(space
);
4692 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4693 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4698 /* Drop some constraints from "delta" that could be exploited
4699 * to construct loop coalescing schedules.
4700 * In particular, drop those constraint that bound the difference
4701 * to the size of the domain.
4702 * Do this for each set/node in "delta" separately.
4703 * The parameters are assumed to have been projected out by the caller.
4705 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4706 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4708 struct isl_collect_bounds_data data
= { ctx
, graph
};
4710 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4711 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4712 data
.bounds
= isl_union_set_free(data
.bounds
);
4713 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4718 /* Given a non-trivial lineality space "lineality", add the corresponding
4719 * universe set to data->mask and add a map from elements to
4720 * other elements along the lines in "lineality" to data->equivalent.
4721 * If this is the first time this function gets called
4722 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4723 * initialize data->mask and data->equivalent.
4725 * In particular, if the lineality space is defined by equality constraints
4729 * then construct an affine mapping
4733 * and compute the equivalence relation of having the same image under f:
4735 * { x -> x' : E x = E x' }
4737 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4738 struct isl_exploit_lineality_data
*data
)
4744 isl_multi_pw_aff
*mpa
;
4749 return isl_stat_error
;
4750 if (isl_basic_set_dim(lineality
, isl_dim_div
) != 0)
4751 isl_die(isl_basic_set_get_ctx(lineality
), isl_error_internal
,
4752 "local variables not allowed", goto error
);
4754 space
= isl_basic_set_get_space(lineality
);
4755 if (!data
->any_non_trivial
) {
4756 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4757 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4759 data
->any_non_trivial
= isl_bool_true
;
4761 univ
= isl_set_universe(isl_space_copy(space
));
4762 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4764 eq
= isl_basic_set_extract_equalities(lineality
);
4765 n
= isl_mat_rows(eq
);
4766 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4767 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4768 space
= isl_space_from_domain(space
);
4769 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4770 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4771 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4772 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4773 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4775 isl_basic_set_free(lineality
);
4778 isl_basic_set_free(lineality
);
4779 return isl_stat_error
;
4782 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4783 * the origin or, in other words, satisfies a number of equality constraints
4784 * that is smaller than the dimension of the set).
4785 * If so, extend data->mask and data->equivalent accordingly.
4787 * The input should not have any local variables already, but
4788 * isl_set_remove_divs is called to make sure it does not.
4790 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4792 struct isl_exploit_lineality_data
*data
= user
;
4793 isl_basic_set
*hull
;
4796 set
= isl_set_remove_divs(set
);
4797 hull
= isl_set_unshifted_simple_hull(set
);
4798 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4799 n_eq
= isl_basic_set_n_equality(hull
);
4801 return isl_stat_error
;
4803 return add_non_trivial_lineality(hull
, data
);
4804 isl_basic_set_free(hull
);
4808 /* Check if the difference set on intra-node schedule constraints "intra"
4809 * has any non-trivial lineality space.
4810 * If so, then extend the difference set to a difference set
4811 * on equivalent elements. That is, if "intra" is
4813 * { y - x : (x,y) \in V }
4815 * and elements are equivalent if they have the same image under f,
4818 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4820 * or, since f is linear,
4822 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4824 * The results of the search for non-trivial lineality spaces is stored
4827 static __isl_give isl_union_set
*exploit_intra_lineality(
4828 __isl_take isl_union_set
*intra
,
4829 struct isl_exploit_lineality_data
*data
)
4831 isl_union_set
*lineality
;
4832 isl_union_set
*uset
;
4834 data
->any_non_trivial
= isl_bool_false
;
4835 lineality
= isl_union_set_copy(intra
);
4836 lineality
= isl_union_set_combined_lineality_space(lineality
);
4837 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4838 data
->any_non_trivial
= isl_bool_error
;
4839 isl_union_set_free(lineality
);
4841 if (data
->any_non_trivial
< 0)
4842 return isl_union_set_free(intra
);
4843 if (!data
->any_non_trivial
)
4846 uset
= isl_union_set_copy(intra
);
4847 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4848 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4849 intra
= isl_union_set_union(intra
, uset
);
4851 intra
= isl_union_set_remove_divs(intra
);
4856 /* If the difference set on intra-node schedule constraints was found to have
4857 * any non-trivial lineality space by exploit_intra_lineality,
4858 * as recorded in "data", then extend the inter-node
4859 * schedule constraints "inter" to schedule constraints on equivalent elements.
4860 * That is, if "inter" is V and
4861 * elements are equivalent if they have the same image under f, then return
4863 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4865 static __isl_give isl_union_map
*exploit_inter_lineality(
4866 __isl_take isl_union_map
*inter
,
4867 struct isl_exploit_lineality_data
*data
)
4869 isl_union_map
*umap
;
4871 if (data
->any_non_trivial
< 0)
4872 return isl_union_map_free(inter
);
4873 if (!data
->any_non_trivial
)
4876 umap
= isl_union_map_copy(inter
);
4877 inter
= isl_union_map_subtract_range(inter
,
4878 isl_union_set_copy(data
->mask
));
4879 umap
= isl_union_map_apply_range(umap
,
4880 isl_union_map_copy(data
->equivalent
));
4881 inter
= isl_union_map_union(inter
, umap
);
4882 umap
= isl_union_map_copy(inter
);
4883 inter
= isl_union_map_subtract_domain(inter
,
4884 isl_union_set_copy(data
->mask
));
4885 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4887 inter
= isl_union_map_union(inter
, umap
);
4889 inter
= isl_union_map_remove_divs(inter
);
4894 /* For each (conditional) validity edge in "graph",
4895 * add the corresponding dependence relation using "add"
4896 * to a collection of dependence relations and return the result.
4897 * If "coincidence" is set, then coincidence edges are considered as well.
4899 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4900 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4901 struct isl_sched_edge
*edge
), int coincidence
)
4905 isl_union_map
*umap
;
4907 space
= isl_space_copy(graph
->node
[0].space
);
4908 umap
= isl_union_map_empty(space
);
4910 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4911 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4913 if (!is_any_validity(edge
) &&
4914 (!coincidence
|| !is_coincidence(edge
)))
4917 umap
= add(umap
, edge
);
4923 /* Project out all parameters from "uset" and return the result.
4925 static __isl_give isl_union_set
*union_set_drop_parameters(
4926 __isl_take isl_union_set
*uset
)
4930 nparam
= isl_union_set_dim(uset
, isl_dim_param
);
4931 return isl_union_set_project_out(uset
, isl_dim_param
, 0, nparam
);
4934 /* For each dependence relation on a (conditional) validity edge
4935 * from a node to itself,
4936 * construct the set of coefficients of valid constraints for elements
4937 * in that dependence relation and collect the results.
4938 * If "coincidence" is set, then coincidence edges are considered as well.
4940 * In particular, for each dependence relation R, constraints
4941 * on coefficients (c_0, c_x) are constructed such that
4943 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4945 * If the schedule_treat_coalescing option is set, then some constraints
4946 * that could be exploited to construct coalescing schedules
4947 * are removed before the dual is computed, but after the parameters
4948 * have been projected out.
4949 * The entire computation is essentially the same as that performed
4950 * by intra_coefficients, except that it operates on multiple
4951 * edges together and that the parameters are always projected out.
4953 * Additionally, exploit any non-trivial lineality space
4954 * in the difference set after removing coalescing constraints and
4955 * store the results of the non-trivial lineality space detection in "data".
4956 * The procedure is currently run unconditionally, but it is unlikely
4957 * to find any non-trivial lineality spaces if no coalescing constraints
4958 * have been removed.
4960 * Note that if a dependence relation is a union of basic maps,
4961 * then each basic map needs to be treated individually as it may only
4962 * be possible to carry the dependences expressed by some of those
4963 * basic maps and not all of them.
4964 * The collected validity constraints are therefore not coalesced and
4965 * it is assumed that they are not coalesced automatically.
4966 * Duplicate basic maps can be removed, however.
4967 * In particular, if the same basic map appears as a disjunct
4968 * in multiple edges, then it only needs to be carried once.
4970 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4971 struct isl_sched_graph
*graph
, int coincidence
,
4972 struct isl_exploit_lineality_data
*data
)
4974 isl_union_map
*intra
;
4975 isl_union_set
*delta
;
4976 isl_basic_set_list
*list
;
4978 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4979 delta
= isl_union_map_deltas(intra
);
4980 delta
= union_set_drop_parameters(delta
);
4981 delta
= isl_union_set_remove_divs(delta
);
4982 if (isl_options_get_schedule_treat_coalescing(ctx
))
4983 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
4984 delta
= exploit_intra_lineality(delta
, data
);
4985 list
= isl_union_set_get_basic_set_list(delta
);
4986 isl_union_set_free(delta
);
4988 return isl_basic_set_list_coefficients(list
);
4991 /* For each dependence relation on a (conditional) validity edge
4992 * from a node to some other node,
4993 * construct the set of coefficients of valid constraints for elements
4994 * in that dependence relation and collect the results.
4995 * If "coincidence" is set, then coincidence edges are considered as well.
4997 * In particular, for each dependence relation R, constraints
4998 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
5000 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
5002 * This computation is essentially the same as that performed
5003 * by inter_coefficients, except that it operates on multiple
5006 * Additionally, exploit any non-trivial lineality space
5007 * that may have been discovered by collect_intra_validity
5008 * (as stored in "data").
5010 * Note that if a dependence relation is a union of basic maps,
5011 * then each basic map needs to be treated individually as it may only
5012 * be possible to carry the dependences expressed by some of those
5013 * basic maps and not all of them.
5014 * The collected validity constraints are therefore not coalesced and
5015 * it is assumed that they are not coalesced automatically.
5016 * Duplicate basic maps can be removed, however.
5017 * In particular, if the same basic map appears as a disjunct
5018 * in multiple edges, then it only needs to be carried once.
5020 static __isl_give isl_basic_set_list
*collect_inter_validity(
5021 struct isl_sched_graph
*graph
, int coincidence
,
5022 struct isl_exploit_lineality_data
*data
)
5024 isl_union_map
*inter
;
5025 isl_union_set
*wrap
;
5026 isl_basic_set_list
*list
;
5028 inter
= collect_validity(graph
, &add_inter
, coincidence
);
5029 inter
= exploit_inter_lineality(inter
, data
);
5030 inter
= isl_union_map_remove_divs(inter
);
5031 wrap
= isl_union_map_wrap(inter
);
5032 list
= isl_union_set_get_basic_set_list(wrap
);
5033 isl_union_set_free(wrap
);
5034 return isl_basic_set_list_coefficients(list
);
5037 /* Construct an LP problem for finding schedule coefficients
5038 * such that the schedule carries as many of the "n_edge" groups of
5039 * dependences as possible based on the corresponding coefficient
5040 * constraints and return the lexicographically smallest non-trivial solution.
5041 * "intra" is the sequence of coefficient constraints for intra-node edges.
5042 * "inter" is the sequence of coefficient constraints for inter-node edges.
5043 * If "want_integral" is set, then compute an integral solution
5044 * for the coefficients rather than using the numerators
5045 * of a rational solution.
5046 * "carry_inter" indicates whether inter-node edges should be carried or
5049 * If none of the "n_edge" groups can be carried
5050 * then return an empty vector.
5052 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5053 struct isl_sched_graph
*graph
, int n_edge
,
5054 __isl_keep isl_basic_set_list
*intra
,
5055 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5060 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5063 lp
= isl_basic_set_copy(graph
->lp
);
5064 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5067 /* Construct an LP problem for finding schedule coefficients
5068 * such that the schedule carries as many of the validity dependences
5070 * return the lexicographically smallest non-trivial solution.
5071 * If "fallback" is set, then the carrying is performed as a fallback
5072 * for the Pluto-like scheduler.
5073 * If "coincidence" is set, then try and carry coincidence edges as well.
5075 * The variable "n_edge" stores the number of groups that should be carried.
5076 * If none of the "n_edge" groups can be carried
5077 * then return an empty vector.
5078 * If, moreover, "n_edge" is zero, then the LP problem does not even
5079 * need to be constructed.
5081 * If a fallback solution is being computed, then compute an integral solution
5082 * for the coefficients rather than using the numerators
5083 * of a rational solution.
5085 * If a fallback solution is being computed, if there are any intra-node
5086 * dependences, and if requested by the user, then first try
5087 * to only carry those intra-node dependences.
5088 * If this fails to carry any dependences, then try again
5089 * with the inter-node dependences included.
5091 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5092 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5094 int n_intra
, n_inter
;
5096 struct isl_carry carry
= { 0 };
5099 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5101 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5103 if (!carry
.intra
|| !carry
.inter
)
5105 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5106 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5108 if (fallback
&& n_intra
> 0 &&
5109 isl_options_get_schedule_carry_self_first(ctx
)) {
5110 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5111 carry
.intra
, carry
.inter
, fallback
, 0);
5112 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5113 isl_carry_clear(&carry
);
5119 n_edge
= n_intra
+ n_inter
;
5121 isl_carry_clear(&carry
);
5122 return isl_vec_alloc(ctx
, 0);
5125 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5126 carry
.intra
, carry
.inter
, fallback
, 1);
5127 isl_carry_clear(&carry
);
5130 isl_carry_clear(&carry
);
5134 /* Construct a schedule row for each node such that as many validity dependences
5135 * as possible are carried and then continue with the next band.
5136 * If "fallback" is set, then the carrying is performed as a fallback
5137 * for the Pluto-like scheduler.
5138 * If "coincidence" is set, then try and carry coincidence edges as well.
5140 * If there are no validity dependences, then no dependence can be carried and
5141 * the procedure is guaranteed to fail. If there is more than one component,
5142 * then try computing a schedule on each component separately
5143 * to prevent or at least postpone this failure.
5145 * If a schedule row is computed, then check that dependences are carried
5146 * for at least one of the edges.
5148 * If the computed schedule row turns out to be trivial on one or
5149 * more nodes where it should not be trivial, then we throw it away
5150 * and try again on each component separately.
5152 * If there is only one component, then we accept the schedule row anyway,
5153 * but we do not consider it as a complete row and therefore do not
5154 * increment graph->n_row. Note that the ranks of the nodes that
5155 * do get a non-trivial schedule part will get updated regardless and
5156 * graph->maxvar is computed based on these ranks. The test for
5157 * whether more schedule rows are required in compute_schedule_wcc
5158 * is therefore not affected.
5160 * Insert a band corresponding to the schedule row at position "node"
5161 * of the schedule tree and continue with the construction of the schedule.
5162 * This insertion and the continued construction is performed by split_scaled
5163 * after optionally checking for non-trivial common divisors.
5165 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5166 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5175 ctx
= isl_schedule_node_get_ctx(node
);
5176 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5178 return isl_schedule_node_free(node
);
5179 if (sol
->size
== 0) {
5182 return compute_component_schedule(node
, graph
, 1);
5183 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5184 return isl_schedule_node_free(node
));
5187 trivial
= is_any_trivial(graph
, sol
);
5189 sol
= isl_vec_free(sol
);
5190 } else if (trivial
&& graph
->scc
> 1) {
5192 return compute_component_schedule(node
, graph
, 1);
5195 if (update_schedule(graph
, sol
, 0) < 0)
5196 return isl_schedule_node_free(node
);
5200 return split_scaled(node
, graph
);
5203 /* Construct a schedule row for each node such that as many validity dependences
5204 * as possible are carried and then continue with the next band.
5205 * Do so as a fallback for the Pluto-like scheduler.
5206 * If "coincidence" is set, then try and carry coincidence edges as well.
5208 static __isl_give isl_schedule_node
*carry_fallback(
5209 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5212 return carry(node
, graph
, 1, coincidence
);
5215 /* Construct a schedule row for each node such that as many validity dependences
5216 * as possible are carried and then continue with the next band.
5217 * Do so for the case where the Feautrier scheduler was selected
5220 static __isl_give isl_schedule_node
*carry_feautrier(
5221 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5223 return carry(node
, graph
, 0, 0);
5226 /* Construct a schedule row for each node such that as many validity dependences
5227 * as possible are carried and then continue with the next band.
5228 * Do so as a fallback for the Pluto-like scheduler.
5230 static __isl_give isl_schedule_node
*carry_dependences(
5231 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5233 return carry_fallback(node
, graph
, 0);
5236 /* Construct a schedule row for each node such that as many validity or
5237 * coincidence dependences as possible are carried and
5238 * then continue with the next band.
5239 * Do so as a fallback for the Pluto-like scheduler.
5241 static __isl_give isl_schedule_node
*carry_coincidence(
5242 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5244 return carry_fallback(node
, graph
, 1);
5247 /* Topologically sort statements mapped to the same schedule iteration
5248 * and add insert a sequence node in front of "node"
5249 * corresponding to this order.
5250 * If "initialized" is set, then it may be assumed that compute_maxvar
5251 * has been called on the current band. Otherwise, call
5252 * compute_maxvar if and before carry_dependences gets called.
5254 * If it turns out to be impossible to sort the statements apart,
5255 * because different dependences impose different orderings
5256 * on the statements, then we extend the schedule such that
5257 * it carries at least one more dependence.
5259 static __isl_give isl_schedule_node
*sort_statements(
5260 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5264 isl_union_set_list
*filters
;
5269 ctx
= isl_schedule_node_get_ctx(node
);
5271 isl_die(ctx
, isl_error_internal
,
5272 "graph should have at least one node",
5273 return isl_schedule_node_free(node
));
5278 if (update_edges(ctx
, graph
) < 0)
5279 return isl_schedule_node_free(node
);
5281 if (graph
->n_edge
== 0)
5284 if (detect_sccs(ctx
, graph
) < 0)
5285 return isl_schedule_node_free(node
);
5288 if (graph
->scc
< graph
->n
) {
5289 if (!initialized
&& compute_maxvar(graph
) < 0)
5290 return isl_schedule_node_free(node
);
5291 return carry_dependences(node
, graph
);
5294 filters
= extract_sccs(ctx
, graph
);
5295 node
= isl_schedule_node_insert_sequence(node
, filters
);
5300 /* Are there any (non-empty) (conditional) validity edges in the graph?
5302 static int has_validity_edges(struct isl_sched_graph
*graph
)
5306 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5309 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5314 if (is_any_validity(&graph
->edge
[i
]))
5321 /* Should we apply a Feautrier step?
5322 * That is, did the user request the Feautrier algorithm and are
5323 * there any validity dependences (left)?
5325 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5327 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5330 return has_validity_edges(graph
);
5333 /* Compute a schedule for a connected dependence graph using Feautrier's
5334 * multi-dimensional scheduling algorithm and return the updated schedule node.
5336 * The original algorithm is described in [1].
5337 * The main idea is to minimize the number of scheduling dimensions, by
5338 * trying to satisfy as many dependences as possible per scheduling dimension.
5340 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5341 * Problem, Part II: Multi-Dimensional Time.
5342 * In Intl. Journal of Parallel Programming, 1992.
5344 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5345 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5347 return carry_feautrier(node
, graph
);
5350 /* Turn off the "local" bit on all (condition) edges.
5352 static void clear_local_edges(struct isl_sched_graph
*graph
)
5356 for (i
= 0; i
< graph
->n_edge
; ++i
)
5357 if (is_condition(&graph
->edge
[i
]))
5358 clear_local(&graph
->edge
[i
]);
5361 /* Does "graph" have both condition and conditional validity edges?
5363 static int need_condition_check(struct isl_sched_graph
*graph
)
5366 int any_condition
= 0;
5367 int any_conditional_validity
= 0;
5369 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5370 if (is_condition(&graph
->edge
[i
]))
5372 if (is_conditional_validity(&graph
->edge
[i
]))
5373 any_conditional_validity
= 1;
5376 return any_condition
&& any_conditional_validity
;
5379 /* Does "graph" contain any coincidence edge?
5381 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5385 for (i
= 0; i
< graph
->n_edge
; ++i
)
5386 if (is_coincidence(&graph
->edge
[i
]))
5392 /* Extract the final schedule row as a map with the iteration domain
5393 * of "node" as domain.
5395 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5400 row
= isl_mat_rows(node
->sched
) - 1;
5401 ma
= node_extract_partial_schedule_multi_aff(node
, row
, 1);
5402 return isl_map_from_multi_aff(ma
);
5405 /* Is the conditional validity dependence in the edge with index "edge_index"
5406 * violated by the latest (i.e., final) row of the schedule?
5407 * That is, is i scheduled after j
5408 * for any conditional validity dependence i -> j?
5410 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5412 isl_map
*src_sched
, *dst_sched
, *map
;
5413 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5416 src_sched
= final_row(edge
->src
);
5417 dst_sched
= final_row(edge
->dst
);
5418 map
= isl_map_copy(edge
->map
);
5419 map
= isl_map_apply_domain(map
, src_sched
);
5420 map
= isl_map_apply_range(map
, dst_sched
);
5421 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5422 empty
= isl_map_is_empty(map
);
5431 /* Does "graph" have any satisfied condition edges that
5432 * are adjacent to the conditional validity constraint with
5433 * domain "conditional_source" and range "conditional_sink"?
5435 * A satisfied condition is one that is not local.
5436 * If a condition was forced to be local already (i.e., marked as local)
5437 * then there is no need to check if it is in fact local.
5439 * Additionally, mark all adjacent condition edges found as local.
5441 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5442 __isl_keep isl_union_set
*conditional_source
,
5443 __isl_keep isl_union_set
*conditional_sink
)
5448 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5449 int adjacent
, local
;
5450 isl_union_map
*condition
;
5452 if (!is_condition(&graph
->edge
[i
]))
5454 if (is_local(&graph
->edge
[i
]))
5457 condition
= graph
->edge
[i
].tagged_condition
;
5458 adjacent
= domain_intersects(condition
, conditional_sink
);
5459 if (adjacent
>= 0 && !adjacent
)
5460 adjacent
= range_intersects(condition
,
5461 conditional_source
);
5467 set_local(&graph
->edge
[i
]);
5469 local
= is_condition_false(&graph
->edge
[i
]);
5479 /* Are there any violated conditional validity dependences with
5480 * adjacent condition dependences that are not local with respect
5481 * to the current schedule?
5482 * That is, is the conditional validity constraint violated?
5484 * Additionally, mark all those adjacent condition dependences as local.
5485 * We also mark those adjacent condition dependences that were not marked
5486 * as local before, but just happened to be local already. This ensures
5487 * that they remain local if the schedule is recomputed.
5489 * We first collect domain and range of all violated conditional validity
5490 * dependences and then check if there are any adjacent non-local
5491 * condition dependences.
5493 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5494 struct isl_sched_graph
*graph
)
5498 isl_union_set
*source
, *sink
;
5500 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5501 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5502 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5503 isl_union_set
*uset
;
5504 isl_union_map
*umap
;
5507 if (!is_conditional_validity(&graph
->edge
[i
]))
5510 violated
= is_violated(graph
, i
);
5518 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5519 uset
= isl_union_map_domain(umap
);
5520 source
= isl_union_set_union(source
, uset
);
5521 source
= isl_union_set_coalesce(source
);
5523 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5524 uset
= isl_union_map_range(umap
);
5525 sink
= isl_union_set_union(sink
, uset
);
5526 sink
= isl_union_set_coalesce(sink
);
5530 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5532 isl_union_set_free(source
);
5533 isl_union_set_free(sink
);
5536 isl_union_set_free(source
);
5537 isl_union_set_free(sink
);
5541 /* Examine the current band (the rows between graph->band_start and
5542 * graph->n_total_row), deciding whether to drop it or add it to "node"
5543 * and then continue with the computation of the next band, if any.
5544 * If "initialized" is set, then it may be assumed that compute_maxvar
5545 * has been called on the current band. Otherwise, call
5546 * compute_maxvar if and before carry_dependences gets called.
5548 * The caller keeps looking for a new row as long as
5549 * graph->n_row < graph->maxvar. If the latest attempt to find
5550 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5552 * - split between SCCs and start over (assuming we found an interesting
5553 * pair of SCCs between which to split)
5554 * - continue with the next band (assuming the current band has at least
5556 * - if there is more than one SCC left, then split along all SCCs
5557 * - if outer coincidence needs to be enforced, then try to carry as many
5558 * validity or coincidence dependences as possible and
5559 * continue with the next band
5560 * - try to carry as many validity dependences as possible and
5561 * continue with the next band
5562 * In each case, we first insert a band node in the schedule tree
5563 * if any rows have been computed.
5565 * If the caller managed to complete the schedule and the current band
5566 * is empty, then finish off by topologically
5567 * sorting the statements based on the remaining dependences.
5568 * If, on the other hand, the current band has at least one row,
5569 * then continue with the next band. Note that this next band
5570 * will necessarily be empty, but the graph may still be split up
5571 * into weakly connected components before arriving back here.
5573 static __isl_give isl_schedule_node
*compute_schedule_finish_band(
5574 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5582 empty
= graph
->n_total_row
== graph
->band_start
;
5583 if (graph
->n_row
< graph
->maxvar
) {
5586 ctx
= isl_schedule_node_get_ctx(node
);
5587 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5588 return compute_next_band(node
, graph
, 1);
5589 if (graph
->src_scc
>= 0)
5590 return compute_split_schedule(node
, graph
);
5592 return compute_next_band(node
, graph
, 1);
5594 return compute_component_schedule(node
, graph
, 1);
5595 if (!initialized
&& compute_maxvar(graph
) < 0)
5596 return isl_schedule_node_free(node
);
5597 if (isl_options_get_schedule_outer_coincidence(ctx
))
5598 return carry_coincidence(node
, graph
);
5599 return carry_dependences(node
, graph
);
5603 return compute_next_band(node
, graph
, 1);
5604 return sort_statements(node
, graph
, initialized
);
5607 /* Construct a band of schedule rows for a connected dependence graph.
5608 * The caller is responsible for determining the strongly connected
5609 * components and calling compute_maxvar first.
5611 * We try to find a sequence of as many schedule rows as possible that result
5612 * in non-negative dependence distances (independent of the previous rows
5613 * in the sequence, i.e., such that the sequence is tilable), with as
5614 * many of the initial rows as possible satisfying the coincidence constraints.
5615 * The computation stops if we can't find any more rows or if we have found
5616 * all the rows we wanted to find.
5618 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5619 * outermost dimension to satisfy the coincidence constraints. If this
5620 * turns out to be impossible, we fall back on the general scheme above
5621 * and try to carry as many dependences as possible.
5623 * If "graph" contains both condition and conditional validity dependences,
5624 * then we need to check that that the conditional schedule constraint
5625 * is satisfied, i.e., there are no violated conditional validity dependences
5626 * that are adjacent to any non-local condition dependences.
5627 * If there are, then we mark all those adjacent condition dependences
5628 * as local and recompute the current band. Those dependences that
5629 * are marked local will then be forced to be local.
5630 * The initial computation is performed with no dependences marked as local.
5631 * If we are lucky, then there will be no violated conditional validity
5632 * dependences adjacent to any non-local condition dependences.
5633 * Otherwise, we mark some additional condition dependences as local and
5634 * recompute. We continue this process until there are no violations left or
5635 * until we are no longer able to compute a schedule.
5636 * Since there are only a finite number of dependences,
5637 * there will only be a finite number of iterations.
5639 static isl_stat
compute_schedule_wcc_band(isl_ctx
*ctx
,
5640 struct isl_sched_graph
*graph
)
5642 int has_coincidence
;
5643 int use_coincidence
;
5644 int force_coincidence
= 0;
5645 int check_conditional
;
5647 if (sort_sccs(graph
) < 0)
5648 return isl_stat_error
;
5650 clear_local_edges(graph
);
5651 check_conditional
= need_condition_check(graph
);
5652 has_coincidence
= has_any_coincidence(graph
);
5654 if (ctx
->opt
->schedule_outer_coincidence
)
5655 force_coincidence
= 1;
5657 use_coincidence
= has_coincidence
;
5658 while (graph
->n_row
< graph
->maxvar
) {
5663 graph
->src_scc
= -1;
5664 graph
->dst_scc
= -1;
5666 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5667 return isl_stat_error
;
5668 sol
= solve_lp(ctx
, graph
);
5670 return isl_stat_error
;
5671 if (sol
->size
== 0) {
5672 int empty
= graph
->n_total_row
== graph
->band_start
;
5675 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5676 use_coincidence
= 0;
5681 coincident
= !has_coincidence
|| use_coincidence
;
5682 if (update_schedule(graph
, sol
, coincident
) < 0)
5683 return isl_stat_error
;
5685 if (!check_conditional
)
5687 violated
= has_violated_conditional_constraint(ctx
, graph
);
5689 return isl_stat_error
;
5692 if (reset_band(graph
) < 0)
5693 return isl_stat_error
;
5694 use_coincidence
= has_coincidence
;
5700 /* Compute a schedule for a connected dependence graph by considering
5701 * the graph as a whole and return the updated schedule node.
5703 * The actual schedule rows of the current band are computed by
5704 * compute_schedule_wcc_band. compute_schedule_finish_band takes
5705 * care of integrating the band into "node" and continuing
5708 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5709 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5716 ctx
= isl_schedule_node_get_ctx(node
);
5717 if (compute_schedule_wcc_band(ctx
, graph
) < 0)
5718 return isl_schedule_node_free(node
);
5720 return compute_schedule_finish_band(node
, graph
, 1);
5723 /* Clustering information used by compute_schedule_wcc_clustering.
5725 * "n" is the number of SCCs in the original dependence graph
5726 * "scc" is an array of "n" elements, each representing an SCC
5727 * of the original dependence graph. All entries in the same cluster
5728 * have the same number of schedule rows.
5729 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
5730 * where each cluster is represented by the index of the first SCC
5731 * in the cluster. Initially, each SCC belongs to a cluster containing
5734 * "scc_in_merge" is used by merge_clusters_along_edge to keep
5735 * track of which SCCs need to be merged.
5737 * "cluster" contains the merged clusters of SCCs after the clustering
5740 * "scc_node" is a temporary data structure used inside copy_partial.
5741 * For each SCC, it keeps track of the number of nodes in the SCC
5742 * that have already been copied.
5744 struct isl_clustering
{
5746 struct isl_sched_graph
*scc
;
5747 struct isl_sched_graph
*cluster
;
5753 /* Initialize the clustering data structure "c" from "graph".
5755 * In particular, allocate memory, extract the SCCs from "graph"
5756 * into c->scc, initialize scc_cluster and construct
5757 * a band of schedule rows for each SCC.
5758 * Within each SCC, there is only one SCC by definition.
5759 * Each SCC initially belongs to a cluster containing only that SCC.
5761 static isl_stat
clustering_init(isl_ctx
*ctx
, struct isl_clustering
*c
,
5762 struct isl_sched_graph
*graph
)
5767 c
->scc
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5768 c
->cluster
= isl_calloc_array(ctx
, struct isl_sched_graph
, c
->n
);
5769 c
->scc_cluster
= isl_calloc_array(ctx
, int, c
->n
);
5770 c
->scc_node
= isl_calloc_array(ctx
, int, c
->n
);
5771 c
->scc_in_merge
= isl_calloc_array(ctx
, int, c
->n
);
5772 if (!c
->scc
|| !c
->cluster
||
5773 !c
->scc_cluster
|| !c
->scc_node
|| !c
->scc_in_merge
)
5774 return isl_stat_error
;
5776 for (i
= 0; i
< c
->n
; ++i
) {
5777 if (extract_sub_graph(ctx
, graph
, &node_scc_exactly
,
5778 &edge_scc_exactly
, i
, &c
->scc
[i
]) < 0)
5779 return isl_stat_error
;
5781 if (compute_maxvar(&c
->scc
[i
]) < 0)
5782 return isl_stat_error
;
5783 if (compute_schedule_wcc_band(ctx
, &c
->scc
[i
]) < 0)
5784 return isl_stat_error
;
5785 c
->scc_cluster
[i
] = i
;
5791 /* Free all memory allocated for "c".
5793 static void clustering_free(isl_ctx
*ctx
, struct isl_clustering
*c
)
5798 for (i
= 0; i
< c
->n
; ++i
)
5799 graph_free(ctx
, &c
->scc
[i
]);
5802 for (i
= 0; i
< c
->n
; ++i
)
5803 graph_free(ctx
, &c
->cluster
[i
]);
5805 free(c
->scc_cluster
);
5807 free(c
->scc_in_merge
);
5810 /* Should we refrain from merging the cluster in "graph" with
5811 * any other cluster?
5812 * In particular, is its current schedule band empty and incomplete.
5814 static int bad_cluster(struct isl_sched_graph
*graph
)
5816 return graph
->n_row
< graph
->maxvar
&&
5817 graph
->n_total_row
== graph
->band_start
;
5820 /* Is "edge" a proximity edge with a non-empty dependence relation?
5822 static isl_bool
is_non_empty_proximity(struct isl_sched_edge
*edge
)
5824 if (!is_proximity(edge
))
5825 return isl_bool_false
;
5826 return isl_bool_not(isl_map_plain_is_empty(edge
->map
));
5829 /* Return the index of an edge in "graph" that can be used to merge
5830 * two clusters in "c".
5831 * Return graph->n_edge if no such edge can be found.
5832 * Return -1 on error.
5834 * In particular, return a proximity edge between two clusters
5835 * that is not marked "no_merge" and such that neither of the
5836 * two clusters has an incomplete, empty band.
5838 * If there are multiple such edges, then try and find the most
5839 * appropriate edge to use for merging. In particular, pick the edge
5840 * with the greatest weight. If there are multiple of those,
5841 * then pick one with the shortest distance between
5842 * the two cluster representatives.
5844 static int find_proximity(struct isl_sched_graph
*graph
,
5845 struct isl_clustering
*c
)
5847 int i
, best
= graph
->n_edge
, best_dist
, best_weight
;
5849 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5850 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
5854 prox
= is_non_empty_proximity(edge
);
5861 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
5862 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
5864 dist
= c
->scc_cluster
[edge
->dst
->scc
] -
5865 c
->scc_cluster
[edge
->src
->scc
];
5868 weight
= edge
->weight
;
5869 if (best
< graph
->n_edge
) {
5870 if (best_weight
> weight
)
5872 if (best_weight
== weight
&& best_dist
<= dist
)
5877 best_weight
= weight
;
5883 /* Internal data structure used in mark_merge_sccs.
5885 * "graph" is the dependence graph in which a strongly connected
5886 * component is constructed.
5887 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
5888 * "src" and "dst" are the indices of the nodes that are being merged.
5890 struct isl_mark_merge_sccs_data
{
5891 struct isl_sched_graph
*graph
;
5897 /* Check whether the cluster containing node "i" depends on the cluster
5898 * containing node "j". If "i" and "j" belong to the same cluster,
5899 * then they are taken to depend on each other to ensure that
5900 * the resulting strongly connected component consists of complete
5901 * clusters. Furthermore, if "i" and "j" are the two nodes that
5902 * are being merged, then they are taken to depend on each other as well.
5903 * Otherwise, check if there is a (conditional) validity dependence
5904 * from node[j] to node[i], forcing node[i] to follow node[j].
5906 static isl_bool
cluster_follows(int i
, int j
, void *user
)
5908 struct isl_mark_merge_sccs_data
*data
= user
;
5909 struct isl_sched_graph
*graph
= data
->graph
;
5910 int *scc_cluster
= data
->scc_cluster
;
5912 if (data
->src
== i
&& data
->dst
== j
)
5913 return isl_bool_true
;
5914 if (data
->src
== j
&& data
->dst
== i
)
5915 return isl_bool_true
;
5916 if (scc_cluster
[graph
->node
[i
].scc
] == scc_cluster
[graph
->node
[j
].scc
])
5917 return isl_bool_true
;
5919 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
5922 /* Mark all SCCs that belong to either of the two clusters in "c"
5923 * connected by the edge in "graph" with index "edge", or to any
5924 * of the intermediate clusters.
5925 * The marking is recorded in c->scc_in_merge.
5927 * The given edge has been selected for merging two clusters,
5928 * meaning that there is at least a proximity edge between the two nodes.
5929 * However, there may also be (indirect) validity dependences
5930 * between the two nodes. When merging the two clusters, all clusters
5931 * containing one or more of the intermediate nodes along the
5932 * indirect validity dependences need to be merged in as well.
5934 * First collect all such nodes by computing the strongly connected
5935 * component (SCC) containing the two nodes connected by the edge, where
5936 * the two nodes are considered to depend on each other to make
5937 * sure they end up in the same SCC. Similarly, each node is considered
5938 * to depend on every other node in the same cluster to ensure
5939 * that the SCC consists of complete clusters.
5941 * Then the original SCCs that contain any of these nodes are marked
5942 * in c->scc_in_merge.
5944 static isl_stat
mark_merge_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
5945 int edge
, struct isl_clustering
*c
)
5947 struct isl_mark_merge_sccs_data data
;
5948 struct isl_tarjan_graph
*g
;
5951 for (i
= 0; i
< c
->n
; ++i
)
5952 c
->scc_in_merge
[i
] = 0;
5955 data
.scc_cluster
= c
->scc_cluster
;
5956 data
.src
= graph
->edge
[edge
].src
- graph
->node
;
5957 data
.dst
= graph
->edge
[edge
].dst
- graph
->node
;
5959 g
= isl_tarjan_graph_component(ctx
, graph
->n
, data
.dst
,
5960 &cluster_follows
, &data
);
5966 isl_die(ctx
, isl_error_internal
,
5967 "expecting at least two nodes in component",
5969 if (g
->order
[--i
] != -1)
5970 isl_die(ctx
, isl_error_internal
,
5971 "expecting end of component marker", goto error
);
5973 for (--i
; i
>= 0 && g
->order
[i
] != -1; --i
) {
5974 int scc
= graph
->node
[g
->order
[i
]].scc
;
5975 c
->scc_in_merge
[scc
] = 1;
5978 isl_tarjan_graph_free(g
);
5981 isl_tarjan_graph_free(g
);
5982 return isl_stat_error
;
5985 /* Construct the identifier "cluster_i".
5987 static __isl_give isl_id
*cluster_id(isl_ctx
*ctx
, int i
)
5991 snprintf(name
, sizeof(name
), "cluster_%d", i
);
5992 return isl_id_alloc(ctx
, name
, NULL
);
5995 /* Construct the space of the cluster with index "i" containing
5996 * the strongly connected component "scc".
5998 * In particular, construct a space called cluster_i with dimension equal
5999 * to the number of schedule rows in the current band of "scc".
6001 static __isl_give isl_space
*cluster_space(struct isl_sched_graph
*scc
, int i
)
6007 nvar
= scc
->n_total_row
- scc
->band_start
;
6008 space
= isl_space_copy(scc
->node
[0].space
);
6009 space
= isl_space_params(space
);
6010 space
= isl_space_set_from_params(space
);
6011 space
= isl_space_add_dims(space
, isl_dim_set
, nvar
);
6012 id
= cluster_id(isl_space_get_ctx(space
), i
);
6013 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
6018 /* Collect the domain of the graph for merging clusters.
6020 * In particular, for each cluster with first SCC "i", construct
6021 * a set in the space called cluster_i with dimension equal
6022 * to the number of schedule rows in the current band of the cluster.
6024 static __isl_give isl_union_set
*collect_domain(isl_ctx
*ctx
,
6025 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6029 isl_union_set
*domain
;
6031 space
= isl_space_params_alloc(ctx
, 0);
6032 domain
= isl_union_set_empty(space
);
6034 for (i
= 0; i
< graph
->scc
; ++i
) {
6037 if (!c
->scc_in_merge
[i
])
6039 if (c
->scc_cluster
[i
] != i
)
6041 space
= cluster_space(&c
->scc
[i
], i
);
6042 domain
= isl_union_set_add_set(domain
, isl_set_universe(space
));
6048 /* Construct a map from the original instances to the corresponding
6049 * cluster instance in the current bands of the clusters in "c".
6051 static __isl_give isl_union_map
*collect_cluster_map(isl_ctx
*ctx
,
6052 struct isl_sched_graph
*graph
, struct isl_clustering
*c
)
6056 isl_union_map
*cluster_map
;
6058 space
= isl_space_params_alloc(ctx
, 0);
6059 cluster_map
= isl_union_map_empty(space
);
6060 for (i
= 0; i
< graph
->scc
; ++i
) {
6064 if (!c
->scc_in_merge
[i
])
6067 id
= cluster_id(ctx
, c
->scc_cluster
[i
]);
6068 start
= c
->scc
[i
].band_start
;
6069 n
= c
->scc
[i
].n_total_row
- start
;
6070 for (j
= 0; j
< c
->scc
[i
].n
; ++j
) {
6073 struct isl_sched_node
*node
= &c
->scc
[i
].node
[j
];
6075 ma
= node_extract_partial_schedule_multi_aff(node
,
6077 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
,
6079 map
= isl_map_from_multi_aff(ma
);
6080 cluster_map
= isl_union_map_add_map(cluster_map
, map
);
6088 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
6089 * that are not isl_edge_condition or isl_edge_conditional_validity.
6091 static __isl_give isl_schedule_constraints
*add_non_conditional_constraints(
6092 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6093 __isl_take isl_schedule_constraints
*sc
)
6095 enum isl_edge_type t
;
6100 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
6101 if (t
== isl_edge_condition
||
6102 t
== isl_edge_conditional_validity
)
6104 if (!is_type(edge
, t
))
6106 sc
= isl_schedule_constraints_add(sc
, t
,
6107 isl_union_map_copy(umap
));
6113 /* Add schedule constraints of types isl_edge_condition and
6114 * isl_edge_conditional_validity to "sc" by applying "umap" to
6115 * the domains of the wrapped relations in domain and range
6116 * of the corresponding tagged constraints of "edge".
6118 static __isl_give isl_schedule_constraints
*add_conditional_constraints(
6119 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*umap
,
6120 __isl_take isl_schedule_constraints
*sc
)
6122 enum isl_edge_type t
;
6123 isl_union_map
*tagged
;
6125 for (t
= isl_edge_condition
; t
<= isl_edge_conditional_validity
; ++t
) {
6126 if (!is_type(edge
, t
))
6128 if (t
== isl_edge_condition
)
6129 tagged
= isl_union_map_copy(edge
->tagged_condition
);
6131 tagged
= isl_union_map_copy(edge
->tagged_validity
);
6132 tagged
= isl_union_map_zip(tagged
);
6133 tagged
= isl_union_map_apply_domain(tagged
,
6134 isl_union_map_copy(umap
));
6135 tagged
= isl_union_map_zip(tagged
);
6136 sc
= isl_schedule_constraints_add(sc
, t
, tagged
);
6144 /* Given a mapping "cluster_map" from the original instances to
6145 * the cluster instances, add schedule constraints on the clusters
6146 * to "sc" corresponding to the original constraints represented by "edge".
6148 * For non-tagged dependence constraints, the cluster constraints
6149 * are obtained by applying "cluster_map" to the edge->map.
6151 * For tagged dependence constraints, "cluster_map" needs to be applied
6152 * to the domains of the wrapped relations in domain and range
6153 * of the tagged dependence constraints. Pick out the mappings
6154 * from these domains from "cluster_map" and construct their product.
6155 * This mapping can then be applied to the pair of domains.
6157 static __isl_give isl_schedule_constraints
*collect_edge_constraints(
6158 struct isl_sched_edge
*edge
, __isl_keep isl_union_map
*cluster_map
,
6159 __isl_take isl_schedule_constraints
*sc
)
6161 isl_union_map
*umap
;
6163 isl_union_set
*uset
;
6164 isl_union_map
*umap1
, *umap2
;
6169 umap
= isl_union_map_from_map(isl_map_copy(edge
->map
));
6170 umap
= isl_union_map_apply_domain(umap
,
6171 isl_union_map_copy(cluster_map
));
6172 umap
= isl_union_map_apply_range(umap
,
6173 isl_union_map_copy(cluster_map
));
6174 sc
= add_non_conditional_constraints(edge
, umap
, sc
);
6175 isl_union_map_free(umap
);
6177 if (!sc
|| (!is_condition(edge
) && !is_conditional_validity(edge
)))
6180 space
= isl_space_domain(isl_map_get_space(edge
->map
));
6181 uset
= isl_union_set_from_set(isl_set_universe(space
));
6182 umap1
= isl_union_map_copy(cluster_map
);
6183 umap1
= isl_union_map_intersect_domain(umap1
, uset
);
6184 space
= isl_space_range(isl_map_get_space(edge
->map
));
6185 uset
= isl_union_set_from_set(isl_set_universe(space
));
6186 umap2
= isl_union_map_copy(cluster_map
);
6187 umap2
= isl_union_map_intersect_domain(umap2
, uset
);
6188 umap
= isl_union_map_product(umap1
, umap2
);
6190 sc
= add_conditional_constraints(edge
, umap
, sc
);
6192 isl_union_map_free(umap
);
6196 /* Given a mapping "cluster_map" from the original instances to
6197 * the cluster instances, add schedule constraints on the clusters
6198 * to "sc" corresponding to all edges in "graph" between nodes that
6199 * belong to SCCs that are marked for merging in "scc_in_merge".
6201 static __isl_give isl_schedule_constraints
*collect_constraints(
6202 struct isl_sched_graph
*graph
, int *scc_in_merge
,
6203 __isl_keep isl_union_map
*cluster_map
,
6204 __isl_take isl_schedule_constraints
*sc
)
6208 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6209 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6211 if (!scc_in_merge
[edge
->src
->scc
])
6213 if (!scc_in_merge
[edge
->dst
->scc
])
6215 sc
= collect_edge_constraints(edge
, cluster_map
, sc
);
6221 /* Construct a dependence graph for scheduling clusters with respect
6222 * to each other and store the result in "merge_graph".
6223 * In particular, the nodes of the graph correspond to the schedule
6224 * dimensions of the current bands of those clusters that have been
6225 * marked for merging in "c".
6227 * First construct an isl_schedule_constraints object for this domain
6228 * by transforming the edges in "graph" to the domain.
6229 * Then initialize a dependence graph for scheduling from these
6232 static isl_stat
init_merge_graph(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6233 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6235 isl_union_set
*domain
;
6236 isl_union_map
*cluster_map
;
6237 isl_schedule_constraints
*sc
;
6240 domain
= collect_domain(ctx
, graph
, c
);
6241 sc
= isl_schedule_constraints_on_domain(domain
);
6243 return isl_stat_error
;
6244 cluster_map
= collect_cluster_map(ctx
, graph
, c
);
6245 sc
= collect_constraints(graph
, c
->scc_in_merge
, cluster_map
, sc
);
6246 isl_union_map_free(cluster_map
);
6248 r
= graph_init(merge_graph
, sc
);
6250 isl_schedule_constraints_free(sc
);
6255 /* Compute the maximal number of remaining schedule rows that still need
6256 * to be computed for the nodes that belong to clusters with the maximal
6257 * dimension for the current band (i.e., the band that is to be merged).
6258 * Only clusters that are about to be merged are considered.
6259 * "maxvar" is the maximal dimension for the current band.
6260 * "c" contains information about the clusters.
6262 * Return the maximal number of remaining schedule rows or -1 on error.
6264 static int compute_maxvar_max_slack(int maxvar
, struct isl_clustering
*c
)
6270 for (i
= 0; i
< c
->n
; ++i
) {
6272 struct isl_sched_graph
*scc
;
6274 if (!c
->scc_in_merge
[i
])
6277 nvar
= scc
->n_total_row
- scc
->band_start
;
6280 for (j
= 0; j
< scc
->n
; ++j
) {
6281 struct isl_sched_node
*node
= &scc
->node
[j
];
6284 if (node_update_vmap(node
) < 0)
6286 slack
= node
->nvar
- node
->rank
;
6287 if (slack
> max_slack
)
6295 /* If there are any clusters where the dimension of the current band
6296 * (i.e., the band that is to be merged) is smaller than "maxvar" and
6297 * if there are any nodes in such a cluster where the number
6298 * of remaining schedule rows that still need to be computed
6299 * is greater than "max_slack", then return the smallest current band
6300 * dimension of all these clusters. Otherwise return the original value
6301 * of "maxvar". Return -1 in case of any error.
6302 * Only clusters that are about to be merged are considered.
6303 * "c" contains information about the clusters.
6305 static int limit_maxvar_to_slack(int maxvar
, int max_slack
,
6306 struct isl_clustering
*c
)
6310 for (i
= 0; i
< c
->n
; ++i
) {
6312 struct isl_sched_graph
*scc
;
6314 if (!c
->scc_in_merge
[i
])
6317 nvar
= scc
->n_total_row
- scc
->band_start
;
6320 for (j
= 0; j
< scc
->n
; ++j
) {
6321 struct isl_sched_node
*node
= &scc
->node
[j
];
6324 if (node_update_vmap(node
) < 0)
6326 slack
= node
->nvar
- node
->rank
;
6327 if (slack
> max_slack
) {
6337 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
6338 * that still need to be computed. In particular, if there is a node
6339 * in a cluster where the dimension of the current band is smaller
6340 * than merge_graph->maxvar, but the number of remaining schedule rows
6341 * is greater than that of any node in a cluster with the maximal
6342 * dimension for the current band (i.e., merge_graph->maxvar),
6343 * then adjust merge_graph->maxvar to the (smallest) current band dimension
6344 * of those clusters. Without this adjustment, the total number of
6345 * schedule dimensions would be increased, resulting in a skewed view
6346 * of the number of coincident dimensions.
6347 * "c" contains information about the clusters.
6349 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
6350 * then there is no point in attempting any merge since it will be rejected
6351 * anyway. Set merge_graph->maxvar to zero in such cases.
6353 static isl_stat
adjust_maxvar_to_slack(isl_ctx
*ctx
,
6354 struct isl_sched_graph
*merge_graph
, struct isl_clustering
*c
)
6356 int max_slack
, maxvar
;
6358 max_slack
= compute_maxvar_max_slack(merge_graph
->maxvar
, c
);
6360 return isl_stat_error
;
6361 maxvar
= limit_maxvar_to_slack(merge_graph
->maxvar
, max_slack
, c
);
6363 return isl_stat_error
;
6365 if (maxvar
< merge_graph
->maxvar
) {
6366 if (isl_options_get_schedule_maximize_band_depth(ctx
))
6367 merge_graph
->maxvar
= 0;
6369 merge_graph
->maxvar
= maxvar
;
6375 /* Return the number of coincident dimensions in the current band of "graph",
6376 * where the nodes of "graph" are assumed to be scheduled by a single band.
6378 static int get_n_coincident(struct isl_sched_graph
*graph
)
6382 for (i
= graph
->band_start
; i
< graph
->n_total_row
; ++i
)
6383 if (!graph
->node
[0].coincident
[i
])
6386 return i
- graph
->band_start
;
6389 /* Should the clusters be merged based on the cluster schedule
6390 * in the current (and only) band of "merge_graph", given that
6391 * coincidence should be maximized?
6393 * If the number of coincident schedule dimensions in the merged band
6394 * would be less than the maximal number of coincident schedule dimensions
6395 * in any of the merged clusters, then the clusters should not be merged.
6397 static isl_bool
ok_to_merge_coincident(struct isl_clustering
*c
,
6398 struct isl_sched_graph
*merge_graph
)
6405 for (i
= 0; i
< c
->n
; ++i
) {
6406 if (!c
->scc_in_merge
[i
])
6408 n_coincident
= get_n_coincident(&c
->scc
[i
]);
6409 if (n_coincident
> max_coincident
)
6410 max_coincident
= n_coincident
;
6413 n_coincident
= get_n_coincident(merge_graph
);
6415 return n_coincident
>= max_coincident
;
6418 /* Return the transformation on "node" expressed by the current (and only)
6419 * band of "merge_graph" applied to the clusters in "c".
6421 * First find the representation of "node" in its SCC in "c" and
6422 * extract the transformation expressed by the current band.
6423 * Then extract the transformation applied by "merge_graph"
6424 * to the cluster to which this SCC belongs.
6425 * Combine the two to obtain the complete transformation on the node.
6427 * Note that the range of the first transformation is an anonymous space,
6428 * while the domain of the second is named "cluster_X". The range
6429 * of the former therefore needs to be adjusted before the two
6432 static __isl_give isl_map
*extract_node_transformation(isl_ctx
*ctx
,
6433 struct isl_sched_node
*node
, struct isl_clustering
*c
,
6434 struct isl_sched_graph
*merge_graph
)
6436 struct isl_sched_node
*scc_node
, *cluster_node
;
6440 isl_multi_aff
*ma
, *ma2
;
6442 scc_node
= graph_find_node(ctx
, &c
->scc
[node
->scc
], node
->space
);
6443 if (scc_node
&& !is_node(&c
->scc
[node
->scc
], scc_node
))
6444 isl_die(ctx
, isl_error_internal
, "unable to find node",
6446 start
= c
->scc
[node
->scc
].band_start
;
6447 n
= c
->scc
[node
->scc
].n_total_row
- start
;
6448 ma
= node_extract_partial_schedule_multi_aff(scc_node
, start
, n
);
6449 space
= cluster_space(&c
->scc
[node
->scc
], c
->scc_cluster
[node
->scc
]);
6450 cluster_node
= graph_find_node(ctx
, merge_graph
, space
);
6451 if (cluster_node
&& !is_node(merge_graph
, cluster_node
))
6452 isl_die(ctx
, isl_error_internal
, "unable to find cluster",
6453 space
= isl_space_free(space
));
6454 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
6455 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, id
);
6456 isl_space_free(space
);
6457 n
= merge_graph
->n_total_row
;
6458 ma2
= node_extract_partial_schedule_multi_aff(cluster_node
, 0, n
);
6459 ma
= isl_multi_aff_pullback_multi_aff(ma2
, ma
);
6461 return isl_map_from_multi_aff(ma
);
6464 /* Give a set of distances "set", are they bounded by a small constant
6465 * in direction "pos"?
6466 * In practice, check if they are bounded by 2 by checking that there
6467 * are no elements with a value greater than or equal to 3 or
6468 * smaller than or equal to -3.
6470 static isl_bool
distance_is_bounded(__isl_keep isl_set
*set
, int pos
)
6476 return isl_bool_error
;
6478 test
= isl_set_copy(set
);
6479 test
= isl_set_lower_bound_si(test
, isl_dim_set
, pos
, 3);
6480 bounded
= isl_set_is_empty(test
);
6483 if (bounded
< 0 || !bounded
)
6486 test
= isl_set_copy(set
);
6487 test
= isl_set_upper_bound_si(test
, isl_dim_set
, pos
, -3);
6488 bounded
= isl_set_is_empty(test
);
6494 /* Does the set "set" have a fixed (but possible parametric) value
6495 * at dimension "pos"?
6497 static isl_bool
has_single_value(__isl_keep isl_set
*set
, int pos
)
6503 return isl_bool_error
;
6504 set
= isl_set_copy(set
);
6505 n
= isl_set_dim(set
, isl_dim_set
);
6506 set
= isl_set_project_out(set
, isl_dim_set
, pos
+ 1, n
- (pos
+ 1));
6507 set
= isl_set_project_out(set
, isl_dim_set
, 0, pos
);
6508 single
= isl_set_is_singleton(set
);
6514 /* Does "map" have a fixed (but possible parametric) value
6515 * at dimension "pos" of either its domain or its range?
6517 static isl_bool
has_singular_src_or_dst(__isl_keep isl_map
*map
, int pos
)
6522 set
= isl_map_domain(isl_map_copy(map
));
6523 single
= has_single_value(set
, pos
);
6526 if (single
< 0 || single
)
6529 set
= isl_map_range(isl_map_copy(map
));
6530 single
= has_single_value(set
, pos
);
6536 /* Does the edge "edge" from "graph" have bounded dependence distances
6537 * in the merged graph "merge_graph" of a selection of clusters in "c"?
6539 * Extract the complete transformations of the source and destination
6540 * nodes of the edge, apply them to the edge constraints and
6541 * compute the differences. Finally, check if these differences are bounded
6542 * in each direction.
6544 * If the dimension of the band is greater than the number of
6545 * dimensions that can be expected to be optimized by the edge
6546 * (based on its weight), then also allow the differences to be unbounded
6547 * in the remaining dimensions, but only if either the source or
6548 * the destination has a fixed value in that direction.
6549 * This allows a statement that produces values that are used by
6550 * several instances of another statement to be merged with that
6552 * However, merging such clusters will introduce an inherently
6553 * large proximity distance inside the merged cluster, meaning
6554 * that proximity distances will no longer be optimized in
6555 * subsequent merges. These merges are therefore only allowed
6556 * after all other possible merges have been tried.
6557 * The first time such a merge is encountered, the weight of the edge
6558 * is replaced by a negative weight. The second time (i.e., after
6559 * all merges over edges with a non-negative weight have been tried),
6560 * the merge is allowed.
6562 static isl_bool
has_bounded_distances(isl_ctx
*ctx
, struct isl_sched_edge
*edge
,
6563 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6564 struct isl_sched_graph
*merge_graph
)
6571 map
= isl_map_copy(edge
->map
);
6572 t
= extract_node_transformation(ctx
, edge
->src
, c
, merge_graph
);
6573 map
= isl_map_apply_domain(map
, t
);
6574 t
= extract_node_transformation(ctx
, edge
->dst
, c
, merge_graph
);
6575 map
= isl_map_apply_range(map
, t
);
6576 dist
= isl_map_deltas(isl_map_copy(map
));
6578 bounded
= isl_bool_true
;
6579 n
= isl_set_dim(dist
, isl_dim_set
);
6580 n_slack
= n
- edge
->weight
;
6581 if (edge
->weight
< 0)
6582 n_slack
-= graph
->max_weight
+ 1;
6583 for (i
= 0; i
< n
; ++i
) {
6584 isl_bool bounded_i
, singular_i
;
6586 bounded_i
= distance_is_bounded(dist
, i
);
6591 if (edge
->weight
>= 0)
6592 bounded
= isl_bool_false
;
6596 singular_i
= has_singular_src_or_dst(map
, i
);
6601 bounded
= isl_bool_false
;
6604 if (!bounded
&& i
>= n
&& edge
->weight
>= 0)
6605 edge
->weight
-= graph
->max_weight
+ 1;
6613 return isl_bool_error
;
6616 /* Should the clusters be merged based on the cluster schedule
6617 * in the current (and only) band of "merge_graph"?
6618 * "graph" is the original dependence graph, while "c" records
6619 * which SCCs are involved in the latest merge.
6621 * In particular, is there at least one proximity constraint
6622 * that is optimized by the merge?
6624 * A proximity constraint is considered to be optimized
6625 * if the dependence distances are small.
6627 static isl_bool
ok_to_merge_proximity(isl_ctx
*ctx
,
6628 struct isl_sched_graph
*graph
, struct isl_clustering
*c
,
6629 struct isl_sched_graph
*merge_graph
)
6633 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6634 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6637 if (!is_proximity(edge
))
6639 if (!c
->scc_in_merge
[edge
->src
->scc
])
6641 if (!c
->scc_in_merge
[edge
->dst
->scc
])
6643 if (c
->scc_cluster
[edge
->dst
->scc
] ==
6644 c
->scc_cluster
[edge
->src
->scc
])
6646 bounded
= has_bounded_distances(ctx
, edge
, graph
, c
,
6648 if (bounded
< 0 || bounded
)
6652 return isl_bool_false
;
6655 /* Should the clusters be merged based on the cluster schedule
6656 * in the current (and only) band of "merge_graph"?
6657 * "graph" is the original dependence graph, while "c" records
6658 * which SCCs are involved in the latest merge.
6660 * If the current band is empty, then the clusters should not be merged.
6662 * If the band depth should be maximized and the merge schedule
6663 * is incomplete (meaning that the dimension of some of the schedule
6664 * bands in the original schedule will be reduced), then the clusters
6665 * should not be merged.
6667 * If the schedule_maximize_coincidence option is set, then check that
6668 * the number of coincident schedule dimensions is not reduced.
6670 * Finally, only allow the merge if at least one proximity
6671 * constraint is optimized.
6673 static isl_bool
ok_to_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6674 struct isl_clustering
*c
, struct isl_sched_graph
*merge_graph
)
6676 if (merge_graph
->n_total_row
== merge_graph
->band_start
)
6677 return isl_bool_false
;
6679 if (isl_options_get_schedule_maximize_band_depth(ctx
) &&
6680 merge_graph
->n_total_row
< merge_graph
->maxvar
)
6681 return isl_bool_false
;
6683 if (isl_options_get_schedule_maximize_coincidence(ctx
)) {
6686 ok
= ok_to_merge_coincident(c
, merge_graph
);
6691 return ok_to_merge_proximity(ctx
, graph
, c
, merge_graph
);
6694 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
6695 * of the schedule in "node" and return the result.
6697 * That is, essentially compute
6699 * T * N(first:first+n-1)
6701 * taking into account the constant term and the parameter coefficients
6704 static __isl_give isl_mat
*node_transformation(isl_ctx
*ctx
,
6705 struct isl_sched_node
*t_node
, struct isl_sched_node
*node
,
6710 int n_row
, n_col
, n_param
, n_var
;
6712 n_param
= node
->nparam
;
6714 n_row
= isl_mat_rows(t_node
->sched
);
6715 n_col
= isl_mat_cols(node
->sched
);
6716 t
= isl_mat_alloc(ctx
, n_row
, n_col
);
6719 for (i
= 0; i
< n_row
; ++i
) {
6720 isl_seq_cpy(t
->row
[i
], t_node
->sched
->row
[i
], 1 + n_param
);
6721 isl_seq_clr(t
->row
[i
] + 1 + n_param
, n_var
);
6722 for (j
= 0; j
< n
; ++j
)
6723 isl_seq_addmul(t
->row
[i
],
6724 t_node
->sched
->row
[i
][1 + n_param
+ j
],
6725 node
->sched
->row
[first
+ j
],
6726 1 + n_param
+ n_var
);
6731 /* Apply the cluster schedule in "t_node" to the current band
6732 * schedule of the nodes in "graph".
6734 * In particular, replace the rows starting at band_start
6735 * by the result of applying the cluster schedule in "t_node"
6736 * to the original rows.
6738 * The coincidence of the schedule is determined by the coincidence
6739 * of the cluster schedule.
6741 static isl_stat
transform(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6742 struct isl_sched_node
*t_node
)
6748 start
= graph
->band_start
;
6749 n
= graph
->n_total_row
- start
;
6751 n_new
= isl_mat_rows(t_node
->sched
);
6752 for (i
= 0; i
< graph
->n
; ++i
) {
6753 struct isl_sched_node
*node
= &graph
->node
[i
];
6756 t
= node_transformation(ctx
, t_node
, node
, start
, n
);
6757 node
->sched
= isl_mat_drop_rows(node
->sched
, start
, n
);
6758 node
->sched
= isl_mat_concat(node
->sched
, t
);
6759 node
->sched_map
= isl_map_free(node
->sched_map
);
6761 return isl_stat_error
;
6762 for (j
= 0; j
< n_new
; ++j
)
6763 node
->coincident
[start
+ j
] = t_node
->coincident
[j
];
6765 graph
->n_total_row
-= n
;
6767 graph
->n_total_row
+= n_new
;
6768 graph
->n_row
+= n_new
;
6773 /* Merge the clusters marked for merging in "c" into a single
6774 * cluster using the cluster schedule in the current band of "merge_graph".
6775 * The representative SCC for the new cluster is the SCC with
6776 * the smallest index.
6778 * The current band schedule of each SCC in the new cluster is obtained
6779 * by applying the schedule of the corresponding original cluster
6780 * to the original band schedule.
6781 * All SCCs in the new cluster have the same number of schedule rows.
6783 static isl_stat
merge(isl_ctx
*ctx
, struct isl_clustering
*c
,
6784 struct isl_sched_graph
*merge_graph
)
6790 for (i
= 0; i
< c
->n
; ++i
) {
6791 struct isl_sched_node
*node
;
6793 if (!c
->scc_in_merge
[i
])
6797 space
= cluster_space(&c
->scc
[i
], c
->scc_cluster
[i
]);
6798 node
= graph_find_node(ctx
, merge_graph
, space
);
6799 isl_space_free(space
);
6801 return isl_stat_error
;
6802 if (!is_node(merge_graph
, node
))
6803 isl_die(ctx
, isl_error_internal
,
6804 "unable to find cluster",
6805 return isl_stat_error
);
6806 if (transform(ctx
, &c
->scc
[i
], node
) < 0)
6807 return isl_stat_error
;
6808 c
->scc_cluster
[i
] = cluster
;
6814 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
6815 * by scheduling the current cluster bands with respect to each other.
6817 * Construct a dependence graph with a space for each cluster and
6818 * with the coordinates of each space corresponding to the schedule
6819 * dimensions of the current band of that cluster.
6820 * Construct a cluster schedule in this cluster dependence graph and
6821 * apply it to the current cluster bands if it is applicable
6822 * according to ok_to_merge.
6824 * If the number of remaining schedule dimensions in a cluster
6825 * with a non-maximal current schedule dimension is greater than
6826 * the number of remaining schedule dimensions in clusters
6827 * with a maximal current schedule dimension, then restrict
6828 * the number of rows to be computed in the cluster schedule
6829 * to the minimal such non-maximal current schedule dimension.
6830 * Do this by adjusting merge_graph.maxvar.
6832 * Return isl_bool_true if the clusters have effectively been merged
6833 * into a single cluster.
6835 * Note that since the standard scheduling algorithm minimizes the maximal
6836 * distance over proximity constraints, the proximity constraints between
6837 * the merged clusters may not be optimized any further than what is
6838 * sufficient to bring the distances within the limits of the internal
6839 * proximity constraints inside the individual clusters.
6840 * It may therefore make sense to perform an additional translation step
6841 * to bring the clusters closer to each other, while maintaining
6842 * the linear part of the merging schedule found using the standard
6843 * scheduling algorithm.
6845 static isl_bool
try_merge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
6846 struct isl_clustering
*c
)
6848 struct isl_sched_graph merge_graph
= { 0 };
6851 if (init_merge_graph(ctx
, graph
, c
, &merge_graph
) < 0)
6854 if (compute_maxvar(&merge_graph
) < 0)
6856 if (adjust_maxvar_to_slack(ctx
, &merge_graph
,c
) < 0)
6858 if (compute_schedule_wcc_band(ctx
, &merge_graph
) < 0)
6860 merged
= ok_to_merge(ctx
, graph
, c
, &merge_graph
);
6861 if (merged
&& merge(ctx
, c
, &merge_graph
) < 0)
6864 graph_free(ctx
, &merge_graph
);
6867 graph_free(ctx
, &merge_graph
);
6868 return isl_bool_error
;
6871 /* Is there any edge marked "no_merge" between two SCCs that are
6872 * about to be merged (i.e., that are set in "scc_in_merge")?
6873 * "merge_edge" is the proximity edge along which the clusters of SCCs
6874 * are going to be merged.
6876 * If there is any edge between two SCCs with a negative weight,
6877 * while the weight of "merge_edge" is non-negative, then this
6878 * means that the edge was postponed. "merge_edge" should then
6879 * also be postponed since merging along the edge with negative weight should
6880 * be postponed until all edges with non-negative weight have been tried.
6881 * Replace the weight of "merge_edge" by a negative weight as well and
6882 * tell the caller not to attempt a merge.
6884 static int any_no_merge(struct isl_sched_graph
*graph
, int *scc_in_merge
,
6885 struct isl_sched_edge
*merge_edge
)
6889 for (i
= 0; i
< graph
->n_edge
; ++i
) {
6890 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
6892 if (!scc_in_merge
[edge
->src
->scc
])
6894 if (!scc_in_merge
[edge
->dst
->scc
])
6898 if (merge_edge
->weight
>= 0 && edge
->weight
< 0) {
6899 merge_edge
->weight
-= graph
->max_weight
+ 1;
6907 /* Merge the two clusters in "c" connected by the edge in "graph"
6908 * with index "edge" into a single cluster.
6909 * If it turns out to be impossible to merge these two clusters,
6910 * then mark the edge as "no_merge" such that it will not be
6913 * First mark all SCCs that need to be merged. This includes the SCCs
6914 * in the two clusters, but it may also include the SCCs
6915 * of intermediate clusters.
6916 * If there is already a no_merge edge between any pair of such SCCs,
6917 * then simply mark the current edge as no_merge as well.
6918 * Likewise, if any of those edges was postponed by has_bounded_distances,
6919 * then postpone the current edge as well.
6920 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
6921 * if the clusters did not end up getting merged, unless the non-merge
6922 * is due to the fact that the edge was postponed. This postponement
6923 * can be recognized by a change in weight (from non-negative to negative).
6925 static isl_stat
merge_clusters_along_edge(isl_ctx
*ctx
,
6926 struct isl_sched_graph
*graph
, int edge
, struct isl_clustering
*c
)
6929 int edge_weight
= graph
->edge
[edge
].weight
;
6931 if (mark_merge_sccs(ctx
, graph
, edge
, c
) < 0)
6932 return isl_stat_error
;
6934 if (any_no_merge(graph
, c
->scc_in_merge
, &graph
->edge
[edge
]))
6935 merged
= isl_bool_false
;
6937 merged
= try_merge(ctx
, graph
, c
);
6939 return isl_stat_error
;
6940 if (!merged
&& edge_weight
== graph
->edge
[edge
].weight
)
6941 graph
->edge
[edge
].no_merge
= 1;
6946 /* Does "node" belong to the cluster identified by "cluster"?
6948 static int node_cluster_exactly(struct isl_sched_node
*node
, int cluster
)
6950 return node
->cluster
== cluster
;
6953 /* Does "edge" connect two nodes belonging to the cluster
6954 * identified by "cluster"?
6956 static int edge_cluster_exactly(struct isl_sched_edge
*edge
, int cluster
)
6958 return edge
->src
->cluster
== cluster
&& edge
->dst
->cluster
== cluster
;
6961 /* Swap the schedule of "node1" and "node2".
6962 * Both nodes have been derived from the same node in a common parent graph.
6963 * Since the "coincident" field is shared with that node
6964 * in the parent graph, there is no need to also swap this field.
6966 static void swap_sched(struct isl_sched_node
*node1
,
6967 struct isl_sched_node
*node2
)
6972 sched
= node1
->sched
;
6973 node1
->sched
= node2
->sched
;
6974 node2
->sched
= sched
;
6976 sched_map
= node1
->sched_map
;
6977 node1
->sched_map
= node2
->sched_map
;
6978 node2
->sched_map
= sched_map
;
6981 /* Copy the current band schedule from the SCCs that form the cluster
6982 * with index "pos" to the actual cluster at position "pos".
6983 * By construction, the index of the first SCC that belongs to the cluster
6986 * The order of the nodes inside both the SCCs and the cluster
6987 * is assumed to be same as the order in the original "graph".
6989 * Since the SCC graphs will no longer be used after this function,
6990 * the schedules are actually swapped rather than copied.
6992 static isl_stat
copy_partial(struct isl_sched_graph
*graph
,
6993 struct isl_clustering
*c
, int pos
)
6997 c
->cluster
[pos
].n_total_row
= c
->scc
[pos
].n_total_row
;
6998 c
->cluster
[pos
].n_row
= c
->scc
[pos
].n_row
;
6999 c
->cluster
[pos
].maxvar
= c
->scc
[pos
].maxvar
;
7001 for (i
= 0; i
< graph
->n
; ++i
) {
7005 if (graph
->node
[i
].cluster
!= pos
)
7007 s
= graph
->node
[i
].scc
;
7008 k
= c
->scc_node
[s
]++;
7009 swap_sched(&c
->cluster
[pos
].node
[j
], &c
->scc
[s
].node
[k
]);
7010 if (c
->scc
[s
].maxvar
> c
->cluster
[pos
].maxvar
)
7011 c
->cluster
[pos
].maxvar
= c
->scc
[s
].maxvar
;
7018 /* Is there a (conditional) validity dependence from node[j] to node[i],
7019 * forcing node[i] to follow node[j] or do the nodes belong to the same
7022 static isl_bool
node_follows_strong_or_same_cluster(int i
, int j
, void *user
)
7024 struct isl_sched_graph
*graph
= user
;
7026 if (graph
->node
[i
].cluster
== graph
->node
[j
].cluster
)
7027 return isl_bool_true
;
7028 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
7031 /* Extract the merged clusters of SCCs in "graph", sort them, and
7032 * store them in c->clusters. Update c->scc_cluster accordingly.
7034 * First keep track of the cluster containing the SCC to which a node
7035 * belongs in the node itself.
7036 * Then extract the clusters into c->clusters, copying the current
7037 * band schedule from the SCCs that belong to the cluster.
7038 * Do this only once per cluster.
7040 * Finally, topologically sort the clusters and update c->scc_cluster
7041 * to match the new scc numbering. While the SCCs were originally
7042 * sorted already, some SCCs that depend on some other SCCs may
7043 * have been merged with SCCs that appear before these other SCCs.
7044 * A reordering may therefore be required.
7046 static isl_stat
extract_clusters(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
7047 struct isl_clustering
*c
)
7051 for (i
= 0; i
< graph
->n
; ++i
)
7052 graph
->node
[i
].cluster
= c
->scc_cluster
[graph
->node
[i
].scc
];
7054 for (i
= 0; i
< graph
->scc
; ++i
) {
7055 if (c
->scc_cluster
[i
] != i
)
7057 if (extract_sub_graph(ctx
, graph
, &node_cluster_exactly
,
7058 &edge_cluster_exactly
, i
, &c
->cluster
[i
]) < 0)
7059 return isl_stat_error
;
7060 c
->cluster
[i
].src_scc
= -1;
7061 c
->cluster
[i
].dst_scc
= -1;
7062 if (copy_partial(graph
, c
, i
) < 0)
7063 return isl_stat_error
;
7066 if (detect_ccs(ctx
, graph
, &node_follows_strong_or_same_cluster
) < 0)
7067 return isl_stat_error
;
7068 for (i
= 0; i
< graph
->n
; ++i
)
7069 c
->scc_cluster
[graph
->node
[i
].scc
] = graph
->node
[i
].cluster
;
7074 /* Compute weights on the proximity edges of "graph" that can
7075 * be used by find_proximity to find the most appropriate
7076 * proximity edge to use to merge two clusters in "c".
7077 * The weights are also used by has_bounded_distances to determine
7078 * whether the merge should be allowed.
7079 * Store the maximum of the computed weights in graph->max_weight.
7081 * The computed weight is a measure for the number of remaining schedule
7082 * dimensions that can still be completely aligned.
7083 * In particular, compute the number of equalities between
7084 * input dimensions and output dimensions in the proximity constraints.
7085 * The directions that are already handled by outer schedule bands
7086 * are projected out prior to determining this number.
7088 * Edges that will never be considered by find_proximity are ignored.
7090 static isl_stat
compute_weights(struct isl_sched_graph
*graph
,
7091 struct isl_clustering
*c
)
7095 graph
->max_weight
= 0;
7097 for (i
= 0; i
< graph
->n_edge
; ++i
) {
7098 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
7099 struct isl_sched_node
*src
= edge
->src
;
7100 struct isl_sched_node
*dst
= edge
->dst
;
7101 isl_basic_map
*hull
;
7105 prox
= is_non_empty_proximity(edge
);
7107 return isl_stat_error
;
7110 if (bad_cluster(&c
->scc
[edge
->src
->scc
]) ||
7111 bad_cluster(&c
->scc
[edge
->dst
->scc
]))
7113 if (c
->scc_cluster
[edge
->dst
->scc
] ==
7114 c
->scc_cluster
[edge
->src
->scc
])
7117 hull
= isl_map_affine_hull(isl_map_copy(edge
->map
));
7118 hull
= isl_basic_map_transform_dims(hull
, isl_dim_in
, 0,
7119 isl_mat_copy(src
->vmap
));
7120 hull
= isl_basic_map_transform_dims(hull
, isl_dim_out
, 0,
7121 isl_mat_copy(dst
->vmap
));
7122 hull
= isl_basic_map_project_out(hull
,
7123 isl_dim_in
, 0, src
->rank
);
7124 hull
= isl_basic_map_project_out(hull
,
7125 isl_dim_out
, 0, dst
->rank
);
7126 hull
= isl_basic_map_remove_divs(hull
);
7127 n_in
= isl_basic_map_dim(hull
, isl_dim_in
);
7128 n_out
= isl_basic_map_dim(hull
, isl_dim_out
);
7129 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7130 isl_dim_in
, 0, n_in
);
7131 hull
= isl_basic_map_drop_constraints_not_involving_dims(hull
,
7132 isl_dim_out
, 0, n_out
);
7134 return isl_stat_error
;
7135 edge
->weight
= isl_basic_map_n_equality(hull
);
7136 isl_basic_map_free(hull
);
7138 if (edge
->weight
> graph
->max_weight
)
7139 graph
->max_weight
= edge
->weight
;
7145 /* Call compute_schedule_finish_band on each of the clusters in "c"
7146 * in their topological order. This order is determined by the scc
7147 * fields of the nodes in "graph".
7148 * Combine the results in a sequence expressing the topological order.
7150 * If there is only one cluster left, then there is no need to introduce
7151 * a sequence node. Also, in this case, the cluster necessarily contains
7152 * the SCC at position 0 in the original graph and is therefore also
7153 * stored in the first cluster of "c".
7155 static __isl_give isl_schedule_node
*finish_bands_clustering(
7156 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7157 struct isl_clustering
*c
)
7161 isl_union_set_list
*filters
;
7163 if (graph
->scc
== 1)
7164 return compute_schedule_finish_band(node
, &c
->cluster
[0], 0);
7166 ctx
= isl_schedule_node_get_ctx(node
);
7168 filters
= extract_sccs(ctx
, graph
);
7169 node
= isl_schedule_node_insert_sequence(node
, filters
);
7171 for (i
= 0; i
< graph
->scc
; ++i
) {
7172 int j
= c
->scc_cluster
[i
];
7173 node
= isl_schedule_node_child(node
, i
);
7174 node
= isl_schedule_node_child(node
, 0);
7175 node
= compute_schedule_finish_band(node
, &c
->cluster
[j
], 0);
7176 node
= isl_schedule_node_parent(node
);
7177 node
= isl_schedule_node_parent(node
);
7183 /* Compute a schedule for a connected dependence graph by first considering
7184 * each strongly connected component (SCC) in the graph separately and then
7185 * incrementally combining them into clusters.
7186 * Return the updated schedule node.
7188 * Initially, each cluster consists of a single SCC, each with its
7189 * own band schedule. The algorithm then tries to merge pairs
7190 * of clusters along a proximity edge until no more suitable
7191 * proximity edges can be found. During this merging, the schedule
7192 * is maintained in the individual SCCs.
7193 * After the merging is completed, the full resulting clusters
7194 * are extracted and in finish_bands_clustering,
7195 * compute_schedule_finish_band is called on each of them to integrate
7196 * the band into "node" and to continue the computation.
7198 * compute_weights initializes the weights that are used by find_proximity.
7200 static __isl_give isl_schedule_node
*compute_schedule_wcc_clustering(
7201 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7204 struct isl_clustering c
;
7207 ctx
= isl_schedule_node_get_ctx(node
);
7209 if (clustering_init(ctx
, &c
, graph
) < 0)
7212 if (compute_weights(graph
, &c
) < 0)
7216 i
= find_proximity(graph
, &c
);
7219 if (i
>= graph
->n_edge
)
7221 if (merge_clusters_along_edge(ctx
, graph
, i
, &c
) < 0)
7225 if (extract_clusters(ctx
, graph
, &c
) < 0)
7228 node
= finish_bands_clustering(node
, graph
, &c
);
7230 clustering_free(ctx
, &c
);
7233 clustering_free(ctx
, &c
);
7234 return isl_schedule_node_free(node
);
7237 /* Compute a schedule for a connected dependence graph and return
7238 * the updated schedule node.
7240 * If Feautrier's algorithm is selected, we first recursively try to satisfy
7241 * as many validity dependences as possible. When all validity dependences
7242 * are satisfied we extend the schedule to a full-dimensional schedule.
7244 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
7245 * depending on whether the user has selected the option to try and
7246 * compute a schedule for the entire (weakly connected) component first.
7247 * If there is only a single strongly connected component (SCC), then
7248 * there is no point in trying to combine SCCs
7249 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
7250 * is called instead.
7252 static __isl_give isl_schedule_node
*compute_schedule_wcc(
7253 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
7260 ctx
= isl_schedule_node_get_ctx(node
);
7261 if (detect_sccs(ctx
, graph
) < 0)
7262 return isl_schedule_node_free(node
);
7264 if (compute_maxvar(graph
) < 0)
7265 return isl_schedule_node_free(node
);
7267 if (need_feautrier_step(ctx
, graph
))
7268 return compute_schedule_wcc_feautrier(node
, graph
);
7270 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
7271 return compute_schedule_wcc_whole(node
, graph
);
7273 return compute_schedule_wcc_clustering(node
, graph
);
7276 /* Compute a schedule for each group of nodes identified by node->scc
7277 * separately and then combine them in a sequence node (or as set node
7278 * if graph->weak is set) inserted at position "node" of the schedule tree.
7279 * Return the updated schedule node.
7281 * If "wcc" is set then each of the groups belongs to a single
7282 * weakly connected component in the dependence graph so that
7283 * there is no need for compute_sub_schedule to look for weakly
7284 * connected components.
7286 * If a set node would be introduced and if the number of components
7287 * is equal to the number of nodes, then check if the schedule
7288 * is already complete. If so, a redundant set node would be introduced
7289 * (without any further descendants) stating that the statements
7290 * can be executed in arbitrary order, which is also expressed
7291 * by the absence of any node. Refrain from inserting any nodes
7292 * in this case and simply return.
7294 static __isl_give isl_schedule_node
*compute_component_schedule(
7295 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
7300 isl_union_set_list
*filters
;
7305 if (graph
->weak
&& graph
->scc
== graph
->n
) {
7306 if (compute_maxvar(graph
) < 0)
7307 return isl_schedule_node_free(node
);
7308 if (graph
->n_row
>= graph
->maxvar
)
7312 ctx
= isl_schedule_node_get_ctx(node
);
7313 filters
= extract_sccs(ctx
, graph
);
7315 node
= isl_schedule_node_insert_set(node
, filters
);
7317 node
= isl_schedule_node_insert_sequence(node
, filters
);
7319 for (component
= 0; component
< graph
->scc
; ++component
) {
7320 node
= isl_schedule_node_child(node
, component
);
7321 node
= isl_schedule_node_child(node
, 0);
7322 node
= compute_sub_schedule(node
, ctx
, graph
,
7324 &edge_scc_exactly
, component
, wcc
);
7325 node
= isl_schedule_node_parent(node
);
7326 node
= isl_schedule_node_parent(node
);
7332 /* Compute a schedule for the given dependence graph and insert it at "node".
7333 * Return the updated schedule node.
7335 * We first check if the graph is connected (through validity and conditional
7336 * validity dependences) and, if not, compute a schedule
7337 * for each component separately.
7338 * If the schedule_serialize_sccs option is set, then we check for strongly
7339 * connected components instead and compute a separate schedule for
7340 * each such strongly connected component.
7342 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
7343 struct isl_sched_graph
*graph
)
7350 ctx
= isl_schedule_node_get_ctx(node
);
7351 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
7352 if (detect_sccs(ctx
, graph
) < 0)
7353 return isl_schedule_node_free(node
);
7355 if (detect_wccs(ctx
, graph
) < 0)
7356 return isl_schedule_node_free(node
);
7360 return compute_component_schedule(node
, graph
, 1);
7362 return compute_schedule_wcc(node
, graph
);
7365 /* Compute a schedule on sc->domain that respects the given schedule
7368 * In particular, the schedule respects all the validity dependences.
7369 * If the default isl scheduling algorithm is used, it tries to minimize
7370 * the dependence distances over the proximity dependences.
7371 * If Feautrier's scheduling algorithm is used, the proximity dependence
7372 * distances are only minimized during the extension to a full-dimensional
7375 * If there are any condition and conditional validity dependences,
7376 * then the conditional validity dependences may be violated inside
7377 * a tilable band, provided they have no adjacent non-local
7378 * condition dependences.
7380 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
7381 __isl_take isl_schedule_constraints
*sc
)
7383 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
7384 struct isl_sched_graph graph
= { 0 };
7385 isl_schedule
*sched
;
7386 isl_schedule_node
*node
;
7387 isl_union_set
*domain
;
7389 sc
= isl_schedule_constraints_align_params(sc
);
7391 domain
= isl_schedule_constraints_get_domain(sc
);
7392 if (isl_union_set_n_set(domain
) == 0) {
7393 isl_schedule_constraints_free(sc
);
7394 return isl_schedule_from_domain(domain
);
7397 if (graph_init(&graph
, sc
) < 0)
7398 domain
= isl_union_set_free(domain
);
7400 node
= isl_schedule_node_from_domain(domain
);
7401 node
= isl_schedule_node_child(node
, 0);
7403 node
= compute_schedule(node
, &graph
);
7404 sched
= isl_schedule_node_get_schedule(node
);
7405 isl_schedule_node_free(node
);
7407 graph_free(ctx
, &graph
);
7408 isl_schedule_constraints_free(sc
);
7413 /* Compute a schedule for the given union of domains that respects
7414 * all the validity dependences and minimizes
7415 * the dependence distances over the proximity dependences.
7417 * This function is kept for backward compatibility.
7419 __isl_give isl_schedule
*isl_union_set_compute_schedule(
7420 __isl_take isl_union_set
*domain
,
7421 __isl_take isl_union_map
*validity
,
7422 __isl_take isl_union_map
*proximity
)
7424 isl_schedule_constraints
*sc
;
7426 sc
= isl_schedule_constraints_on_domain(domain
);
7427 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
7428 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
7430 return isl_schedule_constraints_compute_schedule(sc
);