isl_basic_map_range_map: rename "dim" variable to "space"
[isl.git] / isl_polynomial.c
blobdbe58ae1b72165677fc69fcd9975f648e899d9f3
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
16 #include <isl_seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
31 #undef BASE
32 #define BASE pw_qpolynomial
34 #include <isl_list_templ.c>
36 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
38 switch (type) {
39 case isl_dim_param: return 0;
40 case isl_dim_in: return dim->nparam;
41 case isl_dim_out: return dim->nparam + dim->n_in;
42 default: return 0;
46 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
48 if (!up)
49 return -1;
51 return up->var < 0;
54 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
56 if (!up)
57 return NULL;
59 isl_assert(up->ctx, up->var < 0, return NULL);
61 return (struct isl_upoly_cst *)up;
64 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
66 if (!up)
67 return NULL;
69 isl_assert(up->ctx, up->var >= 0, return NULL);
71 return (struct isl_upoly_rec *)up;
74 /* Compare two polynomials.
76 * Return -1 if "up1" is "smaller" than "up2", 1 if "up1" is "greater"
77 * than "up2" and 0 if they are equal.
79 static int isl_upoly_plain_cmp(__isl_keep struct isl_upoly *up1,
80 __isl_keep struct isl_upoly *up2)
82 int i;
83 struct isl_upoly_rec *rec1, *rec2;
85 if (up1 == up2)
86 return 0;
87 if (!up1)
88 return -1;
89 if (!up2)
90 return 1;
91 if (up1->var != up2->var)
92 return up1->var - up2->var;
94 if (isl_upoly_is_cst(up1)) {
95 struct isl_upoly_cst *cst1, *cst2;
96 int cmp;
98 cst1 = isl_upoly_as_cst(up1);
99 cst2 = isl_upoly_as_cst(up2);
100 if (!cst1 || !cst2)
101 return 0;
102 cmp = isl_int_cmp(cst1->n, cst2->n);
103 if (cmp != 0)
104 return cmp;
105 return isl_int_cmp(cst1->d, cst2->d);
108 rec1 = isl_upoly_as_rec(up1);
109 rec2 = isl_upoly_as_rec(up2);
110 if (!rec1 || !rec2)
111 return 0;
113 if (rec1->n != rec2->n)
114 return rec1->n - rec2->n;
116 for (i = 0; i < rec1->n; ++i) {
117 int cmp = isl_upoly_plain_cmp(rec1->p[i], rec2->p[i]);
118 if (cmp != 0)
119 return cmp;
122 return 0;
125 isl_bool isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
126 __isl_keep struct isl_upoly *up2)
128 int i;
129 struct isl_upoly_rec *rec1, *rec2;
131 if (!up1 || !up2)
132 return isl_bool_error;
133 if (up1 == up2)
134 return isl_bool_true;
135 if (up1->var != up2->var)
136 return isl_bool_false;
137 if (isl_upoly_is_cst(up1)) {
138 struct isl_upoly_cst *cst1, *cst2;
139 cst1 = isl_upoly_as_cst(up1);
140 cst2 = isl_upoly_as_cst(up2);
141 if (!cst1 || !cst2)
142 return isl_bool_error;
143 return isl_int_eq(cst1->n, cst2->n) &&
144 isl_int_eq(cst1->d, cst2->d);
147 rec1 = isl_upoly_as_rec(up1);
148 rec2 = isl_upoly_as_rec(up2);
149 if (!rec1 || !rec2)
150 return isl_bool_error;
152 if (rec1->n != rec2->n)
153 return isl_bool_false;
155 for (i = 0; i < rec1->n; ++i) {
156 isl_bool eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
157 if (eq < 0 || !eq)
158 return eq;
161 return isl_bool_true;
164 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
166 struct isl_upoly_cst *cst;
168 if (!up)
169 return -1;
170 if (!isl_upoly_is_cst(up))
171 return 0;
173 cst = isl_upoly_as_cst(up);
174 if (!cst)
175 return -1;
177 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
180 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
182 struct isl_upoly_cst *cst;
184 if (!up)
185 return 0;
186 if (!isl_upoly_is_cst(up))
187 return 0;
189 cst = isl_upoly_as_cst(up);
190 if (!cst)
191 return 0;
193 return isl_int_sgn(cst->n);
196 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
198 struct isl_upoly_cst *cst;
200 if (!up)
201 return -1;
202 if (!isl_upoly_is_cst(up))
203 return 0;
205 cst = isl_upoly_as_cst(up);
206 if (!cst)
207 return -1;
209 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
212 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
214 struct isl_upoly_cst *cst;
216 if (!up)
217 return -1;
218 if (!isl_upoly_is_cst(up))
219 return 0;
221 cst = isl_upoly_as_cst(up);
222 if (!cst)
223 return -1;
225 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
228 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
230 struct isl_upoly_cst *cst;
232 if (!up)
233 return -1;
234 if (!isl_upoly_is_cst(up))
235 return 0;
237 cst = isl_upoly_as_cst(up);
238 if (!cst)
239 return -1;
241 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
244 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
246 struct isl_upoly_cst *cst;
248 if (!up)
249 return -1;
250 if (!isl_upoly_is_cst(up))
251 return 0;
253 cst = isl_upoly_as_cst(up);
254 if (!cst)
255 return -1;
257 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
260 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
262 struct isl_upoly_cst *cst;
264 if (!up)
265 return -1;
266 if (!isl_upoly_is_cst(up))
267 return 0;
269 cst = isl_upoly_as_cst(up);
270 if (!cst)
271 return -1;
273 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
276 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
278 struct isl_upoly_cst *cst;
280 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
281 if (!cst)
282 return NULL;
284 cst->up.ref = 1;
285 cst->up.ctx = ctx;
286 isl_ctx_ref(ctx);
287 cst->up.var = -1;
289 isl_int_init(cst->n);
290 isl_int_init(cst->d);
292 return cst;
295 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
297 struct isl_upoly_cst *cst;
299 cst = isl_upoly_cst_alloc(ctx);
300 if (!cst)
301 return NULL;
303 isl_int_set_si(cst->n, 0);
304 isl_int_set_si(cst->d, 1);
306 return &cst->up;
309 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
311 struct isl_upoly_cst *cst;
313 cst = isl_upoly_cst_alloc(ctx);
314 if (!cst)
315 return NULL;
317 isl_int_set_si(cst->n, 1);
318 isl_int_set_si(cst->d, 1);
320 return &cst->up;
323 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
325 struct isl_upoly_cst *cst;
327 cst = isl_upoly_cst_alloc(ctx);
328 if (!cst)
329 return NULL;
331 isl_int_set_si(cst->n, 1);
332 isl_int_set_si(cst->d, 0);
334 return &cst->up;
337 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
339 struct isl_upoly_cst *cst;
341 cst = isl_upoly_cst_alloc(ctx);
342 if (!cst)
343 return NULL;
345 isl_int_set_si(cst->n, -1);
346 isl_int_set_si(cst->d, 0);
348 return &cst->up;
351 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
353 struct isl_upoly_cst *cst;
355 cst = isl_upoly_cst_alloc(ctx);
356 if (!cst)
357 return NULL;
359 isl_int_set_si(cst->n, 0);
360 isl_int_set_si(cst->d, 0);
362 return &cst->up;
365 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
366 isl_int n, isl_int d)
368 struct isl_upoly_cst *cst;
370 cst = isl_upoly_cst_alloc(ctx);
371 if (!cst)
372 return NULL;
374 isl_int_set(cst->n, n);
375 isl_int_set(cst->d, d);
377 return &cst->up;
380 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
381 int var, int size)
383 struct isl_upoly_rec *rec;
385 isl_assert(ctx, var >= 0, return NULL);
386 isl_assert(ctx, size >= 0, return NULL);
387 rec = isl_calloc(ctx, struct isl_upoly_rec,
388 sizeof(struct isl_upoly_rec) +
389 size * sizeof(struct isl_upoly *));
390 if (!rec)
391 return NULL;
393 rec->up.ref = 1;
394 rec->up.ctx = ctx;
395 isl_ctx_ref(ctx);
396 rec->up.var = var;
398 rec->n = 0;
399 rec->size = size;
401 return rec;
404 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
405 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
407 qp = isl_qpolynomial_cow(qp);
408 if (!qp || !dim)
409 goto error;
411 isl_space_free(qp->dim);
412 qp->dim = dim;
414 return qp;
415 error:
416 isl_qpolynomial_free(qp);
417 isl_space_free(dim);
418 return NULL;
421 /* Reset the space of "qp". This function is called from isl_pw_templ.c
422 * and doesn't know if the space of an element object is represented
423 * directly or through its domain. It therefore passes along both.
425 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
426 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
427 __isl_take isl_space *domain)
429 isl_space_free(space);
430 return isl_qpolynomial_reset_domain_space(qp, domain);
433 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
435 return qp ? qp->dim->ctx : NULL;
438 __isl_give isl_space *isl_qpolynomial_get_domain_space(
439 __isl_keep isl_qpolynomial *qp)
441 return qp ? isl_space_copy(qp->dim) : NULL;
444 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
446 isl_space *space;
447 if (!qp)
448 return NULL;
449 space = isl_space_copy(qp->dim);
450 space = isl_space_from_domain(space);
451 space = isl_space_add_dims(space, isl_dim_out, 1);
452 return space;
455 /* Return the number of variables of the given type in the domain of "qp".
457 unsigned isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
458 enum isl_dim_type type)
460 if (!qp)
461 return 0;
462 if (type == isl_dim_div)
463 return qp->div->n_row;
464 if (type == isl_dim_all)
465 return isl_space_dim(qp->dim, isl_dim_all) +
466 isl_qpolynomial_domain_dim(qp, isl_dim_div);
467 return isl_space_dim(qp->dim, type);
470 /* Externally, an isl_qpolynomial has a map space, but internally, the
471 * ls field corresponds to the domain of that space.
473 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
474 enum isl_dim_type type)
476 if (!qp)
477 return 0;
478 if (type == isl_dim_out)
479 return 1;
480 if (type == isl_dim_in)
481 type = isl_dim_set;
482 return isl_qpolynomial_domain_dim(qp, type);
485 /* Return the offset of the first coefficient of type "type" in
486 * the domain of "qp".
488 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
489 enum isl_dim_type type)
491 if (!qp)
492 return 0;
493 switch (type) {
494 case isl_dim_cst:
495 return 0;
496 case isl_dim_param:
497 case isl_dim_set:
498 return 1 + isl_space_offset(qp->dim, type);
499 case isl_dim_div:
500 return 1 + isl_space_dim(qp->dim, isl_dim_all);
501 default:
502 return 0;
506 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
508 return qp ? isl_upoly_is_zero(qp->upoly) : isl_bool_error;
511 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
513 return qp ? isl_upoly_is_one(qp->upoly) : isl_bool_error;
516 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
518 return qp ? isl_upoly_is_nan(qp->upoly) : isl_bool_error;
521 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
523 return qp ? isl_upoly_is_infty(qp->upoly) : isl_bool_error;
526 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
528 return qp ? isl_upoly_is_neginfty(qp->upoly) : isl_bool_error;
531 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
533 return qp ? isl_upoly_sgn(qp->upoly) : 0;
536 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
538 isl_int_clear(cst->n);
539 isl_int_clear(cst->d);
542 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
544 int i;
546 for (i = 0; i < rec->n; ++i)
547 isl_upoly_free(rec->p[i]);
550 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
552 if (!up)
553 return NULL;
555 up->ref++;
556 return up;
559 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
561 struct isl_upoly_cst *cst;
562 struct isl_upoly_cst *dup;
564 cst = isl_upoly_as_cst(up);
565 if (!cst)
566 return NULL;
568 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
569 if (!dup)
570 return NULL;
571 isl_int_set(dup->n, cst->n);
572 isl_int_set(dup->d, cst->d);
574 return &dup->up;
577 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
579 int i;
580 struct isl_upoly_rec *rec;
581 struct isl_upoly_rec *dup;
583 rec = isl_upoly_as_rec(up);
584 if (!rec)
585 return NULL;
587 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
588 if (!dup)
589 return NULL;
591 for (i = 0; i < rec->n; ++i) {
592 dup->p[i] = isl_upoly_copy(rec->p[i]);
593 if (!dup->p[i])
594 goto error;
595 dup->n++;
598 return &dup->up;
599 error:
600 isl_upoly_free(&dup->up);
601 return NULL;
604 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
606 if (!up)
607 return NULL;
609 if (isl_upoly_is_cst(up))
610 return isl_upoly_dup_cst(up);
611 else
612 return isl_upoly_dup_rec(up);
615 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
617 if (!up)
618 return NULL;
620 if (up->ref == 1)
621 return up;
622 up->ref--;
623 return isl_upoly_dup(up);
626 __isl_null struct isl_upoly *isl_upoly_free(__isl_take struct isl_upoly *up)
628 if (!up)
629 return NULL;
631 if (--up->ref > 0)
632 return NULL;
634 if (up->var < 0)
635 upoly_free_cst((struct isl_upoly_cst *)up);
636 else
637 upoly_free_rec((struct isl_upoly_rec *)up);
639 isl_ctx_deref(up->ctx);
640 free(up);
641 return NULL;
644 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
646 isl_int gcd;
648 isl_int_init(gcd);
649 isl_int_gcd(gcd, cst->n, cst->d);
650 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
651 isl_int_divexact(cst->n, cst->n, gcd);
652 isl_int_divexact(cst->d, cst->d, gcd);
654 isl_int_clear(gcd);
657 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
658 __isl_take struct isl_upoly *up2)
660 struct isl_upoly_cst *cst1;
661 struct isl_upoly_cst *cst2;
663 up1 = isl_upoly_cow(up1);
664 if (!up1 || !up2)
665 goto error;
667 cst1 = isl_upoly_as_cst(up1);
668 cst2 = isl_upoly_as_cst(up2);
670 if (isl_int_eq(cst1->d, cst2->d))
671 isl_int_add(cst1->n, cst1->n, cst2->n);
672 else {
673 isl_int_mul(cst1->n, cst1->n, cst2->d);
674 isl_int_addmul(cst1->n, cst2->n, cst1->d);
675 isl_int_mul(cst1->d, cst1->d, cst2->d);
678 isl_upoly_cst_reduce(cst1);
680 isl_upoly_free(up2);
681 return up1;
682 error:
683 isl_upoly_free(up1);
684 isl_upoly_free(up2);
685 return NULL;
688 static __isl_give struct isl_upoly *replace_by_zero(
689 __isl_take struct isl_upoly *up)
691 struct isl_ctx *ctx;
693 if (!up)
694 return NULL;
695 ctx = up->ctx;
696 isl_upoly_free(up);
697 return isl_upoly_zero(ctx);
700 static __isl_give struct isl_upoly *replace_by_constant_term(
701 __isl_take struct isl_upoly *up)
703 struct isl_upoly_rec *rec;
704 struct isl_upoly *cst;
706 if (!up)
707 return NULL;
709 rec = isl_upoly_as_rec(up);
710 if (!rec)
711 goto error;
712 cst = isl_upoly_copy(rec->p[0]);
713 isl_upoly_free(up);
714 return cst;
715 error:
716 isl_upoly_free(up);
717 return NULL;
720 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
721 __isl_take struct isl_upoly *up2)
723 int i;
724 struct isl_upoly_rec *rec1, *rec2;
726 if (!up1 || !up2)
727 goto error;
729 if (isl_upoly_is_nan(up1)) {
730 isl_upoly_free(up2);
731 return up1;
734 if (isl_upoly_is_nan(up2)) {
735 isl_upoly_free(up1);
736 return up2;
739 if (isl_upoly_is_zero(up1)) {
740 isl_upoly_free(up1);
741 return up2;
744 if (isl_upoly_is_zero(up2)) {
745 isl_upoly_free(up2);
746 return up1;
749 if (up1->var < up2->var)
750 return isl_upoly_sum(up2, up1);
752 if (up2->var < up1->var) {
753 struct isl_upoly_rec *rec;
754 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
755 isl_upoly_free(up1);
756 return up2;
758 up1 = isl_upoly_cow(up1);
759 rec = isl_upoly_as_rec(up1);
760 if (!rec)
761 goto error;
762 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
763 if (rec->n == 1)
764 up1 = replace_by_constant_term(up1);
765 return up1;
768 if (isl_upoly_is_cst(up1))
769 return isl_upoly_sum_cst(up1, up2);
771 rec1 = isl_upoly_as_rec(up1);
772 rec2 = isl_upoly_as_rec(up2);
773 if (!rec1 || !rec2)
774 goto error;
776 if (rec1->n < rec2->n)
777 return isl_upoly_sum(up2, up1);
779 up1 = isl_upoly_cow(up1);
780 rec1 = isl_upoly_as_rec(up1);
781 if (!rec1)
782 goto error;
784 for (i = rec2->n - 1; i >= 0; --i) {
785 rec1->p[i] = isl_upoly_sum(rec1->p[i],
786 isl_upoly_copy(rec2->p[i]));
787 if (!rec1->p[i])
788 goto error;
789 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
790 isl_upoly_free(rec1->p[i]);
791 rec1->n--;
795 if (rec1->n == 0)
796 up1 = replace_by_zero(up1);
797 else if (rec1->n == 1)
798 up1 = replace_by_constant_term(up1);
800 isl_upoly_free(up2);
802 return up1;
803 error:
804 isl_upoly_free(up1);
805 isl_upoly_free(up2);
806 return NULL;
809 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
810 __isl_take struct isl_upoly *up, isl_int v)
812 struct isl_upoly_cst *cst;
814 up = isl_upoly_cow(up);
815 if (!up)
816 return NULL;
818 cst = isl_upoly_as_cst(up);
820 isl_int_addmul(cst->n, cst->d, v);
822 return up;
825 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
826 __isl_take struct isl_upoly *up, isl_int v)
828 struct isl_upoly_rec *rec;
830 if (!up)
831 return NULL;
833 if (isl_upoly_is_cst(up))
834 return isl_upoly_cst_add_isl_int(up, v);
836 up = isl_upoly_cow(up);
837 rec = isl_upoly_as_rec(up);
838 if (!rec)
839 goto error;
841 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
842 if (!rec->p[0])
843 goto error;
845 return up;
846 error:
847 isl_upoly_free(up);
848 return NULL;
851 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
852 __isl_take struct isl_upoly *up, isl_int v)
854 struct isl_upoly_cst *cst;
856 if (isl_upoly_is_zero(up))
857 return up;
859 up = isl_upoly_cow(up);
860 if (!up)
861 return NULL;
863 cst = isl_upoly_as_cst(up);
865 isl_int_mul(cst->n, cst->n, v);
867 return up;
870 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
871 __isl_take struct isl_upoly *up, isl_int v)
873 int i;
874 struct isl_upoly_rec *rec;
876 if (!up)
877 return NULL;
879 if (isl_upoly_is_cst(up))
880 return isl_upoly_cst_mul_isl_int(up, v);
882 up = isl_upoly_cow(up);
883 rec = isl_upoly_as_rec(up);
884 if (!rec)
885 goto error;
887 for (i = 0; i < rec->n; ++i) {
888 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
889 if (!rec->p[i])
890 goto error;
893 return up;
894 error:
895 isl_upoly_free(up);
896 return NULL;
899 /* Multiply the constant polynomial "up" by "v".
901 static __isl_give struct isl_upoly *isl_upoly_cst_scale_val(
902 __isl_take struct isl_upoly *up, __isl_keep isl_val *v)
904 struct isl_upoly_cst *cst;
906 if (isl_upoly_is_zero(up))
907 return up;
909 up = isl_upoly_cow(up);
910 if (!up)
911 return NULL;
913 cst = isl_upoly_as_cst(up);
915 isl_int_mul(cst->n, cst->n, v->n);
916 isl_int_mul(cst->d, cst->d, v->d);
917 isl_upoly_cst_reduce(cst);
919 return up;
922 /* Multiply the polynomial "up" by "v".
924 static __isl_give struct isl_upoly *isl_upoly_scale_val(
925 __isl_take struct isl_upoly *up, __isl_keep isl_val *v)
927 int i;
928 struct isl_upoly_rec *rec;
930 if (!up)
931 return NULL;
933 if (isl_upoly_is_cst(up))
934 return isl_upoly_cst_scale_val(up, v);
936 up = isl_upoly_cow(up);
937 rec = isl_upoly_as_rec(up);
938 if (!rec)
939 goto error;
941 for (i = 0; i < rec->n; ++i) {
942 rec->p[i] = isl_upoly_scale_val(rec->p[i], v);
943 if (!rec->p[i])
944 goto error;
947 return up;
948 error:
949 isl_upoly_free(up);
950 return NULL;
953 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
954 __isl_take struct isl_upoly *up2)
956 struct isl_upoly_cst *cst1;
957 struct isl_upoly_cst *cst2;
959 up1 = isl_upoly_cow(up1);
960 if (!up1 || !up2)
961 goto error;
963 cst1 = isl_upoly_as_cst(up1);
964 cst2 = isl_upoly_as_cst(up2);
966 isl_int_mul(cst1->n, cst1->n, cst2->n);
967 isl_int_mul(cst1->d, cst1->d, cst2->d);
969 isl_upoly_cst_reduce(cst1);
971 isl_upoly_free(up2);
972 return up1;
973 error:
974 isl_upoly_free(up1);
975 isl_upoly_free(up2);
976 return NULL;
979 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
980 __isl_take struct isl_upoly *up2)
982 struct isl_upoly_rec *rec1;
983 struct isl_upoly_rec *rec2;
984 struct isl_upoly_rec *res = NULL;
985 int i, j;
986 int size;
988 rec1 = isl_upoly_as_rec(up1);
989 rec2 = isl_upoly_as_rec(up2);
990 if (!rec1 || !rec2)
991 goto error;
992 size = rec1->n + rec2->n - 1;
993 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
994 if (!res)
995 goto error;
997 for (i = 0; i < rec1->n; ++i) {
998 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
999 isl_upoly_copy(rec1->p[i]));
1000 if (!res->p[i])
1001 goto error;
1002 res->n++;
1004 for (; i < size; ++i) {
1005 res->p[i] = isl_upoly_zero(up1->ctx);
1006 if (!res->p[i])
1007 goto error;
1008 res->n++;
1010 for (i = 0; i < rec1->n; ++i) {
1011 for (j = 1; j < rec2->n; ++j) {
1012 struct isl_upoly *up;
1013 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
1014 isl_upoly_copy(rec1->p[i]));
1015 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
1016 if (!res->p[i + j])
1017 goto error;
1021 isl_upoly_free(up1);
1022 isl_upoly_free(up2);
1024 return &res->up;
1025 error:
1026 isl_upoly_free(up1);
1027 isl_upoly_free(up2);
1028 isl_upoly_free(&res->up);
1029 return NULL;
1032 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
1033 __isl_take struct isl_upoly *up2)
1035 if (!up1 || !up2)
1036 goto error;
1038 if (isl_upoly_is_nan(up1)) {
1039 isl_upoly_free(up2);
1040 return up1;
1043 if (isl_upoly_is_nan(up2)) {
1044 isl_upoly_free(up1);
1045 return up2;
1048 if (isl_upoly_is_zero(up1)) {
1049 isl_upoly_free(up2);
1050 return up1;
1053 if (isl_upoly_is_zero(up2)) {
1054 isl_upoly_free(up1);
1055 return up2;
1058 if (isl_upoly_is_one(up1)) {
1059 isl_upoly_free(up1);
1060 return up2;
1063 if (isl_upoly_is_one(up2)) {
1064 isl_upoly_free(up2);
1065 return up1;
1068 if (up1->var < up2->var)
1069 return isl_upoly_mul(up2, up1);
1071 if (up2->var < up1->var) {
1072 int i;
1073 struct isl_upoly_rec *rec;
1074 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
1075 isl_ctx *ctx = up1->ctx;
1076 isl_upoly_free(up1);
1077 isl_upoly_free(up2);
1078 return isl_upoly_nan(ctx);
1080 up1 = isl_upoly_cow(up1);
1081 rec = isl_upoly_as_rec(up1);
1082 if (!rec)
1083 goto error;
1085 for (i = 0; i < rec->n; ++i) {
1086 rec->p[i] = isl_upoly_mul(rec->p[i],
1087 isl_upoly_copy(up2));
1088 if (!rec->p[i])
1089 goto error;
1091 isl_upoly_free(up2);
1092 return up1;
1095 if (isl_upoly_is_cst(up1))
1096 return isl_upoly_mul_cst(up1, up2);
1098 return isl_upoly_mul_rec(up1, up2);
1099 error:
1100 isl_upoly_free(up1);
1101 isl_upoly_free(up2);
1102 return NULL;
1105 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
1106 unsigned power)
1108 struct isl_upoly *res;
1110 if (!up)
1111 return NULL;
1112 if (power == 1)
1113 return up;
1115 if (power % 2)
1116 res = isl_upoly_copy(up);
1117 else
1118 res = isl_upoly_one(up->ctx);
1120 while (power >>= 1) {
1121 up = isl_upoly_mul(up, isl_upoly_copy(up));
1122 if (power % 2)
1123 res = isl_upoly_mul(res, isl_upoly_copy(up));
1126 isl_upoly_free(up);
1127 return res;
1130 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space,
1131 unsigned n_div, __isl_take struct isl_upoly *up)
1133 struct isl_qpolynomial *qp = NULL;
1134 unsigned total;
1136 if (!space || !up)
1137 goto error;
1139 if (!isl_space_is_set(space))
1140 isl_die(isl_space_get_ctx(space), isl_error_invalid,
1141 "domain of polynomial should be a set", goto error);
1143 total = isl_space_dim(space, isl_dim_all);
1145 qp = isl_calloc_type(space->ctx, struct isl_qpolynomial);
1146 if (!qp)
1147 goto error;
1149 qp->ref = 1;
1150 qp->div = isl_mat_alloc(space->ctx, n_div, 1 + 1 + total + n_div);
1151 if (!qp->div)
1152 goto error;
1154 qp->dim = space;
1155 qp->upoly = up;
1157 return qp;
1158 error:
1159 isl_space_free(space);
1160 isl_upoly_free(up);
1161 isl_qpolynomial_free(qp);
1162 return NULL;
1165 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1167 if (!qp)
1168 return NULL;
1170 qp->ref++;
1171 return qp;
1174 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1176 struct isl_qpolynomial *dup;
1178 if (!qp)
1179 return NULL;
1181 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1182 isl_upoly_copy(qp->upoly));
1183 if (!dup)
1184 return NULL;
1185 isl_mat_free(dup->div);
1186 dup->div = isl_mat_copy(qp->div);
1187 if (!dup->div)
1188 goto error;
1190 return dup;
1191 error:
1192 isl_qpolynomial_free(dup);
1193 return NULL;
1196 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1198 if (!qp)
1199 return NULL;
1201 if (qp->ref == 1)
1202 return qp;
1203 qp->ref--;
1204 return isl_qpolynomial_dup(qp);
1207 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1208 __isl_take isl_qpolynomial *qp)
1210 if (!qp)
1211 return NULL;
1213 if (--qp->ref > 0)
1214 return NULL;
1216 isl_space_free(qp->dim);
1217 isl_mat_free(qp->div);
1218 isl_upoly_free(qp->upoly);
1220 free(qp);
1221 return NULL;
1224 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1226 int i;
1227 struct isl_upoly_rec *rec;
1228 struct isl_upoly_cst *cst;
1230 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1231 if (!rec)
1232 return NULL;
1233 for (i = 0; i < 1 + power; ++i) {
1234 rec->p[i] = isl_upoly_zero(ctx);
1235 if (!rec->p[i])
1236 goto error;
1237 rec->n++;
1239 cst = isl_upoly_as_cst(rec->p[power]);
1240 isl_int_set_si(cst->n, 1);
1242 return &rec->up;
1243 error:
1244 isl_upoly_free(&rec->up);
1245 return NULL;
1248 /* r array maps original positions to new positions.
1250 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1251 int *r)
1253 int i;
1254 struct isl_upoly_rec *rec;
1255 struct isl_upoly *base;
1256 struct isl_upoly *res;
1258 if (isl_upoly_is_cst(up))
1259 return up;
1261 rec = isl_upoly_as_rec(up);
1262 if (!rec)
1263 goto error;
1265 isl_assert(up->ctx, rec->n >= 1, goto error);
1267 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1268 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1270 for (i = rec->n - 2; i >= 0; --i) {
1271 res = isl_upoly_mul(res, isl_upoly_copy(base));
1272 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1275 isl_upoly_free(base);
1276 isl_upoly_free(up);
1278 return res;
1279 error:
1280 isl_upoly_free(up);
1281 return NULL;
1284 static isl_bool compatible_divs(__isl_keep isl_mat *div1,
1285 __isl_keep isl_mat *div2)
1287 int n_row, n_col;
1288 isl_bool equal;
1290 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1291 div1->n_col >= div2->n_col,
1292 return isl_bool_error);
1294 if (div1->n_row == div2->n_row)
1295 return isl_mat_is_equal(div1, div2);
1297 n_row = div1->n_row;
1298 n_col = div1->n_col;
1299 div1->n_row = div2->n_row;
1300 div1->n_col = div2->n_col;
1302 equal = isl_mat_is_equal(div1, div2);
1304 div1->n_row = n_row;
1305 div1->n_col = n_col;
1307 return equal;
1310 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1312 int li, lj;
1314 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1315 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1317 if (li != lj)
1318 return li - lj;
1320 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1323 struct isl_div_sort_info {
1324 isl_mat *div;
1325 int row;
1328 static int div_sort_cmp(const void *p1, const void *p2)
1330 const struct isl_div_sort_info *i1, *i2;
1331 i1 = (const struct isl_div_sort_info *) p1;
1332 i2 = (const struct isl_div_sort_info *) p2;
1334 return cmp_row(i1->div, i1->row, i2->row);
1337 /* Sort divs and remove duplicates.
1339 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1341 int i;
1342 int skip;
1343 int len;
1344 struct isl_div_sort_info *array = NULL;
1345 int *pos = NULL, *at = NULL;
1346 int *reordering = NULL;
1347 unsigned div_pos;
1349 if (!qp)
1350 return NULL;
1351 if (qp->div->n_row <= 1)
1352 return qp;
1354 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1356 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1357 qp->div->n_row);
1358 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1359 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1360 len = qp->div->n_col - 2;
1361 reordering = isl_alloc_array(qp->div->ctx, int, len);
1362 if (!array || !pos || !at || !reordering)
1363 goto error;
1365 for (i = 0; i < qp->div->n_row; ++i) {
1366 array[i].div = qp->div;
1367 array[i].row = i;
1368 pos[i] = i;
1369 at[i] = i;
1372 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1373 div_sort_cmp);
1375 for (i = 0; i < div_pos; ++i)
1376 reordering[i] = i;
1378 for (i = 0; i < qp->div->n_row; ++i) {
1379 if (pos[array[i].row] == i)
1380 continue;
1381 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1382 pos[at[i]] = pos[array[i].row];
1383 at[pos[array[i].row]] = at[i];
1384 at[i] = array[i].row;
1385 pos[array[i].row] = i;
1388 skip = 0;
1389 for (i = 0; i < len - div_pos; ++i) {
1390 if (i > 0 &&
1391 isl_seq_eq(qp->div->row[i - skip - 1],
1392 qp->div->row[i - skip], qp->div->n_col)) {
1393 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1394 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1395 2 + div_pos + i - skip);
1396 qp->div = isl_mat_drop_cols(qp->div,
1397 2 + div_pos + i - skip, 1);
1398 skip++;
1400 reordering[div_pos + array[i].row] = div_pos + i - skip;
1403 qp->upoly = reorder(qp->upoly, reordering);
1405 if (!qp->upoly || !qp->div)
1406 goto error;
1408 free(at);
1409 free(pos);
1410 free(array);
1411 free(reordering);
1413 return qp;
1414 error:
1415 free(at);
1416 free(pos);
1417 free(array);
1418 free(reordering);
1419 isl_qpolynomial_free(qp);
1420 return NULL;
1423 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1424 int *exp, int first)
1426 int i;
1427 struct isl_upoly_rec *rec;
1429 if (isl_upoly_is_cst(up))
1430 return up;
1432 if (up->var < first)
1433 return up;
1435 if (exp[up->var - first] == up->var - first)
1436 return up;
1438 up = isl_upoly_cow(up);
1439 if (!up)
1440 goto error;
1442 up->var = exp[up->var - first] + first;
1444 rec = isl_upoly_as_rec(up);
1445 if (!rec)
1446 goto error;
1448 for (i = 0; i < rec->n; ++i) {
1449 rec->p[i] = expand(rec->p[i], exp, first);
1450 if (!rec->p[i])
1451 goto error;
1454 return up;
1455 error:
1456 isl_upoly_free(up);
1457 return NULL;
1460 static __isl_give isl_qpolynomial *with_merged_divs(
1461 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1462 __isl_take isl_qpolynomial *qp2),
1463 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1465 int *exp1 = NULL;
1466 int *exp2 = NULL;
1467 isl_mat *div = NULL;
1468 int n_div1, n_div2;
1470 qp1 = isl_qpolynomial_cow(qp1);
1471 qp2 = isl_qpolynomial_cow(qp2);
1473 if (!qp1 || !qp2)
1474 goto error;
1476 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1477 qp1->div->n_col >= qp2->div->n_col, goto error);
1479 n_div1 = qp1->div->n_row;
1480 n_div2 = qp2->div->n_row;
1481 exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1482 exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1483 if ((n_div1 && !exp1) || (n_div2 && !exp2))
1484 goto error;
1486 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1487 if (!div)
1488 goto error;
1490 isl_mat_free(qp1->div);
1491 qp1->div = isl_mat_copy(div);
1492 isl_mat_free(qp2->div);
1493 qp2->div = isl_mat_copy(div);
1495 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1496 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1498 if (!qp1->upoly || !qp2->upoly)
1499 goto error;
1501 isl_mat_free(div);
1502 free(exp1);
1503 free(exp2);
1505 return fn(qp1, qp2);
1506 error:
1507 isl_mat_free(div);
1508 free(exp1);
1509 free(exp2);
1510 isl_qpolynomial_free(qp1);
1511 isl_qpolynomial_free(qp2);
1512 return NULL;
1515 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1516 __isl_take isl_qpolynomial *qp2)
1518 isl_bool compatible;
1520 qp1 = isl_qpolynomial_cow(qp1);
1522 if (!qp1 || !qp2)
1523 goto error;
1525 if (qp1->div->n_row < qp2->div->n_row)
1526 return isl_qpolynomial_add(qp2, qp1);
1528 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1529 compatible = compatible_divs(qp1->div, qp2->div);
1530 if (compatible < 0)
1531 goto error;
1532 if (!compatible)
1533 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1535 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1536 if (!qp1->upoly)
1537 goto error;
1539 isl_qpolynomial_free(qp2);
1541 return qp1;
1542 error:
1543 isl_qpolynomial_free(qp1);
1544 isl_qpolynomial_free(qp2);
1545 return NULL;
1548 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1549 __isl_keep isl_set *dom,
1550 __isl_take isl_qpolynomial *qp1,
1551 __isl_take isl_qpolynomial *qp2)
1553 qp1 = isl_qpolynomial_add(qp1, qp2);
1554 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1555 return qp1;
1558 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1559 __isl_take isl_qpolynomial *qp2)
1561 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1564 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1565 __isl_take isl_qpolynomial *qp, isl_int v)
1567 if (isl_int_is_zero(v))
1568 return qp;
1570 qp = isl_qpolynomial_cow(qp);
1571 if (!qp)
1572 return NULL;
1574 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1575 if (!qp->upoly)
1576 goto error;
1578 return qp;
1579 error:
1580 isl_qpolynomial_free(qp);
1581 return NULL;
1585 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1587 if (!qp)
1588 return NULL;
1590 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1593 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1594 __isl_take isl_qpolynomial *qp, isl_int v)
1596 if (isl_int_is_one(v))
1597 return qp;
1599 if (qp && isl_int_is_zero(v)) {
1600 isl_qpolynomial *zero;
1601 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1602 isl_qpolynomial_free(qp);
1603 return zero;
1606 qp = isl_qpolynomial_cow(qp);
1607 if (!qp)
1608 return NULL;
1610 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1611 if (!qp->upoly)
1612 goto error;
1614 return qp;
1615 error:
1616 isl_qpolynomial_free(qp);
1617 return NULL;
1620 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1621 __isl_take isl_qpolynomial *qp, isl_int v)
1623 return isl_qpolynomial_mul_isl_int(qp, v);
1626 /* Multiply "qp" by "v".
1628 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1629 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1631 if (!qp || !v)
1632 goto error;
1634 if (!isl_val_is_rat(v))
1635 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1636 "expecting rational factor", goto error);
1638 if (isl_val_is_one(v)) {
1639 isl_val_free(v);
1640 return qp;
1643 if (isl_val_is_zero(v)) {
1644 isl_space *space;
1646 space = isl_qpolynomial_get_domain_space(qp);
1647 isl_qpolynomial_free(qp);
1648 isl_val_free(v);
1649 return isl_qpolynomial_zero_on_domain(space);
1652 qp = isl_qpolynomial_cow(qp);
1653 if (!qp)
1654 goto error;
1656 qp->upoly = isl_upoly_scale_val(qp->upoly, v);
1657 if (!qp->upoly)
1658 qp = isl_qpolynomial_free(qp);
1660 isl_val_free(v);
1661 return qp;
1662 error:
1663 isl_val_free(v);
1664 isl_qpolynomial_free(qp);
1665 return NULL;
1668 /* Divide "qp" by "v".
1670 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1671 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1673 if (!qp || !v)
1674 goto error;
1676 if (!isl_val_is_rat(v))
1677 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1678 "expecting rational factor", goto error);
1679 if (isl_val_is_zero(v))
1680 isl_die(isl_val_get_ctx(v), isl_error_invalid,
1681 "cannot scale down by zero", goto error);
1683 return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
1684 error:
1685 isl_val_free(v);
1686 isl_qpolynomial_free(qp);
1687 return NULL;
1690 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1691 __isl_take isl_qpolynomial *qp2)
1693 isl_bool compatible;
1695 qp1 = isl_qpolynomial_cow(qp1);
1697 if (!qp1 || !qp2)
1698 goto error;
1700 if (qp1->div->n_row < qp2->div->n_row)
1701 return isl_qpolynomial_mul(qp2, qp1);
1703 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1704 compatible = compatible_divs(qp1->div, qp2->div);
1705 if (compatible < 0)
1706 goto error;
1707 if (!compatible)
1708 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1710 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1711 if (!qp1->upoly)
1712 goto error;
1714 isl_qpolynomial_free(qp2);
1716 return qp1;
1717 error:
1718 isl_qpolynomial_free(qp1);
1719 isl_qpolynomial_free(qp2);
1720 return NULL;
1723 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1724 unsigned power)
1726 qp = isl_qpolynomial_cow(qp);
1728 if (!qp)
1729 return NULL;
1731 qp->upoly = isl_upoly_pow(qp->upoly, power);
1732 if (!qp->upoly)
1733 goto error;
1735 return qp;
1736 error:
1737 isl_qpolynomial_free(qp);
1738 return NULL;
1741 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1742 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1744 int i;
1746 if (power == 1)
1747 return pwqp;
1749 pwqp = isl_pw_qpolynomial_cow(pwqp);
1750 if (!pwqp)
1751 return NULL;
1753 for (i = 0; i < pwqp->n; ++i) {
1754 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1755 if (!pwqp->p[i].qp)
1756 return isl_pw_qpolynomial_free(pwqp);
1759 return pwqp;
1762 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1763 __isl_take isl_space *domain)
1765 if (!domain)
1766 return NULL;
1767 return isl_qpolynomial_alloc(domain, 0, isl_upoly_zero(domain->ctx));
1770 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1771 __isl_take isl_space *domain)
1773 if (!domain)
1774 return NULL;
1775 return isl_qpolynomial_alloc(domain, 0, isl_upoly_one(domain->ctx));
1778 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1779 __isl_take isl_space *domain)
1781 if (!domain)
1782 return NULL;
1783 return isl_qpolynomial_alloc(domain, 0, isl_upoly_infty(domain->ctx));
1786 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1787 __isl_take isl_space *domain)
1789 if (!domain)
1790 return NULL;
1791 return isl_qpolynomial_alloc(domain, 0,
1792 isl_upoly_neginfty(domain->ctx));
1795 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1796 __isl_take isl_space *domain)
1798 if (!domain)
1799 return NULL;
1800 return isl_qpolynomial_alloc(domain, 0, isl_upoly_nan(domain->ctx));
1803 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1804 __isl_take isl_space *domain,
1805 isl_int v)
1807 struct isl_qpolynomial *qp;
1808 struct isl_upoly_cst *cst;
1810 if (!domain)
1811 return NULL;
1813 qp = isl_qpolynomial_alloc(domain, 0, isl_upoly_zero(domain->ctx));
1814 if (!qp)
1815 return NULL;
1817 cst = isl_upoly_as_cst(qp->upoly);
1818 isl_int_set(cst->n, v);
1820 return qp;
1823 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1824 isl_int *n, isl_int *d)
1826 struct isl_upoly_cst *cst;
1828 if (!qp)
1829 return -1;
1831 if (!isl_upoly_is_cst(qp->upoly))
1832 return 0;
1834 cst = isl_upoly_as_cst(qp->upoly);
1835 if (!cst)
1836 return -1;
1838 if (n)
1839 isl_int_set(*n, cst->n);
1840 if (d)
1841 isl_int_set(*d, cst->d);
1843 return 1;
1846 /* Return the constant term of "up".
1848 static __isl_give isl_val *isl_upoly_get_constant_val(
1849 __isl_keep struct isl_upoly *up)
1851 struct isl_upoly_cst *cst;
1853 if (!up)
1854 return NULL;
1856 while (!isl_upoly_is_cst(up)) {
1857 struct isl_upoly_rec *rec;
1859 rec = isl_upoly_as_rec(up);
1860 if (!rec)
1861 return NULL;
1862 up = rec->p[0];
1865 cst = isl_upoly_as_cst(up);
1866 if (!cst)
1867 return NULL;
1868 return isl_val_rat_from_isl_int(cst->up.ctx, cst->n, cst->d);
1871 /* Return the constant term of "qp".
1873 __isl_give isl_val *isl_qpolynomial_get_constant_val(
1874 __isl_keep isl_qpolynomial *qp)
1876 if (!qp)
1877 return NULL;
1879 return isl_upoly_get_constant_val(qp->upoly);
1882 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1884 int is_cst;
1885 struct isl_upoly_rec *rec;
1887 if (!up)
1888 return -1;
1890 if (up->var < 0)
1891 return 1;
1893 rec = isl_upoly_as_rec(up);
1894 if (!rec)
1895 return -1;
1897 if (rec->n > 2)
1898 return 0;
1900 isl_assert(up->ctx, rec->n > 1, return -1);
1902 is_cst = isl_upoly_is_cst(rec->p[1]);
1903 if (is_cst < 0)
1904 return -1;
1905 if (!is_cst)
1906 return 0;
1908 return isl_upoly_is_affine(rec->p[0]);
1911 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1913 if (!qp)
1914 return -1;
1916 if (qp->div->n_row > 0)
1917 return 0;
1919 return isl_upoly_is_affine(qp->upoly);
1922 static void update_coeff(__isl_keep isl_vec *aff,
1923 __isl_keep struct isl_upoly_cst *cst, int pos)
1925 isl_int gcd;
1926 isl_int f;
1928 if (isl_int_is_zero(cst->n))
1929 return;
1931 isl_int_init(gcd);
1932 isl_int_init(f);
1933 isl_int_gcd(gcd, cst->d, aff->el[0]);
1934 isl_int_divexact(f, cst->d, gcd);
1935 isl_int_divexact(gcd, aff->el[0], gcd);
1936 isl_seq_scale(aff->el, aff->el, f, aff->size);
1937 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1938 isl_int_clear(gcd);
1939 isl_int_clear(f);
1942 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1943 __isl_keep isl_vec *aff)
1945 struct isl_upoly_cst *cst;
1946 struct isl_upoly_rec *rec;
1948 if (!up || !aff)
1949 return -1;
1951 if (up->var < 0) {
1952 struct isl_upoly_cst *cst;
1954 cst = isl_upoly_as_cst(up);
1955 if (!cst)
1956 return -1;
1957 update_coeff(aff, cst, 0);
1958 return 0;
1961 rec = isl_upoly_as_rec(up);
1962 if (!rec)
1963 return -1;
1964 isl_assert(up->ctx, rec->n == 2, return -1);
1966 cst = isl_upoly_as_cst(rec->p[1]);
1967 if (!cst)
1968 return -1;
1969 update_coeff(aff, cst, 1 + up->var);
1971 return isl_upoly_update_affine(rec->p[0], aff);
1974 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1975 __isl_keep isl_qpolynomial *qp)
1977 isl_vec *aff;
1978 unsigned d;
1980 if (!qp)
1981 return NULL;
1983 d = isl_space_dim(qp->dim, isl_dim_all);
1984 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1985 if (!aff)
1986 return NULL;
1988 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1989 isl_int_set_si(aff->el[0], 1);
1991 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1992 goto error;
1994 return aff;
1995 error:
1996 isl_vec_free(aff);
1997 return NULL;
2000 /* Compare two quasi-polynomials.
2002 * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2003 * than "qp2" and 0 if they are equal.
2005 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
2006 __isl_keep isl_qpolynomial *qp2)
2008 int cmp;
2010 if (qp1 == qp2)
2011 return 0;
2012 if (!qp1)
2013 return -1;
2014 if (!qp2)
2015 return 1;
2017 cmp = isl_space_cmp(qp1->dim, qp2->dim);
2018 if (cmp != 0)
2019 return cmp;
2021 cmp = isl_local_cmp(qp1->div, qp2->div);
2022 if (cmp != 0)
2023 return cmp;
2025 return isl_upoly_plain_cmp(qp1->upoly, qp2->upoly);
2028 /* Is "qp1" obviously equal to "qp2"?
2030 * NaN is not equal to anything, not even to another NaN.
2032 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2033 __isl_keep isl_qpolynomial *qp2)
2035 isl_bool equal;
2037 if (!qp1 || !qp2)
2038 return isl_bool_error;
2040 if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2041 return isl_bool_false;
2043 equal = isl_space_is_equal(qp1->dim, qp2->dim);
2044 if (equal < 0 || !equal)
2045 return equal;
2047 equal = isl_mat_is_equal(qp1->div, qp2->div);
2048 if (equal < 0 || !equal)
2049 return equal;
2051 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
2054 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
2056 int i;
2057 struct isl_upoly_rec *rec;
2059 if (isl_upoly_is_cst(up)) {
2060 struct isl_upoly_cst *cst;
2061 cst = isl_upoly_as_cst(up);
2062 if (!cst)
2063 return;
2064 isl_int_lcm(*d, *d, cst->d);
2065 return;
2068 rec = isl_upoly_as_rec(up);
2069 if (!rec)
2070 return;
2072 for (i = 0; i < rec->n; ++i)
2073 upoly_update_den(rec->p[i], d);
2076 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
2078 isl_int_set_si(*d, 1);
2079 if (!qp)
2080 return;
2081 upoly_update_den(qp->upoly, d);
2084 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2085 __isl_take isl_space *domain, int pos, int power)
2087 struct isl_ctx *ctx;
2089 if (!domain)
2090 return NULL;
2092 ctx = domain->ctx;
2094 return isl_qpolynomial_alloc(domain, 0,
2095 isl_upoly_var_pow(ctx, pos, power));
2098 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
2099 __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos)
2101 if (!domain)
2102 return NULL;
2104 isl_assert(domain->ctx,
2105 isl_space_dim(domain, isl_dim_in) == 0, goto error);
2106 isl_assert(domain->ctx, pos < isl_space_dim(domain, type), goto error);
2108 if (type == isl_dim_set)
2109 pos += isl_space_dim(domain, isl_dim_param);
2111 return isl_qpolynomial_var_pow_on_domain(domain, pos, 1);
2112 error:
2113 isl_space_free(domain);
2114 return NULL;
2117 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
2118 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
2120 int i;
2121 struct isl_upoly_rec *rec;
2122 struct isl_upoly *base, *res;
2124 if (!up)
2125 return NULL;
2127 if (isl_upoly_is_cst(up))
2128 return up;
2130 if (up->var < first)
2131 return up;
2133 rec = isl_upoly_as_rec(up);
2134 if (!rec)
2135 goto error;
2137 isl_assert(up->ctx, rec->n >= 1, goto error);
2139 if (up->var >= first + n)
2140 base = isl_upoly_var_pow(up->ctx, up->var, 1);
2141 else
2142 base = isl_upoly_copy(subs[up->var - first]);
2144 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
2145 for (i = rec->n - 2; i >= 0; --i) {
2146 struct isl_upoly *t;
2147 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
2148 res = isl_upoly_mul(res, isl_upoly_copy(base));
2149 res = isl_upoly_sum(res, t);
2152 isl_upoly_free(base);
2153 isl_upoly_free(up);
2155 return res;
2156 error:
2157 isl_upoly_free(up);
2158 return NULL;
2161 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
2162 isl_int denom, unsigned len)
2164 int i;
2165 struct isl_upoly *up;
2167 isl_assert(ctx, len >= 1, return NULL);
2169 up = isl_upoly_rat_cst(ctx, f[0], denom);
2170 for (i = 0; i < len - 1; ++i) {
2171 struct isl_upoly *t;
2172 struct isl_upoly *c;
2174 if (isl_int_is_zero(f[1 + i]))
2175 continue;
2177 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
2178 t = isl_upoly_var_pow(ctx, i, 1);
2179 t = isl_upoly_mul(c, t);
2180 up = isl_upoly_sum(up, t);
2183 return up;
2186 /* Remove common factor of non-constant terms and denominator.
2188 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2190 isl_ctx *ctx = qp->div->ctx;
2191 unsigned total = qp->div->n_col - 2;
2193 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2194 isl_int_gcd(ctx->normalize_gcd,
2195 ctx->normalize_gcd, qp->div->row[div][0]);
2196 if (isl_int_is_one(ctx->normalize_gcd))
2197 return;
2199 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2200 ctx->normalize_gcd, total);
2201 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2202 ctx->normalize_gcd);
2203 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2204 ctx->normalize_gcd);
2207 /* Replace the integer division identified by "div" by the polynomial "s".
2208 * The integer division is assumed not to appear in the definition
2209 * of any other integer divisions.
2211 static __isl_give isl_qpolynomial *substitute_div(
2212 __isl_take isl_qpolynomial *qp,
2213 int div, __isl_take struct isl_upoly *s)
2215 int i;
2216 int total;
2217 int *reordering;
2219 if (!qp || !s)
2220 goto error;
2222 qp = isl_qpolynomial_cow(qp);
2223 if (!qp)
2224 goto error;
2226 total = isl_space_dim(qp->dim, isl_dim_all);
2227 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
2228 if (!qp->upoly)
2229 goto error;
2231 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
2232 if (!reordering)
2233 goto error;
2234 for (i = 0; i < total + div; ++i)
2235 reordering[i] = i;
2236 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
2237 reordering[i] = i - 1;
2238 qp->div = isl_mat_drop_rows(qp->div, div, 1);
2239 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
2240 qp->upoly = reorder(qp->upoly, reordering);
2241 free(reordering);
2243 if (!qp->upoly || !qp->div)
2244 goto error;
2246 isl_upoly_free(s);
2247 return qp;
2248 error:
2249 isl_qpolynomial_free(qp);
2250 isl_upoly_free(s);
2251 return NULL;
2254 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2255 * divisions because d is equal to 1 by their definition, i.e., e.
2257 static __isl_give isl_qpolynomial *substitute_non_divs(
2258 __isl_take isl_qpolynomial *qp)
2260 int i, j;
2261 int total;
2262 struct isl_upoly *s;
2264 if (!qp)
2265 return NULL;
2267 total = isl_space_dim(qp->dim, isl_dim_all);
2268 for (i = 0; qp && i < qp->div->n_row; ++i) {
2269 if (!isl_int_is_one(qp->div->row[i][0]))
2270 continue;
2271 for (j = i + 1; j < qp->div->n_row; ++j) {
2272 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
2273 continue;
2274 isl_seq_combine(qp->div->row[j] + 1,
2275 qp->div->ctx->one, qp->div->row[j] + 1,
2276 qp->div->row[j][2 + total + i],
2277 qp->div->row[i] + 1, 1 + total + i);
2278 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
2279 normalize_div(qp, j);
2281 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2282 qp->div->row[i][0], qp->div->n_col - 1);
2283 qp = substitute_div(qp, i, s);
2284 --i;
2287 return qp;
2290 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2291 * with d the denominator. When replacing the coefficient e of x by
2292 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2293 * inside the division, so we need to add floor(e/d) * x outside.
2294 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2295 * to adjust the coefficient of x in each later div that depends on the
2296 * current div "div" and also in the affine expressions in the rows of "mat"
2297 * (if they too depend on "div").
2299 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2300 __isl_keep isl_mat **mat)
2302 int i, j;
2303 isl_int v;
2304 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2306 isl_int_init(v);
2307 for (i = 0; i < 1 + total + div; ++i) {
2308 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2309 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2310 continue;
2311 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2312 isl_int_fdiv_r(qp->div->row[div][1 + i],
2313 qp->div->row[div][1 + i], qp->div->row[div][0]);
2314 *mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2315 for (j = div + 1; j < qp->div->n_row; ++j) {
2316 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2317 continue;
2318 isl_int_addmul(qp->div->row[j][1 + i],
2319 v, qp->div->row[j][2 + total + div]);
2322 isl_int_clear(v);
2325 /* Check if the last non-zero coefficient is bigger that half of the
2326 * denominator. If so, we will invert the div to further reduce the number
2327 * of distinct divs that may appear.
2328 * If the last non-zero coefficient is exactly half the denominator,
2329 * then we continue looking for earlier coefficients that are bigger
2330 * than half the denominator.
2332 static int needs_invert(__isl_keep isl_mat *div, int row)
2334 int i;
2335 int cmp;
2337 for (i = div->n_col - 1; i >= 1; --i) {
2338 if (isl_int_is_zero(div->row[row][i]))
2339 continue;
2340 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2341 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2342 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2343 if (cmp)
2344 return cmp > 0;
2345 if (i == 1)
2346 return 1;
2349 return 0;
2352 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2353 * We only invert the coefficients of e (and the coefficient of q in
2354 * later divs and in the rows of "mat"). After calling this function, the
2355 * coefficients of e should be reduced again.
2357 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2358 __isl_keep isl_mat **mat)
2360 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2362 isl_seq_neg(qp->div->row[div] + 1,
2363 qp->div->row[div] + 1, qp->div->n_col - 1);
2364 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2365 isl_int_add(qp->div->row[div][1],
2366 qp->div->row[div][1], qp->div->row[div][0]);
2367 *mat = isl_mat_col_neg(*mat, 1 + total + div);
2368 isl_mat_col_mul(qp->div, 2 + total + div,
2369 qp->div->ctx->negone, 2 + total + div);
2372 /* Reduce all divs of "qp" to have coefficients
2373 * in the interval [0, d-1], with d the denominator and such that the
2374 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2375 * The modifications to the integer divisions need to be reflected
2376 * in the factors of the polynomial that refer to the original
2377 * integer divisions. To this end, the modifications are collected
2378 * as a set of affine expressions and then plugged into the polynomial.
2380 * After the reduction, some divs may have become redundant or identical,
2381 * so we call substitute_non_divs and sort_divs. If these functions
2382 * eliminate divs or merge two or more divs into one, the coefficients
2383 * of the enclosing divs may have to be reduced again, so we call
2384 * ourselves recursively if the number of divs decreases.
2386 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2388 int i;
2389 isl_ctx *ctx;
2390 isl_mat *mat;
2391 struct isl_upoly **s;
2392 unsigned o_div, n_div, total;
2394 if (!qp)
2395 return NULL;
2397 total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2398 n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2399 o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2400 ctx = isl_qpolynomial_get_ctx(qp);
2401 mat = isl_mat_zero(ctx, n_div, 1 + total);
2403 for (i = 0; i < n_div; ++i)
2404 mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2406 for (i = 0; i < qp->div->n_row; ++i) {
2407 normalize_div(qp, i);
2408 reduce_div(qp, i, &mat);
2409 if (needs_invert(qp->div, i)) {
2410 invert_div(qp, i, &mat);
2411 reduce_div(qp, i, &mat);
2414 if (!mat)
2415 goto error;
2417 s = isl_alloc_array(ctx, struct isl_upoly *, n_div);
2418 if (n_div && !s)
2419 goto error;
2420 for (i = 0; i < n_div; ++i)
2421 s[i] = isl_upoly_from_affine(ctx, mat->row[i], ctx->one,
2422 1 + total);
2423 qp->upoly = isl_upoly_subs(qp->upoly, o_div - 1, n_div, s);
2424 for (i = 0; i < n_div; ++i)
2425 isl_upoly_free(s[i]);
2426 free(s);
2427 if (!qp->upoly)
2428 goto error;
2430 isl_mat_free(mat);
2432 qp = substitute_non_divs(qp);
2433 qp = sort_divs(qp);
2434 if (qp && isl_qpolynomial_domain_dim(qp, isl_dim_div) < n_div)
2435 return reduce_divs(qp);
2437 return qp;
2438 error:
2439 isl_qpolynomial_free(qp);
2440 isl_mat_free(mat);
2441 return NULL;
2444 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2445 __isl_take isl_space *domain, const isl_int n, const isl_int d)
2447 struct isl_qpolynomial *qp;
2448 struct isl_upoly_cst *cst;
2450 if (!domain)
2451 return NULL;
2453 qp = isl_qpolynomial_alloc(domain, 0, isl_upoly_zero(domain->ctx));
2454 if (!qp)
2455 return NULL;
2457 cst = isl_upoly_as_cst(qp->upoly);
2458 isl_int_set(cst->n, n);
2459 isl_int_set(cst->d, d);
2461 return qp;
2464 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2466 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2467 __isl_take isl_space *domain, __isl_take isl_val *val)
2469 isl_qpolynomial *qp;
2470 struct isl_upoly_cst *cst;
2472 if (!domain || !val)
2473 goto error;
2475 qp = isl_qpolynomial_alloc(isl_space_copy(domain), 0,
2476 isl_upoly_zero(domain->ctx));
2477 if (!qp)
2478 goto error;
2480 cst = isl_upoly_as_cst(qp->upoly);
2481 isl_int_set(cst->n, val->n);
2482 isl_int_set(cst->d, val->d);
2484 isl_space_free(domain);
2485 isl_val_free(val);
2486 return qp;
2487 error:
2488 isl_space_free(domain);
2489 isl_val_free(val);
2490 return NULL;
2493 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2495 struct isl_upoly_rec *rec;
2496 int i;
2498 if (!up)
2499 return -1;
2501 if (isl_upoly_is_cst(up))
2502 return 0;
2504 if (up->var < d)
2505 active[up->var] = 1;
2507 rec = isl_upoly_as_rec(up);
2508 for (i = 0; i < rec->n; ++i)
2509 if (up_set_active(rec->p[i], active, d) < 0)
2510 return -1;
2512 return 0;
2515 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2517 int i, j;
2518 int d = isl_space_dim(qp->dim, isl_dim_all);
2520 if (!qp || !active)
2521 return -1;
2523 for (i = 0; i < d; ++i)
2524 for (j = 0; j < qp->div->n_row; ++j) {
2525 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2526 continue;
2527 active[i] = 1;
2528 break;
2531 return up_set_active(qp->upoly, active, d);
2534 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2535 enum isl_dim_type type, unsigned first, unsigned n)
2537 int i;
2538 int *active = NULL;
2539 isl_bool involves = isl_bool_false;
2541 if (!qp)
2542 return isl_bool_error;
2543 if (n == 0)
2544 return isl_bool_false;
2546 isl_assert(qp->dim->ctx,
2547 first + n <= isl_qpolynomial_dim(qp, type),
2548 return isl_bool_error);
2549 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2550 type == isl_dim_in, return isl_bool_error);
2552 active = isl_calloc_array(qp->dim->ctx, int,
2553 isl_space_dim(qp->dim, isl_dim_all));
2554 if (set_active(qp, active) < 0)
2555 goto error;
2557 if (type == isl_dim_in)
2558 first += isl_space_dim(qp->dim, isl_dim_param);
2559 for (i = 0; i < n; ++i)
2560 if (active[first + i]) {
2561 involves = isl_bool_true;
2562 break;
2565 free(active);
2567 return involves;
2568 error:
2569 free(active);
2570 return isl_bool_error;
2573 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2574 * of the divs that do appear in the quasi-polynomial.
2576 static __isl_give isl_qpolynomial *remove_redundant_divs(
2577 __isl_take isl_qpolynomial *qp)
2579 int i, j;
2580 int d;
2581 int len;
2582 int skip;
2583 int *active = NULL;
2584 int *reordering = NULL;
2585 int redundant = 0;
2586 int n_div;
2587 isl_ctx *ctx;
2589 if (!qp)
2590 return NULL;
2591 if (qp->div->n_row == 0)
2592 return qp;
2594 d = isl_space_dim(qp->dim, isl_dim_all);
2595 len = qp->div->n_col - 2;
2596 ctx = isl_qpolynomial_get_ctx(qp);
2597 active = isl_calloc_array(ctx, int, len);
2598 if (!active)
2599 goto error;
2601 if (up_set_active(qp->upoly, active, len) < 0)
2602 goto error;
2604 for (i = qp->div->n_row - 1; i >= 0; --i) {
2605 if (!active[d + i]) {
2606 redundant = 1;
2607 continue;
2609 for (j = 0; j < i; ++j) {
2610 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2611 continue;
2612 active[d + j] = 1;
2613 break;
2617 if (!redundant) {
2618 free(active);
2619 return qp;
2622 reordering = isl_alloc_array(qp->div->ctx, int, len);
2623 if (!reordering)
2624 goto error;
2626 for (i = 0; i < d; ++i)
2627 reordering[i] = i;
2629 skip = 0;
2630 n_div = qp->div->n_row;
2631 for (i = 0; i < n_div; ++i) {
2632 if (!active[d + i]) {
2633 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2634 qp->div = isl_mat_drop_cols(qp->div,
2635 2 + d + i - skip, 1);
2636 skip++;
2638 reordering[d + i] = d + i - skip;
2641 qp->upoly = reorder(qp->upoly, reordering);
2643 if (!qp->upoly || !qp->div)
2644 goto error;
2646 free(active);
2647 free(reordering);
2649 return qp;
2650 error:
2651 free(active);
2652 free(reordering);
2653 isl_qpolynomial_free(qp);
2654 return NULL;
2657 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2658 unsigned first, unsigned n)
2660 int i;
2661 struct isl_upoly_rec *rec;
2663 if (!up)
2664 return NULL;
2665 if (n == 0 || up->var < 0 || up->var < first)
2666 return up;
2667 if (up->var < first + n) {
2668 up = replace_by_constant_term(up);
2669 return isl_upoly_drop(up, first, n);
2671 up = isl_upoly_cow(up);
2672 if (!up)
2673 return NULL;
2674 up->var -= n;
2675 rec = isl_upoly_as_rec(up);
2676 if (!rec)
2677 goto error;
2679 for (i = 0; i < rec->n; ++i) {
2680 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2681 if (!rec->p[i])
2682 goto error;
2685 return up;
2686 error:
2687 isl_upoly_free(up);
2688 return NULL;
2691 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2692 __isl_take isl_qpolynomial *qp,
2693 enum isl_dim_type type, unsigned pos, const char *s)
2695 qp = isl_qpolynomial_cow(qp);
2696 if (!qp)
2697 return NULL;
2698 if (type == isl_dim_out)
2699 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2700 "cannot set name of output/set dimension",
2701 return isl_qpolynomial_free(qp));
2702 if (type == isl_dim_in)
2703 type = isl_dim_set;
2704 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2705 if (!qp->dim)
2706 goto error;
2707 return qp;
2708 error:
2709 isl_qpolynomial_free(qp);
2710 return NULL;
2713 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2714 __isl_take isl_qpolynomial *qp,
2715 enum isl_dim_type type, unsigned first, unsigned n)
2717 if (!qp)
2718 return NULL;
2719 if (type == isl_dim_out)
2720 isl_die(qp->dim->ctx, isl_error_invalid,
2721 "cannot drop output/set dimension",
2722 goto error);
2723 if (type == isl_dim_in)
2724 type = isl_dim_set;
2725 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2726 return qp;
2728 qp = isl_qpolynomial_cow(qp);
2729 if (!qp)
2730 return NULL;
2732 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2733 goto error);
2734 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2735 type == isl_dim_set, goto error);
2737 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2738 if (!qp->dim)
2739 goto error;
2741 if (type == isl_dim_set)
2742 first += isl_space_dim(qp->dim, isl_dim_param);
2744 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2745 if (!qp->div)
2746 goto error;
2748 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2749 if (!qp->upoly)
2750 goto error;
2752 return qp;
2753 error:
2754 isl_qpolynomial_free(qp);
2755 return NULL;
2758 /* Project the domain of the quasi-polynomial onto its parameter space.
2759 * The quasi-polynomial may not involve any of the domain dimensions.
2761 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2762 __isl_take isl_qpolynomial *qp)
2764 isl_space *space;
2765 unsigned n;
2766 int involves;
2768 n = isl_qpolynomial_dim(qp, isl_dim_in);
2769 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2770 if (involves < 0)
2771 return isl_qpolynomial_free(qp);
2772 if (involves)
2773 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2774 "polynomial involves some of the domain dimensions",
2775 return isl_qpolynomial_free(qp));
2776 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2777 space = isl_qpolynomial_get_domain_space(qp);
2778 space = isl_space_params(space);
2779 qp = isl_qpolynomial_reset_domain_space(qp, space);
2780 return qp;
2783 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2784 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2786 int i, j, k;
2787 isl_int denom;
2788 unsigned total;
2789 unsigned n_div;
2790 struct isl_upoly *up;
2792 if (!eq)
2793 goto error;
2794 if (eq->n_eq == 0) {
2795 isl_basic_set_free(eq);
2796 return qp;
2799 qp = isl_qpolynomial_cow(qp);
2800 if (!qp)
2801 goto error;
2802 qp->div = isl_mat_cow(qp->div);
2803 if (!qp->div)
2804 goto error;
2806 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2807 n_div = eq->n_div;
2808 isl_int_init(denom);
2809 for (i = 0; i < eq->n_eq; ++i) {
2810 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2811 if (j < 0 || j == 0 || j >= total)
2812 continue;
2814 for (k = 0; k < qp->div->n_row; ++k) {
2815 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2816 continue;
2817 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2818 &qp->div->row[k][0]);
2819 normalize_div(qp, k);
2822 if (isl_int_is_pos(eq->eq[i][j]))
2823 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2824 isl_int_abs(denom, eq->eq[i][j]);
2825 isl_int_set_si(eq->eq[i][j], 0);
2827 up = isl_upoly_from_affine(qp->dim->ctx,
2828 eq->eq[i], denom, total);
2829 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2830 isl_upoly_free(up);
2832 isl_int_clear(denom);
2834 if (!qp->upoly)
2835 goto error;
2837 isl_basic_set_free(eq);
2839 qp = substitute_non_divs(qp);
2840 qp = sort_divs(qp);
2842 return qp;
2843 error:
2844 isl_basic_set_free(eq);
2845 isl_qpolynomial_free(qp);
2846 return NULL;
2849 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2851 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2852 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2854 if (!qp || !eq)
2855 goto error;
2856 if (qp->div->n_row > 0)
2857 eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
2858 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2859 error:
2860 isl_basic_set_free(eq);
2861 isl_qpolynomial_free(qp);
2862 return NULL;
2865 static __isl_give isl_basic_set *add_div_constraints(
2866 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2868 int i;
2869 unsigned total;
2871 if (!bset || !div)
2872 goto error;
2874 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2875 if (!bset)
2876 goto error;
2877 total = isl_basic_set_total_dim(bset);
2878 for (i = 0; i < div->n_row; ++i)
2879 if (isl_basic_set_add_div_constraints_var(bset,
2880 total - div->n_row + i, div->row[i]) < 0)
2881 goto error;
2883 isl_mat_free(div);
2884 return bset;
2885 error:
2886 isl_mat_free(div);
2887 isl_basic_set_free(bset);
2888 return NULL;
2891 /* Look for equalities among the variables shared by context and qp
2892 * and the integer divisions of qp, if any.
2893 * The equalities are then used to eliminate variables and/or integer
2894 * divisions from qp.
2896 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2897 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2899 isl_basic_set *aff;
2901 if (!qp)
2902 goto error;
2903 if (qp->div->n_row > 0) {
2904 isl_basic_set *bset;
2905 context = isl_set_add_dims(context, isl_dim_set,
2906 qp->div->n_row);
2907 bset = isl_basic_set_universe(isl_set_get_space(context));
2908 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2909 context = isl_set_intersect(context,
2910 isl_set_from_basic_set(bset));
2913 aff = isl_set_affine_hull(context);
2914 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2915 error:
2916 isl_qpolynomial_free(qp);
2917 isl_set_free(context);
2918 return NULL;
2921 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2922 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2924 isl_space *space = isl_qpolynomial_get_domain_space(qp);
2925 isl_set *dom_context = isl_set_universe(space);
2926 dom_context = isl_set_intersect_params(dom_context, context);
2927 return isl_qpolynomial_gist(qp, dom_context);
2930 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2931 __isl_take isl_qpolynomial *qp)
2933 isl_set *dom;
2935 if (!qp)
2936 return NULL;
2937 if (isl_qpolynomial_is_zero(qp)) {
2938 isl_space *dim = isl_qpolynomial_get_space(qp);
2939 isl_qpolynomial_free(qp);
2940 return isl_pw_qpolynomial_zero(dim);
2943 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2944 return isl_pw_qpolynomial_alloc(dom, qp);
2947 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
2949 #undef PW
2950 #define PW isl_pw_qpolynomial
2951 #undef EL
2952 #define EL isl_qpolynomial
2953 #undef EL_IS_ZERO
2954 #define EL_IS_ZERO is_zero
2955 #undef ZERO
2956 #define ZERO zero
2957 #undef IS_ZERO
2958 #define IS_ZERO is_zero
2959 #undef FIELD
2960 #define FIELD qp
2961 #undef DEFAULT_IS_ZERO
2962 #define DEFAULT_IS_ZERO 1
2964 #define NO_PULLBACK
2966 #include <isl_pw_templ.c>
2967 #include <isl_pw_eval.c>
2969 #undef BASE
2970 #define BASE pw_qpolynomial
2972 #include <isl_union_single.c>
2973 #include <isl_union_eval.c>
2974 #include <isl_union_neg.c>
2976 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2978 if (!pwqp)
2979 return -1;
2981 if (pwqp->n != -1)
2982 return 0;
2984 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2985 return 0;
2987 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2990 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2991 __isl_take isl_pw_qpolynomial *pwqp1,
2992 __isl_take isl_pw_qpolynomial *pwqp2)
2994 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2997 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2998 __isl_take isl_pw_qpolynomial *pwqp1,
2999 __isl_take isl_pw_qpolynomial *pwqp2)
3001 int i, j, n;
3002 struct isl_pw_qpolynomial *res;
3004 if (!pwqp1 || !pwqp2)
3005 goto error;
3007 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
3008 goto error);
3010 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
3011 isl_pw_qpolynomial_free(pwqp2);
3012 return pwqp1;
3015 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
3016 isl_pw_qpolynomial_free(pwqp1);
3017 return pwqp2;
3020 if (isl_pw_qpolynomial_is_one(pwqp1)) {
3021 isl_pw_qpolynomial_free(pwqp1);
3022 return pwqp2;
3025 if (isl_pw_qpolynomial_is_one(pwqp2)) {
3026 isl_pw_qpolynomial_free(pwqp2);
3027 return pwqp1;
3030 n = pwqp1->n * pwqp2->n;
3031 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3033 for (i = 0; i < pwqp1->n; ++i) {
3034 for (j = 0; j < pwqp2->n; ++j) {
3035 struct isl_set *common;
3036 struct isl_qpolynomial *prod;
3037 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3038 isl_set_copy(pwqp2->p[j].set));
3039 if (isl_set_plain_is_empty(common)) {
3040 isl_set_free(common);
3041 continue;
3044 prod = isl_qpolynomial_mul(
3045 isl_qpolynomial_copy(pwqp1->p[i].qp),
3046 isl_qpolynomial_copy(pwqp2->p[j].qp));
3048 res = isl_pw_qpolynomial_add_piece(res, common, prod);
3052 isl_pw_qpolynomial_free(pwqp1);
3053 isl_pw_qpolynomial_free(pwqp2);
3055 return res;
3056 error:
3057 isl_pw_qpolynomial_free(pwqp1);
3058 isl_pw_qpolynomial_free(pwqp2);
3059 return NULL;
3062 __isl_give isl_val *isl_upoly_eval(__isl_take struct isl_upoly *up,
3063 __isl_take isl_vec *vec)
3065 int i;
3066 struct isl_upoly_rec *rec;
3067 isl_val *res;
3068 isl_val *base;
3070 if (isl_upoly_is_cst(up)) {
3071 isl_vec_free(vec);
3072 res = isl_upoly_get_constant_val(up);
3073 isl_upoly_free(up);
3074 return res;
3077 rec = isl_upoly_as_rec(up);
3078 if (!rec || !vec)
3079 goto error;
3081 isl_assert(up->ctx, rec->n >= 1, goto error);
3083 base = isl_val_rat_from_isl_int(up->ctx,
3084 vec->el[1 + up->var], vec->el[0]);
3086 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
3087 isl_vec_copy(vec));
3089 for (i = rec->n - 2; i >= 0; --i) {
3090 res = isl_val_mul(res, isl_val_copy(base));
3091 res = isl_val_add(res,
3092 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
3093 isl_vec_copy(vec)));
3096 isl_val_free(base);
3097 isl_upoly_free(up);
3098 isl_vec_free(vec);
3099 return res;
3100 error:
3101 isl_upoly_free(up);
3102 isl_vec_free(vec);
3103 return NULL;
3106 /* Evaluate "qp" in the void point "pnt".
3107 * In particular, return the value NaN.
3109 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3110 __isl_take isl_point *pnt)
3112 isl_ctx *ctx;
3114 ctx = isl_point_get_ctx(pnt);
3115 isl_qpolynomial_free(qp);
3116 isl_point_free(pnt);
3117 return isl_val_nan(ctx);
3120 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3121 __isl_take isl_point *pnt)
3123 isl_bool is_void;
3124 isl_vec *ext;
3125 isl_val *v;
3127 if (!qp || !pnt)
3128 goto error;
3129 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3130 is_void = isl_point_is_void(pnt);
3131 if (is_void < 0)
3132 goto error;
3133 if (is_void)
3134 return eval_void(qp, pnt);
3136 ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
3138 v = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
3140 isl_qpolynomial_free(qp);
3141 isl_point_free(pnt);
3143 return v;
3144 error:
3145 isl_qpolynomial_free(qp);
3146 isl_point_free(pnt);
3147 return NULL;
3150 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
3151 __isl_keep struct isl_upoly_cst *cst2)
3153 int cmp;
3154 isl_int t;
3155 isl_int_init(t);
3156 isl_int_mul(t, cst1->n, cst2->d);
3157 isl_int_submul(t, cst2->n, cst1->d);
3158 cmp = isl_int_sgn(t);
3159 isl_int_clear(t);
3160 return cmp;
3163 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3164 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3165 unsigned first, unsigned n)
3167 unsigned total;
3168 unsigned g_pos;
3169 int *exp;
3171 if (!qp)
3172 return NULL;
3173 if (type == isl_dim_out)
3174 isl_die(qp->div->ctx, isl_error_invalid,
3175 "cannot insert output/set dimensions",
3176 goto error);
3177 if (type == isl_dim_in)
3178 type = isl_dim_set;
3179 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3180 return qp;
3182 qp = isl_qpolynomial_cow(qp);
3183 if (!qp)
3184 return NULL;
3186 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
3187 goto error);
3189 g_pos = pos(qp->dim, type) + first;
3191 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3192 if (!qp->div)
3193 goto error;
3195 total = qp->div->n_col - 2;
3196 if (total > g_pos) {
3197 int i;
3198 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3199 if (!exp)
3200 goto error;
3201 for (i = 0; i < total - g_pos; ++i)
3202 exp[i] = i + n;
3203 qp->upoly = expand(qp->upoly, exp, g_pos);
3204 free(exp);
3205 if (!qp->upoly)
3206 goto error;
3209 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
3210 if (!qp->dim)
3211 goto error;
3213 return qp;
3214 error:
3215 isl_qpolynomial_free(qp);
3216 return NULL;
3219 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3220 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3222 unsigned pos;
3224 pos = isl_qpolynomial_dim(qp, type);
3226 return isl_qpolynomial_insert_dims(qp, type, pos, n);
3229 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
3230 __isl_take isl_pw_qpolynomial *pwqp,
3231 enum isl_dim_type type, unsigned n)
3233 unsigned pos;
3235 pos = isl_pw_qpolynomial_dim(pwqp, type);
3237 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
3240 static int *reordering_move(isl_ctx *ctx,
3241 unsigned len, unsigned dst, unsigned src, unsigned n)
3243 int i;
3244 int *reordering;
3246 reordering = isl_alloc_array(ctx, int, len);
3247 if (!reordering)
3248 return NULL;
3250 if (dst <= src) {
3251 for (i = 0; i < dst; ++i)
3252 reordering[i] = i;
3253 for (i = 0; i < n; ++i)
3254 reordering[src + i] = dst + i;
3255 for (i = 0; i < src - dst; ++i)
3256 reordering[dst + i] = dst + n + i;
3257 for (i = 0; i < len - src - n; ++i)
3258 reordering[src + n + i] = src + n + i;
3259 } else {
3260 for (i = 0; i < src; ++i)
3261 reordering[i] = i;
3262 for (i = 0; i < n; ++i)
3263 reordering[src + i] = dst + i;
3264 for (i = 0; i < dst - src; ++i)
3265 reordering[src + n + i] = src + i;
3266 for (i = 0; i < len - dst - n; ++i)
3267 reordering[dst + n + i] = dst + n + i;
3270 return reordering;
3273 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3274 __isl_take isl_qpolynomial *qp,
3275 enum isl_dim_type dst_type, unsigned dst_pos,
3276 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3278 unsigned g_dst_pos;
3279 unsigned g_src_pos;
3280 int *reordering;
3282 if (!qp)
3283 return NULL;
3285 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3286 isl_die(qp->dim->ctx, isl_error_invalid,
3287 "cannot move output/set dimension",
3288 goto error);
3289 if (dst_type == isl_dim_in)
3290 dst_type = isl_dim_set;
3291 if (src_type == isl_dim_in)
3292 src_type = isl_dim_set;
3294 if (n == 0 &&
3295 !isl_space_is_named_or_nested(qp->dim, src_type) &&
3296 !isl_space_is_named_or_nested(qp->dim, dst_type))
3297 return qp;
3299 qp = isl_qpolynomial_cow(qp);
3300 if (!qp)
3301 return NULL;
3303 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3304 goto error);
3306 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3307 g_src_pos = pos(qp->dim, src_type) + src_pos;
3308 if (dst_type > src_type)
3309 g_dst_pos -= n;
3311 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3312 if (!qp->div)
3313 goto error;
3314 qp = sort_divs(qp);
3315 if (!qp)
3316 goto error;
3318 reordering = reordering_move(qp->dim->ctx,
3319 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3320 if (!reordering)
3321 goto error;
3323 qp->upoly = reorder(qp->upoly, reordering);
3324 free(reordering);
3325 if (!qp->upoly)
3326 goto error;
3328 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3329 if (!qp->dim)
3330 goto error;
3332 return qp;
3333 error:
3334 isl_qpolynomial_free(qp);
3335 return NULL;
3338 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(
3339 __isl_take isl_space *space, isl_int *f, isl_int denom)
3341 struct isl_upoly *up;
3343 space = isl_space_domain(space);
3344 if (!space)
3345 return NULL;
3347 up = isl_upoly_from_affine(space->ctx, f, denom,
3348 1 + isl_space_dim(space, isl_dim_all));
3350 return isl_qpolynomial_alloc(space, 0, up);
3353 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3355 isl_ctx *ctx;
3356 struct isl_upoly *up;
3357 isl_qpolynomial *qp;
3359 if (!aff)
3360 return NULL;
3362 ctx = isl_aff_get_ctx(aff);
3363 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3364 aff->v->size - 1);
3366 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3367 aff->ls->div->n_row, up);
3368 if (!qp)
3369 goto error;
3371 isl_mat_free(qp->div);
3372 qp->div = isl_mat_copy(aff->ls->div);
3373 qp->div = isl_mat_cow(qp->div);
3374 if (!qp->div)
3375 goto error;
3377 isl_aff_free(aff);
3378 qp = reduce_divs(qp);
3379 qp = remove_redundant_divs(qp);
3380 return qp;
3381 error:
3382 isl_aff_free(aff);
3383 return isl_qpolynomial_free(qp);
3386 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3387 __isl_take isl_pw_aff *pwaff)
3389 int i;
3390 isl_pw_qpolynomial *pwqp;
3392 if (!pwaff)
3393 return NULL;
3395 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3396 pwaff->n);
3398 for (i = 0; i < pwaff->n; ++i) {
3399 isl_set *dom;
3400 isl_qpolynomial *qp;
3402 dom = isl_set_copy(pwaff->p[i].set);
3403 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3404 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3407 isl_pw_aff_free(pwaff);
3408 return pwqp;
3411 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3412 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3414 isl_aff *aff;
3416 aff = isl_constraint_get_bound(c, type, pos);
3417 isl_constraint_free(c);
3418 return isl_qpolynomial_from_aff(aff);
3421 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3422 * in "qp" by subs[i].
3424 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3425 __isl_take isl_qpolynomial *qp,
3426 enum isl_dim_type type, unsigned first, unsigned n,
3427 __isl_keep isl_qpolynomial **subs)
3429 int i;
3430 struct isl_upoly **ups;
3432 if (n == 0)
3433 return qp;
3435 qp = isl_qpolynomial_cow(qp);
3436 if (!qp)
3437 return NULL;
3439 if (type == isl_dim_out)
3440 isl_die(qp->dim->ctx, isl_error_invalid,
3441 "cannot substitute output/set dimension",
3442 goto error);
3443 if (type == isl_dim_in)
3444 type = isl_dim_set;
3446 for (i = 0; i < n; ++i)
3447 if (!subs[i])
3448 goto error;
3450 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3451 goto error);
3453 for (i = 0; i < n; ++i)
3454 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3455 goto error);
3457 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3458 for (i = 0; i < n; ++i)
3459 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3461 first += pos(qp->dim, type);
3463 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3464 if (!ups)
3465 goto error;
3466 for (i = 0; i < n; ++i)
3467 ups[i] = subs[i]->upoly;
3469 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3471 free(ups);
3473 if (!qp->upoly)
3474 goto error;
3476 return qp;
3477 error:
3478 isl_qpolynomial_free(qp);
3479 return NULL;
3482 /* Extend "bset" with extra set dimensions for each integer division
3483 * in "qp" and then call "fn" with the extended bset and the polynomial
3484 * that results from replacing each of the integer divisions by the
3485 * corresponding extra set dimension.
3487 isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3488 __isl_keep isl_basic_set *bset,
3489 isl_stat (*fn)(__isl_take isl_basic_set *bset,
3490 __isl_take isl_qpolynomial *poly, void *user), void *user)
3492 isl_space *dim;
3493 isl_mat *div;
3494 isl_qpolynomial *poly;
3496 if (!qp || !bset)
3497 return isl_stat_error;
3498 if (qp->div->n_row == 0)
3499 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3500 user);
3502 div = isl_mat_copy(qp->div);
3503 dim = isl_space_copy(qp->dim);
3504 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3505 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3506 bset = isl_basic_set_copy(bset);
3507 bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row);
3508 bset = add_div_constraints(bset, div);
3510 return fn(bset, poly, user);
3513 /* Return total degree in variables first (inclusive) up to last (exclusive).
3515 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3517 int deg = -1;
3518 int i;
3519 struct isl_upoly_rec *rec;
3521 if (!up)
3522 return -2;
3523 if (isl_upoly_is_zero(up))
3524 return -1;
3525 if (isl_upoly_is_cst(up) || up->var < first)
3526 return 0;
3528 rec = isl_upoly_as_rec(up);
3529 if (!rec)
3530 return -2;
3532 for (i = 0; i < rec->n; ++i) {
3533 int d;
3535 if (isl_upoly_is_zero(rec->p[i]))
3536 continue;
3537 d = isl_upoly_degree(rec->p[i], first, last);
3538 if (up->var < last)
3539 d += i;
3540 if (d > deg)
3541 deg = d;
3544 return deg;
3547 /* Return total degree in set variables.
3549 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3551 unsigned ovar;
3552 unsigned nvar;
3554 if (!poly)
3555 return -2;
3557 ovar = isl_space_offset(poly->dim, isl_dim_set);
3558 nvar = isl_space_dim(poly->dim, isl_dim_set);
3559 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3562 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3563 unsigned pos, int deg)
3565 int i;
3566 struct isl_upoly_rec *rec;
3568 if (!up)
3569 return NULL;
3571 if (isl_upoly_is_cst(up) || up->var < pos) {
3572 if (deg == 0)
3573 return isl_upoly_copy(up);
3574 else
3575 return isl_upoly_zero(up->ctx);
3578 rec = isl_upoly_as_rec(up);
3579 if (!rec)
3580 return NULL;
3582 if (up->var == pos) {
3583 if (deg < rec->n)
3584 return isl_upoly_copy(rec->p[deg]);
3585 else
3586 return isl_upoly_zero(up->ctx);
3589 up = isl_upoly_copy(up);
3590 up = isl_upoly_cow(up);
3591 rec = isl_upoly_as_rec(up);
3592 if (!rec)
3593 goto error;
3595 for (i = 0; i < rec->n; ++i) {
3596 struct isl_upoly *t;
3597 t = isl_upoly_coeff(rec->p[i], pos, deg);
3598 if (!t)
3599 goto error;
3600 isl_upoly_free(rec->p[i]);
3601 rec->p[i] = t;
3604 return up;
3605 error:
3606 isl_upoly_free(up);
3607 return NULL;
3610 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3612 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3613 __isl_keep isl_qpolynomial *qp,
3614 enum isl_dim_type type, unsigned t_pos, int deg)
3616 unsigned g_pos;
3617 struct isl_upoly *up;
3618 isl_qpolynomial *c;
3620 if (!qp)
3621 return NULL;
3623 if (type == isl_dim_out)
3624 isl_die(qp->div->ctx, isl_error_invalid,
3625 "output/set dimension does not have a coefficient",
3626 return NULL);
3627 if (type == isl_dim_in)
3628 type = isl_dim_set;
3630 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3631 return NULL);
3633 g_pos = pos(qp->dim, type) + t_pos;
3634 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3636 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3637 if (!c)
3638 return NULL;
3639 isl_mat_free(c->div);
3640 c->div = isl_mat_copy(qp->div);
3641 if (!c->div)
3642 goto error;
3643 return c;
3644 error:
3645 isl_qpolynomial_free(c);
3646 return NULL;
3649 /* Homogenize the polynomial in the variables first (inclusive) up to
3650 * last (exclusive) by inserting powers of variable first.
3651 * Variable first is assumed not to appear in the input.
3653 __isl_give struct isl_upoly *isl_upoly_homogenize(
3654 __isl_take struct isl_upoly *up, int deg, int target,
3655 int first, int last)
3657 int i;
3658 struct isl_upoly_rec *rec;
3660 if (!up)
3661 return NULL;
3662 if (isl_upoly_is_zero(up))
3663 return up;
3664 if (deg == target)
3665 return up;
3666 if (isl_upoly_is_cst(up) || up->var < first) {
3667 struct isl_upoly *hom;
3669 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3670 if (!hom)
3671 goto error;
3672 rec = isl_upoly_as_rec(hom);
3673 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3675 return hom;
3678 up = isl_upoly_cow(up);
3679 rec = isl_upoly_as_rec(up);
3680 if (!rec)
3681 goto error;
3683 for (i = 0; i < rec->n; ++i) {
3684 if (isl_upoly_is_zero(rec->p[i]))
3685 continue;
3686 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3687 up->var < last ? deg + i : i, target,
3688 first, last);
3689 if (!rec->p[i])
3690 goto error;
3693 return up;
3694 error:
3695 isl_upoly_free(up);
3696 return NULL;
3699 /* Homogenize the polynomial in the set variables by introducing
3700 * powers of an extra set variable at position 0.
3702 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3703 __isl_take isl_qpolynomial *poly)
3705 unsigned ovar;
3706 unsigned nvar;
3707 int deg = isl_qpolynomial_degree(poly);
3709 if (deg < -1)
3710 goto error;
3712 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3713 poly = isl_qpolynomial_cow(poly);
3714 if (!poly)
3715 goto error;
3717 ovar = isl_space_offset(poly->dim, isl_dim_set);
3718 nvar = isl_space_dim(poly->dim, isl_dim_set);
3719 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3720 ovar, ovar + nvar);
3721 if (!poly->upoly)
3722 goto error;
3724 return poly;
3725 error:
3726 isl_qpolynomial_free(poly);
3727 return NULL;
3730 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *space,
3731 __isl_take isl_mat *div)
3733 isl_term *term;
3734 int n;
3736 if (!space || !div)
3737 goto error;
3739 n = isl_space_dim(space, isl_dim_all) + div->n_row;
3741 term = isl_calloc(space->ctx, struct isl_term,
3742 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3743 if (!term)
3744 goto error;
3746 term->ref = 1;
3747 term->dim = space;
3748 term->div = div;
3749 isl_int_init(term->n);
3750 isl_int_init(term->d);
3752 return term;
3753 error:
3754 isl_space_free(space);
3755 isl_mat_free(div);
3756 return NULL;
3759 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3761 if (!term)
3762 return NULL;
3764 term->ref++;
3765 return term;
3768 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3770 int i;
3771 isl_term *dup;
3772 unsigned total;
3774 if (!term)
3775 return NULL;
3777 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3779 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3780 if (!dup)
3781 return NULL;
3783 isl_int_set(dup->n, term->n);
3784 isl_int_set(dup->d, term->d);
3786 for (i = 0; i < total; ++i)
3787 dup->pow[i] = term->pow[i];
3789 return dup;
3792 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3794 if (!term)
3795 return NULL;
3797 if (term->ref == 1)
3798 return term;
3799 term->ref--;
3800 return isl_term_dup(term);
3803 __isl_null isl_term *isl_term_free(__isl_take isl_term *term)
3805 if (!term)
3806 return NULL;
3808 if (--term->ref > 0)
3809 return NULL;
3811 isl_space_free(term->dim);
3812 isl_mat_free(term->div);
3813 isl_int_clear(term->n);
3814 isl_int_clear(term->d);
3815 free(term);
3817 return NULL;
3820 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3822 if (!term)
3823 return 0;
3825 switch (type) {
3826 case isl_dim_param:
3827 case isl_dim_in:
3828 case isl_dim_out: return isl_space_dim(term->dim, type);
3829 case isl_dim_div: return term->div->n_row;
3830 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3831 term->div->n_row;
3832 default: return 0;
3836 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3838 return term ? term->dim->ctx : NULL;
3841 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3843 if (!term)
3844 return;
3845 isl_int_set(*n, term->n);
3848 /* Return the coefficient of the term "term".
3850 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
3852 if (!term)
3853 return NULL;
3855 return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
3856 term->n, term->d);
3859 int isl_term_get_exp(__isl_keep isl_term *term,
3860 enum isl_dim_type type, unsigned pos)
3862 if (!term)
3863 return -1;
3865 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3867 if (type >= isl_dim_set)
3868 pos += isl_space_dim(term->dim, isl_dim_param);
3869 if (type >= isl_dim_div)
3870 pos += isl_space_dim(term->dim, isl_dim_set);
3872 return term->pow[pos];
3875 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3877 isl_local_space *ls;
3878 isl_aff *aff;
3880 if (!term)
3881 return NULL;
3883 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3884 return NULL);
3886 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3887 isl_mat_copy(term->div));
3888 aff = isl_aff_alloc(ls);
3889 if (!aff)
3890 return NULL;
3892 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3894 aff = isl_aff_normalize(aff);
3896 return aff;
3899 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3900 isl_stat (*fn)(__isl_take isl_term *term, void *user),
3901 __isl_take isl_term *term, void *user)
3903 int i;
3904 struct isl_upoly_rec *rec;
3906 if (!up || !term)
3907 goto error;
3909 if (isl_upoly_is_zero(up))
3910 return term;
3912 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3913 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3914 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3916 if (isl_upoly_is_cst(up)) {
3917 struct isl_upoly_cst *cst;
3918 cst = isl_upoly_as_cst(up);
3919 if (!cst)
3920 goto error;
3921 term = isl_term_cow(term);
3922 if (!term)
3923 goto error;
3924 isl_int_set(term->n, cst->n);
3925 isl_int_set(term->d, cst->d);
3926 if (fn(isl_term_copy(term), user) < 0)
3927 goto error;
3928 return term;
3931 rec = isl_upoly_as_rec(up);
3932 if (!rec)
3933 goto error;
3935 for (i = 0; i < rec->n; ++i) {
3936 term = isl_term_cow(term);
3937 if (!term)
3938 goto error;
3939 term->pow[up->var] = i;
3940 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3941 if (!term)
3942 goto error;
3944 term->pow[up->var] = 0;
3946 return term;
3947 error:
3948 isl_term_free(term);
3949 return NULL;
3952 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3953 isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
3955 isl_term *term;
3957 if (!qp)
3958 return isl_stat_error;
3960 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3961 if (!term)
3962 return isl_stat_error;
3964 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3966 isl_term_free(term);
3968 return term ? isl_stat_ok : isl_stat_error;
3971 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3973 struct isl_upoly *up;
3974 isl_qpolynomial *qp;
3975 int i, n;
3977 if (!term)
3978 return NULL;
3980 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3982 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3983 for (i = 0; i < n; ++i) {
3984 if (!term->pow[i])
3985 continue;
3986 up = isl_upoly_mul(up,
3987 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3990 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3991 if (!qp)
3992 goto error;
3993 isl_mat_free(qp->div);
3994 qp->div = isl_mat_copy(term->div);
3995 if (!qp->div)
3996 goto error;
3998 isl_term_free(term);
3999 return qp;
4000 error:
4001 isl_qpolynomial_free(qp);
4002 isl_term_free(term);
4003 return NULL;
4006 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4007 __isl_take isl_space *space)
4009 int i;
4010 int extra;
4011 unsigned total;
4013 if (!qp || !space)
4014 goto error;
4016 if (isl_space_is_equal(qp->dim, space)) {
4017 isl_space_free(space);
4018 return qp;
4021 qp = isl_qpolynomial_cow(qp);
4022 if (!qp)
4023 goto error;
4025 extra = isl_space_dim(space, isl_dim_set) -
4026 isl_space_dim(qp->dim, isl_dim_set);
4027 total = isl_space_dim(qp->dim, isl_dim_all);
4028 if (qp->div->n_row) {
4029 int *exp;
4031 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4032 if (!exp)
4033 goto error;
4034 for (i = 0; i < qp->div->n_row; ++i)
4035 exp[i] = extra + i;
4036 qp->upoly = expand(qp->upoly, exp, total);
4037 free(exp);
4038 if (!qp->upoly)
4039 goto error;
4041 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4042 if (!qp->div)
4043 goto error;
4044 for (i = 0; i < qp->div->n_row; ++i)
4045 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4047 isl_space_free(qp->dim);
4048 qp->dim = space;
4050 return qp;
4051 error:
4052 isl_space_free(space);
4053 isl_qpolynomial_free(qp);
4054 return NULL;
4057 /* For each parameter or variable that does not appear in qp,
4058 * first eliminate the variable from all constraints and then set it to zero.
4060 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4061 __isl_keep isl_qpolynomial *qp)
4063 int *active = NULL;
4064 int i;
4065 int d;
4066 unsigned nparam;
4067 unsigned nvar;
4069 if (!set || !qp)
4070 goto error;
4072 d = isl_space_dim(set->dim, isl_dim_all);
4073 active = isl_calloc_array(set->ctx, int, d);
4074 if (set_active(qp, active) < 0)
4075 goto error;
4077 for (i = 0; i < d; ++i)
4078 if (!active[i])
4079 break;
4081 if (i == d) {
4082 free(active);
4083 return set;
4086 nparam = isl_space_dim(set->dim, isl_dim_param);
4087 nvar = isl_space_dim(set->dim, isl_dim_set);
4088 for (i = 0; i < nparam; ++i) {
4089 if (active[i])
4090 continue;
4091 set = isl_set_eliminate(set, isl_dim_param, i, 1);
4092 set = isl_set_fix_si(set, isl_dim_param, i, 0);
4094 for (i = 0; i < nvar; ++i) {
4095 if (active[nparam + i])
4096 continue;
4097 set = isl_set_eliminate(set, isl_dim_set, i, 1);
4098 set = isl_set_fix_si(set, isl_dim_set, i, 0);
4101 free(active);
4103 return set;
4104 error:
4105 free(active);
4106 isl_set_free(set);
4107 return NULL;
4110 struct isl_opt_data {
4111 isl_qpolynomial *qp;
4112 int first;
4113 isl_val *opt;
4114 int max;
4117 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4119 struct isl_opt_data *data = (struct isl_opt_data *)user;
4120 isl_val *val;
4122 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4123 if (data->first) {
4124 data->first = 0;
4125 data->opt = val;
4126 } else if (data->max) {
4127 data->opt = isl_val_max(data->opt, val);
4128 } else {
4129 data->opt = isl_val_min(data->opt, val);
4132 return isl_stat_ok;
4135 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4136 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4138 struct isl_opt_data data = { NULL, 1, NULL, max };
4140 if (!set || !qp)
4141 goto error;
4143 if (isl_upoly_is_cst(qp->upoly)) {
4144 isl_set_free(set);
4145 data.opt = isl_qpolynomial_get_constant_val(qp);
4146 isl_qpolynomial_free(qp);
4147 return data.opt;
4150 set = fix_inactive(set, qp);
4152 data.qp = qp;
4153 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4154 goto error;
4156 if (data.first)
4157 data.opt = isl_val_zero(isl_set_get_ctx(set));
4159 isl_set_free(set);
4160 isl_qpolynomial_free(qp);
4161 return data.opt;
4162 error:
4163 isl_set_free(set);
4164 isl_qpolynomial_free(qp);
4165 isl_val_free(data.opt);
4166 return NULL;
4169 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4170 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4172 int i;
4173 int n_sub;
4174 isl_ctx *ctx;
4175 struct isl_upoly **subs;
4176 isl_mat *mat, *diag;
4178 qp = isl_qpolynomial_cow(qp);
4179 if (!qp || !morph)
4180 goto error;
4182 ctx = qp->dim->ctx;
4183 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
4185 n_sub = morph->inv->n_row - 1;
4186 if (morph->inv->n_row != morph->inv->n_col)
4187 n_sub += qp->div->n_row;
4188 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
4189 if (n_sub && !subs)
4190 goto error;
4192 for (i = 0; 1 + i < morph->inv->n_row; ++i)
4193 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
4194 morph->inv->row[0][0], morph->inv->n_col);
4195 if (morph->inv->n_row != morph->inv->n_col)
4196 for (i = 0; i < qp->div->n_row; ++i)
4197 subs[morph->inv->n_row - 1 + i] =
4198 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4200 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
4202 for (i = 0; i < n_sub; ++i)
4203 isl_upoly_free(subs[i]);
4204 free(subs);
4206 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4207 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4208 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4209 mat = isl_mat_diagonal(mat, diag);
4210 qp->div = isl_mat_product(qp->div, mat);
4211 isl_space_free(qp->dim);
4212 qp->dim = isl_space_copy(morph->ran->dim);
4214 if (!qp->upoly || !qp->div || !qp->dim)
4215 goto error;
4217 isl_morph_free(morph);
4219 return qp;
4220 error:
4221 isl_qpolynomial_free(qp);
4222 isl_morph_free(morph);
4223 return NULL;
4226 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4227 __isl_take isl_union_pw_qpolynomial *upwqp1,
4228 __isl_take isl_union_pw_qpolynomial *upwqp2)
4230 return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4231 &isl_pw_qpolynomial_mul);
4234 /* Reorder the dimension of "qp" according to the given reordering.
4236 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4237 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4239 isl_space *space;
4241 qp = isl_qpolynomial_cow(qp);
4242 if (!qp)
4243 goto error;
4245 r = isl_reordering_extend(r, qp->div->n_row);
4246 if (!r)
4247 goto error;
4249 qp->div = isl_local_reorder(qp->div, isl_reordering_copy(r));
4250 if (!qp->div)
4251 goto error;
4253 qp->upoly = reorder(qp->upoly, r->pos);
4254 if (!qp->upoly)
4255 goto error;
4257 space = isl_reordering_get_space(r);
4258 qp = isl_qpolynomial_reset_domain_space(qp, space);
4260 isl_reordering_free(r);
4261 return qp;
4262 error:
4263 isl_qpolynomial_free(qp);
4264 isl_reordering_free(r);
4265 return NULL;
4268 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4269 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4271 isl_bool equal_params;
4273 if (!qp || !model)
4274 goto error;
4276 equal_params = isl_space_has_equal_params(qp->dim, model);
4277 if (equal_params < 0)
4278 goto error;
4279 if (!equal_params) {
4280 isl_reordering *exp;
4282 exp = isl_parameter_alignment_reordering(qp->dim, model);
4283 exp = isl_reordering_extend_space(exp,
4284 isl_qpolynomial_get_domain_space(qp));
4285 qp = isl_qpolynomial_realign_domain(qp, exp);
4288 isl_space_free(model);
4289 return qp;
4290 error:
4291 isl_space_free(model);
4292 isl_qpolynomial_free(qp);
4293 return NULL;
4296 struct isl_split_periods_data {
4297 int max_periods;
4298 isl_pw_qpolynomial *res;
4301 /* Create a slice where the integer division "div" has the fixed value "v".
4302 * In particular, if "div" refers to floor(f/m), then create a slice
4304 * m v <= f <= m v + (m - 1)
4306 * or
4308 * f - m v >= 0
4309 * -f + m v + (m - 1) >= 0
4311 static __isl_give isl_set *set_div_slice(__isl_take isl_space *space,
4312 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4314 int total;
4315 isl_basic_set *bset = NULL;
4316 int k;
4318 if (!space || !qp)
4319 goto error;
4321 total = isl_space_dim(space, isl_dim_all);
4322 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, 2);
4324 k = isl_basic_set_alloc_inequality(bset);
4325 if (k < 0)
4326 goto error;
4327 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4328 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4330 k = isl_basic_set_alloc_inequality(bset);
4331 if (k < 0)
4332 goto error;
4333 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4334 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4335 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4336 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4338 isl_space_free(space);
4339 return isl_set_from_basic_set(bset);
4340 error:
4341 isl_basic_set_free(bset);
4342 isl_space_free(space);
4343 return NULL;
4346 static isl_stat split_periods(__isl_take isl_set *set,
4347 __isl_take isl_qpolynomial *qp, void *user);
4349 /* Create a slice of the domain "set" such that integer division "div"
4350 * has the fixed value "v" and add the results to data->res,
4351 * replacing the integer division by "v" in "qp".
4353 static isl_stat set_div(__isl_take isl_set *set,
4354 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4355 struct isl_split_periods_data *data)
4357 int i;
4358 int total;
4359 isl_set *slice;
4360 struct isl_upoly *cst;
4362 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4363 set = isl_set_intersect(set, slice);
4365 if (!qp)
4366 goto error;
4368 total = isl_space_dim(qp->dim, isl_dim_all);
4370 for (i = div + 1; i < qp->div->n_row; ++i) {
4371 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4372 continue;
4373 isl_int_addmul(qp->div->row[i][1],
4374 qp->div->row[i][2 + total + div], v);
4375 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4378 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4379 qp = substitute_div(qp, div, cst);
4381 return split_periods(set, qp, data);
4382 error:
4383 isl_set_free(set);
4384 isl_qpolynomial_free(qp);
4385 return isl_stat_error;
4388 /* Split the domain "set" such that integer division "div"
4389 * has a fixed value (ranging from "min" to "max") on each slice
4390 * and add the results to data->res.
4392 static isl_stat split_div(__isl_take isl_set *set,
4393 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4394 struct isl_split_periods_data *data)
4396 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4397 isl_set *set_i = isl_set_copy(set);
4398 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4400 if (set_div(set_i, qp_i, div, min, data) < 0)
4401 goto error;
4403 isl_set_free(set);
4404 isl_qpolynomial_free(qp);
4405 return isl_stat_ok;
4406 error:
4407 isl_set_free(set);
4408 isl_qpolynomial_free(qp);
4409 return isl_stat_error;
4412 /* If "qp" refers to any integer division
4413 * that can only attain "max_periods" distinct values on "set"
4414 * then split the domain along those distinct values.
4415 * Add the results (or the original if no splitting occurs)
4416 * to data->res.
4418 static isl_stat split_periods(__isl_take isl_set *set,
4419 __isl_take isl_qpolynomial *qp, void *user)
4421 int i;
4422 isl_pw_qpolynomial *pwqp;
4423 struct isl_split_periods_data *data;
4424 isl_int min, max;
4425 int total;
4426 isl_stat r = isl_stat_ok;
4428 data = (struct isl_split_periods_data *)user;
4430 if (!set || !qp)
4431 goto error;
4433 if (qp->div->n_row == 0) {
4434 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4435 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4436 return isl_stat_ok;
4439 isl_int_init(min);
4440 isl_int_init(max);
4441 total = isl_space_dim(qp->dim, isl_dim_all);
4442 for (i = 0; i < qp->div->n_row; ++i) {
4443 enum isl_lp_result lp_res;
4445 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4446 qp->div->n_row) != -1)
4447 continue;
4449 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4450 set->ctx->one, &min, NULL, NULL);
4451 if (lp_res == isl_lp_error)
4452 goto error2;
4453 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4454 continue;
4455 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4457 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4458 set->ctx->one, &max, NULL, NULL);
4459 if (lp_res == isl_lp_error)
4460 goto error2;
4461 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4462 continue;
4463 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4465 isl_int_sub(max, max, min);
4466 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4467 isl_int_add(max, max, min);
4468 break;
4472 if (i < qp->div->n_row) {
4473 r = split_div(set, qp, i, min, max, data);
4474 } else {
4475 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4476 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4479 isl_int_clear(max);
4480 isl_int_clear(min);
4482 return r;
4483 error2:
4484 isl_int_clear(max);
4485 isl_int_clear(min);
4486 error:
4487 isl_set_free(set);
4488 isl_qpolynomial_free(qp);
4489 return isl_stat_error;
4492 /* If any quasi-polynomial in pwqp refers to any integer division
4493 * that can only attain "max_periods" distinct values on its domain
4494 * then split the domain along those distinct values.
4496 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4497 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4499 struct isl_split_periods_data data;
4501 data.max_periods = max_periods;
4502 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4504 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4505 goto error;
4507 isl_pw_qpolynomial_free(pwqp);
4509 return data.res;
4510 error:
4511 isl_pw_qpolynomial_free(data.res);
4512 isl_pw_qpolynomial_free(pwqp);
4513 return NULL;
4516 /* Construct a piecewise quasipolynomial that is constant on the given
4517 * domain. In particular, it is
4518 * 0 if cst == 0
4519 * 1 if cst == 1
4520 * infinity if cst == -1
4522 * If cst == -1, then explicitly check whether the domain is empty and,
4523 * if so, return 0 instead.
4525 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4526 __isl_take isl_basic_set *bset, int cst)
4528 isl_space *dim;
4529 isl_qpolynomial *qp;
4531 if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
4532 cst = 0;
4533 if (!bset)
4534 return NULL;
4536 bset = isl_basic_set_params(bset);
4537 dim = isl_basic_set_get_space(bset);
4538 if (cst < 0)
4539 qp = isl_qpolynomial_infty_on_domain(dim);
4540 else if (cst == 0)
4541 qp = isl_qpolynomial_zero_on_domain(dim);
4542 else
4543 qp = isl_qpolynomial_one_on_domain(dim);
4544 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4547 /* Factor bset, call fn on each of the factors and return the product.
4549 * If no factors can be found, simply call fn on the input.
4550 * Otherwise, construct the factors based on the factorizer,
4551 * call fn on each factor and compute the product.
4553 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4554 __isl_take isl_basic_set *bset,
4555 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4557 int i, n;
4558 isl_space *space;
4559 isl_set *set;
4560 isl_factorizer *f;
4561 isl_qpolynomial *qp;
4562 isl_pw_qpolynomial *pwqp;
4563 unsigned nparam;
4564 unsigned nvar;
4566 f = isl_basic_set_factorizer(bset);
4567 if (!f)
4568 goto error;
4569 if (f->n_group == 0) {
4570 isl_factorizer_free(f);
4571 return fn(bset);
4574 nparam = isl_basic_set_dim(bset, isl_dim_param);
4575 nvar = isl_basic_set_dim(bset, isl_dim_set);
4577 space = isl_basic_set_get_space(bset);
4578 space = isl_space_params(space);
4579 set = isl_set_universe(isl_space_copy(space));
4580 qp = isl_qpolynomial_one_on_domain(space);
4581 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4583 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4585 for (i = 0, n = 0; i < f->n_group; ++i) {
4586 isl_basic_set *bset_i;
4587 isl_pw_qpolynomial *pwqp_i;
4589 bset_i = isl_basic_set_copy(bset);
4590 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4591 nparam + n + f->len[i], nvar - n - f->len[i]);
4592 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4593 nparam, n);
4594 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4595 n + f->len[i], nvar - n - f->len[i]);
4596 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4598 pwqp_i = fn(bset_i);
4599 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4601 n += f->len[i];
4604 isl_basic_set_free(bset);
4605 isl_factorizer_free(f);
4607 return pwqp;
4608 error:
4609 isl_basic_set_free(bset);
4610 return NULL;
4613 /* Factor bset, call fn on each of the factors and return the product.
4614 * The function is assumed to evaluate to zero on empty domains,
4615 * to one on zero-dimensional domains and to infinity on unbounded domains
4616 * and will not be called explicitly on zero-dimensional or unbounded domains.
4618 * We first check for some special cases and remove all equalities.
4619 * Then we hand over control to compressed_multiplicative_call.
4621 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4622 __isl_take isl_basic_set *bset,
4623 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4625 isl_bool bounded;
4626 isl_morph *morph;
4627 isl_pw_qpolynomial *pwqp;
4629 if (!bset)
4630 return NULL;
4632 if (isl_basic_set_plain_is_empty(bset))
4633 return constant_on_domain(bset, 0);
4635 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4636 return constant_on_domain(bset, 1);
4638 bounded = isl_basic_set_is_bounded(bset);
4639 if (bounded < 0)
4640 goto error;
4641 if (!bounded)
4642 return constant_on_domain(bset, -1);
4644 if (bset->n_eq == 0)
4645 return compressed_multiplicative_call(bset, fn);
4647 morph = isl_basic_set_full_compression(bset);
4648 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4650 pwqp = compressed_multiplicative_call(bset, fn);
4652 morph = isl_morph_dom_params(morph);
4653 morph = isl_morph_ran_params(morph);
4654 morph = isl_morph_inverse(morph);
4656 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4658 return pwqp;
4659 error:
4660 isl_basic_set_free(bset);
4661 return NULL;
4664 /* Drop all floors in "qp", turning each integer division [a/m] into
4665 * a rational division a/m. If "down" is set, then the integer division
4666 * is replaced by (a-(m-1))/m instead.
4668 static __isl_give isl_qpolynomial *qp_drop_floors(
4669 __isl_take isl_qpolynomial *qp, int down)
4671 int i;
4672 struct isl_upoly *s;
4674 if (!qp)
4675 return NULL;
4676 if (qp->div->n_row == 0)
4677 return qp;
4679 qp = isl_qpolynomial_cow(qp);
4680 if (!qp)
4681 return NULL;
4683 for (i = qp->div->n_row - 1; i >= 0; --i) {
4684 if (down) {
4685 isl_int_sub(qp->div->row[i][1],
4686 qp->div->row[i][1], qp->div->row[i][0]);
4687 isl_int_add_ui(qp->div->row[i][1],
4688 qp->div->row[i][1], 1);
4690 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4691 qp->div->row[i][0], qp->div->n_col - 1);
4692 qp = substitute_div(qp, i, s);
4693 if (!qp)
4694 return NULL;
4697 return qp;
4700 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4701 * a rational division a/m.
4703 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4704 __isl_take isl_pw_qpolynomial *pwqp)
4706 int i;
4708 if (!pwqp)
4709 return NULL;
4711 if (isl_pw_qpolynomial_is_zero(pwqp))
4712 return pwqp;
4714 pwqp = isl_pw_qpolynomial_cow(pwqp);
4715 if (!pwqp)
4716 return NULL;
4718 for (i = 0; i < pwqp->n; ++i) {
4719 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4720 if (!pwqp->p[i].qp)
4721 goto error;
4724 return pwqp;
4725 error:
4726 isl_pw_qpolynomial_free(pwqp);
4727 return NULL;
4730 /* Adjust all the integer divisions in "qp" such that they are at least
4731 * one over the given orthant (identified by "signs"). This ensures
4732 * that they will still be non-negative even after subtracting (m-1)/m.
4734 * In particular, f is replaced by f' + v, changing f = [a/m]
4735 * to f' = [(a - m v)/m].
4736 * If the constant term k in a is smaller than m,
4737 * the constant term of v is set to floor(k/m) - 1.
4738 * For any other term, if the coefficient c and the variable x have
4739 * the same sign, then no changes are needed.
4740 * Otherwise, if the variable is positive (and c is negative),
4741 * then the coefficient of x in v is set to floor(c/m).
4742 * If the variable is negative (and c is positive),
4743 * then the coefficient of x in v is set to ceil(c/m).
4745 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4746 int *signs)
4748 int i, j;
4749 int total;
4750 isl_vec *v = NULL;
4751 struct isl_upoly *s;
4753 qp = isl_qpolynomial_cow(qp);
4754 if (!qp)
4755 return NULL;
4756 qp->div = isl_mat_cow(qp->div);
4757 if (!qp->div)
4758 goto error;
4760 total = isl_space_dim(qp->dim, isl_dim_all);
4761 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4763 for (i = 0; i < qp->div->n_row; ++i) {
4764 isl_int *row = qp->div->row[i];
4765 v = isl_vec_clr(v);
4766 if (!v)
4767 goto error;
4768 if (isl_int_lt(row[1], row[0])) {
4769 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4770 isl_int_sub_ui(v->el[0], v->el[0], 1);
4771 isl_int_submul(row[1], row[0], v->el[0]);
4773 for (j = 0; j < total; ++j) {
4774 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4775 continue;
4776 if (signs[j] < 0)
4777 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4778 else
4779 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4780 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4782 for (j = 0; j < i; ++j) {
4783 if (isl_int_sgn(row[2 + total + j]) >= 0)
4784 continue;
4785 isl_int_fdiv_q(v->el[1 + total + j],
4786 row[2 + total + j], row[0]);
4787 isl_int_submul(row[2 + total + j],
4788 row[0], v->el[1 + total + j]);
4790 for (j = i + 1; j < qp->div->n_row; ++j) {
4791 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4792 continue;
4793 isl_seq_combine(qp->div->row[j] + 1,
4794 qp->div->ctx->one, qp->div->row[j] + 1,
4795 qp->div->row[j][2 + total + i], v->el, v->size);
4797 isl_int_set_si(v->el[1 + total + i], 1);
4798 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4799 qp->div->ctx->one, v->size);
4800 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4801 isl_upoly_free(s);
4802 if (!qp->upoly)
4803 goto error;
4806 isl_vec_free(v);
4807 return qp;
4808 error:
4809 isl_vec_free(v);
4810 isl_qpolynomial_free(qp);
4811 return NULL;
4814 struct isl_to_poly_data {
4815 int sign;
4816 isl_pw_qpolynomial *res;
4817 isl_qpolynomial *qp;
4820 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4821 * We first make all integer divisions positive and then split the
4822 * quasipolynomials into terms with sign data->sign (the direction
4823 * of the requested approximation) and terms with the opposite sign.
4824 * In the first set of terms, each integer division [a/m] is
4825 * overapproximated by a/m, while in the second it is underapproximated
4826 * by (a-(m-1))/m.
4828 static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
4829 int *signs, void *user)
4831 struct isl_to_poly_data *data = user;
4832 isl_pw_qpolynomial *t;
4833 isl_qpolynomial *qp, *up, *down;
4835 qp = isl_qpolynomial_copy(data->qp);
4836 qp = make_divs_pos(qp, signs);
4838 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4839 up = qp_drop_floors(up, 0);
4840 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4841 down = qp_drop_floors(down, 1);
4843 isl_qpolynomial_free(qp);
4844 qp = isl_qpolynomial_add(up, down);
4846 t = isl_pw_qpolynomial_alloc(orthant, qp);
4847 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4849 return isl_stat_ok;
4852 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4853 * the polynomial will be an overapproximation. If "sign" is negative,
4854 * it will be an underapproximation. If "sign" is zero, the approximation
4855 * will lie somewhere in between.
4857 * In particular, is sign == 0, we simply drop the floors, turning
4858 * the integer divisions into rational divisions.
4859 * Otherwise, we split the domains into orthants, make all integer divisions
4860 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4861 * depending on the requested sign and the sign of the term in which
4862 * the integer division appears.
4864 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4865 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4867 int i;
4868 struct isl_to_poly_data data;
4870 if (sign == 0)
4871 return pwqp_drop_floors(pwqp);
4873 if (!pwqp)
4874 return NULL;
4876 data.sign = sign;
4877 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4879 for (i = 0; i < pwqp->n; ++i) {
4880 if (pwqp->p[i].qp->div->n_row == 0) {
4881 isl_pw_qpolynomial *t;
4882 t = isl_pw_qpolynomial_alloc(
4883 isl_set_copy(pwqp->p[i].set),
4884 isl_qpolynomial_copy(pwqp->p[i].qp));
4885 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4886 continue;
4888 data.qp = pwqp->p[i].qp;
4889 if (isl_set_foreach_orthant(pwqp->p[i].set,
4890 &to_polynomial_on_orthant, &data) < 0)
4891 goto error;
4894 isl_pw_qpolynomial_free(pwqp);
4896 return data.res;
4897 error:
4898 isl_pw_qpolynomial_free(pwqp);
4899 isl_pw_qpolynomial_free(data.res);
4900 return NULL;
4903 static __isl_give isl_pw_qpolynomial *poly_entry(
4904 __isl_take isl_pw_qpolynomial *pwqp, void *user)
4906 int *sign = user;
4908 return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
4911 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4912 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4914 return isl_union_pw_qpolynomial_transform_inplace(upwqp,
4915 &poly_entry, &sign);
4918 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4919 __isl_take isl_qpolynomial *qp)
4921 int i, k;
4922 isl_space *dim;
4923 isl_vec *aff = NULL;
4924 isl_basic_map *bmap = NULL;
4925 unsigned pos;
4926 unsigned n_div;
4928 if (!qp)
4929 return NULL;
4930 if (!isl_upoly_is_affine(qp->upoly))
4931 isl_die(qp->dim->ctx, isl_error_invalid,
4932 "input quasi-polynomial not affine", goto error);
4933 aff = isl_qpolynomial_extract_affine(qp);
4934 if (!aff)
4935 goto error;
4936 dim = isl_qpolynomial_get_space(qp);
4937 pos = 1 + isl_space_offset(dim, isl_dim_out);
4938 n_div = qp->div->n_row;
4939 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4941 for (i = 0; i < n_div; ++i) {
4942 k = isl_basic_map_alloc_div(bmap);
4943 if (k < 0)
4944 goto error;
4945 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4946 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4947 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4948 goto error;
4950 k = isl_basic_map_alloc_equality(bmap);
4951 if (k < 0)
4952 goto error;
4953 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4954 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4955 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4957 isl_vec_free(aff);
4958 isl_qpolynomial_free(qp);
4959 bmap = isl_basic_map_finalize(bmap);
4960 return bmap;
4961 error:
4962 isl_vec_free(aff);
4963 isl_qpolynomial_free(qp);
4964 isl_basic_map_free(bmap);
4965 return NULL;