isl_basic_map_range_map: rename "dim" variable to "space"
[isl.git] / isl_farkas.c
blob3a0d3e1f038ec068d8c63e9fb89793ba941d53d0
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl/set.h>
13 #include <isl_space_private.h>
14 #include <isl_seq.h>
17 * Let C be a cone and define
19 * C' := { y | forall x in C : y x >= 0 }
21 * C' contains the coefficients of all linear constraints
22 * that are valid for C.
23 * Furthermore, C'' = C.
25 * If C is defined as { x | A x >= 0 }
26 * then any element in C' must be a non-negative combination
27 * of the rows of A, i.e., y = t A with t >= 0. That is,
29 * C' = { y | exists t >= 0 : y = t A }
31 * If any of the rows in A actually represents an equality, then
32 * also negative combinations of this row are allowed and so the
33 * non-negativity constraint on the corresponding element of t
34 * can be dropped.
36 * A polyhedron P = { x | b + A x >= 0 } can be represented
37 * in homogeneous coordinates by the cone
38 * C = { [z,x] | b z + A x >= and z >= 0 }
39 * The valid linear constraints on C correspond to the valid affine
40 * constraints on P.
41 * This is essentially Farkas' lemma.
43 * Since
44 * [ 1 0 ]
45 * [ w y ] = [t_0 t] [ b A ]
47 * we have
49 * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
50 * or
52 * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
54 * In practice, we introduce an extra variable (w), shifting all
55 * other variables to the right, and an extra inequality
56 * (w - t b >= 0) corresponding to the positivity constraint on
57 * the homogeneous coordinate.
59 * When going back from coefficients to solutions, we immediately
60 * plug in 1 for z, which corresponds to shifting all variables
61 * to the left, with the leftmost ending up in the constant position.
64 /* Add the given prefix to all named isl_dim_set dimensions in "space".
66 static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *space,
67 const char *prefix)
69 int i;
70 isl_ctx *ctx;
71 unsigned nvar;
72 size_t prefix_len = strlen(prefix);
74 if (!space)
75 return NULL;
77 ctx = isl_space_get_ctx(space);
78 nvar = isl_space_dim(space, isl_dim_set);
80 for (i = 0; i < nvar; ++i) {
81 const char *name;
82 char *prefix_name;
84 name = isl_space_get_dim_name(space, isl_dim_set, i);
85 if (!name)
86 continue;
88 prefix_name = isl_alloc_array(ctx, char,
89 prefix_len + strlen(name) + 1);
90 if (!prefix_name)
91 goto error;
92 memcpy(prefix_name, prefix, prefix_len);
93 strcpy(prefix_name + prefix_len, name);
95 space = isl_space_set_dim_name(space,
96 isl_dim_set, i, prefix_name);
97 free(prefix_name);
100 return space;
101 error:
102 isl_space_free(space);
103 return NULL;
106 /* Given a dimension specification of the solutions space, construct
107 * a dimension specification for the space of coefficients.
109 * In particular transform
111 * [params] -> { S }
113 * to
115 * { coefficients[[cst, params] -> S] }
117 * and prefix each dimension name with "c_".
119 static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *space)
121 isl_space *space_param;
122 unsigned nvar;
123 unsigned nparam;
125 nvar = isl_space_dim(space, isl_dim_set);
126 nparam = isl_space_dim(space, isl_dim_param);
127 space_param = isl_space_copy(space);
128 space_param = isl_space_drop_dims(space_param, isl_dim_set, 0, nvar);
129 space_param = isl_space_move_dims(space_param, isl_dim_set, 0,
130 isl_dim_param, 0, nparam);
131 space_param = isl_space_prefix(space_param, "c_");
132 space_param = isl_space_insert_dims(space_param, isl_dim_set, 0, 1);
133 space_param = isl_space_set_dim_name(space_param,
134 isl_dim_set, 0, "c_cst");
135 space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
136 space = isl_space_prefix(space, "c_");
137 space = isl_space_join(isl_space_from_domain(space_param),
138 isl_space_from_range(space));
139 space = isl_space_wrap(space);
140 space = isl_space_set_tuple_name(space, isl_dim_set, "coefficients");
142 return space;
145 /* Drop the given prefix from all named dimensions of type "type" in "space".
147 static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *space,
148 enum isl_dim_type type, const char *prefix)
150 int i;
151 unsigned n;
152 size_t prefix_len = strlen(prefix);
154 n = isl_space_dim(space, type);
156 for (i = 0; i < n; ++i) {
157 const char *name;
159 name = isl_space_get_dim_name(space, type, i);
160 if (!name)
161 continue;
162 if (strncmp(name, prefix, prefix_len))
163 continue;
165 space = isl_space_set_dim_name(space,
166 type, i, name + prefix_len);
169 return space;
172 /* Given a dimension specification of the space of coefficients, construct
173 * a dimension specification for the space of solutions.
175 * In particular transform
177 * { coefficients[[cst, params] -> S] }
179 * to
181 * [params] -> { S }
183 * and drop the "c_" prefix from the dimension names.
185 static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *space)
187 unsigned nparam;
189 space = isl_space_unwrap(space);
190 space = isl_space_drop_dims(space, isl_dim_in, 0, 1);
191 space = isl_space_unprefix(space, isl_dim_in, "c_");
192 space = isl_space_unprefix(space, isl_dim_out, "c_");
193 nparam = isl_space_dim(space, isl_dim_in);
194 space = isl_space_move_dims(space,
195 isl_dim_param, 0, isl_dim_in, 0, nparam);
196 space = isl_space_range(space);
198 return space;
201 /* Return the rational universe basic set in the given space.
203 static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
205 isl_basic_set *bset;
207 bset = isl_basic_set_universe(space);
208 bset = isl_basic_set_set_rational(bset);
210 return bset;
213 /* Compute the dual of "bset" by applying Farkas' lemma.
214 * As explained above, we add an extra dimension to represent
215 * the coefficient of the constant term when going from solutions
216 * to coefficients (shift == 1) and we drop the extra dimension when going
217 * in the opposite direction (shift == -1). "dim" is the space in which
218 * the dual should be created.
220 * If "bset" is (obviously) empty, then the way this emptiness
221 * is represented by the constraints does not allow for the application
222 * of the standard farkas algorithm. We therefore handle this case
223 * specifically and return the universe basic set.
225 static __isl_give isl_basic_set *farkas(__isl_take isl_space *space,
226 __isl_take isl_basic_set *bset, int shift)
228 int i, j, k;
229 isl_basic_set *dual = NULL;
230 unsigned total;
232 if (isl_basic_set_plain_is_empty(bset)) {
233 isl_basic_set_free(bset);
234 return rational_universe(space);
237 total = isl_basic_set_total_dim(bset);
239 dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
240 total, bset->n_ineq + (shift > 0));
241 dual = isl_basic_set_set_rational(dual);
243 for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
244 k = isl_basic_set_alloc_div(dual);
245 if (k < 0)
246 goto error;
247 isl_int_set_si(dual->div[k][0], 0);
250 for (i = 0; i < total; ++i) {
251 k = isl_basic_set_alloc_equality(dual);
252 if (k < 0)
253 goto error;
254 isl_seq_clr(dual->eq[k], 1 + shift + total);
255 isl_int_set_si(dual->eq[k][1 + shift + i], -1);
256 for (j = 0; j < bset->n_eq; ++j)
257 isl_int_set(dual->eq[k][1 + shift + total + j],
258 bset->eq[j][1 + i]);
259 for (j = 0; j < bset->n_ineq; ++j)
260 isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
261 bset->ineq[j][1 + i]);
264 for (i = 0; i < bset->n_ineq; ++i) {
265 k = isl_basic_set_alloc_inequality(dual);
266 if (k < 0)
267 goto error;
268 isl_seq_clr(dual->ineq[k],
269 1 + shift + total + bset->n_eq + bset->n_ineq);
270 isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
273 if (shift > 0) {
274 k = isl_basic_set_alloc_inequality(dual);
275 if (k < 0)
276 goto error;
277 isl_seq_clr(dual->ineq[k], 2 + total);
278 isl_int_set_si(dual->ineq[k][1], 1);
279 for (j = 0; j < bset->n_eq; ++j)
280 isl_int_neg(dual->ineq[k][2 + total + j],
281 bset->eq[j][0]);
282 for (j = 0; j < bset->n_ineq; ++j)
283 isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
284 bset->ineq[j][0]);
287 dual = isl_basic_set_remove_divs(dual);
288 dual = isl_basic_set_simplify(dual);
289 dual = isl_basic_set_finalize(dual);
291 isl_basic_set_free(bset);
292 return dual;
293 error:
294 isl_basic_set_free(bset);
295 isl_basic_set_free(dual);
296 return NULL;
299 /* Construct a basic set containing the tuples of coefficients of all
300 * valid affine constraints on the given basic set.
302 __isl_give isl_basic_set *isl_basic_set_coefficients(
303 __isl_take isl_basic_set *bset)
305 isl_space *dim;
307 if (!bset)
308 return NULL;
309 if (bset->n_div)
310 isl_die(bset->ctx, isl_error_invalid,
311 "input set not allowed to have local variables",
312 goto error);
314 dim = isl_basic_set_get_space(bset);
315 dim = isl_space_coefficients(dim);
317 return farkas(dim, bset, 1);
318 error:
319 isl_basic_set_free(bset);
320 return NULL;
323 /* Construct a basic set containing the elements that satisfy all
324 * affine constraints whose coefficient tuples are
325 * contained in the given basic set.
327 __isl_give isl_basic_set *isl_basic_set_solutions(
328 __isl_take isl_basic_set *bset)
330 isl_space *dim;
332 if (!bset)
333 return NULL;
334 if (bset->n_div)
335 isl_die(bset->ctx, isl_error_invalid,
336 "input set not allowed to have local variables",
337 goto error);
339 dim = isl_basic_set_get_space(bset);
340 dim = isl_space_solutions(dim);
342 return farkas(dim, bset, -1);
343 error:
344 isl_basic_set_free(bset);
345 return NULL;
348 /* Construct a basic set containing the tuples of coefficients of all
349 * valid affine constraints on the given set.
351 __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
353 int i;
354 isl_basic_set *coeff;
356 if (!set)
357 return NULL;
358 if (set->n == 0) {
359 isl_space *space = isl_set_get_space(set);
360 space = isl_space_coefficients(space);
361 isl_set_free(set);
362 return rational_universe(space);
365 coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
367 for (i = 1; i < set->n; ++i) {
368 isl_basic_set *bset, *coeff_i;
369 bset = isl_basic_set_copy(set->p[i]);
370 coeff_i = isl_basic_set_coefficients(bset);
371 coeff = isl_basic_set_intersect(coeff, coeff_i);
374 isl_set_free(set);
375 return coeff;
378 /* Wrapper around isl_basic_set_coefficients for use
379 * as a isl_basic_set_list_map callback.
381 static __isl_give isl_basic_set *coefficients_wrap(
382 __isl_take isl_basic_set *bset, void *user)
384 return isl_basic_set_coefficients(bset);
387 /* Replace the elements of "list" by the result of applying
388 * isl_basic_set_coefficients to them.
390 __isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
391 __isl_take isl_basic_set_list *list)
393 return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
396 /* Construct a basic set containing the elements that satisfy all
397 * affine constraints whose coefficient tuples are
398 * contained in the given set.
400 __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
402 int i;
403 isl_basic_set *sol;
405 if (!set)
406 return NULL;
407 if (set->n == 0) {
408 isl_space *space = isl_set_get_space(set);
409 space = isl_space_solutions(space);
410 isl_set_free(set);
411 return rational_universe(space);
414 sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
416 for (i = 1; i < set->n; ++i) {
417 isl_basic_set *bset, *sol_i;
418 bset = isl_basic_set_copy(set->p[i]);
419 sol_i = isl_basic_set_solutions(bset);
420 sol = isl_basic_set_intersect(sol, sol_i);
423 isl_set_free(set);
424 return sol;