isl_map_coalesce: only use non-redundant constraints as potential facets
[isl.git] / isl_coalesce.c
blobdfc3adfbc7a35ee87085f9c023eb882c7abe02b0
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
14 #include "isl_seq.h"
15 #include "isl_tab.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
21 #define STATUS_CUT 4
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int *ineq, struct isl_tab *tab)
27 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
28 switch (type) {
29 case isl_ineq_error: return STATUS_ERROR;
30 case isl_ineq_redundant: return STATUS_VALID;
31 case isl_ineq_separate: return STATUS_SEPARATE;
32 case isl_ineq_cut: return STATUS_CUT;
33 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
34 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
38 /* Compute the position of the equalities of basic map "i"
39 * with respect to basic map "j".
40 * The resulting array has twice as many entries as the number
41 * of equalities corresponding to the two inequalties to which
42 * each equality corresponds.
44 static int *eq_status_in(struct isl_map *map, int i, int j,
45 struct isl_tab **tabs)
47 int k, l;
48 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
49 unsigned dim;
51 dim = isl_basic_map_total_dim(map->p[i]);
52 for (k = 0; k < map->p[i]->n_eq; ++k) {
53 for (l = 0; l < 2; ++l) {
54 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
55 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
56 if (eq[2 * k + l] == STATUS_ERROR)
57 goto error;
59 if (eq[2 * k] == STATUS_SEPARATE ||
60 eq[2 * k + 1] == STATUS_SEPARATE)
61 break;
64 return eq;
65 error:
66 free(eq);
67 return NULL;
70 /* Compute the position of the inequalities of basic map "i"
71 * with respect to basic map "j".
73 static int *ineq_status_in(struct isl_map *map, int i, int j,
74 struct isl_tab **tabs)
76 int k;
77 unsigned n_eq = map->p[i]->n_eq;
78 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
80 for (k = 0; k < map->p[i]->n_ineq; ++k) {
81 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
82 ineq[k] = STATUS_REDUNDANT;
83 continue;
85 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
86 if (ineq[k] == STATUS_ERROR)
87 goto error;
88 if (ineq[k] == STATUS_SEPARATE)
89 break;
92 return ineq;
93 error:
94 free(ineq);
95 return NULL;
98 static int any(int *con, unsigned len, int status)
100 int i;
102 for (i = 0; i < len ; ++i)
103 if (con[i] == status)
104 return 1;
105 return 0;
108 static int count(int *con, unsigned len, int status)
110 int i;
111 int c = 0;
113 for (i = 0; i < len ; ++i)
114 if (con[i] == status)
115 c++;
116 return c;
119 static int all(int *con, unsigned len, int status)
121 int i;
123 for (i = 0; i < len ; ++i) {
124 if (con[i] == STATUS_REDUNDANT)
125 continue;
126 if (con[i] != status)
127 return 0;
129 return 1;
132 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
134 isl_basic_map_free(map->p[i]);
135 isl_tab_free(tabs[i]);
137 if (i != map->n - 1) {
138 map->p[i] = map->p[map->n - 1];
139 tabs[i] = tabs[map->n - 1];
141 tabs[map->n - 1] = NULL;
142 map->n--;
145 /* Replace the pair of basic maps i and j by the basic map bounded
146 * by the valid constraints in both basic maps and the constraint
147 * in extra (if not NULL).
149 static int fuse(struct isl_map *map, int i, int j,
150 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
151 __isl_keep isl_mat *extra)
153 int k, l;
154 struct isl_basic_map *fused = NULL;
155 struct isl_tab *fused_tab = NULL;
156 unsigned total = isl_basic_map_total_dim(map->p[i]);
157 unsigned extra_rows = extra ? extra->n_row : 0;
159 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
160 map->p[i]->n_div,
161 map->p[i]->n_eq + map->p[j]->n_eq,
162 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
163 if (!fused)
164 goto error;
166 for (k = 0; k < map->p[i]->n_eq; ++k) {
167 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
168 eq_i[2 * k + 1] != STATUS_VALID))
169 l = isl_basic_map_alloc_equality(fused);
170 if (l < 0)
171 goto error;
172 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
175 for (k = 0; k < map->p[j]->n_eq; ++k) {
176 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
177 eq_j[2 * k + 1] != STATUS_VALID))
178 continue;
179 l = isl_basic_map_alloc_equality(fused);
180 if (l < 0)
181 goto error;
182 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
185 for (k = 0; k < map->p[i]->n_ineq; ++k) {
186 if (ineq_i[k] != STATUS_VALID)
187 continue;
188 l = isl_basic_map_alloc_inequality(fused);
189 if (l < 0)
190 goto error;
191 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
194 for (k = 0; k < map->p[j]->n_ineq; ++k) {
195 if (ineq_j[k] != STATUS_VALID)
196 continue;
197 l = isl_basic_map_alloc_inequality(fused);
198 if (l < 0)
199 goto error;
200 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
203 for (k = 0; k < extra_rows; ++k) {
204 l = isl_basic_map_alloc_inequality(fused);
205 if (l < 0)
206 goto error;
207 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
210 fused = isl_basic_map_gauss(fused, NULL);
211 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
212 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
213 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
214 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
216 fused_tab = isl_tab_from_basic_map(fused);
217 if (isl_tab_detect_redundant(fused_tab) < 0)
218 goto error;
220 isl_basic_map_free(map->p[i]);
221 map->p[i] = fused;
222 isl_tab_free(tabs[i]);
223 tabs[i] = fused_tab;
224 drop(map, j, tabs);
226 return 1;
227 error:
228 isl_tab_free(fused_tab);
229 isl_basic_map_free(fused);
230 return -1;
233 /* Given a pair of basic maps i and j such that all constraints are either
234 * "valid" or "cut", check if the facets corresponding to the "cut"
235 * constraints of i lie entirely within basic map j.
236 * If so, replace the pair by the basic map consisting of the valid
237 * constraints in both basic maps.
239 * To see that we are not introducing any extra points, call the
240 * two basic maps A and B and the resulting map U and let x
241 * be an element of U \setminus ( A \cup B ).
242 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
243 * violates them. Let X be the intersection of U with the opposites
244 * of these constraints. Then x \in X.
245 * The facet corresponding to c_1 contains the corresponding facet of A.
246 * This facet is entirely contained in B, so c_2 is valid on the facet.
247 * However, since it is also (part of) a facet of X, -c_2 is also valid
248 * on the facet. This means c_2 is saturated on the facet, so c_1 and
249 * c_2 must be opposites of each other, but then x could not violate
250 * both of them.
252 static int check_facets(struct isl_map *map, int i, int j,
253 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
255 int k, l;
256 struct isl_tab_undo *snap;
257 unsigned n_eq = map->p[i]->n_eq;
259 snap = isl_tab_snap(tabs[i]);
261 for (k = 0; k < map->p[i]->n_ineq; ++k) {
262 if (ineq_i[k] != STATUS_CUT)
263 continue;
264 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
265 for (l = 0; l < map->p[j]->n_ineq; ++l) {
266 int stat;
267 if (ineq_j[l] != STATUS_CUT)
268 continue;
269 stat = status_in(map->p[j]->ineq[l], tabs[i]);
270 if (stat != STATUS_VALID)
271 break;
273 if (isl_tab_rollback(tabs[i], snap) < 0)
274 return -1;
275 if (l < map->p[j]->n_ineq)
276 break;
279 if (k < map->p[i]->n_ineq)
280 /* BAD CUT PAIR */
281 return 0;
282 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
285 /* Both basic maps have at least one inequality with and adjacent
286 * (but opposite) inequality in the other basic map.
287 * Check that there are no cut constraints and that there is only
288 * a single pair of adjacent inequalities.
289 * If so, we can replace the pair by a single basic map described
290 * by all but the pair of adjacent inequalities.
291 * Any additional points introduced lie strictly between the two
292 * adjacent hyperplanes and can therefore be integral.
294 * ____ _____
295 * / ||\ / \
296 * / || \ / \
297 * \ || \ => \ \
298 * \ || / \ /
299 * \___||_/ \_____/
301 * The test for a single pair of adjancent inequalities is important
302 * for avoiding the combination of two basic maps like the following
304 * /|
305 * / |
306 * /__|
307 * _____
308 * | |
309 * | |
310 * |___|
312 static int check_adj_ineq(struct isl_map *map, int i, int j,
313 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
315 int changed = 0;
317 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
318 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
319 /* ADJ INEQ CUT */
321 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
322 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
323 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
324 /* else ADJ INEQ TOO MANY */
326 return changed;
329 /* Check if basic map "i" contains the basic map represented
330 * by the tableau "tab".
332 static int contains(struct isl_map *map, int i, int *ineq_i,
333 struct isl_tab *tab)
335 int k, l;
336 unsigned dim;
338 dim = isl_basic_map_total_dim(map->p[i]);
339 for (k = 0; k < map->p[i]->n_eq; ++k) {
340 for (l = 0; l < 2; ++l) {
341 int stat;
342 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
343 stat = status_in(map->p[i]->eq[k], tab);
344 if (stat != STATUS_VALID)
345 return 0;
349 for (k = 0; k < map->p[i]->n_ineq; ++k) {
350 int stat;
351 if (ineq_i[k] == STATUS_REDUNDANT)
352 continue;
353 stat = status_in(map->p[i]->ineq[k], tab);
354 if (stat != STATUS_VALID)
355 return 0;
357 return 1;
360 /* Basic map "i" has an inequality "k" that is adjacent to some equality
361 * of basic map "j". All the other inequalities are valid for "j".
362 * Check if basic map "j" forms an extension of basic map "i".
364 * In particular, we relax constraint "k", compute the corresponding
365 * facet and check whether it is included in the other basic map.
366 * If so, we know that relaxing the constraint extends the basic
367 * map with exactly the other basic map (we already know that this
368 * other basic map is included in the extension, because there
369 * were no "cut" inequalities in "i") and we can replace the
370 * two basic maps by thie extension.
371 * ____ _____
372 * / || / |
373 * / || / |
374 * \ || => \ |
375 * \ || \ |
376 * \___|| \____|
378 static int is_extension(struct isl_map *map, int i, int j, int k,
379 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
381 int changed = 0;
382 int super;
383 struct isl_tab_undo *snap, *snap2;
384 unsigned n_eq = map->p[i]->n_eq;
386 snap = isl_tab_snap(tabs[i]);
387 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
388 snap2 = isl_tab_snap(tabs[i]);
389 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
390 super = contains(map, j, ineq_j, tabs[i]);
391 if (super) {
392 if (isl_tab_rollback(tabs[i], snap2) < 0)
393 return -1;
394 map->p[i] = isl_basic_map_cow(map->p[i]);
395 if (!map->p[i])
396 return -1;
397 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
398 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
399 drop(map, j, tabs);
400 changed = 1;
401 } else
402 if (isl_tab_rollback(tabs[i], snap) < 0)
403 return -1;
405 return changed;
408 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
409 * wrap the constraint around "bound" such that it includes the whole
410 * set "set" and append the resulting constraint to "wraps".
411 * "wraps" is assumed to have been pre-allocated to the appropriate size.
412 * wraps->n_row is the number of actual wrapped constraints that have
413 * been added.
414 * If any of the wrapping problems results in a constraint that is
415 * identical to "bound", then this means that "set" is unbounded in such
416 * way that no wrapping is possible. If this happens then wraps->n_row
417 * is reset to zero.
419 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
420 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
422 int l;
423 int w;
424 unsigned total = isl_basic_map_total_dim(bmap);
426 w = wraps->n_row;
428 for (l = 0; l < bmap->n_ineq; ++l) {
429 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
430 continue;
431 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
432 continue;
433 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
434 continue;
436 isl_seq_cpy(wraps->row[w], bound, 1 + total);
437 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
438 return -1;
439 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
440 goto unbounded;
441 ++w;
443 for (l = 0; l < bmap->n_eq; ++l) {
444 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
445 continue;
446 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
447 continue;
449 isl_seq_cpy(wraps->row[w], bound, 1 + total);
450 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
451 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
452 return -1;
453 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
454 goto unbounded;
455 ++w;
457 isl_seq_cpy(wraps->row[w], bound, 1 + total);
458 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
459 return -1;
460 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
461 goto unbounded;
462 ++w;
465 wraps->n_row = w;
466 return 0;
467 unbounded:
468 wraps->n_row = 0;
469 return 0;
472 /* Given a basic set i with a constraint k that is adjacent to either the
473 * whole of basic set j or a facet of basic set j, check if we can wrap
474 * both the facet corresponding to k and the facet of j (or the whole of j)
475 * around their ridges to include the other set.
476 * If so, replace the pair of basic sets by their union.
478 * All constraints of i (except k) are assumed to be valid for j.
480 * In the case where j has a facet adjacent to i, tab[j] is assumed
481 * to have been restricted to this facet, so that the non-redundant
482 * constraints in tab[j] are the ridges of the facet.
483 * Note that for the purpose of wrapping, it does not matter whether
484 * we wrap the ridges of i aronud the whole of j or just around
485 * the facet since all the other constraints are assumed to be valid for j.
486 * In practice, we wrap to include the whole of j.
487 * ____ _____
488 * / | / \
489 * / || / |
490 * \ || => \ |
491 * \ || \ |
492 * \___|| \____|
495 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
496 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
498 int changed = 0;
499 struct isl_mat *wraps = NULL;
500 struct isl_set *set_i = NULL;
501 struct isl_set *set_j = NULL;
502 struct isl_vec *bound = NULL;
503 unsigned total = isl_basic_map_total_dim(map->p[i]);
504 struct isl_tab_undo *snap;
506 snap = isl_tab_snap(tabs[i]);
508 set_i = isl_set_from_basic_set(
509 isl_basic_map_underlying_set(isl_basic_map_copy(map->p[i])));
510 set_j = isl_set_from_basic_set(
511 isl_basic_map_underlying_set(isl_basic_map_copy(map->p[j])));
512 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
513 map->p[i]->n_ineq + map->p[j]->n_ineq,
514 1 + total);
515 bound = isl_vec_alloc(map->ctx, 1 + total);
516 if (!set_i || !set_j || !wraps || !bound)
517 goto error;
519 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
520 isl_int_add_ui(bound->el[0], bound->el[0], 1);
522 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
523 wraps->n_row = 1;
525 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
526 goto error;
527 if (!wraps->n_row)
528 goto unbounded;
530 tabs[i] = isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k);
531 if (isl_tab_detect_redundant(tabs[i]) < 0)
532 goto error;
534 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
536 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
537 goto error;
538 if (!wraps->n_row)
539 goto unbounded;
541 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
543 if (!changed) {
544 unbounded:
545 if (isl_tab_rollback(tabs[i], snap) < 0)
546 goto error;
549 isl_mat_free(wraps);
551 isl_set_free(set_i);
552 isl_set_free(set_j);
554 isl_vec_free(bound);
556 return changed;
557 error:
558 isl_vec_free(bound);
559 isl_mat_free(wraps);
560 isl_set_free(set_i);
561 isl_set_free(set_j);
562 return -1;
565 /* Given two basic sets i and j such that i has exactly one cut constraint,
566 * check if we can wrap the corresponding facet around its ridges to include
567 * the other basic set (and nothing else).
568 * If so, replace the pair by their union.
570 * We first check if j has a facet adjacent to the cut constraint of i.
571 * If so, we try to wrap in the facet.
572 * ____ _____
573 * / ___|_ / \
574 * / | | / |
575 * \ | | => \ |
576 * \|____| \ |
577 * \___| \____/
579 static int can_wrap_in_set(struct isl_map *map, int i, int j,
580 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
582 int changed = 0;
583 int k, l;
584 unsigned total = isl_basic_map_total_dim(map->p[i]);
585 struct isl_tab_undo *snap;
587 for (k = 0; k < map->p[i]->n_ineq; ++k)
588 if (ineq_i[k] == STATUS_CUT)
589 break;
591 isl_assert(map->ctx, k < map->p[i]->n_ineq, return -1);
593 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
594 for (l = 0; l < map->p[j]->n_ineq; ++l) {
595 if (isl_tab_is_redundant(tabs[j], map->p[j]->n_eq + l))
596 continue;
597 if (isl_seq_eq(map->p[i]->ineq[k],
598 map->p[j]->ineq[l], 1 + total))
599 break;
601 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
603 if (l >= map->p[j]->n_ineq)
604 return 0;
606 snap = isl_tab_snap(tabs[j]);
607 tabs[j] = isl_tab_select_facet(tabs[j], map->p[j]->n_eq + l);
608 if (isl_tab_detect_redundant(tabs[j]) < 0)
609 return -1;
611 changed = can_wrap_in_facet(map, i, j, k, tabs, NULL, ineq_i, NULL, ineq_j);
613 if (!changed && isl_tab_rollback(tabs[j], snap) < 0)
614 return -1;
616 return changed;
619 /* Check if either i or j has a single cut constraint that can
620 * be used to wrap in (a facet of) the other basic set.
621 * if so, replace the pair by their union.
623 static int check_wrap(struct isl_map *map, int i, int j,
624 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
626 int changed = 0;
628 if (count(ineq_i, map->p[i]->n_ineq, STATUS_CUT) == 1)
629 changed = can_wrap_in_set(map, i, j, tabs, ineq_i, ineq_j);
630 if (changed)
631 return changed;
633 if (count(ineq_j, map->p[j]->n_ineq, STATUS_CUT) == 1)
634 changed = can_wrap_in_set(map, j, i, tabs, ineq_j, ineq_i);
635 return changed;
638 /* At least one of the basic maps has an equality that is adjacent
639 * to inequality. Make sure that only one of the basic maps has
640 * such an equality and that the other basic map has exactly one
641 * inequality adjacent to an equality.
642 * We call the basic map that has the inequality "i" and the basic
643 * map that has the equality "j".
644 * If "i" has any "cut" inequality, then relaxing the inequality
645 * by one would not result in a basic map that contains the other
646 * basic map.
648 static int check_adj_eq(struct isl_map *map, int i, int j,
649 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
651 int changed = 0;
652 int k;
654 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
655 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
656 /* ADJ EQ TOO MANY */
657 return 0;
659 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
660 return check_adj_eq(map, j, i, tabs,
661 eq_j, ineq_j, eq_i, ineq_i);
663 /* j has an equality adjacent to an inequality in i */
665 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
666 /* ADJ EQ CUT */
667 return 0;
668 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
669 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
670 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
671 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
672 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
673 /* ADJ EQ TOO MANY */
674 return 0;
676 for (k = 0; k < map->p[i]->n_ineq ; ++k)
677 if (ineq_i[k] == STATUS_ADJ_EQ)
678 break;
680 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
681 if (changed)
682 return changed;
684 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
686 return changed;
689 /* Check if the union of the given pair of basic maps
690 * can be represented by a single basic map.
691 * If so, replace the pair by the single basic map and return 1.
692 * Otherwise, return 0;
694 * We first check the effect of each constraint of one basic map
695 * on the other basic map.
696 * The constraint may be
697 * redundant the constraint is redundant in its own
698 * basic map and should be ignore and removed
699 * in the end
700 * valid all (integer) points of the other basic map
701 * satisfy the constraint
702 * separate no (integer) point of the other basic map
703 * satisfies the constraint
704 * cut some but not all points of the other basic map
705 * satisfy the constraint
706 * adj_eq the given constraint is adjacent (on the outside)
707 * to an equality of the other basic map
708 * adj_ineq the given constraint is adjacent (on the outside)
709 * to an inequality of the other basic map
711 * We consider six cases in which we can replace the pair by a single
712 * basic map. We ignore all "redundant" constraints.
714 * 1. all constraints of one basic map are valid
715 * => the other basic map is a subset and can be removed
717 * 2. all constraints of both basic maps are either "valid" or "cut"
718 * and the facets corresponding to the "cut" constraints
719 * of one of the basic maps lies entirely inside the other basic map
720 * => the pair can be replaced by a basic map consisting
721 * of the valid constraints in both basic maps
723 * 3. there is a single pair of adjacent inequalities
724 * (all other constraints are "valid")
725 * => the pair can be replaced by a basic map consisting
726 * of the valid constraints in both basic maps
728 * 4. there is a single adjacent pair of an inequality and an equality,
729 * the other constraints of the basic map containing the inequality are
730 * "valid". Moreover, if the inequality the basic map is relaxed
731 * and then turned into an equality, then resulting facet lies
732 * entirely inside the other basic map
733 * => the pair can be replaced by the basic map containing
734 * the inequality, with the inequality relaxed.
736 * 5. there is a single adjacent pair of an inequality and an equality,
737 * the other constraints of the basic map containing the inequality are
738 * "valid". Moreover, the facets corresponding to both
739 * the inequality and the equality can be wrapped around their
740 * ridges to include the other basic map
741 * => the pair can be replaced by a basic map consisting
742 * of the valid constraints in both basic maps together
743 * with all wrapping constraints
745 * 6. one of the basic maps has a single cut constraint and
746 * the other basic map has a constraint adjacent to this constraint.
747 * Moreover, the facets corresponding to both constraints
748 * can be wrapped around their ridges to include the other basic map
749 * => the pair can be replaced by a basic map consisting
750 * of the valid constraints in both basic maps together
751 * with all wrapping constraints
753 * Throughout the computation, we maintain a collection of tableaus
754 * corresponding to the basic maps. When the basic maps are dropped
755 * or combined, the tableaus are modified accordingly.
757 static int coalesce_pair(struct isl_map *map, int i, int j,
758 struct isl_tab **tabs)
760 int changed = 0;
761 int *eq_i = NULL;
762 int *eq_j = NULL;
763 int *ineq_i = NULL;
764 int *ineq_j = NULL;
766 eq_i = eq_status_in(map, i, j, tabs);
767 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
768 goto error;
769 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
770 goto done;
772 eq_j = eq_status_in(map, j, i, tabs);
773 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
774 goto error;
775 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
776 goto done;
778 ineq_i = ineq_status_in(map, i, j, tabs);
779 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
780 goto error;
781 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
782 goto done;
784 ineq_j = ineq_status_in(map, j, i, tabs);
785 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
786 goto error;
787 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
788 goto done;
790 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
791 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
792 drop(map, j, tabs);
793 changed = 1;
794 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
795 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
796 drop(map, i, tabs);
797 changed = 1;
798 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
799 any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
800 /* BAD CUT */
801 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
802 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
803 /* ADJ EQ PAIR */
804 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
805 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
806 changed = check_adj_eq(map, i, j, tabs,
807 eq_i, ineq_i, eq_j, ineq_j);
808 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
809 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
810 /* Can't happen */
811 /* BAD ADJ INEQ */
812 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
813 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
814 changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
815 } else {
816 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
817 if (!changed)
818 changed = check_wrap(map, i, j, tabs, ineq_i, ineq_j);
821 done:
822 free(eq_i);
823 free(eq_j);
824 free(ineq_i);
825 free(ineq_j);
826 return changed;
827 error:
828 free(eq_i);
829 free(eq_j);
830 free(ineq_i);
831 free(ineq_j);
832 return -1;
835 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
837 int i, j;
839 for (i = 0; i < map->n - 1; ++i)
840 for (j = i + 1; j < map->n; ++j) {
841 int changed;
842 changed = coalesce_pair(map, i, j, tabs);
843 if (changed < 0)
844 goto error;
845 if (changed)
846 return coalesce(map, tabs);
848 return map;
849 error:
850 isl_map_free(map);
851 return NULL;
854 /* For each pair of basic maps in the map, check if the union of the two
855 * can be represented by a single basic map.
856 * If so, replace the pair by the single basic map and start over.
858 struct isl_map *isl_map_coalesce(struct isl_map *map)
860 int i;
861 unsigned n;
862 struct isl_tab **tabs = NULL;
864 if (!map)
865 return NULL;
867 if (map->n <= 1)
868 return map;
870 map = isl_map_align_divs(map);
872 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
873 if (!tabs)
874 goto error;
876 n = map->n;
877 for (i = 0; i < map->n; ++i) {
878 tabs[i] = isl_tab_from_basic_map(map->p[i]);
879 if (!tabs[i])
880 goto error;
881 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
882 tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
883 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
884 if (isl_tab_detect_redundant(tabs[i]) < 0)
885 goto error;
887 for (i = map->n - 1; i >= 0; --i)
888 if (tabs[i]->empty)
889 drop(map, i, tabs);
891 map = coalesce(map, tabs);
893 if (map)
894 for (i = 0; i < map->n; ++i) {
895 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
896 tabs[i]);
897 map->p[i] = isl_basic_map_finalize(map->p[i]);
898 if (!map->p[i])
899 goto error;
900 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
901 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
904 for (i = 0; i < n; ++i)
905 isl_tab_free(tabs[i]);
907 free(tabs);
909 return map;
910 error:
911 if (tabs)
912 for (i = 0; i < n; ++i)
913 isl_tab_free(tabs[i]);
914 free(tabs);
915 return NULL;
918 /* For each pair of basic sets in the set, check if the union of the two
919 * can be represented by a single basic set.
920 * If so, replace the pair by the single basic set and start over.
922 struct isl_set *isl_set_coalesce(struct isl_set *set)
924 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);