2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_div_private.h>
24 #include <isl_mat_private.h>
25 #include <isl_range.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_config.h>
30 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
33 case isl_dim_param
: return 0;
34 case isl_dim_in
: return dim
->nparam
;
35 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
40 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
48 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
53 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
55 return (struct isl_upoly_cst
*)up
;
58 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
63 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
65 return (struct isl_upoly_rec
*)up
;
68 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
69 __isl_keep
struct isl_upoly
*up2
)
72 struct isl_upoly_rec
*rec1
, *rec2
;
78 if (up1
->var
!= up2
->var
)
80 if (isl_upoly_is_cst(up1
)) {
81 struct isl_upoly_cst
*cst1
, *cst2
;
82 cst1
= isl_upoly_as_cst(up1
);
83 cst2
= isl_upoly_as_cst(up2
);
86 return isl_int_eq(cst1
->n
, cst2
->n
) &&
87 isl_int_eq(cst1
->d
, cst2
->d
);
90 rec1
= isl_upoly_as_rec(up1
);
91 rec2
= isl_upoly_as_rec(up2
);
95 if (rec1
->n
!= rec2
->n
)
98 for (i
= 0; i
< rec1
->n
; ++i
) {
99 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
107 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
109 struct isl_upoly_cst
*cst
;
113 if (!isl_upoly_is_cst(up
))
116 cst
= isl_upoly_as_cst(up
);
120 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
123 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
125 struct isl_upoly_cst
*cst
;
129 if (!isl_upoly_is_cst(up
))
132 cst
= isl_upoly_as_cst(up
);
136 return isl_int_sgn(cst
->n
);
139 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
141 struct isl_upoly_cst
*cst
;
145 if (!isl_upoly_is_cst(up
))
148 cst
= isl_upoly_as_cst(up
);
152 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
155 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
157 struct isl_upoly_cst
*cst
;
161 if (!isl_upoly_is_cst(up
))
164 cst
= isl_upoly_as_cst(up
);
168 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
171 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
173 struct isl_upoly_cst
*cst
;
177 if (!isl_upoly_is_cst(up
))
180 cst
= isl_upoly_as_cst(up
);
184 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
187 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
189 struct isl_upoly_cst
*cst
;
193 if (!isl_upoly_is_cst(up
))
196 cst
= isl_upoly_as_cst(up
);
200 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
203 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
205 struct isl_upoly_cst
*cst
;
209 if (!isl_upoly_is_cst(up
))
212 cst
= isl_upoly_as_cst(up
);
216 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
219 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
221 struct isl_upoly_cst
*cst
;
223 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
232 isl_int_init(cst
->n
);
233 isl_int_init(cst
->d
);
238 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
240 struct isl_upoly_cst
*cst
;
242 cst
= isl_upoly_cst_alloc(ctx
);
246 isl_int_set_si(cst
->n
, 0);
247 isl_int_set_si(cst
->d
, 1);
252 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
254 struct isl_upoly_cst
*cst
;
256 cst
= isl_upoly_cst_alloc(ctx
);
260 isl_int_set_si(cst
->n
, 1);
261 isl_int_set_si(cst
->d
, 1);
266 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
268 struct isl_upoly_cst
*cst
;
270 cst
= isl_upoly_cst_alloc(ctx
);
274 isl_int_set_si(cst
->n
, 1);
275 isl_int_set_si(cst
->d
, 0);
280 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
282 struct isl_upoly_cst
*cst
;
284 cst
= isl_upoly_cst_alloc(ctx
);
288 isl_int_set_si(cst
->n
, -1);
289 isl_int_set_si(cst
->d
, 0);
294 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
296 struct isl_upoly_cst
*cst
;
298 cst
= isl_upoly_cst_alloc(ctx
);
302 isl_int_set_si(cst
->n
, 0);
303 isl_int_set_si(cst
->d
, 0);
308 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
309 isl_int n
, isl_int d
)
311 struct isl_upoly_cst
*cst
;
313 cst
= isl_upoly_cst_alloc(ctx
);
317 isl_int_set(cst
->n
, n
);
318 isl_int_set(cst
->d
, d
);
323 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
326 struct isl_upoly_rec
*rec
;
328 isl_assert(ctx
, var
>= 0, return NULL
);
329 isl_assert(ctx
, size
>= 0, return NULL
);
330 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
331 sizeof(struct isl_upoly_rec
) +
332 size
* sizeof(struct isl_upoly
*));
347 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space(
348 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
350 qp
= isl_qpolynomial_cow(qp
);
354 isl_space_free(qp
->dim
);
359 isl_qpolynomial_free(qp
);
364 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
366 return qp
? qp
->dim
->ctx
: NULL
;
369 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
371 return qp
? isl_space_copy(qp
->dim
) : NULL
;
374 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
375 enum isl_dim_type type
)
377 return qp
? isl_space_dim(qp
->dim
, type
) : 0;
380 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
382 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
385 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
387 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
390 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
392 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
395 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
397 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
400 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
402 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
405 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
407 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
410 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
412 isl_int_clear(cst
->n
);
413 isl_int_clear(cst
->d
);
416 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
420 for (i
= 0; i
< rec
->n
; ++i
)
421 isl_upoly_free(rec
->p
[i
]);
424 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
433 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
435 struct isl_upoly_cst
*cst
;
436 struct isl_upoly_cst
*dup
;
438 cst
= isl_upoly_as_cst(up
);
442 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
445 isl_int_set(dup
->n
, cst
->n
);
446 isl_int_set(dup
->d
, cst
->d
);
451 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
454 struct isl_upoly_rec
*rec
;
455 struct isl_upoly_rec
*dup
;
457 rec
= isl_upoly_as_rec(up
);
461 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
465 for (i
= 0; i
< rec
->n
; ++i
) {
466 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
474 isl_upoly_free(&dup
->up
);
478 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
483 if (isl_upoly_is_cst(up
))
484 return isl_upoly_dup_cst(up
);
486 return isl_upoly_dup_rec(up
);
489 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
497 return isl_upoly_dup(up
);
500 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
509 upoly_free_cst((struct isl_upoly_cst
*)up
);
511 upoly_free_rec((struct isl_upoly_rec
*)up
);
513 isl_ctx_deref(up
->ctx
);
517 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
522 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
523 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
524 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
525 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
530 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
531 __isl_take
struct isl_upoly
*up2
)
533 struct isl_upoly_cst
*cst1
;
534 struct isl_upoly_cst
*cst2
;
536 up1
= isl_upoly_cow(up1
);
540 cst1
= isl_upoly_as_cst(up1
);
541 cst2
= isl_upoly_as_cst(up2
);
543 if (isl_int_eq(cst1
->d
, cst2
->d
))
544 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
546 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
547 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
548 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
551 isl_upoly_cst_reduce(cst1
);
561 static __isl_give
struct isl_upoly
*replace_by_zero(
562 __isl_take
struct isl_upoly
*up
)
570 return isl_upoly_zero(ctx
);
573 static __isl_give
struct isl_upoly
*replace_by_constant_term(
574 __isl_take
struct isl_upoly
*up
)
576 struct isl_upoly_rec
*rec
;
577 struct isl_upoly
*cst
;
582 rec
= isl_upoly_as_rec(up
);
585 cst
= isl_upoly_copy(rec
->p
[0]);
593 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
594 __isl_take
struct isl_upoly
*up2
)
597 struct isl_upoly_rec
*rec1
, *rec2
;
602 if (isl_upoly_is_nan(up1
)) {
607 if (isl_upoly_is_nan(up2
)) {
612 if (isl_upoly_is_zero(up1
)) {
617 if (isl_upoly_is_zero(up2
)) {
622 if (up1
->var
< up2
->var
)
623 return isl_upoly_sum(up2
, up1
);
625 if (up2
->var
< up1
->var
) {
626 struct isl_upoly_rec
*rec
;
627 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
631 up1
= isl_upoly_cow(up1
);
632 rec
= isl_upoly_as_rec(up1
);
635 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
637 up1
= replace_by_constant_term(up1
);
641 if (isl_upoly_is_cst(up1
))
642 return isl_upoly_sum_cst(up1
, up2
);
644 rec1
= isl_upoly_as_rec(up1
);
645 rec2
= isl_upoly_as_rec(up2
);
649 if (rec1
->n
< rec2
->n
)
650 return isl_upoly_sum(up2
, up1
);
652 up1
= isl_upoly_cow(up1
);
653 rec1
= isl_upoly_as_rec(up1
);
657 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
658 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
659 isl_upoly_copy(rec2
->p
[i
]));
662 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
663 isl_upoly_free(rec1
->p
[i
]);
669 up1
= replace_by_zero(up1
);
670 else if (rec1
->n
== 1)
671 up1
= replace_by_constant_term(up1
);
682 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
683 __isl_take
struct isl_upoly
*up
, isl_int v
)
685 struct isl_upoly_cst
*cst
;
687 up
= isl_upoly_cow(up
);
691 cst
= isl_upoly_as_cst(up
);
693 isl_int_addmul(cst
->n
, cst
->d
, v
);
698 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
699 __isl_take
struct isl_upoly
*up
, isl_int v
)
701 struct isl_upoly_rec
*rec
;
706 if (isl_upoly_is_cst(up
))
707 return isl_upoly_cst_add_isl_int(up
, v
);
709 up
= isl_upoly_cow(up
);
710 rec
= isl_upoly_as_rec(up
);
714 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
724 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
725 __isl_take
struct isl_upoly
*up
, isl_int v
)
727 struct isl_upoly_cst
*cst
;
729 if (isl_upoly_is_zero(up
))
732 up
= isl_upoly_cow(up
);
736 cst
= isl_upoly_as_cst(up
);
738 isl_int_mul(cst
->n
, cst
->n
, v
);
743 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
744 __isl_take
struct isl_upoly
*up
, isl_int v
)
747 struct isl_upoly_rec
*rec
;
752 if (isl_upoly_is_cst(up
))
753 return isl_upoly_cst_mul_isl_int(up
, v
);
755 up
= isl_upoly_cow(up
);
756 rec
= isl_upoly_as_rec(up
);
760 for (i
= 0; i
< rec
->n
; ++i
) {
761 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
772 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
773 __isl_take
struct isl_upoly
*up2
)
775 struct isl_upoly_cst
*cst1
;
776 struct isl_upoly_cst
*cst2
;
778 up1
= isl_upoly_cow(up1
);
782 cst1
= isl_upoly_as_cst(up1
);
783 cst2
= isl_upoly_as_cst(up2
);
785 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
786 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
788 isl_upoly_cst_reduce(cst1
);
798 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
799 __isl_take
struct isl_upoly
*up2
)
801 struct isl_upoly_rec
*rec1
;
802 struct isl_upoly_rec
*rec2
;
803 struct isl_upoly_rec
*res
= NULL
;
807 rec1
= isl_upoly_as_rec(up1
);
808 rec2
= isl_upoly_as_rec(up2
);
811 size
= rec1
->n
+ rec2
->n
- 1;
812 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
816 for (i
= 0; i
< rec1
->n
; ++i
) {
817 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
818 isl_upoly_copy(rec1
->p
[i
]));
823 for (; i
< size
; ++i
) {
824 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
829 for (i
= 0; i
< rec1
->n
; ++i
) {
830 for (j
= 1; j
< rec2
->n
; ++j
) {
831 struct isl_upoly
*up
;
832 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
833 isl_upoly_copy(rec1
->p
[i
]));
834 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
847 isl_upoly_free(&res
->up
);
851 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
852 __isl_take
struct isl_upoly
*up2
)
857 if (isl_upoly_is_nan(up1
)) {
862 if (isl_upoly_is_nan(up2
)) {
867 if (isl_upoly_is_zero(up1
)) {
872 if (isl_upoly_is_zero(up2
)) {
877 if (isl_upoly_is_one(up1
)) {
882 if (isl_upoly_is_one(up2
)) {
887 if (up1
->var
< up2
->var
)
888 return isl_upoly_mul(up2
, up1
);
890 if (up2
->var
< up1
->var
) {
892 struct isl_upoly_rec
*rec
;
893 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
894 isl_ctx
*ctx
= up1
->ctx
;
897 return isl_upoly_nan(ctx
);
899 up1
= isl_upoly_cow(up1
);
900 rec
= isl_upoly_as_rec(up1
);
904 for (i
= 0; i
< rec
->n
; ++i
) {
905 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
906 isl_upoly_copy(up2
));
914 if (isl_upoly_is_cst(up1
))
915 return isl_upoly_mul_cst(up1
, up2
);
917 return isl_upoly_mul_rec(up1
, up2
);
924 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
927 struct isl_upoly
*res
;
935 res
= isl_upoly_copy(up
);
937 res
= isl_upoly_one(up
->ctx
);
939 while (power
>>= 1) {
940 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
942 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
949 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
950 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
952 struct isl_qpolynomial
*qp
= NULL
;
958 total
= isl_space_dim(dim
, isl_dim_all
);
960 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
965 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
976 isl_qpolynomial_free(qp
);
980 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
989 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
991 struct isl_qpolynomial
*dup
;
996 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
997 isl_upoly_copy(qp
->upoly
));
1000 isl_mat_free(dup
->div
);
1001 dup
->div
= isl_mat_copy(qp
->div
);
1007 isl_qpolynomial_free(dup
);
1011 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1019 return isl_qpolynomial_dup(qp
);
1022 void *isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1030 isl_space_free(qp
->dim
);
1031 isl_mat_free(qp
->div
);
1032 isl_upoly_free(qp
->upoly
);
1038 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1041 struct isl_upoly_rec
*rec
;
1042 struct isl_upoly_cst
*cst
;
1044 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1047 for (i
= 0; i
< 1 + power
; ++i
) {
1048 rec
->p
[i
] = isl_upoly_zero(ctx
);
1053 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1054 isl_int_set_si(cst
->n
, 1);
1058 isl_upoly_free(&rec
->up
);
1062 /* r array maps original positions to new positions.
1064 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1068 struct isl_upoly_rec
*rec
;
1069 struct isl_upoly
*base
;
1070 struct isl_upoly
*res
;
1072 if (isl_upoly_is_cst(up
))
1075 rec
= isl_upoly_as_rec(up
);
1079 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1081 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1082 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1084 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1085 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1086 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1089 isl_upoly_free(base
);
1098 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1103 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1104 div1
->n_col
>= div2
->n_col
, return -1);
1106 if (div1
->n_row
== div2
->n_row
)
1107 return isl_mat_is_equal(div1
, div2
);
1109 n_row
= div1
->n_row
;
1110 n_col
= div1
->n_col
;
1111 div1
->n_row
= div2
->n_row
;
1112 div1
->n_col
= div2
->n_col
;
1114 equal
= isl_mat_is_equal(div1
, div2
);
1116 div1
->n_row
= n_row
;
1117 div1
->n_col
= n_col
;
1122 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1126 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1127 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1132 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1135 struct isl_div_sort_info
{
1140 static int div_sort_cmp(const void *p1
, const void *p2
)
1142 const struct isl_div_sort_info
*i1
, *i2
;
1143 i1
= (const struct isl_div_sort_info
*) p1
;
1144 i2
= (const struct isl_div_sort_info
*) p2
;
1146 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1149 /* Sort divs and remove duplicates.
1151 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1156 struct isl_div_sort_info
*array
= NULL
;
1157 int *pos
= NULL
, *at
= NULL
;
1158 int *reordering
= NULL
;
1163 if (qp
->div
->n_row
<= 1)
1166 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1168 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1170 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1171 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1172 len
= qp
->div
->n_col
- 2;
1173 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1174 if (!array
|| !pos
|| !at
|| !reordering
)
1177 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1178 array
[i
].div
= qp
->div
;
1184 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1187 for (i
= 0; i
< div_pos
; ++i
)
1190 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1191 if (pos
[array
[i
].row
] == i
)
1193 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1194 pos
[at
[i
]] = pos
[array
[i
].row
];
1195 at
[pos
[array
[i
].row
]] = at
[i
];
1196 at
[i
] = array
[i
].row
;
1197 pos
[array
[i
].row
] = i
;
1201 for (i
= 0; i
< len
- div_pos
; ++i
) {
1203 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1204 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1205 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1206 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1207 2 + div_pos
+ i
- skip
);
1208 qp
->div
= isl_mat_drop_cols(qp
->div
,
1209 2 + div_pos
+ i
- skip
, 1);
1212 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1215 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1217 if (!qp
->upoly
|| !qp
->div
)
1231 isl_qpolynomial_free(qp
);
1235 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1236 int *exp
, int first
)
1239 struct isl_upoly_rec
*rec
;
1241 if (isl_upoly_is_cst(up
))
1244 if (up
->var
< first
)
1247 if (exp
[up
->var
- first
] == up
->var
- first
)
1250 up
= isl_upoly_cow(up
);
1254 up
->var
= exp
[up
->var
- first
] + first
;
1256 rec
= isl_upoly_as_rec(up
);
1260 for (i
= 0; i
< rec
->n
; ++i
) {
1261 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1272 static __isl_give isl_qpolynomial
*with_merged_divs(
1273 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1274 __isl_take isl_qpolynomial
*qp2
),
1275 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1279 isl_mat
*div
= NULL
;
1281 qp1
= isl_qpolynomial_cow(qp1
);
1282 qp2
= isl_qpolynomial_cow(qp2
);
1287 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1288 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1290 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1291 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1295 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1299 isl_mat_free(qp1
->div
);
1300 qp1
->div
= isl_mat_copy(div
);
1301 isl_mat_free(qp2
->div
);
1302 qp2
->div
= isl_mat_copy(div
);
1304 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1305 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1307 if (!qp1
->upoly
|| !qp2
->upoly
)
1314 return fn(qp1
, qp2
);
1319 isl_qpolynomial_free(qp1
);
1320 isl_qpolynomial_free(qp2
);
1324 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1325 __isl_take isl_qpolynomial
*qp2
)
1327 qp1
= isl_qpolynomial_cow(qp1
);
1332 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1333 return isl_qpolynomial_add(qp2
, qp1
);
1335 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1336 if (!compatible_divs(qp1
->div
, qp2
->div
))
1337 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1339 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1343 isl_qpolynomial_free(qp2
);
1347 isl_qpolynomial_free(qp1
);
1348 isl_qpolynomial_free(qp2
);
1352 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1353 __isl_keep isl_set
*dom
,
1354 __isl_take isl_qpolynomial
*qp1
,
1355 __isl_take isl_qpolynomial
*qp2
)
1357 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1358 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1362 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1363 __isl_take isl_qpolynomial
*qp2
)
1365 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1368 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1369 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1371 if (isl_int_is_zero(v
))
1374 qp
= isl_qpolynomial_cow(qp
);
1378 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1384 isl_qpolynomial_free(qp
);
1389 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1394 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1397 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1398 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1400 if (isl_int_is_one(v
))
1403 if (qp
&& isl_int_is_zero(v
)) {
1404 isl_qpolynomial
*zero
;
1405 zero
= isl_qpolynomial_zero(isl_space_copy(qp
->dim
));
1406 isl_qpolynomial_free(qp
);
1410 qp
= isl_qpolynomial_cow(qp
);
1414 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1420 isl_qpolynomial_free(qp
);
1424 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1425 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1427 return isl_qpolynomial_mul_isl_int(qp
, v
);
1430 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1431 __isl_take isl_qpolynomial
*qp2
)
1433 qp1
= isl_qpolynomial_cow(qp1
);
1438 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1439 return isl_qpolynomial_mul(qp2
, qp1
);
1441 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1442 if (!compatible_divs(qp1
->div
, qp2
->div
))
1443 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1445 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1449 isl_qpolynomial_free(qp2
);
1453 isl_qpolynomial_free(qp1
);
1454 isl_qpolynomial_free(qp2
);
1458 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1461 qp
= isl_qpolynomial_cow(qp
);
1466 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1472 isl_qpolynomial_free(qp
);
1476 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1477 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1484 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1488 for (i
= 0; i
< pwqp
->n
; ++i
) {
1489 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1491 return isl_pw_qpolynomial_free(pwqp
);
1497 __isl_give isl_qpolynomial
*isl_qpolynomial_zero(__isl_take isl_space
*dim
)
1501 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1504 __isl_give isl_qpolynomial
*isl_qpolynomial_one(__isl_take isl_space
*dim
)
1508 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1511 __isl_give isl_qpolynomial
*isl_qpolynomial_infty(__isl_take isl_space
*dim
)
1515 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1518 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty(__isl_take isl_space
*dim
)
1522 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1525 __isl_give isl_qpolynomial
*isl_qpolynomial_nan(__isl_take isl_space
*dim
)
1529 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1532 __isl_give isl_qpolynomial
*isl_qpolynomial_cst(__isl_take isl_space
*dim
,
1535 struct isl_qpolynomial
*qp
;
1536 struct isl_upoly_cst
*cst
;
1541 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1545 cst
= isl_upoly_as_cst(qp
->upoly
);
1546 isl_int_set(cst
->n
, v
);
1551 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1552 isl_int
*n
, isl_int
*d
)
1554 struct isl_upoly_cst
*cst
;
1559 if (!isl_upoly_is_cst(qp
->upoly
))
1562 cst
= isl_upoly_as_cst(qp
->upoly
);
1567 isl_int_set(*n
, cst
->n
);
1569 isl_int_set(*d
, cst
->d
);
1574 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1577 struct isl_upoly_rec
*rec
;
1585 rec
= isl_upoly_as_rec(up
);
1592 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1594 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1600 return isl_upoly_is_affine(rec
->p
[0]);
1603 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1608 if (qp
->div
->n_row
> 0)
1611 return isl_upoly_is_affine(qp
->upoly
);
1614 static void update_coeff(__isl_keep isl_vec
*aff
,
1615 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1620 if (isl_int_is_zero(cst
->n
))
1625 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1626 isl_int_divexact(f
, cst
->d
, gcd
);
1627 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1628 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1629 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1634 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1635 __isl_keep isl_vec
*aff
)
1637 struct isl_upoly_cst
*cst
;
1638 struct isl_upoly_rec
*rec
;
1644 struct isl_upoly_cst
*cst
;
1646 cst
= isl_upoly_as_cst(up
);
1649 update_coeff(aff
, cst
, 0);
1653 rec
= isl_upoly_as_rec(up
);
1656 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1658 cst
= isl_upoly_as_cst(rec
->p
[1]);
1661 update_coeff(aff
, cst
, 1 + up
->var
);
1663 return isl_upoly_update_affine(rec
->p
[0], aff
);
1666 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1667 __isl_keep isl_qpolynomial
*qp
)
1675 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1676 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1680 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1681 isl_int_set_si(aff
->el
[0], 1);
1683 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1692 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1693 __isl_keep isl_qpolynomial
*qp2
)
1700 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
1701 if (equal
< 0 || !equal
)
1704 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1705 if (equal
< 0 || !equal
)
1708 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1711 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1714 struct isl_upoly_rec
*rec
;
1716 if (isl_upoly_is_cst(up
)) {
1717 struct isl_upoly_cst
*cst
;
1718 cst
= isl_upoly_as_cst(up
);
1721 isl_int_lcm(*d
, *d
, cst
->d
);
1725 rec
= isl_upoly_as_rec(up
);
1729 for (i
= 0; i
< rec
->n
; ++i
)
1730 upoly_update_den(rec
->p
[i
], d
);
1733 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1735 isl_int_set_si(*d
, 1);
1738 upoly_update_den(qp
->upoly
, d
);
1741 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow(__isl_take isl_space
*dim
,
1744 struct isl_ctx
*ctx
;
1751 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1754 __isl_give isl_qpolynomial
*isl_qpolynomial_var(__isl_take isl_space
*dim
,
1755 enum isl_dim_type type
, unsigned pos
)
1760 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
1761 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
1763 if (type
== isl_dim_set
)
1764 pos
+= isl_space_dim(dim
, isl_dim_param
);
1766 return isl_qpolynomial_var_pow(dim
, pos
, 1);
1768 isl_space_free(dim
);
1772 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1773 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1776 struct isl_upoly_rec
*rec
;
1777 struct isl_upoly
*base
, *res
;
1782 if (isl_upoly_is_cst(up
))
1785 if (up
->var
< first
)
1788 rec
= isl_upoly_as_rec(up
);
1792 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1794 if (up
->var
>= first
+ n
)
1795 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1797 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1799 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1800 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1801 struct isl_upoly
*t
;
1802 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1803 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1804 res
= isl_upoly_sum(res
, t
);
1807 isl_upoly_free(base
);
1816 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1817 isl_int denom
, unsigned len
)
1820 struct isl_upoly
*up
;
1822 isl_assert(ctx
, len
>= 1, return NULL
);
1824 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1825 for (i
= 0; i
< len
- 1; ++i
) {
1826 struct isl_upoly
*t
;
1827 struct isl_upoly
*c
;
1829 if (isl_int_is_zero(f
[1 + i
]))
1832 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1833 t
= isl_upoly_var_pow(ctx
, i
, 1);
1834 t
= isl_upoly_mul(c
, t
);
1835 up
= isl_upoly_sum(up
, t
);
1841 /* Remove common factor of non-constant terms and denominator.
1843 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1845 isl_ctx
*ctx
= qp
->div
->ctx
;
1846 unsigned total
= qp
->div
->n_col
- 2;
1848 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1849 isl_int_gcd(ctx
->normalize_gcd
,
1850 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1851 if (isl_int_is_one(ctx
->normalize_gcd
))
1854 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1855 ctx
->normalize_gcd
, total
);
1856 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1857 ctx
->normalize_gcd
);
1858 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1859 ctx
->normalize_gcd
);
1862 /* Replace the integer division identified by "div" by the polynomial "s".
1863 * The integer division is assumed not to appear in the definition
1864 * of any other integer divisions.
1866 static __isl_give isl_qpolynomial
*substitute_div(
1867 __isl_take isl_qpolynomial
*qp
,
1868 int div
, __isl_take
struct isl_upoly
*s
)
1877 qp
= isl_qpolynomial_cow(qp
);
1881 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1882 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1886 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1889 for (i
= 0; i
< total
+ div
; ++i
)
1891 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1892 reordering
[i
] = i
- 1;
1893 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1894 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1895 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1898 if (!qp
->upoly
|| !qp
->div
)
1904 isl_qpolynomial_free(qp
);
1909 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1910 * divisions because d is equal to 1 by their definition, i.e., e.
1912 static __isl_give isl_qpolynomial
*substitute_non_divs(
1913 __isl_take isl_qpolynomial
*qp
)
1917 struct isl_upoly
*s
;
1922 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1923 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1924 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1926 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1927 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1929 isl_seq_combine(qp
->div
->row
[j
] + 1,
1930 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1931 qp
->div
->row
[j
][2 + total
+ i
],
1932 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1933 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1934 normalize_div(qp
, j
);
1936 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1937 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1938 qp
= substitute_div(qp
, i
, s
);
1945 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1946 * with d the denominator. When replacing the coefficient e of x by
1947 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1948 * inside the division, so we need to add floor(e/d) * x outside.
1949 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1950 * to adjust the coefficient of x in each later div that depends on the
1951 * current div "div" and also in the affine expression "aff"
1952 * (if it too depends on "div").
1954 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1955 __isl_keep isl_vec
*aff
)
1959 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
1962 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
1963 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
1964 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
1966 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1967 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
1968 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
1969 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
1970 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
1971 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
1972 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
1974 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
1975 v
, qp
->div
->row
[j
][2 + total
+ div
]);
1981 /* Check if the last non-zero coefficient is bigger that half of the
1982 * denominator. If so, we will invert the div to further reduce the number
1983 * of distinct divs that may appear.
1984 * If the last non-zero coefficient is exactly half the denominator,
1985 * then we continue looking for earlier coefficients that are bigger
1986 * than half the denominator.
1988 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
1993 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
1994 if (isl_int_is_zero(div
->row
[row
][i
]))
1996 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
1997 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
1998 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2008 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2009 * We only invert the coefficients of e (and the coefficient of q in
2010 * later divs and in "aff"). After calling this function, the
2011 * coefficients of e should be reduced again.
2013 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2014 __isl_keep isl_vec
*aff
)
2016 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2018 isl_seq_neg(qp
->div
->row
[div
] + 1,
2019 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2020 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2021 isl_int_add(qp
->div
->row
[div
][1],
2022 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2023 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2024 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2025 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2026 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2029 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2030 * in the interval [0, d-1], with d the denominator and such that the
2031 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2033 * After the reduction, some divs may have become redundant or identical,
2034 * so we call substitute_non_divs and sort_divs. If these functions
2035 * eliminate divs or merge two or more divs into one, the coefficients
2036 * of the enclosing divs may have to be reduced again, so we call
2037 * ourselves recursively if the number of divs decreases.
2039 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2042 isl_vec
*aff
= NULL
;
2043 struct isl_upoly
*s
;
2049 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2050 aff
= isl_vec_clr(aff
);
2054 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2056 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2057 normalize_div(qp
, i
);
2058 reduce_div(qp
, i
, aff
);
2059 if (needs_invert(qp
->div
, i
)) {
2060 invert_div(qp
, i
, aff
);
2061 reduce_div(qp
, i
, aff
);
2065 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2066 qp
->div
->ctx
->one
, aff
->size
);
2067 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2074 n_div
= qp
->div
->n_row
;
2075 qp
= substitute_non_divs(qp
);
2077 if (qp
&& qp
->div
->n_row
< n_div
)
2078 return reduce_divs(qp
);
2082 isl_qpolynomial_free(qp
);
2087 /* Assumes each div only depends on earlier divs.
2089 __isl_give isl_qpolynomial
*isl_qpolynomial_div_pow(__isl_take isl_div
*div
,
2092 struct isl_qpolynomial
*qp
= NULL
;
2093 struct isl_upoly_rec
*rec
;
2094 struct isl_upoly_cst
*cst
;
2101 d
= div
->line
- div
->bmap
->div
;
2103 pos
= isl_space_dim(div
->bmap
->dim
, isl_dim_all
) + d
;
2104 rec
= isl_upoly_alloc_rec(div
->ctx
, pos
, 1 + power
);
2105 qp
= isl_qpolynomial_alloc(isl_basic_map_get_space(div
->bmap
),
2106 div
->bmap
->n_div
, &rec
->up
);
2110 for (i
= 0; i
< div
->bmap
->n_div
; ++i
)
2111 isl_seq_cpy(qp
->div
->row
[i
], div
->bmap
->div
[i
], qp
->div
->n_col
);
2113 for (i
= 0; i
< 1 + power
; ++i
) {
2114 rec
->p
[i
] = isl_upoly_zero(div
->ctx
);
2119 cst
= isl_upoly_as_cst(rec
->p
[power
]);
2120 isl_int_set_si(cst
->n
, 1);
2124 qp
= reduce_divs(qp
);
2128 isl_qpolynomial_free(qp
);
2133 __isl_give isl_qpolynomial
*isl_qpolynomial_div(__isl_take isl_div
*div
)
2135 return isl_qpolynomial_div_pow(div
, 1);
2138 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst(__isl_take isl_space
*dim
,
2139 const isl_int n
, const isl_int d
)
2141 struct isl_qpolynomial
*qp
;
2142 struct isl_upoly_cst
*cst
;
2147 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2151 cst
= isl_upoly_as_cst(qp
->upoly
);
2152 isl_int_set(cst
->n
, n
);
2153 isl_int_set(cst
->d
, d
);
2158 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2160 struct isl_upoly_rec
*rec
;
2166 if (isl_upoly_is_cst(up
))
2170 active
[up
->var
] = 1;
2172 rec
= isl_upoly_as_rec(up
);
2173 for (i
= 0; i
< rec
->n
; ++i
)
2174 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2180 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2183 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2188 for (i
= 0; i
< d
; ++i
)
2189 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2190 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2196 return up_set_active(qp
->upoly
, active
, d
);
2199 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2200 enum isl_dim_type type
, unsigned first
, unsigned n
)
2211 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2213 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2214 type
== isl_dim_set
, return -1);
2216 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2217 isl_space_dim(qp
->dim
, isl_dim_all
));
2218 if (set_active(qp
, active
) < 0)
2221 if (type
== isl_dim_set
)
2222 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2223 for (i
= 0; i
< n
; ++i
)
2224 if (active
[first
+ i
]) {
2237 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2238 * of the divs that do appear in the quasi-polynomial.
2240 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2241 __isl_take isl_qpolynomial
*qp
)
2248 int *reordering
= NULL
;
2255 if (qp
->div
->n_row
== 0)
2258 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2259 len
= qp
->div
->n_col
- 2;
2260 ctx
= isl_qpolynomial_get_ctx(qp
);
2261 active
= isl_calloc_array(ctx
, int, len
);
2265 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2268 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2269 if (!active
[d
+ i
]) {
2273 for (j
= 0; j
< i
; ++j
) {
2274 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2286 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2290 for (i
= 0; i
< d
; ++i
)
2294 n_div
= qp
->div
->n_row
;
2295 for (i
= 0; i
< n_div
; ++i
) {
2296 if (!active
[d
+ i
]) {
2297 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2298 qp
->div
= isl_mat_drop_cols(qp
->div
,
2299 2 + d
+ i
- skip
, 1);
2302 reordering
[d
+ i
] = d
+ i
- skip
;
2305 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2307 if (!qp
->upoly
|| !qp
->div
)
2317 isl_qpolynomial_free(qp
);
2321 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2322 unsigned first
, unsigned n
)
2325 struct isl_upoly_rec
*rec
;
2329 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2331 if (up
->var
< first
+ n
) {
2332 up
= replace_by_constant_term(up
);
2333 return isl_upoly_drop(up
, first
, n
);
2335 up
= isl_upoly_cow(up
);
2339 rec
= isl_upoly_as_rec(up
);
2343 for (i
= 0; i
< rec
->n
; ++i
) {
2344 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2355 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2356 __isl_take isl_qpolynomial
*qp
,
2357 enum isl_dim_type type
, unsigned pos
, const char *s
)
2359 qp
= isl_qpolynomial_cow(qp
);
2362 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2367 isl_qpolynomial_free(qp
);
2371 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2372 __isl_take isl_qpolynomial
*qp
,
2373 enum isl_dim_type type
, unsigned first
, unsigned n
)
2377 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2380 qp
= isl_qpolynomial_cow(qp
);
2384 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2386 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2387 type
== isl_dim_set
, goto error
);
2389 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2393 if (type
== isl_dim_set
)
2394 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2396 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2400 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2406 isl_qpolynomial_free(qp
);
2410 /* Project the domain of the quasi-polynomial onto its parameter space.
2411 * The quasi-polynomial may not involve any of the domain dimensions.
2413 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2414 __isl_take isl_qpolynomial
*qp
)
2420 n
= isl_qpolynomial_dim(qp
, isl_dim_set
);
2421 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_set
, 0, n
);
2423 return isl_qpolynomial_free(qp
);
2425 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2426 "polynomial involves some of the domain dimensions",
2427 return isl_qpolynomial_free(qp
));
2428 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_set
, 0, n
);
2429 space
= isl_qpolynomial_get_space(qp
);
2430 space
= isl_space_params(space
);
2431 qp
= isl_qpolynomial_reset_space(qp
, space
);
2435 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2436 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2442 struct isl_upoly
*up
;
2446 if (eq
->n_eq
== 0) {
2447 isl_basic_set_free(eq
);
2451 qp
= isl_qpolynomial_cow(qp
);
2454 qp
->div
= isl_mat_cow(qp
->div
);
2458 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2460 isl_int_init(denom
);
2461 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2462 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2463 if (j
< 0 || j
== 0 || j
>= total
)
2466 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2467 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2469 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2470 &qp
->div
->row
[k
][0]);
2471 normalize_div(qp
, k
);
2474 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2475 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2476 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2477 isl_int_set_si(eq
->eq
[i
][j
], 0);
2479 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2480 eq
->eq
[i
], denom
, total
);
2481 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2484 isl_int_clear(denom
);
2489 isl_basic_set_free(eq
);
2491 qp
= substitute_non_divs(qp
);
2496 isl_basic_set_free(eq
);
2497 isl_qpolynomial_free(qp
);
2501 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2503 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2504 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2508 if (qp
->div
->n_row
> 0)
2509 eq
= isl_basic_set_add(eq
, isl_dim_set
, qp
->div
->n_row
);
2510 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2512 isl_basic_set_free(eq
);
2513 isl_qpolynomial_free(qp
);
2517 static __isl_give isl_basic_set
*add_div_constraints(
2518 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2526 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2529 total
= isl_basic_set_total_dim(bset
);
2530 for (i
= 0; i
< div
->n_row
; ++i
)
2531 if (isl_basic_set_add_div_constraints_var(bset
,
2532 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2539 isl_basic_set_free(bset
);
2543 /* Look for equalities among the variables shared by context and qp
2544 * and the integer divisions of qp, if any.
2545 * The equalities are then used to eliminate variables and/or integer
2546 * divisions from qp.
2548 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2549 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2555 if (qp
->div
->n_row
> 0) {
2556 isl_basic_set
*bset
;
2557 context
= isl_set_add_dims(context
, isl_dim_set
,
2559 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2560 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2561 context
= isl_set_intersect(context
,
2562 isl_set_from_basic_set(bset
));
2565 aff
= isl_set_affine_hull(context
);
2566 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2568 isl_qpolynomial_free(qp
);
2569 isl_set_free(context
);
2573 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2574 __isl_take isl_qpolynomial
*qp
)
2580 if (isl_qpolynomial_is_zero(qp
)) {
2581 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2582 isl_qpolynomial_free(qp
);
2583 return isl_pw_qpolynomial_zero(dim
);
2586 dom
= isl_set_universe(isl_qpolynomial_get_space(qp
));
2587 return isl_pw_qpolynomial_alloc(dom
, qp
);
2591 #define PW isl_pw_qpolynomial
2593 #define EL isl_qpolynomial
2595 #define EL_IS_ZERO is_zero
2599 #define IS_ZERO is_zero
2603 #include <isl_pw_templ.c>
2606 #define UNION isl_union_pw_qpolynomial
2608 #define PART isl_pw_qpolynomial
2610 #define PARTS pw_qpolynomial
2612 #include <isl_union_templ.c>
2614 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2622 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2625 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2628 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2629 __isl_take isl_pw_qpolynomial
*pwqp1
,
2630 __isl_take isl_pw_qpolynomial
*pwqp2
)
2633 struct isl_pw_qpolynomial
*res
;
2635 if (!pwqp1
|| !pwqp2
)
2638 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
2641 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2642 isl_pw_qpolynomial_free(pwqp2
);
2646 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2647 isl_pw_qpolynomial_free(pwqp1
);
2651 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2652 isl_pw_qpolynomial_free(pwqp1
);
2656 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2657 isl_pw_qpolynomial_free(pwqp2
);
2661 n
= pwqp1
->n
* pwqp2
->n
;
2662 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
2664 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2665 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2666 struct isl_set
*common
;
2667 struct isl_qpolynomial
*prod
;
2668 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2669 isl_set_copy(pwqp2
->p
[j
].set
));
2670 if (isl_set_plain_is_empty(common
)) {
2671 isl_set_free(common
);
2675 prod
= isl_qpolynomial_mul(
2676 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2677 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2679 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2683 isl_pw_qpolynomial_free(pwqp1
);
2684 isl_pw_qpolynomial_free(pwqp2
);
2688 isl_pw_qpolynomial_free(pwqp1
);
2689 isl_pw_qpolynomial_free(pwqp2
);
2693 __isl_give
struct isl_upoly
*isl_upoly_eval(
2694 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2697 struct isl_upoly_rec
*rec
;
2698 struct isl_upoly
*res
;
2699 struct isl_upoly
*base
;
2701 if (isl_upoly_is_cst(up
)) {
2706 rec
= isl_upoly_as_rec(up
);
2710 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2712 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2714 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2717 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2718 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2719 res
= isl_upoly_sum(res
,
2720 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2721 isl_vec_copy(vec
)));
2724 isl_upoly_free(base
);
2734 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2735 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2738 struct isl_upoly
*up
;
2743 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
2745 if (qp
->div
->n_row
== 0)
2746 ext
= isl_vec_copy(pnt
->vec
);
2749 unsigned dim
= isl_space_dim(qp
->dim
, isl_dim_all
);
2750 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2754 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2755 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2756 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2757 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2758 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2759 qp
->div
->row
[i
][0]);
2763 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2767 dim
= isl_space_copy(qp
->dim
);
2768 isl_qpolynomial_free(qp
);
2769 isl_point_free(pnt
);
2771 return isl_qpolynomial_alloc(dim
, 0, up
);
2773 isl_qpolynomial_free(qp
);
2774 isl_point_free(pnt
);
2778 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2779 __isl_keep
struct isl_upoly_cst
*cst2
)
2784 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2785 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2786 cmp
= isl_int_sgn(t
);
2791 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2792 __isl_keep isl_qpolynomial
*qp2
)
2794 struct isl_upoly_cst
*cst1
, *cst2
;
2798 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2799 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2800 if (isl_qpolynomial_is_nan(qp1
))
2802 if (isl_qpolynomial_is_nan(qp2
))
2804 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2805 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2807 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2810 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2811 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2813 struct isl_upoly_cst
*cst1
, *cst2
;
2818 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2819 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2820 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2821 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2822 cmp
= isl_upoly_cmp(cst1
, cst2
);
2825 isl_qpolynomial_free(qp2
);
2827 isl_qpolynomial_free(qp1
);
2832 isl_qpolynomial_free(qp1
);
2833 isl_qpolynomial_free(qp2
);
2837 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2838 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2840 struct isl_upoly_cst
*cst1
, *cst2
;
2845 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2846 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2847 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2848 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2849 cmp
= isl_upoly_cmp(cst1
, cst2
);
2852 isl_qpolynomial_free(qp2
);
2854 isl_qpolynomial_free(qp1
);
2859 isl_qpolynomial_free(qp1
);
2860 isl_qpolynomial_free(qp2
);
2864 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2865 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2866 unsigned first
, unsigned n
)
2872 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2875 qp
= isl_qpolynomial_cow(qp
);
2879 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
2882 g_pos
= pos(qp
->dim
, type
) + first
;
2884 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
2888 total
= qp
->div
->n_col
- 2;
2889 if (total
> g_pos
) {
2891 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2894 for (i
= 0; i
< total
- g_pos
; ++i
)
2896 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2902 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
2908 isl_qpolynomial_free(qp
);
2912 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2913 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2917 pos
= isl_qpolynomial_dim(qp
, type
);
2919 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2922 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2923 __isl_take isl_pw_qpolynomial
*pwqp
,
2924 enum isl_dim_type type
, unsigned n
)
2928 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2930 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2933 static int *reordering_move(isl_ctx
*ctx
,
2934 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2939 reordering
= isl_alloc_array(ctx
, int, len
);
2944 for (i
= 0; i
< dst
; ++i
)
2946 for (i
= 0; i
< n
; ++i
)
2947 reordering
[src
+ i
] = dst
+ i
;
2948 for (i
= 0; i
< src
- dst
; ++i
)
2949 reordering
[dst
+ i
] = dst
+ n
+ i
;
2950 for (i
= 0; i
< len
- src
- n
; ++i
)
2951 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2953 for (i
= 0; i
< src
; ++i
)
2955 for (i
= 0; i
< n
; ++i
)
2956 reordering
[src
+ i
] = dst
+ i
;
2957 for (i
= 0; i
< dst
- src
; ++i
)
2958 reordering
[src
+ n
+ i
] = src
+ i
;
2959 for (i
= 0; i
< len
- dst
- n
; ++i
)
2960 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2966 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2967 __isl_take isl_qpolynomial
*qp
,
2968 enum isl_dim_type dst_type
, unsigned dst_pos
,
2969 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2975 qp
= isl_qpolynomial_cow(qp
);
2979 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
2982 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
2983 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
2984 if (dst_type
> src_type
)
2987 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
2994 reordering
= reordering_move(qp
->dim
->ctx
,
2995 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
2999 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3004 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3010 isl_qpolynomial_free(qp
);
3014 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3015 isl_int
*f
, isl_int denom
)
3017 struct isl_upoly
*up
;
3022 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3023 1 + isl_space_dim(dim
, isl_dim_all
));
3025 return isl_qpolynomial_alloc(dim
, 0, up
);
3028 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3031 struct isl_upoly
*up
;
3032 isl_qpolynomial
*qp
;
3037 ctx
= isl_aff_get_ctx(aff
);
3038 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3041 qp
= isl_qpolynomial_alloc(isl_aff_get_space(aff
),
3042 aff
->ls
->div
->n_row
, up
);
3046 isl_mat_free(qp
->div
);
3047 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3048 qp
->div
= isl_mat_cow(qp
->div
);
3053 qp
= reduce_divs(qp
);
3054 qp
= remove_redundant_divs(qp
);
3061 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3062 __isl_take isl_pw_aff
*pwaff
)
3065 isl_pw_qpolynomial
*pwqp
;
3070 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3073 for (i
= 0; i
< pwaff
->n
; ++i
) {
3075 isl_qpolynomial
*qp
;
3077 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3078 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3079 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3082 isl_pw_aff_free(pwaff
);
3086 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3087 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3091 aff
= isl_constraint_get_bound(c
, type
, pos
);
3092 isl_constraint_free(c
);
3093 return isl_qpolynomial_from_aff(aff
);
3096 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3097 * in "qp" by subs[i].
3099 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3100 __isl_take isl_qpolynomial
*qp
,
3101 enum isl_dim_type type
, unsigned first
, unsigned n
,
3102 __isl_keep isl_qpolynomial
**subs
)
3105 struct isl_upoly
**ups
;
3110 qp
= isl_qpolynomial_cow(qp
);
3113 for (i
= 0; i
< n
; ++i
)
3117 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3120 for (i
= 0; i
< n
; ++i
)
3121 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3124 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3125 for (i
= 0; i
< n
; ++i
)
3126 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3128 first
+= pos(qp
->dim
, type
);
3130 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3133 for (i
= 0; i
< n
; ++i
)
3134 ups
[i
] = subs
[i
]->upoly
;
3136 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3145 isl_qpolynomial_free(qp
);
3149 /* Extend "bset" with extra set dimensions for each integer division
3150 * in "qp" and then call "fn" with the extended bset and the polynomial
3151 * that results from replacing each of the integer divisions by the
3152 * corresponding extra set dimension.
3154 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3155 __isl_keep isl_basic_set
*bset
,
3156 int (*fn
)(__isl_take isl_basic_set
*bset
,
3157 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3161 isl_qpolynomial
*poly
;
3165 if (qp
->div
->n_row
== 0)
3166 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3169 div
= isl_mat_copy(qp
->div
);
3170 dim
= isl_space_copy(qp
->dim
);
3171 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3172 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3173 bset
= isl_basic_set_copy(bset
);
3174 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3175 bset
= add_div_constraints(bset
, div
);
3177 return fn(bset
, poly
, user
);
3182 /* Return total degree in variables first (inclusive) up to last (exclusive).
3184 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3188 struct isl_upoly_rec
*rec
;
3192 if (isl_upoly_is_zero(up
))
3194 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3197 rec
= isl_upoly_as_rec(up
);
3201 for (i
= 0; i
< rec
->n
; ++i
) {
3204 if (isl_upoly_is_zero(rec
->p
[i
]))
3206 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3216 /* Return total degree in set variables.
3218 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3226 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3227 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3228 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3231 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3232 unsigned pos
, int deg
)
3235 struct isl_upoly_rec
*rec
;
3240 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3242 return isl_upoly_copy(up
);
3244 return isl_upoly_zero(up
->ctx
);
3247 rec
= isl_upoly_as_rec(up
);
3251 if (up
->var
== pos
) {
3253 return isl_upoly_copy(rec
->p
[deg
]);
3255 return isl_upoly_zero(up
->ctx
);
3258 up
= isl_upoly_copy(up
);
3259 up
= isl_upoly_cow(up
);
3260 rec
= isl_upoly_as_rec(up
);
3264 for (i
= 0; i
< rec
->n
; ++i
) {
3265 struct isl_upoly
*t
;
3266 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3269 isl_upoly_free(rec
->p
[i
]);
3279 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3281 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3282 __isl_keep isl_qpolynomial
*qp
,
3283 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3286 struct isl_upoly
*up
;
3292 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3295 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3296 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3298 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3301 isl_mat_free(c
->div
);
3302 c
->div
= isl_mat_copy(qp
->div
);
3307 isl_qpolynomial_free(c
);
3311 /* Homogenize the polynomial in the variables first (inclusive) up to
3312 * last (exclusive) by inserting powers of variable first.
3313 * Variable first is assumed not to appear in the input.
3315 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3316 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3317 int first
, int last
)
3320 struct isl_upoly_rec
*rec
;
3324 if (isl_upoly_is_zero(up
))
3328 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3329 struct isl_upoly
*hom
;
3331 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3334 rec
= isl_upoly_as_rec(hom
);
3335 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3340 up
= isl_upoly_cow(up
);
3341 rec
= isl_upoly_as_rec(up
);
3345 for (i
= 0; i
< rec
->n
; ++i
) {
3346 if (isl_upoly_is_zero(rec
->p
[i
]))
3348 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3349 up
->var
< last
? deg
+ i
: i
, target
,
3361 /* Homogenize the polynomial in the set variables by introducing
3362 * powers of an extra set variable at position 0.
3364 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3365 __isl_take isl_qpolynomial
*poly
)
3369 int deg
= isl_qpolynomial_degree(poly
);
3374 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_set
, 0, 1);
3375 poly
= isl_qpolynomial_cow(poly
);
3379 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3380 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3381 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3388 isl_qpolynomial_free(poly
);
3392 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3393 __isl_take isl_mat
*div
)
3401 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3403 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3404 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3411 isl_int_init(term
->n
);
3412 isl_int_init(term
->d
);
3416 isl_space_free(dim
);
3421 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3430 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3439 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3441 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3445 isl_int_set(dup
->n
, term
->n
);
3446 isl_int_set(dup
->d
, term
->d
);
3448 for (i
= 0; i
< total
; ++i
)
3449 dup
->pow
[i
] = term
->pow
[i
];
3454 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3462 return isl_term_dup(term
);
3465 void isl_term_free(__isl_take isl_term
*term
)
3470 if (--term
->ref
> 0)
3473 isl_space_free(term
->dim
);
3474 isl_mat_free(term
->div
);
3475 isl_int_clear(term
->n
);
3476 isl_int_clear(term
->d
);
3480 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3488 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3489 case isl_dim_div
: return term
->div
->n_row
;
3490 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3496 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3498 return term
? term
->dim
->ctx
: NULL
;
3501 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3505 isl_int_set(*n
, term
->n
);
3508 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3512 isl_int_set(*d
, term
->d
);
3515 int isl_term_get_exp(__isl_keep isl_term
*term
,
3516 enum isl_dim_type type
, unsigned pos
)
3521 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3523 if (type
>= isl_dim_set
)
3524 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3525 if (type
>= isl_dim_div
)
3526 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3528 return term
->pow
[pos
];
3531 __isl_give isl_div
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3533 isl_basic_map
*bmap
;
3540 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3543 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3544 /* No nested divs for now */
3545 isl_assert(term
->dim
->ctx
,
3546 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3547 term
->div
->n_row
) == -1,
3550 bmap
= isl_basic_map_alloc_space(isl_space_copy(term
->dim
), 1, 0, 0);
3551 if ((k
= isl_basic_map_alloc_div(bmap
)) < 0)
3554 isl_seq_cpy(bmap
->div
[k
], term
->div
->row
[pos
], 2 + total
);
3556 return isl_basic_map_div(bmap
, k
);
3558 isl_basic_map_free(bmap
);
3562 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3563 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3564 __isl_take isl_term
*term
, void *user
)
3567 struct isl_upoly_rec
*rec
;
3572 if (isl_upoly_is_zero(up
))
3575 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3576 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3577 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3579 if (isl_upoly_is_cst(up
)) {
3580 struct isl_upoly_cst
*cst
;
3581 cst
= isl_upoly_as_cst(up
);
3584 term
= isl_term_cow(term
);
3587 isl_int_set(term
->n
, cst
->n
);
3588 isl_int_set(term
->d
, cst
->d
);
3589 if (fn(isl_term_copy(term
), user
) < 0)
3594 rec
= isl_upoly_as_rec(up
);
3598 for (i
= 0; i
< rec
->n
; ++i
) {
3599 term
= isl_term_cow(term
);
3602 term
->pow
[up
->var
] = i
;
3603 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3607 term
->pow
[up
->var
] = 0;
3611 isl_term_free(term
);
3615 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3616 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3623 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3627 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3629 isl_term_free(term
);
3631 return term
? 0 : -1;
3634 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3636 struct isl_upoly
*up
;
3637 isl_qpolynomial
*qp
;
3643 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3645 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3646 for (i
= 0; i
< n
; ++i
) {
3649 up
= isl_upoly_mul(up
,
3650 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3653 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3656 isl_mat_free(qp
->div
);
3657 qp
->div
= isl_mat_copy(term
->div
);
3661 isl_term_free(term
);
3664 isl_qpolynomial_free(qp
);
3665 isl_term_free(term
);
3669 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3670 __isl_take isl_space
*dim
)
3679 if (isl_space_is_equal(qp
->dim
, dim
)) {
3680 isl_space_free(dim
);
3684 qp
= isl_qpolynomial_cow(qp
);
3688 extra
= isl_space_dim(dim
, isl_dim_set
) -
3689 isl_space_dim(qp
->dim
, isl_dim_set
);
3690 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
3691 if (qp
->div
->n_row
) {
3694 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3697 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3699 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3704 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3707 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3708 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3710 isl_space_free(qp
->dim
);
3715 isl_space_free(dim
);
3716 isl_qpolynomial_free(qp
);
3720 /* For each parameter or variable that does not appear in qp,
3721 * first eliminate the variable from all constraints and then set it to zero.
3723 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3724 __isl_keep isl_qpolynomial
*qp
)
3735 d
= isl_space_dim(set
->dim
, isl_dim_all
);
3736 active
= isl_calloc_array(set
->ctx
, int, d
);
3737 if (set_active(qp
, active
) < 0)
3740 for (i
= 0; i
< d
; ++i
)
3749 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
3750 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
3751 for (i
= 0; i
< nparam
; ++i
) {
3754 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3755 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3757 for (i
= 0; i
< nvar
; ++i
) {
3758 if (active
[nparam
+ i
])
3760 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3761 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3773 struct isl_opt_data
{
3774 isl_qpolynomial
*qp
;
3776 isl_qpolynomial
*opt
;
3780 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3782 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3783 isl_qpolynomial
*val
;
3785 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3789 } else if (data
->max
) {
3790 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3792 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3798 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3799 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3801 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3806 if (isl_upoly_is_cst(qp
->upoly
)) {
3811 set
= fix_inactive(set
, qp
);
3814 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3818 data
.opt
= isl_qpolynomial_zero(isl_qpolynomial_get_space(qp
));
3821 isl_qpolynomial_free(qp
);
3825 isl_qpolynomial_free(qp
);
3826 isl_qpolynomial_free(data
.opt
);
3830 __isl_give isl_qpolynomial
*isl_qpolynomial_morph(__isl_take isl_qpolynomial
*qp
,
3831 __isl_take isl_morph
*morph
)
3836 struct isl_upoly
**subs
;
3839 qp
= isl_qpolynomial_cow(qp
);
3844 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3846 n_sub
= morph
->inv
->n_row
- 1;
3847 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3848 n_sub
+= qp
->div
->n_row
;
3849 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3853 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3854 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3855 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3856 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3857 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3858 subs
[morph
->inv
->n_row
- 1 + i
] =
3859 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3861 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3863 for (i
= 0; i
< n_sub
; ++i
)
3864 isl_upoly_free(subs
[i
]);
3867 mat
= isl_mat_diagonal(isl_mat_identity(ctx
, 1), isl_mat_copy(morph
->inv
));
3868 mat
= isl_mat_diagonal(mat
, isl_mat_identity(ctx
, qp
->div
->n_row
));
3869 qp
->div
= isl_mat_product(qp
->div
, mat
);
3870 isl_space_free(qp
->dim
);
3871 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
3873 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3876 isl_morph_free(morph
);
3880 isl_qpolynomial_free(qp
);
3881 isl_morph_free(morph
);
3885 static int neg_entry(void **entry
, void *user
)
3887 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3889 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3891 return *pwqp
? 0 : -1;
3894 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3895 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3897 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3901 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3902 &neg_entry
, NULL
) < 0)
3907 isl_union_pw_qpolynomial_free(upwqp
);
3911 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3912 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3913 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3915 return isl_union_pw_qpolynomial_add(upwqp1
,
3916 isl_union_pw_qpolynomial_neg(upwqp2
));
3919 static int mul_entry(void **entry
, void *user
)
3921 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3923 struct isl_hash_table_entry
*entry2
;
3924 isl_pw_qpolynomial
*pwpq
= *entry
;
3927 hash
= isl_space_get_hash(pwpq
->dim
);
3928 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3929 hash
, &has_dim
, pwpq
->dim
, 0);
3933 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3934 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3935 isl_pw_qpolynomial_copy(entry2
->data
));
3937 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3939 isl_pw_qpolynomial_free(pwpq
);
3943 isl_pw_qpolynomial_free(pwpq
);
3947 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3952 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3953 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3954 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3956 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
3959 /* Reorder the columns of the given div definitions according to the
3962 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
3963 __isl_take isl_reordering
*r
)
3972 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
3973 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
3977 for (i
= 0; i
< div
->n_row
; ++i
) {
3978 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
3979 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
3980 for (j
= 0; j
< r
->len
; ++j
)
3981 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
3982 div
->row
[i
][2 + j
]);
3985 isl_reordering_free(r
);
3989 isl_reordering_free(r
);
3994 /* Reorder the dimension of "qp" according to the given reordering.
3996 __isl_give isl_qpolynomial
*isl_qpolynomial_realign(
3997 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
3999 qp
= isl_qpolynomial_cow(qp
);
4003 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4007 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4011 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4015 qp
= isl_qpolynomial_reset_space(qp
, isl_space_copy(r
->dim
));
4017 isl_reordering_free(r
);
4020 isl_qpolynomial_free(qp
);
4021 isl_reordering_free(r
);
4025 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4026 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4031 if (!isl_space_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4032 isl_reordering
*exp
;
4034 model
= isl_space_drop_dims(model
, isl_dim_in
,
4035 0, isl_space_dim(model
, isl_dim_in
));
4036 model
= isl_space_drop_dims(model
, isl_dim_out
,
4037 0, isl_space_dim(model
, isl_dim_out
));
4038 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4039 exp
= isl_reordering_extend_space(exp
,
4040 isl_qpolynomial_get_space(qp
));
4041 qp
= isl_qpolynomial_realign(qp
, exp
);
4044 isl_space_free(model
);
4047 isl_space_free(model
);
4048 isl_qpolynomial_free(qp
);
4052 struct isl_split_periods_data
{
4054 isl_pw_qpolynomial
*res
;
4057 /* Create a slice where the integer division "div" has the fixed value "v".
4058 * In particular, if "div" refers to floor(f/m), then create a slice
4060 * m v <= f <= m v + (m - 1)
4065 * -f + m v + (m - 1) >= 0
4067 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4068 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4071 isl_basic_set
*bset
= NULL
;
4077 total
= isl_space_dim(dim
, isl_dim_all
);
4078 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4080 k
= isl_basic_set_alloc_inequality(bset
);
4083 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4084 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4086 k
= isl_basic_set_alloc_inequality(bset
);
4089 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4090 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4091 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4092 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4094 isl_space_free(dim
);
4095 return isl_set_from_basic_set(bset
);
4097 isl_basic_set_free(bset
);
4098 isl_space_free(dim
);
4102 static int split_periods(__isl_take isl_set
*set
,
4103 __isl_take isl_qpolynomial
*qp
, void *user
);
4105 /* Create a slice of the domain "set" such that integer division "div"
4106 * has the fixed value "v" and add the results to data->res,
4107 * replacing the integer division by "v" in "qp".
4109 static int set_div(__isl_take isl_set
*set
,
4110 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4111 struct isl_split_periods_data
*data
)
4116 struct isl_upoly
*cst
;
4118 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4119 set
= isl_set_intersect(set
, slice
);
4124 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4126 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4127 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4129 isl_int_addmul(qp
->div
->row
[i
][1],
4130 qp
->div
->row
[i
][2 + total
+ div
], v
);
4131 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4134 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4135 qp
= substitute_div(qp
, div
, cst
);
4137 return split_periods(set
, qp
, data
);
4140 isl_qpolynomial_free(qp
);
4144 /* Split the domain "set" such that integer division "div"
4145 * has a fixed value (ranging from "min" to "max") on each slice
4146 * and add the results to data->res.
4148 static int split_div(__isl_take isl_set
*set
,
4149 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4150 struct isl_split_periods_data
*data
)
4152 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4153 isl_set
*set_i
= isl_set_copy(set
);
4154 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4156 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4160 isl_qpolynomial_free(qp
);
4164 isl_qpolynomial_free(qp
);
4168 /* If "qp" refers to any integer division
4169 * that can only attain "max_periods" distinct values on "set"
4170 * then split the domain along those distinct values.
4171 * Add the results (or the original if no splitting occurs)
4174 static int split_periods(__isl_take isl_set
*set
,
4175 __isl_take isl_qpolynomial
*qp
, void *user
)
4178 isl_pw_qpolynomial
*pwqp
;
4179 struct isl_split_periods_data
*data
;
4184 data
= (struct isl_split_periods_data
*)user
;
4189 if (qp
->div
->n_row
== 0) {
4190 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4191 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4197 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4198 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4199 enum isl_lp_result lp_res
;
4201 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4202 qp
->div
->n_row
) != -1)
4205 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4206 set
->ctx
->one
, &min
, NULL
, NULL
);
4207 if (lp_res
== isl_lp_error
)
4209 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4211 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4213 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4214 set
->ctx
->one
, &max
, NULL
, NULL
);
4215 if (lp_res
== isl_lp_error
)
4217 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4219 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4221 isl_int_sub(max
, max
, min
);
4222 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4223 isl_int_add(max
, max
, min
);
4228 if (i
< qp
->div
->n_row
) {
4229 r
= split_div(set
, qp
, i
, min
, max
, data
);
4231 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4232 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4244 isl_qpolynomial_free(qp
);
4248 /* If any quasi-polynomial in pwqp refers to any integer division
4249 * that can only attain "max_periods" distinct values on its domain
4250 * then split the domain along those distinct values.
4252 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4253 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4255 struct isl_split_periods_data data
;
4257 data
.max_periods
= max_periods
;
4258 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4260 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4263 isl_pw_qpolynomial_free(pwqp
);
4267 isl_pw_qpolynomial_free(data
.res
);
4268 isl_pw_qpolynomial_free(pwqp
);
4272 /* Construct a piecewise quasipolynomial that is constant on the given
4273 * domain. In particular, it is
4276 * infinity if cst == -1
4278 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4279 __isl_take isl_basic_set
*bset
, int cst
)
4282 isl_qpolynomial
*qp
;
4287 bset
= isl_basic_set_params(bset
);
4288 dim
= isl_basic_set_get_space(bset
);
4290 qp
= isl_qpolynomial_infty(dim
);
4292 qp
= isl_qpolynomial_zero(dim
);
4294 qp
= isl_qpolynomial_one(dim
);
4295 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4298 /* Factor bset, call fn on each of the factors and return the product.
4300 * If no factors can be found, simply call fn on the input.
4301 * Otherwise, construct the factors based on the factorizer,
4302 * call fn on each factor and compute the product.
4304 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4305 __isl_take isl_basic_set
*bset
,
4306 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4312 isl_qpolynomial
*qp
;
4313 isl_pw_qpolynomial
*pwqp
;
4317 f
= isl_basic_set_factorizer(bset
);
4320 if (f
->n_group
== 0) {
4321 isl_factorizer_free(f
);
4325 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4326 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4328 dim
= isl_basic_set_get_space(bset
);
4329 dim
= isl_space_domain(dim
);
4330 set
= isl_set_universe(isl_space_copy(dim
));
4331 qp
= isl_qpolynomial_one(dim
);
4332 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4334 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4336 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4337 isl_basic_set
*bset_i
;
4338 isl_pw_qpolynomial
*pwqp_i
;
4340 bset_i
= isl_basic_set_copy(bset
);
4341 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4342 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4343 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4345 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4346 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4347 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4349 pwqp_i
= fn(bset_i
);
4350 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4355 isl_basic_set_free(bset
);
4356 isl_factorizer_free(f
);
4360 isl_basic_set_free(bset
);
4364 /* Factor bset, call fn on each of the factors and return the product.
4365 * The function is assumed to evaluate to zero on empty domains,
4366 * to one on zero-dimensional domains and to infinity on unbounded domains
4367 * and will not be called explicitly on zero-dimensional or unbounded domains.
4369 * We first check for some special cases and remove all equalities.
4370 * Then we hand over control to compressed_multiplicative_call.
4372 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4373 __isl_take isl_basic_set
*bset
,
4374 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4378 isl_pw_qpolynomial
*pwqp
;
4383 if (isl_basic_set_plain_is_empty(bset
))
4384 return constant_on_domain(bset
, 0);
4386 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4387 return constant_on_domain(bset
, 1);
4389 bounded
= isl_basic_set_is_bounded(bset
);
4393 return constant_on_domain(bset
, -1);
4395 if (bset
->n_eq
== 0)
4396 return compressed_multiplicative_call(bset
, fn
);
4398 morph
= isl_basic_set_full_compression(bset
);
4399 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4401 pwqp
= compressed_multiplicative_call(bset
, fn
);
4403 morph
= isl_morph_dom_params(morph
);
4404 morph
= isl_morph_ran_params(morph
);
4405 morph
= isl_morph_inverse(morph
);
4407 pwqp
= isl_pw_qpolynomial_morph(pwqp
, morph
);
4411 isl_basic_set_free(bset
);
4415 /* Drop all floors in "qp", turning each integer division [a/m] into
4416 * a rational division a/m. If "down" is set, then the integer division
4417 * is replaces by (a-(m-1))/m instead.
4419 static __isl_give isl_qpolynomial
*qp_drop_floors(
4420 __isl_take isl_qpolynomial
*qp
, int down
)
4423 struct isl_upoly
*s
;
4427 if (qp
->div
->n_row
== 0)
4430 qp
= isl_qpolynomial_cow(qp
);
4434 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4436 isl_int_sub(qp
->div
->row
[i
][1],
4437 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4438 isl_int_add_ui(qp
->div
->row
[i
][1],
4439 qp
->div
->row
[i
][1], 1);
4441 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4442 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4443 qp
= substitute_div(qp
, i
, s
);
4451 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4452 * a rational division a/m.
4454 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4455 __isl_take isl_pw_qpolynomial
*pwqp
)
4462 if (isl_pw_qpolynomial_is_zero(pwqp
))
4465 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4469 for (i
= 0; i
< pwqp
->n
; ++i
) {
4470 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4477 isl_pw_qpolynomial_free(pwqp
);
4481 /* Adjust all the integer divisions in "qp" such that they are at least
4482 * one over the given orthant (identified by "signs"). This ensures
4483 * that they will still be non-negative even after subtracting (m-1)/m.
4485 * In particular, f is replaced by f' + v, changing f = [a/m]
4486 * to f' = [(a - m v)/m].
4487 * If the constant term k in a is smaller than m,
4488 * the constant term of v is set to floor(k/m) - 1.
4489 * For any other term, if the coefficient c and the variable x have
4490 * the same sign, then no changes are needed.
4491 * Otherwise, if the variable is positive (and c is negative),
4492 * then the coefficient of x in v is set to floor(c/m).
4493 * If the variable is negative (and c is positive),
4494 * then the coefficient of x in v is set to ceil(c/m).
4496 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4502 struct isl_upoly
*s
;
4504 qp
= isl_qpolynomial_cow(qp
);
4507 qp
->div
= isl_mat_cow(qp
->div
);
4511 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4512 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4514 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4515 isl_int
*row
= qp
->div
->row
[i
];
4519 if (isl_int_lt(row
[1], row
[0])) {
4520 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4521 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4522 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4524 for (j
= 0; j
< total
; ++j
) {
4525 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4528 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4530 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4531 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4533 for (j
= 0; j
< i
; ++j
) {
4534 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4536 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4537 row
[2 + total
+ j
], row
[0]);
4538 isl_int_submul(row
[2 + total
+ j
],
4539 row
[0], v
->el
[1 + total
+ j
]);
4541 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4542 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4544 isl_seq_combine(qp
->div
->row
[j
] + 1,
4545 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4546 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4548 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4549 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4550 qp
->div
->ctx
->one
, v
->size
);
4551 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4561 isl_qpolynomial_free(qp
);
4565 struct isl_to_poly_data
{
4567 isl_pw_qpolynomial
*res
;
4568 isl_qpolynomial
*qp
;
4571 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4572 * We first make all integer divisions positive and then split the
4573 * quasipolynomials into terms with sign data->sign (the direction
4574 * of the requested approximation) and terms with the opposite sign.
4575 * In the first set of terms, each integer division [a/m] is
4576 * overapproximated by a/m, while in the second it is underapproximated
4579 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4582 struct isl_to_poly_data
*data
= user
;
4583 isl_pw_qpolynomial
*t
;
4584 isl_qpolynomial
*qp
, *up
, *down
;
4586 qp
= isl_qpolynomial_copy(data
->qp
);
4587 qp
= make_divs_pos(qp
, signs
);
4589 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4590 up
= qp_drop_floors(up
, 0);
4591 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4592 down
= qp_drop_floors(down
, 1);
4594 isl_qpolynomial_free(qp
);
4595 qp
= isl_qpolynomial_add(up
, down
);
4597 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4598 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4603 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4604 * the polynomial will be an overapproximation. If "sign" is negative,
4605 * it will be an underapproximation. If "sign" is zero, the approximation
4606 * will lie somewhere in between.
4608 * In particular, is sign == 0, we simply drop the floors, turning
4609 * the integer divisions into rational divisions.
4610 * Otherwise, we split the domains into orthants, make all integer divisions
4611 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4612 * depending on the requested sign and the sign of the term in which
4613 * the integer division appears.
4615 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4616 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4619 struct isl_to_poly_data data
;
4622 return pwqp_drop_floors(pwqp
);
4628 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4630 for (i
= 0; i
< pwqp
->n
; ++i
) {
4631 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4632 isl_pw_qpolynomial
*t
;
4633 t
= isl_pw_qpolynomial_alloc(
4634 isl_set_copy(pwqp
->p
[i
].set
),
4635 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4636 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4639 data
.qp
= pwqp
->p
[i
].qp
;
4640 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4641 &to_polynomial_on_orthant
, &data
) < 0)
4645 isl_pw_qpolynomial_free(pwqp
);
4649 isl_pw_qpolynomial_free(pwqp
);
4650 isl_pw_qpolynomial_free(data
.res
);
4654 static int poly_entry(void **entry
, void *user
)
4657 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4659 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4661 return *pwqp
? 0 : -1;
4664 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4665 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4667 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4671 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4672 &poly_entry
, &sign
) < 0)
4677 isl_union_pw_qpolynomial_free(upwqp
);
4681 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4682 __isl_take isl_qpolynomial
*qp
)
4686 isl_vec
*aff
= NULL
;
4687 isl_basic_map
*bmap
= NULL
;
4693 if (!isl_upoly_is_affine(qp
->upoly
))
4694 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4695 "input quasi-polynomial not affine", goto error
);
4696 aff
= isl_qpolynomial_extract_affine(qp
);
4699 dim
= isl_qpolynomial_get_space(qp
);
4700 dim
= isl_space_from_domain(dim
);
4701 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4702 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
4703 n_div
= qp
->div
->n_row
;
4704 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4706 for (i
= 0; i
< n_div
; ++i
) {
4707 k
= isl_basic_map_alloc_div(bmap
);
4710 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4711 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4712 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4715 k
= isl_basic_map_alloc_equality(bmap
);
4718 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4719 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4720 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4723 isl_qpolynomial_free(qp
);
4724 bmap
= isl_basic_map_finalize(bmap
);
4728 isl_qpolynomial_free(qp
);
4729 isl_basic_map_free(bmap
);