2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_equalities.h"
12 #include "isl_map_private.h"
16 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
18 isl_int
*t
= bmap
->eq
[a
];
19 bmap
->eq
[a
] = bmap
->eq
[b
];
23 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
26 isl_int
*t
= bmap
->ineq
[a
];
27 bmap
->ineq
[a
] = bmap
->ineq
[b
];
32 static void set_swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
34 swap_inequality((struct isl_basic_map
*)bset
, a
, b
);
37 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
39 isl_seq_cpy(c
, c
+ n
, rem
);
40 isl_seq_clr(c
+ rem
, n
);
43 /* Drop n dimensions starting at first.
45 * In principle, this frees up some extra variables as the number
46 * of columns remains constant, but we would have to extend
47 * the div array too as the number of rows in this array is assumed
48 * to be equal to extra.
50 struct isl_basic_set
*isl_basic_set_drop_dims(
51 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
58 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
63 bset
= isl_basic_set_cow(bset
);
67 for (i
= 0; i
< bset
->n_eq
; ++i
)
68 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
69 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
71 for (i
= 0; i
< bset
->n_ineq
; ++i
)
72 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
73 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
75 for (i
= 0; i
< bset
->n_div
; ++i
)
76 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
77 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
79 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
83 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
84 bset
= isl_basic_set_simplify(bset
);
85 return isl_basic_set_finalize(bset
);
87 isl_basic_set_free(bset
);
91 struct isl_set
*isl_set_drop_dims(
92 struct isl_set
*set
, unsigned first
, unsigned n
)
99 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
103 set
= isl_set_cow(set
);
106 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
110 for (i
= 0; i
< set
->n
; ++i
) {
111 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
116 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
123 /* Move "n" divs starting at "first" to the end of the list of divs.
125 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
126 unsigned first
, unsigned n
)
131 if (first
+ n
== bmap
->n_div
)
134 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
137 for (i
= 0; i
< n
; ++i
)
138 div
[i
] = bmap
->div
[first
+ i
];
139 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
140 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
141 for (i
= 0; i
< n
; ++i
)
142 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
146 isl_basic_map_free(bmap
);
150 /* Drop "n" dimensions of type "type" starting at "first".
152 * In principle, this frees up some extra variables as the number
153 * of columns remains constant, but we would have to extend
154 * the div array too as the number of rows in this array is assumed
155 * to be equal to extra.
157 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
158 enum isl_dim_type type
, unsigned first
, unsigned n
)
168 dim
= isl_basic_map_dim(bmap
, type
);
169 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
174 bmap
= isl_basic_map_cow(bmap
);
178 offset
= isl_basic_map_offset(bmap
, type
) + first
;
179 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
180 for (i
= 0; i
< bmap
->n_eq
; ++i
)
181 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
183 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
184 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
186 for (i
= 0; i
< bmap
->n_div
; ++i
)
187 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
189 if (type
== isl_dim_div
) {
190 bmap
= move_divs_last(bmap
, first
, n
);
193 isl_basic_map_free_div(bmap
, n
);
195 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
199 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
200 bmap
= isl_basic_map_simplify(bmap
);
201 return isl_basic_map_finalize(bmap
);
203 isl_basic_map_free(bmap
);
207 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
208 enum isl_dim_type type
, unsigned first
, unsigned n
)
210 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
214 struct isl_basic_map
*isl_basic_map_drop_inputs(
215 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
217 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
220 struct isl_map
*isl_map_drop(struct isl_map
*map
,
221 enum isl_dim_type type
, unsigned first
, unsigned n
)
228 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
232 map
= isl_map_cow(map
);
235 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
239 for (i
= 0; i
< map
->n
; ++i
) {
240 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
244 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
252 struct isl_set
*isl_set_drop(struct isl_set
*set
,
253 enum isl_dim_type type
, unsigned first
, unsigned n
)
255 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
258 struct isl_map
*isl_map_drop_inputs(
259 struct isl_map
*map
, unsigned first
, unsigned n
)
261 return isl_map_drop(map
, isl_dim_in
, first
, n
);
265 * We don't cow, as the div is assumed to be redundant.
267 static struct isl_basic_map
*isl_basic_map_drop_div(
268 struct isl_basic_map
*bmap
, unsigned div
)
276 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
278 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
280 for (i
= 0; i
< bmap
->n_eq
; ++i
)
281 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
283 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
284 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
285 isl_basic_map_drop_inequality(bmap
, i
);
289 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
292 for (i
= 0; i
< bmap
->n_div
; ++i
)
293 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
295 if (div
!= bmap
->n_div
- 1) {
297 isl_int
*t
= bmap
->div
[div
];
299 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
300 bmap
->div
[j
] = bmap
->div
[j
+1];
302 bmap
->div
[bmap
->n_div
- 1] = t
;
304 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
305 isl_basic_map_free_div(bmap
, 1);
309 isl_basic_map_free(bmap
);
313 struct isl_basic_map
*isl_basic_map_normalize_constraints(
314 struct isl_basic_map
*bmap
)
318 unsigned total
= isl_basic_map_total_dim(bmap
);
324 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
325 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
326 if (isl_int_is_zero(gcd
)) {
327 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
328 bmap
= isl_basic_map_set_to_empty(bmap
);
331 isl_basic_map_drop_equality(bmap
, i
);
334 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
335 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
336 if (isl_int_is_one(gcd
))
338 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
339 bmap
= isl_basic_map_set_to_empty(bmap
);
342 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
345 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
346 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
347 if (isl_int_is_zero(gcd
)) {
348 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
349 bmap
= isl_basic_map_set_to_empty(bmap
);
352 isl_basic_map_drop_inequality(bmap
, i
);
355 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
356 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
357 if (isl_int_is_one(gcd
))
359 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
360 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
367 struct isl_basic_set
*isl_basic_set_normalize_constraints(
368 struct isl_basic_set
*bset
)
370 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
371 (struct isl_basic_map
*)bset
);
374 /* Assumes divs have been ordered if keep_divs is set.
376 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
377 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
383 total
= isl_basic_map_total_dim(bmap
);
384 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
386 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
387 if (bmap
->eq
[k
] == eq
)
389 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
393 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
396 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
397 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
401 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
402 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
405 for (k
= 0; k
< bmap
->n_div
; ++k
) {
406 if (isl_int_is_zero(bmap
->div
[k
][0]))
408 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
412 /* We need to be careful about circular definitions,
413 * so for now we just remove the definition of div k
414 * if the equality contains any divs.
415 * If keep_divs is set, then the divs have been ordered
416 * and we can keep the definition as long as the result
419 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
420 isl_seq_elim(bmap
->div
[k
]+1, eq
,
421 1+pos
, 1+total
, &bmap
->div
[k
][0]);
423 isl_seq_clr(bmap
->div
[k
], 1 + total
);
424 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
428 /* Assumes divs have been ordered if keep_divs is set.
430 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
431 unsigned div
, int keep_divs
)
433 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
435 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
437 isl_basic_map_drop_div(bmap
, div
);
440 /* Check if elimination of div "div" using equality "eq" would not
441 * result in a div depending on a later div.
443 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
448 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
450 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
452 if (last_div
< 0 || last_div
<= div
)
455 for (k
= 0; k
<= last_div
; ++k
) {
456 if (isl_int_is_zero(bmap
->div
[k
][0]))
458 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
465 /* Elimininate divs based on equalities
467 static struct isl_basic_map
*eliminate_divs_eq(
468 struct isl_basic_map
*bmap
, int *progress
)
475 bmap
= isl_basic_map_order_divs(bmap
);
480 off
= 1 + isl_dim_total(bmap
->dim
);
482 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
483 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
484 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
485 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
487 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
491 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
492 isl_basic_map_drop_equality(bmap
, i
);
497 return eliminate_divs_eq(bmap
, progress
);
501 /* Elimininate divs based on inequalities
503 static struct isl_basic_map
*eliminate_divs_ineq(
504 struct isl_basic_map
*bmap
, int *progress
)
515 off
= 1 + isl_dim_total(bmap
->dim
);
517 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
518 for (i
= 0; i
< bmap
->n_eq
; ++i
)
519 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
523 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
524 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
526 if (i
< bmap
->n_ineq
)
529 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
530 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
532 bmap
= isl_basic_map_drop_div(bmap
, d
);
539 struct isl_basic_map
*isl_basic_map_gauss(
540 struct isl_basic_map
*bmap
, int *progress
)
548 bmap
= isl_basic_map_order_divs(bmap
);
553 total
= isl_basic_map_total_dim(bmap
);
554 total_var
= total
- bmap
->n_div
;
556 last_var
= total
- 1;
557 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
558 for (; last_var
>= 0; --last_var
) {
559 for (k
= done
; k
< bmap
->n_eq
; ++k
)
560 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
568 swap_equality(bmap
, k
, done
);
569 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
570 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
572 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
575 if (last_var
>= total_var
&&
576 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
577 unsigned div
= last_var
- total_var
;
578 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
579 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
580 isl_int_set(bmap
->div
[div
][0],
581 bmap
->eq
[done
][1+last_var
]);
582 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
585 if (done
== bmap
->n_eq
)
587 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
588 if (isl_int_is_zero(bmap
->eq
[k
][0]))
590 return isl_basic_map_set_to_empty(bmap
);
592 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
596 struct isl_basic_set
*isl_basic_set_gauss(
597 struct isl_basic_set
*bset
, int *progress
)
599 return (struct isl_basic_set
*)isl_basic_map_gauss(
600 (struct isl_basic_map
*)bset
, progress
);
604 static unsigned int round_up(unsigned int v
)
615 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
616 struct isl_basic_map
*bmap
, int k
)
619 unsigned total
= isl_basic_map_total_dim(bmap
);
620 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
621 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
622 if (&bmap
->ineq
[k
] != index
[h
] &&
623 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
628 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
629 struct isl_basic_set
*bset
, int k
)
631 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
634 /* If we can eliminate more than one div, then we need to make
635 * sure we do it from last div to first div, in order not to
636 * change the position of the other divs that still need to
639 static struct isl_basic_map
*remove_duplicate_divs(
640 struct isl_basic_map
*bmap
, int *progress
)
652 if (!bmap
|| bmap
->n_div
<= 1)
655 total_var
= isl_dim_total(bmap
->dim
);
656 total
= total_var
+ bmap
->n_div
;
659 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
660 if (!isl_int_is_zero(bmap
->div
[k
][0]))
665 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
666 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
667 bits
= ffs(size
) - 1;
668 index
= isl_calloc_array(ctx
, int, size
);
671 eq
= isl_blk_alloc(ctx
, 1+total
);
672 if (isl_blk_is_error(eq
))
675 isl_seq_clr(eq
.data
, 1+total
);
676 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
677 for (--k
; k
>= 0; --k
) {
680 if (isl_int_is_zero(bmap
->div
[k
][0]))
683 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
684 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
685 if (isl_seq_eq(bmap
->div
[k
],
686 bmap
->div
[index
[h
]-1], 2+total
))
695 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
699 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
700 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
701 eliminate_div(bmap
, eq
.data
, l
, 0);
702 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
703 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
706 isl_blk_free(ctx
, eq
);
713 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
718 total
= isl_dim_total(bmap
->dim
);
719 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
720 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
724 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
730 /* Normalize divs that appear in equalities.
732 * In particular, we assume that bmap contains some equalities
737 * and we want to replace the set of e_i by a minimal set and
738 * such that the new e_i have a canonical representation in terms
740 * If any of the equalities involves more than one divs, then
741 * we currently simply bail out.
743 * Let us first additionally assume that all equalities involve
744 * a div. The equalities then express modulo constraints on the
745 * remaining variables and we can use "parameter compression"
746 * to find a minimal set of constraints. The result is a transformation
748 * x = T(x') = x_0 + G x'
750 * with G a lower-triangular matrix with all elements below the diagonal
751 * non-negative and smaller than the diagonal element on the same row.
752 * We first normalize x_0 by making the same property hold in the affine
754 * The rows i of G with a 1 on the diagonal do not impose any modulo
755 * constraint and simply express x_i = x'_i.
756 * For each of the remaining rows i, we introduce a div and a corresponding
757 * equality. In particular
759 * g_ii e_j = x_i - g_i(x')
761 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
762 * corresponding div (if g_kk != 1).
764 * If there are any equalities not involving any div, then we
765 * first apply a variable compression on the variables x:
767 * x = C x'' x'' = C_2 x
769 * and perform the above parameter compression on A C instead of on A.
770 * The resulting compression is then of the form
772 * x'' = T(x') = x_0 + G x'
774 * and in constructing the new divs and the corresponding equalities,
775 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
776 * by the corresponding row from C_2.
778 static struct isl_basic_map
*normalize_divs(
779 struct isl_basic_map
*bmap
, int *progress
)
786 struct isl_mat
*T
= NULL
;
787 struct isl_mat
*C
= NULL
;
788 struct isl_mat
*C2
= NULL
;
796 if (bmap
->n_div
== 0)
802 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
805 total
= isl_dim_total(bmap
->dim
);
806 div_eq
= n_pure_div_eq(bmap
);
810 if (div_eq
< bmap
->n_eq
) {
811 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, div_eq
,
812 bmap
->n_eq
- div_eq
, 0, 1 + total
);
813 C
= isl_mat_variable_compression(B
, &C2
);
817 bmap
= isl_basic_map_set_to_empty(bmap
);
824 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
827 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
828 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
830 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
832 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
835 B
= isl_mat_product(B
, C
);
839 T
= isl_mat_parameter_compression(B
, d
);
843 bmap
= isl_basic_map_set_to_empty(bmap
);
849 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
850 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
851 if (isl_int_is_zero(v
))
853 isl_mat_col_submul(T
, 0, v
, 1 + i
);
856 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
859 /* We have to be careful because dropping equalities may reorder them */
861 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
862 for (i
= 0; i
< bmap
->n_eq
; ++i
)
863 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
865 if (i
< bmap
->n_eq
) {
866 bmap
= isl_basic_map_drop_div(bmap
, j
);
867 isl_basic_map_drop_equality(bmap
, i
);
873 for (i
= 1; i
< T
->n_row
; ++i
) {
874 if (isl_int_is_one(T
->row
[i
][i
]))
879 if (needed
> dropped
) {
880 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
885 for (i
= 1; i
< T
->n_row
; ++i
) {
886 if (isl_int_is_one(T
->row
[i
][i
]))
888 k
= isl_basic_map_alloc_div(bmap
);
889 pos
[i
] = 1 + total
+ k
;
890 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
891 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
893 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
895 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
896 for (j
= 0; j
< i
; ++j
) {
897 if (isl_int_is_zero(T
->row
[i
][j
]))
899 if (pos
[j
] < T
->n_row
&& C2
)
900 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
901 C2
->row
[pos
[j
]], 1 + total
);
903 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
906 j
= isl_basic_map_alloc_equality(bmap
);
907 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
908 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
917 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
927 static struct isl_basic_map
*set_div_from_lower_bound(
928 struct isl_basic_map
*bmap
, int div
, int ineq
)
930 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
932 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
933 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
934 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
935 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
936 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
941 /* Check whether it is ok to define a div based on an inequality.
942 * To avoid the introduction of circular definitions of divs, we
943 * do not allow such a definition if the resulting expression would refer to
944 * any other undefined divs or if any known div is defined in
945 * terms of the unknown div.
947 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
951 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
953 /* Not defined in terms of unknown divs */
954 for (j
= 0; j
< bmap
->n_div
; ++j
) {
957 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
959 if (isl_int_is_zero(bmap
->div
[j
][0]))
963 /* No other div defined in terms of this one => avoid loops */
964 for (j
= 0; j
< bmap
->n_div
; ++j
) {
967 if (isl_int_is_zero(bmap
->div
[j
][0]))
969 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
976 /* Given two constraints "k" and "l" that are opposite to each other,
977 * except for the constant term, check if we can use them
978 * to obtain an expression for one of the hitherto unknown divs.
979 * "sum" is the sum of the constant terms of the constraints.
980 * If this sum is strictly smaller than the coefficient of one
981 * of the divs, then this pair can be used define the div.
982 * To avoid the introduction of circular definitions of divs, we
983 * do not use the pair if the resulting expression would refer to
984 * any other undefined divs or if any known div is defined in
985 * terms of the unknown div.
987 static struct isl_basic_map
*check_for_div_constraints(
988 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
991 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
993 for (i
= 0; i
< bmap
->n_div
; ++i
) {
994 if (!isl_int_is_zero(bmap
->div
[i
][0]))
996 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
998 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1000 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1002 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1003 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1005 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1013 static struct isl_basic_map
*remove_duplicate_constraints(
1014 struct isl_basic_map
*bmap
, int *progress
)
1020 unsigned total
= isl_basic_map_total_dim(bmap
);
1023 if (!bmap
|| bmap
->n_ineq
<= 1)
1026 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1027 bits
= ffs(size
) - 1;
1028 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1032 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1033 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1034 h
= hash_index(index
, size
, bits
, bmap
, k
);
1036 index
[h
] = &bmap
->ineq
[k
];
1041 l
= index
[h
] - &bmap
->ineq
[0];
1042 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1043 swap_inequality(bmap
, k
, l
);
1044 isl_basic_map_drop_inequality(bmap
, k
);
1048 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1049 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1050 h
= hash_index(index
, size
, bits
, bmap
, k
);
1051 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1054 l
= index
[h
] - &bmap
->ineq
[0];
1055 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1056 if (isl_int_is_pos(sum
)) {
1057 bmap
= check_for_div_constraints(bmap
, k
, l
, sum
,
1061 if (isl_int_is_zero(sum
)) {
1062 /* We need to break out of the loop after these
1063 * changes since the contents of the hash
1064 * will no longer be valid.
1065 * Plus, we probably we want to regauss first.
1069 isl_basic_map_drop_inequality(bmap
, l
);
1070 isl_basic_map_inequality_to_equality(bmap
, k
);
1072 bmap
= isl_basic_map_set_to_empty(bmap
);
1082 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1089 bmap
= isl_basic_map_normalize_constraints(bmap
);
1090 bmap
= remove_duplicate_divs(bmap
, &progress
);
1091 bmap
= eliminate_divs_eq(bmap
, &progress
);
1092 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1093 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1094 /* requires equalities in normal form */
1095 bmap
= normalize_divs(bmap
, &progress
);
1096 bmap
= remove_duplicate_constraints(bmap
, &progress
);
1101 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1103 return (struct isl_basic_set
*)
1104 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1108 /* If the only constraints a div d=floor(f/m)
1109 * appears in are its two defining constraints
1112 * -(f - (m - 1)) + m d >= 0
1114 * then it can safely be removed.
1116 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1119 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1121 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1122 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1125 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1126 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1128 if (isl_int_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1130 isl_int_sub(bmap
->div
[div
][1],
1131 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1132 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1133 neg
= isl_seq_is_neg(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
);
1134 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1135 isl_int_add(bmap
->div
[div
][1],
1136 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1139 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1140 bmap
->n_div
-div
-1) != -1)
1142 } else if (isl_int_abs_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1143 if (!isl_seq_eq(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
))
1145 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1146 bmap
->n_div
-div
-1) != -1)
1152 for (i
= 0; i
< bmap
->n_div
; ++i
)
1153 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1160 * Remove divs that don't occur in any of the constraints or other divs.
1161 * These can arise when dropping some of the variables in a quast
1162 * returned by piplib.
1164 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1171 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1172 if (!div_is_redundant(bmap
, i
))
1174 bmap
= isl_basic_map_drop_div(bmap
, i
);
1179 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1181 bmap
= remove_redundant_divs(bmap
);
1184 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1188 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1190 return (struct isl_basic_set
*)
1191 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1194 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1200 for (i
= 0; i
< set
->n
; ++i
) {
1201 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1211 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1217 for (i
= 0; i
< map
->n
; ++i
) {
1218 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1222 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1230 /* Remove definition of any div that is defined in terms of the given variable.
1231 * The div itself is not removed. Functions such as
1232 * eliminate_divs_ineq depend on the other divs remaining in place.
1234 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1239 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1240 if (isl_int_is_zero(bmap
->div
[i
][0]))
1242 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1244 isl_int_set_si(bmap
->div
[i
][0], 0);
1249 /* Eliminate the specified variables from the constraints using
1250 * Fourier-Motzkin. The variables themselves are not removed.
1252 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1253 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1263 total
= isl_basic_map_total_dim(bmap
);
1265 bmap
= isl_basic_map_cow(bmap
);
1266 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1267 bmap
= remove_dependent_vars(bmap
, d
);
1269 for (d
= pos
+ n
- 1;
1270 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1271 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1272 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1273 int n_lower
, n_upper
;
1276 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1277 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1279 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1280 isl_basic_map_drop_equality(bmap
, i
);
1287 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1288 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1290 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1293 bmap
= isl_basic_map_extend_constraints(bmap
,
1294 0, n_lower
* n_upper
);
1297 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1299 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1302 for (j
= 0; j
< i
; ++j
) {
1303 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1306 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1307 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1309 k
= isl_basic_map_alloc_inequality(bmap
);
1312 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1314 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1315 1+d
, 1+total
, NULL
);
1317 isl_basic_map_drop_inequality(bmap
, i
);
1320 if (n_lower
> 0 && n_upper
> 0) {
1321 bmap
= isl_basic_map_normalize_constraints(bmap
);
1322 bmap
= remove_duplicate_constraints(bmap
, NULL
);
1323 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1324 bmap
= isl_basic_map_convex_hull(bmap
);
1327 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1331 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1334 isl_basic_map_free(bmap
);
1338 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1339 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1341 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1342 (struct isl_basic_map
*)bset
, pos
, n
);
1345 /* Don't assume equalities are in order, because align_divs
1346 * may have changed the order of the divs.
1348 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1353 total
= isl_dim_total(bmap
->dim
);
1354 for (d
= 0; d
< total
; ++d
)
1356 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1357 for (d
= total
- 1; d
>= 0; --d
) {
1358 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1366 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1368 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1371 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1372 struct isl_basic_map
*bmap
, int *elim
)
1378 total
= isl_dim_total(bmap
->dim
);
1379 for (d
= total
- 1; d
>= 0; --d
) {
1380 if (isl_int_is_zero(src
[1+d
]))
1385 isl_seq_cpy(dst
, src
, 1 + total
);
1388 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1393 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1394 struct isl_basic_set
*bset
, int *elim
)
1396 return reduced_using_equalities(dst
, src
,
1397 (struct isl_basic_map
*)bset
, elim
);
1400 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1401 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1406 if (!bset
|| !context
)
1409 if (context
->n_eq
== 0) {
1410 isl_basic_set_free(context
);
1414 bset
= isl_basic_set_cow(bset
);
1418 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1421 set_compute_elimination_index(context
, elim
);
1422 for (i
= 0; i
< bset
->n_eq
; ++i
)
1423 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1425 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1426 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1428 isl_basic_set_free(context
);
1430 bset
= isl_basic_set_simplify(bset
);
1431 bset
= isl_basic_set_finalize(bset
);
1434 isl_basic_set_free(bset
);
1435 isl_basic_set_free(context
);
1439 static struct isl_basic_set
*remove_shifted_constraints(
1440 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1450 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1451 bits
= ffs(size
) - 1;
1452 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1456 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1457 h
= set_hash_index(index
, size
, bits
, context
, k
);
1458 index
[h
] = &context
->ineq
[k
];
1460 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1461 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1464 l
= index
[h
] - &context
->ineq
[0];
1465 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1467 bset
= isl_basic_set_cow(bset
);
1470 isl_basic_set_drop_inequality(bset
, k
);
1480 /* Tighten (decrease) the constant terms of the inequalities based
1481 * on the equalities, without removing any integer points.
1482 * For example, if there is an equality
1490 * then we want to replace the inequality by
1494 * We do this by computing a variable compression and translating
1495 * the constraints to the compressed space.
1496 * If any constraint has coefficients (except the contant term)
1497 * with a common factor "f", then we can replace the constant term "c"
1504 * f * floor(c/f) - c = -fract(c/f)
1506 * and we can add the same value to the original constraint.
1508 * In the example, the compressed space only contains "j",
1509 * and the inequality translates to
1513 * We add -fract(-1/3) = -2 to the original constraint to obtain
1517 static struct isl_basic_set
*normalize_constraints_in_compressed_space(
1518 struct isl_basic_set
*bset
)
1522 struct isl_mat
*B
, *C
;
1528 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
))
1534 bset
= isl_basic_set_cow(bset
);
1538 total
= isl_basic_set_total_dim(bset
);
1539 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + total
);
1540 C
= isl_mat_variable_compression(B
, NULL
);
1543 if (C
->n_col
== 0) {
1545 return isl_basic_set_set_to_empty(bset
);
1547 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->ineq
,
1548 0, bset
->n_ineq
, 0, 1 + total
);
1549 C
= isl_mat_product(B
, C
);
1554 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1555 isl_seq_gcd(C
->row
[i
] + 1, C
->n_col
- 1, &gcd
);
1556 if (isl_int_is_one(gcd
))
1558 isl_int_fdiv_r(C
->row
[i
][0], C
->row
[i
][0], gcd
);
1559 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], C
->row
[i
][0]);
1568 /* Remove all information from bset that is redundant in the context
1569 * of context. Both bset and context are assumed to be full-dimensional.
1571 * We first * remove the inequalities from "bset"
1572 * that are obviously redundant with respect to some inequality in "context".
1574 * If there are any inequalities left, we construct a tableau for
1575 * the context and then add the inequalities of "bset".
1576 * Before adding these inequalities, we freeze all constraints such that
1577 * they won't be considered redundant in terms of the constraints of "bset".
1578 * Then we detect all redundant constraints (among the
1579 * constraints that weren't frozen), first by checking for redundancy in the
1580 * the tableau and then by checking if replacing a constraint by its negation
1581 * would lead to an empty set. This last step is fairly expensive
1582 * and could be optimized by more reuse of the tableau.
1583 * Finally, we update bset according to the results.
1585 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1586 __isl_take isl_basic_set
*context
)
1589 isl_basic_set
*combined
= NULL
;
1590 struct isl_tab
*tab
= NULL
;
1591 unsigned context_ineq
;
1594 if (!bset
|| !context
)
1597 if (isl_basic_set_is_universe(bset
)) {
1598 isl_basic_set_free(context
);
1602 if (isl_basic_set_is_universe(context
)) {
1603 isl_basic_set_free(context
);
1607 bset
= remove_shifted_constraints(bset
, context
);
1610 if (bset
->n_ineq
== 0)
1613 context_ineq
= context
->n_ineq
;
1614 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1615 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1616 tab
= isl_tab_from_basic_set(combined
);
1617 for (i
= 0; i
< context_ineq
; ++i
)
1618 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1620 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1621 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1622 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1624 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1628 if (isl_tab_detect_redundant(tab
) < 0)
1630 total
= isl_basic_set_total_dim(bset
);
1631 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
1633 if (tab
->con
[i
].is_redundant
)
1635 tab
->con
[i
].is_redundant
= 1;
1636 combined
= isl_basic_set_dup(bset
);
1637 combined
= isl_basic_set_update_from_tab(combined
, tab
);
1638 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
1639 k
= isl_basic_set_alloc_inequality(combined
);
1642 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
1643 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
1644 is_empty
= isl_basic_set_is_empty(combined
);
1647 isl_basic_set_free(combined
);
1650 tab
->con
[i
].is_redundant
= 0;
1652 for (i
= 0; i
< context_ineq
; ++i
)
1653 tab
->con
[i
].is_redundant
= 1;
1654 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1656 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1657 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1662 bset
= isl_basic_set_simplify(bset
);
1663 bset
= isl_basic_set_finalize(bset
);
1664 isl_basic_set_free(context
);
1668 isl_basic_set_free(combined
);
1669 isl_basic_set_free(context
);
1670 isl_basic_set_free(bset
);
1674 /* Remove all information from bset that is redundant in the context
1675 * of context. In particular, equalities that are linear combinations
1676 * of those in context are removed. Then the inequalities that are
1677 * redundant in the context of the equalities and inequalities of
1678 * context are removed.
1680 * We first compute the integer affine hull of the intersection,
1681 * compute the gist inside this affine hull and then add back
1682 * those equalities that are not implied by the context.
1684 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
1685 __isl_take isl_basic_set
*context
)
1690 isl_basic_set
*aff_context
;
1693 if (!bset
|| !context
)
1696 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
1697 if (isl_basic_set_fast_is_empty(bset
)) {
1698 isl_basic_set_free(context
);
1701 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
1704 if (isl_basic_set_fast_is_empty(aff
)) {
1705 isl_basic_set_free(aff
);
1706 isl_basic_set_free(context
);
1709 if (aff
->n_eq
== 0) {
1710 isl_basic_set_free(aff
);
1711 return uset_gist_full(bset
, context
);
1713 total
= isl_basic_set_total_dim(bset
);
1714 eq
= isl_mat_sub_alloc(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
1715 eq
= isl_mat_cow(eq
);
1716 T
= isl_mat_variable_compression(eq
, &T2
);
1717 if (T
&& T
->n_col
== 0) {
1720 isl_basic_set_free(context
);
1721 isl_basic_set_free(aff
);
1722 return isl_basic_set_set_to_empty(bset
);
1725 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
1727 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
1728 context
= isl_basic_set_preimage(context
, T
);
1730 bset
= uset_gist_full(bset
, context
);
1731 bset
= isl_basic_set_preimage(bset
, T2
);
1732 bset
= isl_basic_set_intersect(bset
, aff
);
1733 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
1736 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1737 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1742 isl_basic_set_free(bset
);
1743 isl_basic_set_free(context
);
1747 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1748 * We simply add the equalities in context to bmap and then do a regular
1749 * div normalizations. Better results can be obtained by normalizing
1750 * only the divs in bmap than do not also appear in context.
1751 * We need to be careful to reduce the divs using the equalities
1752 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1753 * spurious constraints.
1755 static struct isl_basic_map
*normalize_divs_in_context(
1756 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1759 unsigned total_context
;
1762 div_eq
= n_pure_div_eq(bmap
);
1766 if (context
->n_div
> 0)
1767 bmap
= isl_basic_map_align_divs(bmap
, context
);
1769 total_context
= isl_basic_map_total_dim(context
);
1770 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1771 for (i
= 0; i
< context
->n_eq
; ++i
) {
1773 k
= isl_basic_map_alloc_equality(bmap
);
1774 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1775 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1776 isl_basic_map_total_dim(bmap
) - total_context
);
1778 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1779 bmap
= normalize_divs(bmap
, NULL
);
1780 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1784 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1785 struct isl_basic_map
*context
)
1787 struct isl_basic_set
*bset
;
1789 if (!bmap
|| !context
)
1792 if (isl_basic_map_is_universe(context
)) {
1793 isl_basic_map_free(context
);
1796 if (isl_basic_map_is_universe(bmap
)) {
1797 isl_basic_map_free(context
);
1800 if (isl_basic_map_fast_is_empty(context
)) {
1801 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1802 isl_basic_map_free(context
);
1803 isl_basic_map_free(bmap
);
1804 return isl_basic_map_universe(dim
);
1806 if (isl_basic_map_fast_is_empty(bmap
)) {
1807 isl_basic_map_free(context
);
1811 bmap
= isl_basic_map_convex_hull(bmap
);
1812 context
= isl_basic_map_convex_hull(context
);
1815 bmap
= normalize_divs_in_context(bmap
, context
);
1817 context
= isl_basic_map_align_divs(context
, bmap
);
1818 bmap
= isl_basic_map_align_divs(bmap
, context
);
1820 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1821 isl_basic_map_underlying_set(context
));
1823 return isl_basic_map_overlying_set(bset
, bmap
);
1825 isl_basic_map_free(bmap
);
1826 isl_basic_map_free(context
);
1831 * Assumes context has no implicit divs.
1833 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
1834 __isl_take isl_basic_map
*context
)
1838 if (!map
|| !context
)
1841 if (isl_basic_map_is_universe(context
)) {
1842 isl_basic_map_free(context
);
1845 if (isl_basic_map_fast_is_empty(context
)) {
1846 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1847 isl_basic_map_free(context
);
1849 return isl_map_universe(dim
);
1852 context
= isl_basic_map_convex_hull(context
);
1853 map
= isl_map_cow(map
);
1854 if (!map
|| !context
)
1856 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1857 map
= isl_map_compute_divs(map
);
1858 for (i
= 0; i
< map
->n
; ++i
)
1859 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1860 for (i
= 0; i
< map
->n
; ++i
) {
1861 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1862 isl_basic_map_copy(context
));
1866 isl_basic_map_free(context
);
1867 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1871 isl_basic_map_free(context
);
1875 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
1876 __isl_take isl_map
*context
)
1878 return isl_map_gist_basic_map(map
, isl_map_convex_hull(context
));
1881 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1882 struct isl_basic_set
*context
)
1884 return (struct isl_basic_set
*)isl_basic_map_gist(
1885 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1888 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
1889 __isl_take isl_basic_set
*context
)
1891 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
1892 (struct isl_basic_map
*)context
);
1895 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
1896 __isl_take isl_set
*context
)
1898 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1899 (struct isl_map
*)context
);
1902 /* Quick check to see if two basic maps are disjoint.
1903 * In particular, we reduce the equalities and inequalities of
1904 * one basic map in the context of the equalities of the other
1905 * basic map and check if we get a contradiction.
1907 int isl_basic_map_fast_is_disjoint(struct isl_basic_map
*bmap1
,
1908 struct isl_basic_map
*bmap2
)
1910 struct isl_vec
*v
= NULL
;
1915 if (!bmap1
|| !bmap2
)
1917 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1919 if (bmap1
->n_div
|| bmap2
->n_div
)
1921 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1924 total
= isl_dim_total(bmap1
->dim
);
1927 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1930 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1933 compute_elimination_index(bmap1
, elim
);
1934 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1936 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1938 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1939 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1942 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1944 reduced
= reduced_using_equalities(v
->block
.data
,
1945 bmap2
->ineq
[i
], bmap1
, elim
);
1946 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1947 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1950 compute_elimination_index(bmap2
, elim
);
1951 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1953 reduced
= reduced_using_equalities(v
->block
.data
,
1954 bmap1
->ineq
[i
], bmap2
, elim
);
1955 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1956 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1972 int isl_basic_set_fast_is_disjoint(struct isl_basic_set
*bset1
,
1973 struct isl_basic_set
*bset2
)
1975 return isl_basic_map_fast_is_disjoint((struct isl_basic_map
*)bset1
,
1976 (struct isl_basic_map
*)bset2
);
1979 int isl_map_fast_is_disjoint(struct isl_map
*map1
, struct isl_map
*map2
)
1986 if (isl_map_fast_is_equal(map1
, map2
))
1989 for (i
= 0; i
< map1
->n
; ++i
) {
1990 for (j
= 0; j
< map2
->n
; ++j
) {
1991 int d
= isl_basic_map_fast_is_disjoint(map1
->p
[i
],
2000 int isl_set_fast_is_disjoint(struct isl_set
*set1
, struct isl_set
*set2
)
2002 return isl_map_fast_is_disjoint((struct isl_map
*)set1
,
2003 (struct isl_map
*)set2
);
2006 /* Check if we can combine a given div with lower bound l and upper
2007 * bound u with some other div and if so return that other div.
2008 * Otherwise return -1.
2010 * We first check that
2011 * - the bounds are opposites of each other (except for the constant
2013 * - the bounds do not reference any other div
2014 * - no div is defined in terms of this div
2016 * Let m be the size of the range allowed on the div by the bounds.
2017 * That is, the bounds are of the form
2019 * e <= a <= e + m - 1
2021 * with e some expression in the other variables.
2022 * We look for another div b such that no third div is defined in terms
2023 * of this second div b and such that in any constraint that contains
2024 * a (except for the given lower and upper bound), also contains b
2025 * with a coefficient that is m times that of b.
2026 * That is, all constraints (execpt for the lower and upper bound)
2029 * e + f (a + m b) >= 0
2031 * If so, we return b so that "a + m b" can be replaced by
2032 * a single div "c = a + m b".
2034 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2035 unsigned div
, unsigned l
, unsigned u
)
2041 if (bmap
->n_div
<= 1)
2043 dim
= isl_dim_total(bmap
->dim
);
2044 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2046 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2047 bmap
->n_div
- div
- 1) != -1)
2049 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2053 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2054 if (isl_int_is_zero(bmap
->div
[i
][0]))
2056 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2060 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2061 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2062 isl_int_sub(bmap
->ineq
[l
][0],
2063 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2064 bmap
= isl_basic_map_copy(bmap
);
2065 bmap
= isl_basic_map_set_to_empty(bmap
);
2066 isl_basic_map_free(bmap
);
2069 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2070 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2075 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2076 if (isl_int_is_zero(bmap
->div
[j
][0]))
2078 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2081 if (j
< bmap
->n_div
)
2083 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2085 if (j
== l
|| j
== u
)
2087 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2089 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2091 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2092 bmap
->ineq
[j
][1 + dim
+ div
],
2094 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2095 bmap
->ineq
[j
][1 + dim
+ i
]);
2096 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2097 bmap
->ineq
[j
][1 + dim
+ div
],
2102 if (j
< bmap
->n_ineq
)
2107 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2108 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2112 /* Given a lower and an upper bound on div i, construct an inequality
2113 * that when nonnegative ensures that this pair of bounds always allows
2114 * for an integer value of the given div.
2115 * The lower bound is inequality l, while the upper bound is inequality u.
2116 * The constructed inequality is stored in ineq.
2117 * g, fl, fu are temporary scalars.
2119 * Let the upper bound be
2123 * and the lower bound
2127 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2130 * - f_u e_l <= f_u f_l g a <= f_l e_u
2132 * Since all variables are integer valued, this is equivalent to
2134 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2136 * If this interval is at least f_u f_l g, then it contains at least
2137 * one integer value for a.
2138 * That is, the test constraint is
2140 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2142 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2143 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2146 dim
= isl_dim_total(bmap
->dim
);
2148 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2149 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2150 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2151 isl_int_neg(fu
, fu
);
2152 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2153 1 + dim
+ bmap
->n_div
);
2154 isl_int_add(ineq
[0], ineq
[0], fl
);
2155 isl_int_add(ineq
[0], ineq
[0], fu
);
2156 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2157 isl_int_mul(g
, g
, fl
);
2158 isl_int_mul(g
, g
, fu
);
2159 isl_int_sub(ineq
[0], ineq
[0], g
);
2162 /* Remove more kinds of divs that are not strictly needed.
2163 * In particular, if all pairs of lower and upper bounds on a div
2164 * are such that they allow at least one integer value of the div,
2165 * the we can eliminate the div using Fourier-Motzkin without
2166 * introducing any spurious solutions.
2168 static struct isl_basic_map
*drop_more_redundant_divs(
2169 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2171 struct isl_tab
*tab
= NULL
;
2172 struct isl_vec
*vec
= NULL
;
2184 dim
= isl_dim_total(bmap
->dim
);
2185 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2189 tab
= isl_tab_from_basic_map(bmap
);
2194 enum isl_lp_result res
;
2196 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2199 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2205 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2206 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2208 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2209 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2211 construct_test_ineq(bmap
, i
, l
, u
,
2212 vec
->el
, g
, fl
, fu
);
2213 res
= isl_tab_min(tab
, vec
->el
,
2214 bmap
->ctx
->one
, &g
, NULL
, 0);
2215 if (res
== isl_lp_error
)
2217 if (res
== isl_lp_empty
) {
2218 bmap
= isl_basic_map_set_to_empty(bmap
);
2221 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2224 if (u
< bmap
->n_ineq
)
2227 if (l
== bmap
->n_ineq
) {
2247 bmap
= isl_basic_map_remove(bmap
, isl_dim_div
, remove
, 1);
2248 return isl_basic_map_drop_redundant_divs(bmap
);
2251 isl_basic_map_free(bmap
);
2260 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2261 * and the upper bound u, div1 always occurs together with div2 in the form
2262 * (div1 + m div2), where m is the constant range on the variable div1
2263 * allowed by l and u, replace the pair div1 and div2 by a single
2264 * div that is equal to div1 + m div2.
2266 * The new div will appear in the location that contains div2.
2267 * We need to modify all constraints that contain
2268 * div2 = (div - div1) / m
2269 * (If a constraint does not contain div2, it will also not contain div1.)
2270 * If the constraint also contains div1, then we know they appear
2271 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2272 * i.e., the coefficient of div is f.
2274 * Otherwise, we first need to introduce div1 into the constraint.
2283 * A lower bound on div2
2287 * can be replaced by
2289 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2291 * with g = gcd(m,n).
2296 * can be replaced by
2298 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2300 * These constraint are those that we would obtain from eliminating
2301 * div1 using Fourier-Motzkin.
2303 * After all constraints have been modified, we drop the lower and upper
2304 * bound and then drop div1.
2306 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2307 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2312 unsigned dim
, total
;
2315 dim
= isl_dim_total(bmap
->dim
);
2316 total
= 1 + dim
+ bmap
->n_div
;
2321 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2322 isl_int_add_ui(m
, m
, 1);
2324 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2325 if (i
== l
|| i
== u
)
2327 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2329 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2330 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2331 isl_int_divexact(a
, m
, b
);
2332 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2333 if (isl_int_is_pos(b
)) {
2334 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2335 b
, bmap
->ineq
[l
], total
);
2338 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2339 b
, bmap
->ineq
[u
], total
);
2342 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2343 bmap
->ineq
[i
][1 + dim
+ div1
]);
2344 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2351 isl_basic_map_drop_inequality(bmap
, l
);
2352 isl_basic_map_drop_inequality(bmap
, u
);
2354 isl_basic_map_drop_inequality(bmap
, u
);
2355 isl_basic_map_drop_inequality(bmap
, l
);
2357 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2361 /* First check if we can coalesce any pair of divs and
2362 * then continue with dropping more redundant divs.
2364 * We loop over all pairs of lower and upper bounds on a div
2365 * with coefficient 1 and -1, respectively, check if there
2366 * is any other div "c" with which we can coalesce the div
2367 * and if so, perform the coalescing.
2369 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2370 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2375 dim
= isl_dim_total(bmap
->dim
);
2377 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2380 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2381 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2383 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2386 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2388 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2392 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2393 return isl_basic_map_drop_redundant_divs(bmap
);
2398 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2401 return drop_more_redundant_divs(bmap
, pairs
, n
);
2404 /* Remove divs that are not strictly needed.
2405 * In particular, if a div only occurs positively (or negatively)
2406 * in constraints, then it can simply be dropped.
2407 * Also, if a div occurs only occurs in two constraints and if moreover
2408 * those two constraints are opposite to each other, except for the constant
2409 * term and if the sum of the constant terms is such that for any value
2410 * of the other values, there is always at least one integer value of the
2411 * div, i.e., if one plus this sum is greater than or equal to
2412 * the (absolute value) of the coefficent of the div in the constraints,
2413 * then we can also simply drop the div.
2415 * If any divs are left after these simple checks then we move on
2416 * to more complicated cases in drop_more_redundant_divs.
2418 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2419 struct isl_basic_map
*bmap
)
2429 off
= isl_dim_total(bmap
->dim
);
2430 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2434 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2436 int last_pos
, last_neg
;
2440 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2441 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2442 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2448 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2449 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2453 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2458 pairs
[i
] = pos
* neg
;
2459 if (pairs
[i
] == 0) {
2460 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2461 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2462 isl_basic_map_drop_inequality(bmap
, j
);
2463 bmap
= isl_basic_map_drop_div(bmap
, i
);
2465 return isl_basic_map_drop_redundant_divs(bmap
);
2469 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2470 bmap
->ineq
[last_neg
] + 1,
2474 isl_int_add(bmap
->ineq
[last_pos
][0],
2475 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2476 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2477 bmap
->ineq
[last_pos
][0], 1);
2478 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2479 bmap
->ineq
[last_pos
][1+off
+i
]);
2480 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2481 bmap
->ineq
[last_pos
][0], 1);
2482 isl_int_sub(bmap
->ineq
[last_pos
][0],
2483 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2486 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2491 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2492 bmap
= isl_basic_map_simplify(bmap
);
2494 return isl_basic_map_drop_redundant_divs(bmap
);
2496 if (last_pos
> last_neg
) {
2497 isl_basic_map_drop_inequality(bmap
, last_pos
);
2498 isl_basic_map_drop_inequality(bmap
, last_neg
);
2500 isl_basic_map_drop_inequality(bmap
, last_neg
);
2501 isl_basic_map_drop_inequality(bmap
, last_pos
);
2503 bmap
= isl_basic_map_drop_div(bmap
, i
);
2505 return isl_basic_map_drop_redundant_divs(bmap
);
2509 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2515 isl_basic_map_free(bmap
);
2519 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2520 struct isl_basic_set
*bset
)
2522 return (struct isl_basic_set
*)
2523 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2526 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2532 for (i
= 0; i
< map
->n
; ++i
) {
2533 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2537 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2544 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2546 return (struct isl_set
*)
2547 isl_map_drop_redundant_divs((struct isl_map
*)set
);