isl_tab.c: tab_mat_product: avoid NULL pointer dereference
[isl.git] / isl_convex_hull.c
blobac7982525d5046761ff87c44af8dcbb0e3fa763e
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 if (isl_tab_detect_implicit_equalities(tab) < 0)
107 goto error;
108 if (isl_tab_detect_redundant(tab) < 0)
109 goto error;
110 bmap = isl_basic_map_update_from_tab(bmap, tab);
111 isl_tab_free(tab);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
113 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
114 return bmap;
115 error:
116 isl_tab_free(tab);
117 isl_basic_map_free(bmap);
118 return NULL;
121 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
123 return (struct isl_basic_set *)
124 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
127 /* Check if the set set is bound in the direction of the affine
128 * constraint c and if so, set the constant term such that the
129 * resulting constraint is a bounding constraint for the set.
131 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
133 int first;
134 int j;
135 isl_int opt;
136 isl_int opt_denom;
138 isl_int_init(opt);
139 isl_int_init(opt_denom);
140 first = 1;
141 for (j = 0; j < set->n; ++j) {
142 enum isl_lp_result res;
144 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
145 continue;
147 res = isl_basic_set_solve_lp(set->p[j],
148 0, c, set->ctx->one, &opt, &opt_denom, NULL);
149 if (res == isl_lp_unbounded)
150 break;
151 if (res == isl_lp_error)
152 goto error;
153 if (res == isl_lp_empty) {
154 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
155 if (!set->p[j])
156 goto error;
157 continue;
159 if (first || isl_int_is_neg(opt)) {
160 if (!isl_int_is_one(opt_denom))
161 isl_seq_scale(c, c, opt_denom, len);
162 isl_int_sub(c[0], c[0], opt);
164 first = 0;
166 isl_int_clear(opt);
167 isl_int_clear(opt_denom);
168 return j >= set->n;
169 error:
170 isl_int_clear(opt);
171 isl_int_clear(opt_denom);
172 return -1;
175 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
177 if (!bset)
178 return NULL;
180 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
181 return bset;
183 bset = isl_basic_set_cow(bset);
184 if (!bset)
185 return NULL;
187 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
189 return isl_basic_set_finalize(bset);
192 static struct isl_set *isl_set_set_rational(struct isl_set *set)
194 int i;
196 set = isl_set_cow(set);
197 if (!set)
198 return NULL;
199 for (i = 0; i < set->n; ++i) {
200 set->p[i] = isl_basic_set_set_rational(set->p[i]);
201 if (!set->p[i])
202 goto error;
204 return set;
205 error:
206 isl_set_free(set);
207 return NULL;
210 static struct isl_basic_set *isl_basic_set_add_equality(
211 struct isl_basic_set *bset, isl_int *c)
213 int i;
214 unsigned dim;
216 if (!bset)
217 return NULL;
219 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
220 return bset;
222 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
223 isl_assert(bset->ctx, bset->n_div == 0, goto error);
224 dim = isl_basic_set_n_dim(bset);
225 bset = isl_basic_set_cow(bset);
226 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
227 i = isl_basic_set_alloc_equality(bset);
228 if (i < 0)
229 goto error;
230 isl_seq_cpy(bset->eq[i], c, 1 + dim);
231 return bset;
232 error:
233 isl_basic_set_free(bset);
234 return NULL;
237 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
239 int i;
241 set = isl_set_cow(set);
242 if (!set)
243 return NULL;
244 for (i = 0; i < set->n; ++i) {
245 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
246 if (!set->p[i])
247 goto error;
249 return set;
250 error:
251 isl_set_free(set);
252 return NULL;
255 /* Given a union of basic sets, construct the constraints for wrapping
256 * a facet around one of its ridges.
257 * In particular, if each of n the d-dimensional basic sets i in "set"
258 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
259 * and is defined by the constraints
260 * [ 1 ]
261 * A_i [ x ] >= 0
263 * then the resulting set is of dimension n*(1+d) and has as constraints
265 * [ a_i ]
266 * A_i [ x_i ] >= 0
268 * a_i >= 0
270 * \sum_i x_{i,1} = 1
272 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
274 struct isl_basic_set *lp;
275 unsigned n_eq;
276 unsigned n_ineq;
277 int i, j, k;
278 unsigned dim, lp_dim;
280 if (!set)
281 return NULL;
283 dim = 1 + isl_set_n_dim(set);
284 n_eq = 1;
285 n_ineq = set->n;
286 for (i = 0; i < set->n; ++i) {
287 n_eq += set->p[i]->n_eq;
288 n_ineq += set->p[i]->n_ineq;
290 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
291 if (!lp)
292 return NULL;
293 lp_dim = isl_basic_set_n_dim(lp);
294 k = isl_basic_set_alloc_equality(lp);
295 isl_int_set_si(lp->eq[k][0], -1);
296 for (i = 0; i < set->n; ++i) {
297 isl_int_set_si(lp->eq[k][1+dim*i], 0);
298 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
299 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
301 for (i = 0; i < set->n; ++i) {
302 k = isl_basic_set_alloc_inequality(lp);
303 isl_seq_clr(lp->ineq[k], 1+lp_dim);
304 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
306 for (j = 0; j < set->p[i]->n_eq; ++j) {
307 k = isl_basic_set_alloc_equality(lp);
308 isl_seq_clr(lp->eq[k], 1+dim*i);
309 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
310 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
313 for (j = 0; j < set->p[i]->n_ineq; ++j) {
314 k = isl_basic_set_alloc_inequality(lp);
315 isl_seq_clr(lp->ineq[k], 1+dim*i);
316 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
317 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
320 return lp;
323 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
324 * of that facet, compute the other facet of the convex hull that contains
325 * the ridge.
327 * We first transform the set such that the facet constraint becomes
329 * x_1 >= 0
331 * I.e., the facet lies in
333 * x_1 = 0
335 * and on that facet, the constraint that defines the ridge is
337 * x_2 >= 0
339 * (This transformation is not strictly needed, all that is needed is
340 * that the ridge contains the origin.)
342 * Since the ridge contains the origin, the cone of the convex hull
343 * will be of the form
345 * x_1 >= 0
346 * x_2 >= a x_1
348 * with this second constraint defining the new facet.
349 * The constant a is obtained by settting x_1 in the cone of the
350 * convex hull to 1 and minimizing x_2.
351 * Now, each element in the cone of the convex hull is the sum
352 * of elements in the cones of the basic sets.
353 * If a_i is the dilation factor of basic set i, then the problem
354 * we need to solve is
356 * min \sum_i x_{i,2}
357 * st
358 * \sum_i x_{i,1} = 1
359 * a_i >= 0
360 * [ a_i ]
361 * A [ x_i ] >= 0
363 * with
364 * [ 1 ]
365 * A_i [ x_i ] >= 0
367 * the constraints of each (transformed) basic set.
368 * If a = n/d, then the constraint defining the new facet (in the transformed
369 * space) is
371 * -n x_1 + d x_2 >= 0
373 * In the original space, we need to take the same combination of the
374 * corresponding constraints "facet" and "ridge".
376 * If a = -infty = "-1/0", then we just return the original facet constraint.
377 * This means that the facet is unbounded, but has a bounded intersection
378 * with the union of sets.
380 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
381 isl_int *facet, isl_int *ridge)
383 int i;
384 isl_ctx *ctx;
385 struct isl_mat *T = NULL;
386 struct isl_basic_set *lp = NULL;
387 struct isl_vec *obj;
388 enum isl_lp_result res;
389 isl_int num, den;
390 unsigned dim;
392 if (!set)
393 return NULL;
394 ctx = set->ctx;
395 set = isl_set_copy(set);
396 set = isl_set_set_rational(set);
398 dim = 1 + isl_set_n_dim(set);
399 T = isl_mat_alloc(ctx, 3, dim);
400 if (!T)
401 goto error;
402 isl_int_set_si(T->row[0][0], 1);
403 isl_seq_clr(T->row[0]+1, dim - 1);
404 isl_seq_cpy(T->row[1], facet, dim);
405 isl_seq_cpy(T->row[2], ridge, dim);
406 T = isl_mat_right_inverse(T);
407 set = isl_set_preimage(set, T);
408 T = NULL;
409 if (!set)
410 goto error;
411 lp = wrap_constraints(set);
412 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
413 if (!obj)
414 goto error;
415 isl_int_set_si(obj->block.data[0], 0);
416 for (i = 0; i < set->n; ++i) {
417 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
418 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
419 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
421 isl_int_init(num);
422 isl_int_init(den);
423 res = isl_basic_set_solve_lp(lp, 0,
424 obj->block.data, ctx->one, &num, &den, NULL);
425 if (res == isl_lp_ok) {
426 isl_int_neg(num, num);
427 isl_seq_combine(facet, num, facet, den, ridge, dim);
429 isl_int_clear(num);
430 isl_int_clear(den);
431 isl_vec_free(obj);
432 isl_basic_set_free(lp);
433 isl_set_free(set);
434 if (res == isl_lp_error)
435 return NULL;
436 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
437 return NULL);
438 return facet;
439 error:
440 isl_basic_set_free(lp);
441 isl_mat_free(T);
442 isl_set_free(set);
443 return NULL;
446 /* Compute the constraint of a facet of "set".
448 * We first compute the intersection with a bounding constraint
449 * that is orthogonal to one of the coordinate axes.
450 * If the affine hull of this intersection has only one equality,
451 * we have found a facet.
452 * Otherwise, we wrap the current bounding constraint around
453 * one of the equalities of the face (one that is not equal to
454 * the current bounding constraint).
455 * This process continues until we have found a facet.
456 * The dimension of the intersection increases by at least
457 * one on each iteration, so termination is guaranteed.
459 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
461 struct isl_set *slice = NULL;
462 struct isl_basic_set *face = NULL;
463 int i;
464 unsigned dim = isl_set_n_dim(set);
465 int is_bound;
466 isl_mat *bounds;
468 isl_assert(set->ctx, set->n > 0, goto error);
469 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
470 if (!bounds)
471 return NULL;
473 isl_seq_clr(bounds->row[0], dim);
474 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
475 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
476 isl_assert(set->ctx, is_bound == 1, goto error);
477 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
478 bounds->n_row = 1;
480 for (;;) {
481 slice = isl_set_copy(set);
482 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
483 face = isl_set_affine_hull(slice);
484 if (!face)
485 goto error;
486 if (face->n_eq == 1) {
487 isl_basic_set_free(face);
488 break;
490 for (i = 0; i < face->n_eq; ++i)
491 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
492 !isl_seq_is_neg(bounds->row[0],
493 face->eq[i], 1 + dim))
494 break;
495 isl_assert(set->ctx, i < face->n_eq, goto error);
496 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
497 goto error;
498 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
499 isl_basic_set_free(face);
502 return bounds;
503 error:
504 isl_basic_set_free(face);
505 isl_mat_free(bounds);
506 return NULL;
509 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
510 * compute a hyperplane description of the facet, i.e., compute the facets
511 * of the facet.
513 * We compute an affine transformation that transforms the constraint
515 * [ 1 ]
516 * c [ x ] = 0
518 * to the constraint
520 * z_1 = 0
522 * by computing the right inverse U of a matrix that starts with the rows
524 * [ 1 0 ]
525 * [ c ]
527 * Then
528 * [ 1 ] [ 1 ]
529 * [ x ] = U [ z ]
530 * and
531 * [ 1 ] [ 1 ]
532 * [ z ] = Q [ x ]
534 * with Q = U^{-1}
535 * Since z_1 is zero, we can drop this variable as well as the corresponding
536 * column of U to obtain
538 * [ 1 ] [ 1 ]
539 * [ x ] = U' [ z' ]
540 * and
541 * [ 1 ] [ 1 ]
542 * [ z' ] = Q' [ x ]
544 * with Q' equal to Q, but without the corresponding row.
545 * After computing the facets of the facet in the z' space,
546 * we convert them back to the x space through Q.
548 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
550 struct isl_mat *m, *U, *Q;
551 struct isl_basic_set *facet = NULL;
552 struct isl_ctx *ctx;
553 unsigned dim;
555 ctx = set->ctx;
556 set = isl_set_copy(set);
557 dim = isl_set_n_dim(set);
558 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
559 if (!m)
560 goto error;
561 isl_int_set_si(m->row[0][0], 1);
562 isl_seq_clr(m->row[0]+1, dim);
563 isl_seq_cpy(m->row[1], c, 1+dim);
564 U = isl_mat_right_inverse(m);
565 Q = isl_mat_right_inverse(isl_mat_copy(U));
566 U = isl_mat_drop_cols(U, 1, 1);
567 Q = isl_mat_drop_rows(Q, 1, 1);
568 set = isl_set_preimage(set, U);
569 facet = uset_convex_hull_wrap_bounded(set);
570 facet = isl_basic_set_preimage(facet, Q);
571 if (facet)
572 isl_assert(ctx, facet->n_eq == 0, goto error);
573 return facet;
574 error:
575 isl_basic_set_free(facet);
576 isl_set_free(set);
577 return NULL;
580 /* Given an initial facet constraint, compute the remaining facets.
581 * We do this by running through all facets found so far and computing
582 * the adjacent facets through wrapping, adding those facets that we
583 * hadn't already found before.
585 * For each facet we have found so far, we first compute its facets
586 * in the resulting convex hull. That is, we compute the ridges
587 * of the resulting convex hull contained in the facet.
588 * We also compute the corresponding facet in the current approximation
589 * of the convex hull. There is no need to wrap around the ridges
590 * in this facet since that would result in a facet that is already
591 * present in the current approximation.
593 * This function can still be significantly optimized by checking which of
594 * the facets of the basic sets are also facets of the convex hull and
595 * using all the facets so far to help in constructing the facets of the
596 * facets
597 * and/or
598 * using the technique in section "3.1 Ridge Generation" of
599 * "Extended Convex Hull" by Fukuda et al.
601 static struct isl_basic_set *extend(struct isl_basic_set *hull,
602 struct isl_set *set)
604 int i, j, f;
605 int k;
606 struct isl_basic_set *facet = NULL;
607 struct isl_basic_set *hull_facet = NULL;
608 unsigned dim;
610 if (!hull)
611 return NULL;
613 isl_assert(set->ctx, set->n > 0, goto error);
615 dim = isl_set_n_dim(set);
617 for (i = 0; i < hull->n_ineq; ++i) {
618 facet = compute_facet(set, hull->ineq[i]);
619 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
620 facet = isl_basic_set_gauss(facet, NULL);
621 facet = isl_basic_set_normalize_constraints(facet);
622 hull_facet = isl_basic_set_copy(hull);
623 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
624 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
625 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
626 if (!facet || !hull_facet)
627 goto error;
628 hull = isl_basic_set_cow(hull);
629 hull = isl_basic_set_extend_dim(hull,
630 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
631 if (!hull)
632 goto error;
633 for (j = 0; j < facet->n_ineq; ++j) {
634 for (f = 0; f < hull_facet->n_ineq; ++f)
635 if (isl_seq_eq(facet->ineq[j],
636 hull_facet->ineq[f], 1 + dim))
637 break;
638 if (f < hull_facet->n_ineq)
639 continue;
640 k = isl_basic_set_alloc_inequality(hull);
641 if (k < 0)
642 goto error;
643 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
644 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
645 goto error;
647 isl_basic_set_free(hull_facet);
648 isl_basic_set_free(facet);
650 hull = isl_basic_set_simplify(hull);
651 hull = isl_basic_set_finalize(hull);
652 return hull;
653 error:
654 isl_basic_set_free(hull_facet);
655 isl_basic_set_free(facet);
656 isl_basic_set_free(hull);
657 return NULL;
660 /* Special case for computing the convex hull of a one dimensional set.
661 * We simply collect the lower and upper bounds of each basic set
662 * and the biggest of those.
664 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
666 struct isl_mat *c = NULL;
667 isl_int *lower = NULL;
668 isl_int *upper = NULL;
669 int i, j, k;
670 isl_int a, b;
671 struct isl_basic_set *hull;
673 for (i = 0; i < set->n; ++i) {
674 set->p[i] = isl_basic_set_simplify(set->p[i]);
675 if (!set->p[i])
676 goto error;
678 set = isl_set_remove_empty_parts(set);
679 if (!set)
680 goto error;
681 isl_assert(set->ctx, set->n > 0, goto error);
682 c = isl_mat_alloc(set->ctx, 2, 2);
683 if (!c)
684 goto error;
686 if (set->p[0]->n_eq > 0) {
687 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
688 lower = c->row[0];
689 upper = c->row[1];
690 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
691 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
692 isl_seq_neg(upper, set->p[0]->eq[0], 2);
693 } else {
694 isl_seq_neg(lower, set->p[0]->eq[0], 2);
695 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
697 } else {
698 for (j = 0; j < set->p[0]->n_ineq; ++j) {
699 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
700 lower = c->row[0];
701 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
702 } else {
703 upper = c->row[1];
704 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
709 isl_int_init(a);
710 isl_int_init(b);
711 for (i = 0; i < set->n; ++i) {
712 struct isl_basic_set *bset = set->p[i];
713 int has_lower = 0;
714 int has_upper = 0;
716 for (j = 0; j < bset->n_eq; ++j) {
717 has_lower = 1;
718 has_upper = 1;
719 if (lower) {
720 isl_int_mul(a, lower[0], bset->eq[j][1]);
721 isl_int_mul(b, lower[1], bset->eq[j][0]);
722 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
723 isl_seq_cpy(lower, bset->eq[j], 2);
724 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
725 isl_seq_neg(lower, bset->eq[j], 2);
727 if (upper) {
728 isl_int_mul(a, upper[0], bset->eq[j][1]);
729 isl_int_mul(b, upper[1], bset->eq[j][0]);
730 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
731 isl_seq_neg(upper, bset->eq[j], 2);
732 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
733 isl_seq_cpy(upper, bset->eq[j], 2);
736 for (j = 0; j < bset->n_ineq; ++j) {
737 if (isl_int_is_pos(bset->ineq[j][1]))
738 has_lower = 1;
739 if (isl_int_is_neg(bset->ineq[j][1]))
740 has_upper = 1;
741 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
742 isl_int_mul(a, lower[0], bset->ineq[j][1]);
743 isl_int_mul(b, lower[1], bset->ineq[j][0]);
744 if (isl_int_lt(a, b))
745 isl_seq_cpy(lower, bset->ineq[j], 2);
747 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
748 isl_int_mul(a, upper[0], bset->ineq[j][1]);
749 isl_int_mul(b, upper[1], bset->ineq[j][0]);
750 if (isl_int_gt(a, b))
751 isl_seq_cpy(upper, bset->ineq[j], 2);
754 if (!has_lower)
755 lower = NULL;
756 if (!has_upper)
757 upper = NULL;
759 isl_int_clear(a);
760 isl_int_clear(b);
762 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
763 hull = isl_basic_set_set_rational(hull);
764 if (!hull)
765 goto error;
766 if (lower) {
767 k = isl_basic_set_alloc_inequality(hull);
768 isl_seq_cpy(hull->ineq[k], lower, 2);
770 if (upper) {
771 k = isl_basic_set_alloc_inequality(hull);
772 isl_seq_cpy(hull->ineq[k], upper, 2);
774 hull = isl_basic_set_finalize(hull);
775 isl_set_free(set);
776 isl_mat_free(c);
777 return hull;
778 error:
779 isl_set_free(set);
780 isl_mat_free(c);
781 return NULL;
784 /* Project out final n dimensions using Fourier-Motzkin */
785 static struct isl_set *set_project_out(struct isl_ctx *ctx,
786 struct isl_set *set, unsigned n)
788 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
791 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
793 struct isl_basic_set *convex_hull;
795 if (!set)
796 return NULL;
798 if (isl_set_is_empty(set))
799 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
800 else
801 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
802 isl_set_free(set);
803 return convex_hull;
806 /* Compute the convex hull of a pair of basic sets without any parameters or
807 * integer divisions using Fourier-Motzkin elimination.
808 * The convex hull is the set of all points that can be written as
809 * the sum of points from both basic sets (in homogeneous coordinates).
810 * We set up the constraints in a space with dimensions for each of
811 * the three sets and then project out the dimensions corresponding
812 * to the two original basic sets, retaining only those corresponding
813 * to the convex hull.
815 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
816 struct isl_basic_set *bset2)
818 int i, j, k;
819 struct isl_basic_set *bset[2];
820 struct isl_basic_set *hull = NULL;
821 unsigned dim;
823 if (!bset1 || !bset2)
824 goto error;
826 dim = isl_basic_set_n_dim(bset1);
827 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
828 1 + dim + bset1->n_eq + bset2->n_eq,
829 2 + bset1->n_ineq + bset2->n_ineq);
830 bset[0] = bset1;
831 bset[1] = bset2;
832 for (i = 0; i < 2; ++i) {
833 for (j = 0; j < bset[i]->n_eq; ++j) {
834 k = isl_basic_set_alloc_equality(hull);
835 if (k < 0)
836 goto error;
837 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
838 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
839 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
840 1+dim);
842 for (j = 0; j < bset[i]->n_ineq; ++j) {
843 k = isl_basic_set_alloc_inequality(hull);
844 if (k < 0)
845 goto error;
846 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
847 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
848 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
849 bset[i]->ineq[j], 1+dim);
851 k = isl_basic_set_alloc_inequality(hull);
852 if (k < 0)
853 goto error;
854 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
855 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
857 for (j = 0; j < 1+dim; ++j) {
858 k = isl_basic_set_alloc_equality(hull);
859 if (k < 0)
860 goto error;
861 isl_seq_clr(hull->eq[k], 1+2+3*dim);
862 isl_int_set_si(hull->eq[k][j], -1);
863 isl_int_set_si(hull->eq[k][1+dim+j], 1);
864 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
866 hull = isl_basic_set_set_rational(hull);
867 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
868 hull = isl_basic_set_convex_hull(hull);
869 isl_basic_set_free(bset1);
870 isl_basic_set_free(bset2);
871 return hull;
872 error:
873 isl_basic_set_free(bset1);
874 isl_basic_set_free(bset2);
875 isl_basic_set_free(hull);
876 return NULL;
879 /* Is the set bounded for each value of the parameters?
881 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
883 struct isl_tab *tab;
884 int bounded;
886 if (!bset)
887 return -1;
888 if (isl_basic_set_fast_is_empty(bset))
889 return 1;
891 tab = isl_tab_from_recession_cone(bset, 1);
892 bounded = isl_tab_cone_is_bounded(tab);
893 isl_tab_free(tab);
894 return bounded;
897 /* Is the set bounded for each value of the parameters?
899 int isl_set_is_bounded(__isl_keep isl_set *set)
901 int i;
903 if (!set)
904 return -1;
906 for (i = 0; i < set->n; ++i) {
907 int bounded = isl_basic_set_is_bounded(set->p[i]);
908 if (!bounded || bounded < 0)
909 return bounded;
911 return 1;
914 /* Compute the lineality space of the convex hull of bset1 and bset2.
916 * We first compute the intersection of the recession cone of bset1
917 * with the negative of the recession cone of bset2 and then compute
918 * the linear hull of the resulting cone.
920 static struct isl_basic_set *induced_lineality_space(
921 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
923 int i, k;
924 struct isl_basic_set *lin = NULL;
925 unsigned dim;
927 if (!bset1 || !bset2)
928 goto error;
930 dim = isl_basic_set_total_dim(bset1);
931 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
932 bset1->n_eq + bset2->n_eq,
933 bset1->n_ineq + bset2->n_ineq);
934 lin = isl_basic_set_set_rational(lin);
935 if (!lin)
936 goto error;
937 for (i = 0; i < bset1->n_eq; ++i) {
938 k = isl_basic_set_alloc_equality(lin);
939 if (k < 0)
940 goto error;
941 isl_int_set_si(lin->eq[k][0], 0);
942 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
944 for (i = 0; i < bset1->n_ineq; ++i) {
945 k = isl_basic_set_alloc_inequality(lin);
946 if (k < 0)
947 goto error;
948 isl_int_set_si(lin->ineq[k][0], 0);
949 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
951 for (i = 0; i < bset2->n_eq; ++i) {
952 k = isl_basic_set_alloc_equality(lin);
953 if (k < 0)
954 goto error;
955 isl_int_set_si(lin->eq[k][0], 0);
956 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
958 for (i = 0; i < bset2->n_ineq; ++i) {
959 k = isl_basic_set_alloc_inequality(lin);
960 if (k < 0)
961 goto error;
962 isl_int_set_si(lin->ineq[k][0], 0);
963 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
966 isl_basic_set_free(bset1);
967 isl_basic_set_free(bset2);
968 return isl_basic_set_affine_hull(lin);
969 error:
970 isl_basic_set_free(lin);
971 isl_basic_set_free(bset1);
972 isl_basic_set_free(bset2);
973 return NULL;
976 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
978 /* Given a set and a linear space "lin" of dimension n > 0,
979 * project the linear space from the set, compute the convex hull
980 * and then map the set back to the original space.
982 * Let
984 * M x = 0
986 * describe the linear space. We first compute the Hermite normal
987 * form H = M U of M = H Q, to obtain
989 * H Q x = 0
991 * The last n rows of H will be zero, so the last n variables of x' = Q x
992 * are the one we want to project out. We do this by transforming each
993 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
994 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
995 * we transform the hull back to the original space as A' Q_1 x >= b',
996 * with Q_1 all but the last n rows of Q.
998 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
999 struct isl_basic_set *lin)
1001 unsigned total = isl_basic_set_total_dim(lin);
1002 unsigned lin_dim;
1003 struct isl_basic_set *hull;
1004 struct isl_mat *M, *U, *Q;
1006 if (!set || !lin)
1007 goto error;
1008 lin_dim = total - lin->n_eq;
1009 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1010 M = isl_mat_left_hermite(M, 0, &U, &Q);
1011 if (!M)
1012 goto error;
1013 isl_mat_free(M);
1014 isl_basic_set_free(lin);
1016 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1018 U = isl_mat_lin_to_aff(U);
1019 Q = isl_mat_lin_to_aff(Q);
1021 set = isl_set_preimage(set, U);
1022 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1023 hull = uset_convex_hull(set);
1024 hull = isl_basic_set_preimage(hull, Q);
1026 return hull;
1027 error:
1028 isl_basic_set_free(lin);
1029 isl_set_free(set);
1030 return NULL;
1033 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1034 * set up an LP for solving
1036 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1038 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1039 * The next \alpha{ij} correspond to the equalities and come in pairs.
1040 * The final \alpha{ij} correspond to the inequalities.
1042 static struct isl_basic_set *valid_direction_lp(
1043 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1045 struct isl_dim *dim;
1046 struct isl_basic_set *lp;
1047 unsigned d;
1048 int n;
1049 int i, j, k;
1051 if (!bset1 || !bset2)
1052 goto error;
1053 d = 1 + isl_basic_set_total_dim(bset1);
1054 n = 2 +
1055 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1056 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1057 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1058 if (!lp)
1059 goto error;
1060 for (i = 0; i < n; ++i) {
1061 k = isl_basic_set_alloc_inequality(lp);
1062 if (k < 0)
1063 goto error;
1064 isl_seq_clr(lp->ineq[k] + 1, n);
1065 isl_int_set_si(lp->ineq[k][0], -1);
1066 isl_int_set_si(lp->ineq[k][1 + i], 1);
1068 for (i = 0; i < d; ++i) {
1069 k = isl_basic_set_alloc_equality(lp);
1070 if (k < 0)
1071 goto error;
1072 n = 0;
1073 isl_int_set_si(lp->eq[k][n++], 0);
1074 /* positivity constraint 1 >= 0 */
1075 isl_int_set_si(lp->eq[k][n++], i == 0);
1076 for (j = 0; j < bset1->n_eq; ++j) {
1077 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1078 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1080 for (j = 0; j < bset1->n_ineq; ++j)
1081 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1082 /* positivity constraint 1 >= 0 */
1083 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1084 for (j = 0; j < bset2->n_eq; ++j) {
1085 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1086 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1088 for (j = 0; j < bset2->n_ineq; ++j)
1089 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1091 lp = isl_basic_set_gauss(lp, NULL);
1092 isl_basic_set_free(bset1);
1093 isl_basic_set_free(bset2);
1094 return lp;
1095 error:
1096 isl_basic_set_free(bset1);
1097 isl_basic_set_free(bset2);
1098 return NULL;
1101 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1102 * for all rays in the homogeneous space of the two cones that correspond
1103 * to the input polyhedra bset1 and bset2.
1105 * We compute s as a vector that satisfies
1107 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1109 * with h_{ij} the normals of the facets of polyhedron i
1110 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1111 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1112 * We first set up an LP with as variables the \alpha{ij}.
1113 * In this formulation, for each polyhedron i,
1114 * the first constraint is the positivity constraint, followed by pairs
1115 * of variables for the equalities, followed by variables for the inequalities.
1116 * We then simply pick a feasible solution and compute s using (*).
1118 * Note that we simply pick any valid direction and make no attempt
1119 * to pick a "good" or even the "best" valid direction.
1121 static struct isl_vec *valid_direction(
1122 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1124 struct isl_basic_set *lp;
1125 struct isl_tab *tab;
1126 struct isl_vec *sample = NULL;
1127 struct isl_vec *dir;
1128 unsigned d;
1129 int i;
1130 int n;
1132 if (!bset1 || !bset2)
1133 goto error;
1134 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1135 isl_basic_set_copy(bset2));
1136 tab = isl_tab_from_basic_set(lp);
1137 sample = isl_tab_get_sample_value(tab);
1138 isl_tab_free(tab);
1139 isl_basic_set_free(lp);
1140 if (!sample)
1141 goto error;
1142 d = isl_basic_set_total_dim(bset1);
1143 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1144 if (!dir)
1145 goto error;
1146 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1147 n = 1;
1148 /* positivity constraint 1 >= 0 */
1149 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1150 for (i = 0; i < bset1->n_eq; ++i) {
1151 isl_int_sub(sample->block.data[n],
1152 sample->block.data[n], sample->block.data[n+1]);
1153 isl_seq_combine(dir->block.data,
1154 bset1->ctx->one, dir->block.data,
1155 sample->block.data[n], bset1->eq[i], 1 + d);
1157 n += 2;
1159 for (i = 0; i < bset1->n_ineq; ++i)
1160 isl_seq_combine(dir->block.data,
1161 bset1->ctx->one, dir->block.data,
1162 sample->block.data[n++], bset1->ineq[i], 1 + d);
1163 isl_vec_free(sample);
1164 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1165 isl_basic_set_free(bset1);
1166 isl_basic_set_free(bset2);
1167 return dir;
1168 error:
1169 isl_vec_free(sample);
1170 isl_basic_set_free(bset1);
1171 isl_basic_set_free(bset2);
1172 return NULL;
1175 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1176 * compute b_i' + A_i' x' >= 0, with
1178 * [ b_i A_i ] [ y' ] [ y' ]
1179 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1181 * In particular, add the "positivity constraint" and then perform
1182 * the mapping.
1184 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1185 struct isl_mat *T)
1187 int k;
1189 if (!bset)
1190 goto error;
1191 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1192 k = isl_basic_set_alloc_inequality(bset);
1193 if (k < 0)
1194 goto error;
1195 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1196 isl_int_set_si(bset->ineq[k][0], 1);
1197 bset = isl_basic_set_preimage(bset, T);
1198 return bset;
1199 error:
1200 isl_mat_free(T);
1201 isl_basic_set_free(bset);
1202 return NULL;
1205 /* Compute the convex hull of a pair of basic sets without any parameters or
1206 * integer divisions, where the convex hull is known to be pointed,
1207 * but the basic sets may be unbounded.
1209 * We turn this problem into the computation of a convex hull of a pair
1210 * _bounded_ polyhedra by "changing the direction of the homogeneous
1211 * dimension". This idea is due to Matthias Koeppe.
1213 * Consider the cones in homogeneous space that correspond to the
1214 * input polyhedra. The rays of these cones are also rays of the
1215 * polyhedra if the coordinate that corresponds to the homogeneous
1216 * dimension is zero. That is, if the inner product of the rays
1217 * with the homogeneous direction is zero.
1218 * The cones in the homogeneous space can also be considered to
1219 * correspond to other pairs of polyhedra by chosing a different
1220 * homogeneous direction. To ensure that both of these polyhedra
1221 * are bounded, we need to make sure that all rays of the cones
1222 * correspond to vertices and not to rays.
1223 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1224 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1225 * The vector s is computed in valid_direction.
1227 * Note that we need to consider _all_ rays of the cones and not just
1228 * the rays that correspond to rays in the polyhedra. If we were to
1229 * only consider those rays and turn them into vertices, then we
1230 * may inadvertently turn some vertices into rays.
1232 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1233 * We therefore transform the two polyhedra such that the selected
1234 * direction is mapped onto this standard direction and then proceed
1235 * with the normal computation.
1236 * Let S be a non-singular square matrix with s as its first row,
1237 * then we want to map the polyhedra to the space
1239 * [ y' ] [ y ] [ y ] [ y' ]
1240 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1242 * We take S to be the unimodular completion of s to limit the growth
1243 * of the coefficients in the following computations.
1245 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1246 * We first move to the homogeneous dimension
1248 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1249 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1251 * Then we change directoin
1253 * [ b_i A_i ] [ y' ] [ y' ]
1254 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1256 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1257 * resulting in b' + A' x' >= 0, which we then convert back
1259 * [ y ] [ y ]
1260 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1262 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1264 static struct isl_basic_set *convex_hull_pair_pointed(
1265 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1267 struct isl_ctx *ctx = NULL;
1268 struct isl_vec *dir = NULL;
1269 struct isl_mat *T = NULL;
1270 struct isl_mat *T2 = NULL;
1271 struct isl_basic_set *hull;
1272 struct isl_set *set;
1274 if (!bset1 || !bset2)
1275 goto error;
1276 ctx = bset1->ctx;
1277 dir = valid_direction(isl_basic_set_copy(bset1),
1278 isl_basic_set_copy(bset2));
1279 if (!dir)
1280 goto error;
1281 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1282 if (!T)
1283 goto error;
1284 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1285 T = isl_mat_unimodular_complete(T, 1);
1286 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1288 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1289 bset2 = homogeneous_map(bset2, T2);
1290 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1291 set = isl_set_add_basic_set(set, bset1);
1292 set = isl_set_add_basic_set(set, bset2);
1293 hull = uset_convex_hull(set);
1294 hull = isl_basic_set_preimage(hull, T);
1296 isl_vec_free(dir);
1298 return hull;
1299 error:
1300 isl_vec_free(dir);
1301 isl_basic_set_free(bset1);
1302 isl_basic_set_free(bset2);
1303 return NULL;
1306 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1307 static struct isl_basic_set *modulo_affine_hull(
1308 struct isl_set *set, struct isl_basic_set *affine_hull);
1310 /* Compute the convex hull of a pair of basic sets without any parameters or
1311 * integer divisions.
1313 * This function is called from uset_convex_hull_unbounded, which
1314 * means that the complete convex hull is unbounded. Some pairs
1315 * of basic sets may still be bounded, though.
1316 * They may even lie inside a lower dimensional space, in which
1317 * case they need to be handled inside their affine hull since
1318 * the main algorithm assumes that the result is full-dimensional.
1320 * If the convex hull of the two basic sets would have a non-trivial
1321 * lineality space, we first project out this lineality space.
1323 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1324 struct isl_basic_set *bset2)
1326 isl_basic_set *lin, *aff;
1327 int bounded1, bounded2;
1329 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1330 isl_basic_set_copy(bset2)));
1331 if (!aff)
1332 goto error;
1333 if (aff->n_eq != 0)
1334 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1335 isl_basic_set_free(aff);
1337 bounded1 = isl_basic_set_is_bounded(bset1);
1338 bounded2 = isl_basic_set_is_bounded(bset2);
1340 if (bounded1 < 0 || bounded2 < 0)
1341 goto error;
1343 if (bounded1 && bounded2)
1344 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1346 if (bounded1 || bounded2)
1347 return convex_hull_pair_pointed(bset1, bset2);
1349 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1350 isl_basic_set_copy(bset2));
1351 if (!lin)
1352 goto error;
1353 if (isl_basic_set_is_universe(lin)) {
1354 isl_basic_set_free(bset1);
1355 isl_basic_set_free(bset2);
1356 return lin;
1358 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1359 struct isl_set *set;
1360 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1361 set = isl_set_add_basic_set(set, bset1);
1362 set = isl_set_add_basic_set(set, bset2);
1363 return modulo_lineality(set, lin);
1365 isl_basic_set_free(lin);
1367 return convex_hull_pair_pointed(bset1, bset2);
1368 error:
1369 isl_basic_set_free(bset1);
1370 isl_basic_set_free(bset2);
1371 return NULL;
1374 /* Compute the lineality space of a basic set.
1375 * We currently do not allow the basic set to have any divs.
1376 * We basically just drop the constants and turn every inequality
1377 * into an equality.
1379 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1381 int i, k;
1382 struct isl_basic_set *lin = NULL;
1383 unsigned dim;
1385 if (!bset)
1386 goto error;
1387 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1388 dim = isl_basic_set_total_dim(bset);
1390 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1391 if (!lin)
1392 goto error;
1393 for (i = 0; i < bset->n_eq; ++i) {
1394 k = isl_basic_set_alloc_equality(lin);
1395 if (k < 0)
1396 goto error;
1397 isl_int_set_si(lin->eq[k][0], 0);
1398 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1400 lin = isl_basic_set_gauss(lin, NULL);
1401 if (!lin)
1402 goto error;
1403 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1404 k = isl_basic_set_alloc_equality(lin);
1405 if (k < 0)
1406 goto error;
1407 isl_int_set_si(lin->eq[k][0], 0);
1408 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1409 lin = isl_basic_set_gauss(lin, NULL);
1410 if (!lin)
1411 goto error;
1413 isl_basic_set_free(bset);
1414 return lin;
1415 error:
1416 isl_basic_set_free(lin);
1417 isl_basic_set_free(bset);
1418 return NULL;
1421 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1422 * "underlying" set "set".
1424 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1426 int i;
1427 struct isl_set *lin = NULL;
1429 if (!set)
1430 return NULL;
1431 if (set->n == 0) {
1432 struct isl_dim *dim = isl_set_get_dim(set);
1433 isl_set_free(set);
1434 return isl_basic_set_empty(dim);
1437 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1438 for (i = 0; i < set->n; ++i)
1439 lin = isl_set_add_basic_set(lin,
1440 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1441 isl_set_free(set);
1442 return isl_set_affine_hull(lin);
1445 /* Compute the convex hull of a set without any parameters or
1446 * integer divisions.
1447 * In each step, we combined two basic sets until only one
1448 * basic set is left.
1449 * The input basic sets are assumed not to have a non-trivial
1450 * lineality space. If any of the intermediate results has
1451 * a non-trivial lineality space, it is projected out.
1453 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1455 struct isl_basic_set *convex_hull = NULL;
1457 convex_hull = isl_set_copy_basic_set(set);
1458 set = isl_set_drop_basic_set(set, convex_hull);
1459 if (!set)
1460 goto error;
1461 while (set->n > 0) {
1462 struct isl_basic_set *t;
1463 t = isl_set_copy_basic_set(set);
1464 if (!t)
1465 goto error;
1466 set = isl_set_drop_basic_set(set, t);
1467 if (!set)
1468 goto error;
1469 convex_hull = convex_hull_pair(convex_hull, t);
1470 if (set->n == 0)
1471 break;
1472 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1473 if (!t)
1474 goto error;
1475 if (isl_basic_set_is_universe(t)) {
1476 isl_basic_set_free(convex_hull);
1477 convex_hull = t;
1478 break;
1480 if (t->n_eq < isl_basic_set_total_dim(t)) {
1481 set = isl_set_add_basic_set(set, convex_hull);
1482 return modulo_lineality(set, t);
1484 isl_basic_set_free(t);
1486 isl_set_free(set);
1487 return convex_hull;
1488 error:
1489 isl_set_free(set);
1490 isl_basic_set_free(convex_hull);
1491 return NULL;
1494 /* Compute an initial hull for wrapping containing a single initial
1495 * facet.
1496 * This function assumes that the given set is bounded.
1498 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1499 struct isl_set *set)
1501 struct isl_mat *bounds = NULL;
1502 unsigned dim;
1503 int k;
1505 if (!hull)
1506 goto error;
1507 bounds = initial_facet_constraint(set);
1508 if (!bounds)
1509 goto error;
1510 k = isl_basic_set_alloc_inequality(hull);
1511 if (k < 0)
1512 goto error;
1513 dim = isl_set_n_dim(set);
1514 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1515 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1516 isl_mat_free(bounds);
1518 return hull;
1519 error:
1520 isl_basic_set_free(hull);
1521 isl_mat_free(bounds);
1522 return NULL;
1525 struct max_constraint {
1526 struct isl_mat *c;
1527 int count;
1528 int ineq;
1531 static int max_constraint_equal(const void *entry, const void *val)
1533 struct max_constraint *a = (struct max_constraint *)entry;
1534 isl_int *b = (isl_int *)val;
1536 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1539 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1540 isl_int *con, unsigned len, int n, int ineq)
1542 struct isl_hash_table_entry *entry;
1543 struct max_constraint *c;
1544 uint32_t c_hash;
1546 c_hash = isl_seq_get_hash(con + 1, len);
1547 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1548 con + 1, 0);
1549 if (!entry)
1550 return;
1551 c = entry->data;
1552 if (c->count < n) {
1553 isl_hash_table_remove(ctx, table, entry);
1554 return;
1556 c->count++;
1557 if (isl_int_gt(c->c->row[0][0], con[0]))
1558 return;
1559 if (isl_int_eq(c->c->row[0][0], con[0])) {
1560 if (ineq)
1561 c->ineq = ineq;
1562 return;
1564 c->c = isl_mat_cow(c->c);
1565 isl_int_set(c->c->row[0][0], con[0]);
1566 c->ineq = ineq;
1569 /* Check whether the constraint hash table "table" constains the constraint
1570 * "con".
1572 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1573 isl_int *con, unsigned len, int n)
1575 struct isl_hash_table_entry *entry;
1576 struct max_constraint *c;
1577 uint32_t c_hash;
1579 c_hash = isl_seq_get_hash(con + 1, len);
1580 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1581 con + 1, 0);
1582 if (!entry)
1583 return 0;
1584 c = entry->data;
1585 if (c->count < n)
1586 return 0;
1587 return isl_int_eq(c->c->row[0][0], con[0]);
1590 /* Check for inequality constraints of a basic set without equalities
1591 * such that the same or more stringent copies of the constraint appear
1592 * in all of the basic sets. Such constraints are necessarily facet
1593 * constraints of the convex hull.
1595 * If the resulting basic set is by chance identical to one of
1596 * the basic sets in "set", then we know that this basic set contains
1597 * all other basic sets and is therefore the convex hull of set.
1598 * In this case we set *is_hull to 1.
1600 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1601 struct isl_set *set, int *is_hull)
1603 int i, j, s, n;
1604 int min_constraints;
1605 int best;
1606 struct max_constraint *constraints = NULL;
1607 struct isl_hash_table *table = NULL;
1608 unsigned total;
1610 *is_hull = 0;
1612 for (i = 0; i < set->n; ++i)
1613 if (set->p[i]->n_eq == 0)
1614 break;
1615 if (i >= set->n)
1616 return hull;
1617 min_constraints = set->p[i]->n_ineq;
1618 best = i;
1619 for (i = best + 1; i < set->n; ++i) {
1620 if (set->p[i]->n_eq != 0)
1621 continue;
1622 if (set->p[i]->n_ineq >= min_constraints)
1623 continue;
1624 min_constraints = set->p[i]->n_ineq;
1625 best = i;
1627 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1628 min_constraints);
1629 if (!constraints)
1630 return hull;
1631 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1632 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1633 goto error;
1635 total = isl_dim_total(set->dim);
1636 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1637 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1638 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1639 if (!constraints[i].c)
1640 goto error;
1641 constraints[i].ineq = 1;
1643 for (i = 0; i < min_constraints; ++i) {
1644 struct isl_hash_table_entry *entry;
1645 uint32_t c_hash;
1646 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1647 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1648 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1649 if (!entry)
1650 goto error;
1651 isl_assert(hull->ctx, !entry->data, goto error);
1652 entry->data = &constraints[i];
1655 n = 0;
1656 for (s = 0; s < set->n; ++s) {
1657 if (s == best)
1658 continue;
1660 for (i = 0; i < set->p[s]->n_eq; ++i) {
1661 isl_int *eq = set->p[s]->eq[i];
1662 for (j = 0; j < 2; ++j) {
1663 isl_seq_neg(eq, eq, 1 + total);
1664 update_constraint(hull->ctx, table,
1665 eq, total, n, 0);
1668 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1669 isl_int *ineq = set->p[s]->ineq[i];
1670 update_constraint(hull->ctx, table, ineq, total, n,
1671 set->p[s]->n_eq == 0);
1673 ++n;
1676 for (i = 0; i < min_constraints; ++i) {
1677 if (constraints[i].count < n)
1678 continue;
1679 if (!constraints[i].ineq)
1680 continue;
1681 j = isl_basic_set_alloc_inequality(hull);
1682 if (j < 0)
1683 goto error;
1684 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1687 for (s = 0; s < set->n; ++s) {
1688 if (set->p[s]->n_eq)
1689 continue;
1690 if (set->p[s]->n_ineq != hull->n_ineq)
1691 continue;
1692 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1693 isl_int *ineq = set->p[s]->ineq[i];
1694 if (!has_constraint(hull->ctx, table, ineq, total, n))
1695 break;
1697 if (i == set->p[s]->n_ineq)
1698 *is_hull = 1;
1701 isl_hash_table_clear(table);
1702 for (i = 0; i < min_constraints; ++i)
1703 isl_mat_free(constraints[i].c);
1704 free(constraints);
1705 free(table);
1706 return hull;
1707 error:
1708 isl_hash_table_clear(table);
1709 free(table);
1710 if (constraints)
1711 for (i = 0; i < min_constraints; ++i)
1712 isl_mat_free(constraints[i].c);
1713 free(constraints);
1714 return hull;
1717 /* Create a template for the convex hull of "set" and fill it up
1718 * obvious facet constraints, if any. If the result happens to
1719 * be the convex hull of "set" then *is_hull is set to 1.
1721 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1723 struct isl_basic_set *hull;
1724 unsigned n_ineq;
1725 int i;
1727 n_ineq = 1;
1728 for (i = 0; i < set->n; ++i) {
1729 n_ineq += set->p[i]->n_eq;
1730 n_ineq += set->p[i]->n_ineq;
1732 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1733 hull = isl_basic_set_set_rational(hull);
1734 if (!hull)
1735 return NULL;
1736 return common_constraints(hull, set, is_hull);
1739 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1741 struct isl_basic_set *hull;
1742 int is_hull;
1744 hull = proto_hull(set, &is_hull);
1745 if (hull && !is_hull) {
1746 if (hull->n_ineq == 0)
1747 hull = initial_hull(hull, set);
1748 hull = extend(hull, set);
1750 isl_set_free(set);
1752 return hull;
1755 /* Compute the convex hull of a set without any parameters or
1756 * integer divisions. Depending on whether the set is bounded,
1757 * we pass control to the wrapping based convex hull or
1758 * the Fourier-Motzkin elimination based convex hull.
1759 * We also handle a few special cases before checking the boundedness.
1761 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1763 struct isl_basic_set *convex_hull = NULL;
1764 struct isl_basic_set *lin;
1766 if (isl_set_n_dim(set) == 0)
1767 return convex_hull_0d(set);
1769 set = isl_set_coalesce(set);
1770 set = isl_set_set_rational(set);
1772 if (!set)
1773 goto error;
1774 if (!set)
1775 return NULL;
1776 if (set->n == 1) {
1777 convex_hull = isl_basic_set_copy(set->p[0]);
1778 isl_set_free(set);
1779 return convex_hull;
1781 if (isl_set_n_dim(set) == 1)
1782 return convex_hull_1d(set);
1784 if (isl_set_is_bounded(set))
1785 return uset_convex_hull_wrap(set);
1787 lin = uset_combined_lineality_space(isl_set_copy(set));
1788 if (!lin)
1789 goto error;
1790 if (isl_basic_set_is_universe(lin)) {
1791 isl_set_free(set);
1792 return lin;
1794 if (lin->n_eq < isl_basic_set_total_dim(lin))
1795 return modulo_lineality(set, lin);
1796 isl_basic_set_free(lin);
1798 return uset_convex_hull_unbounded(set);
1799 error:
1800 isl_set_free(set);
1801 isl_basic_set_free(convex_hull);
1802 return NULL;
1805 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1806 * without parameters or divs and where the convex hull of set is
1807 * known to be full-dimensional.
1809 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1811 struct isl_basic_set *convex_hull = NULL;
1813 if (!set)
1814 goto error;
1816 if (isl_set_n_dim(set) == 0) {
1817 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1818 isl_set_free(set);
1819 convex_hull = isl_basic_set_set_rational(convex_hull);
1820 return convex_hull;
1823 set = isl_set_set_rational(set);
1824 set = isl_set_coalesce(set);
1825 if (!set)
1826 goto error;
1827 if (set->n == 1) {
1828 convex_hull = isl_basic_set_copy(set->p[0]);
1829 isl_set_free(set);
1830 return convex_hull;
1832 if (isl_set_n_dim(set) == 1)
1833 return convex_hull_1d(set);
1835 return uset_convex_hull_wrap(set);
1836 error:
1837 isl_set_free(set);
1838 return NULL;
1841 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1842 * We first remove the equalities (transforming the set), compute the
1843 * convex hull of the transformed set and then add the equalities back
1844 * (after performing the inverse transformation.
1846 static struct isl_basic_set *modulo_affine_hull(
1847 struct isl_set *set, struct isl_basic_set *affine_hull)
1849 struct isl_mat *T;
1850 struct isl_mat *T2;
1851 struct isl_basic_set *dummy;
1852 struct isl_basic_set *convex_hull;
1854 dummy = isl_basic_set_remove_equalities(
1855 isl_basic_set_copy(affine_hull), &T, &T2);
1856 if (!dummy)
1857 goto error;
1858 isl_basic_set_free(dummy);
1859 set = isl_set_preimage(set, T);
1860 convex_hull = uset_convex_hull(set);
1861 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1862 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1863 return convex_hull;
1864 error:
1865 isl_basic_set_free(affine_hull);
1866 isl_set_free(set);
1867 return NULL;
1870 /* Compute the convex hull of a map.
1872 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1873 * specifically, the wrapping of facets to obtain new facets.
1875 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1877 struct isl_basic_set *bset;
1878 struct isl_basic_map *model = NULL;
1879 struct isl_basic_set *affine_hull = NULL;
1880 struct isl_basic_map *convex_hull = NULL;
1881 struct isl_set *set = NULL;
1882 struct isl_ctx *ctx;
1884 if (!map)
1885 goto error;
1887 ctx = map->ctx;
1888 if (map->n == 0) {
1889 convex_hull = isl_basic_map_empty_like_map(map);
1890 isl_map_free(map);
1891 return convex_hull;
1894 map = isl_map_detect_equalities(map);
1895 map = isl_map_align_divs(map);
1896 if (!map)
1897 goto error;
1898 model = isl_basic_map_copy(map->p[0]);
1899 set = isl_map_underlying_set(map);
1900 if (!set)
1901 goto error;
1903 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1904 if (!affine_hull)
1905 goto error;
1906 if (affine_hull->n_eq != 0)
1907 bset = modulo_affine_hull(set, affine_hull);
1908 else {
1909 isl_basic_set_free(affine_hull);
1910 bset = uset_convex_hull(set);
1913 convex_hull = isl_basic_map_overlying_set(bset, model);
1914 if (!convex_hull)
1915 return NULL;
1917 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1918 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1919 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1920 return convex_hull;
1921 error:
1922 isl_set_free(set);
1923 isl_basic_map_free(model);
1924 return NULL;
1927 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1929 return (struct isl_basic_set *)
1930 isl_map_convex_hull((struct isl_map *)set);
1933 struct sh_data_entry {
1934 struct isl_hash_table *table;
1935 struct isl_tab *tab;
1938 /* Holds the data needed during the simple hull computation.
1939 * In particular,
1940 * n the number of basic sets in the original set
1941 * hull_table a hash table of already computed constraints
1942 * in the simple hull
1943 * p for each basic set,
1944 * table a hash table of the constraints
1945 * tab the tableau corresponding to the basic set
1947 struct sh_data {
1948 struct isl_ctx *ctx;
1949 unsigned n;
1950 struct isl_hash_table *hull_table;
1951 struct sh_data_entry p[1];
1954 static void sh_data_free(struct sh_data *data)
1956 int i;
1958 if (!data)
1959 return;
1960 isl_hash_table_free(data->ctx, data->hull_table);
1961 for (i = 0; i < data->n; ++i) {
1962 isl_hash_table_free(data->ctx, data->p[i].table);
1963 isl_tab_free(data->p[i].tab);
1965 free(data);
1968 struct ineq_cmp_data {
1969 unsigned len;
1970 isl_int *p;
1973 static int has_ineq(const void *entry, const void *val)
1975 isl_int *row = (isl_int *)entry;
1976 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1978 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1979 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1982 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1983 isl_int *ineq, unsigned len)
1985 uint32_t c_hash;
1986 struct ineq_cmp_data v;
1987 struct isl_hash_table_entry *entry;
1989 v.len = len;
1990 v.p = ineq;
1991 c_hash = isl_seq_get_hash(ineq + 1, len);
1992 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1993 if (!entry)
1994 return - 1;
1995 entry->data = ineq;
1996 return 0;
1999 /* Fill hash table "table" with the constraints of "bset".
2000 * Equalities are added as two inequalities.
2001 * The value in the hash table is a pointer to the (in)equality of "bset".
2003 static int hash_basic_set(struct isl_hash_table *table,
2004 struct isl_basic_set *bset)
2006 int i, j;
2007 unsigned dim = isl_basic_set_total_dim(bset);
2009 for (i = 0; i < bset->n_eq; ++i) {
2010 for (j = 0; j < 2; ++j) {
2011 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2012 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2013 return -1;
2016 for (i = 0; i < bset->n_ineq; ++i) {
2017 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2018 return -1;
2020 return 0;
2023 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2025 struct sh_data *data;
2026 int i;
2028 data = isl_calloc(set->ctx, struct sh_data,
2029 sizeof(struct sh_data) +
2030 (set->n - 1) * sizeof(struct sh_data_entry));
2031 if (!data)
2032 return NULL;
2033 data->ctx = set->ctx;
2034 data->n = set->n;
2035 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2036 if (!data->hull_table)
2037 goto error;
2038 for (i = 0; i < set->n; ++i) {
2039 data->p[i].table = isl_hash_table_alloc(set->ctx,
2040 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2041 if (!data->p[i].table)
2042 goto error;
2043 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2044 goto error;
2046 return data;
2047 error:
2048 sh_data_free(data);
2049 return NULL;
2052 /* Check if inequality "ineq" is a bound for basic set "j" or if
2053 * it can be relaxed (by increasing the constant term) to become
2054 * a bound for that basic set. In the latter case, the constant
2055 * term is updated.
2056 * Return 1 if "ineq" is a bound
2057 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2058 * -1 if some error occurred
2060 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2061 isl_int *ineq)
2063 enum isl_lp_result res;
2064 isl_int opt;
2066 if (!data->p[j].tab) {
2067 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2068 if (!data->p[j].tab)
2069 return -1;
2072 isl_int_init(opt);
2074 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2075 &opt, NULL, 0);
2076 if (res == isl_lp_ok && isl_int_is_neg(opt))
2077 isl_int_sub(ineq[0], ineq[0], opt);
2079 isl_int_clear(opt);
2081 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2082 res == isl_lp_unbounded ? 0 : -1;
2085 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2086 * become a bound on the whole set. If so, add the (relaxed) inequality
2087 * to "hull".
2089 * We first check if "hull" already contains a translate of the inequality.
2090 * If so, we are done.
2091 * Then, we check if any of the previous basic sets contains a translate
2092 * of the inequality. If so, then we have already considered this
2093 * inequality and we are done.
2094 * Otherwise, for each basic set other than "i", we check if the inequality
2095 * is a bound on the basic set.
2096 * For previous basic sets, we know that they do not contain a translate
2097 * of the inequality, so we directly call is_bound.
2098 * For following basic sets, we first check if a translate of the
2099 * inequality appears in its description and if so directly update
2100 * the inequality accordingly.
2102 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2103 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2105 uint32_t c_hash;
2106 struct ineq_cmp_data v;
2107 struct isl_hash_table_entry *entry;
2108 int j, k;
2110 if (!hull)
2111 return NULL;
2113 v.len = isl_basic_set_total_dim(hull);
2114 v.p = ineq;
2115 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2117 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2118 has_ineq, &v, 0);
2119 if (entry)
2120 return hull;
2122 for (j = 0; j < i; ++j) {
2123 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2124 c_hash, has_ineq, &v, 0);
2125 if (entry)
2126 break;
2128 if (j < i)
2129 return hull;
2131 k = isl_basic_set_alloc_inequality(hull);
2132 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2133 if (k < 0)
2134 goto error;
2136 for (j = 0; j < i; ++j) {
2137 int bound;
2138 bound = is_bound(data, set, j, hull->ineq[k]);
2139 if (bound < 0)
2140 goto error;
2141 if (!bound)
2142 break;
2144 if (j < i) {
2145 isl_basic_set_free_inequality(hull, 1);
2146 return hull;
2149 for (j = i + 1; j < set->n; ++j) {
2150 int bound, neg;
2151 isl_int *ineq_j;
2152 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2153 c_hash, has_ineq, &v, 0);
2154 if (entry) {
2155 ineq_j = entry->data;
2156 neg = isl_seq_is_neg(ineq_j + 1,
2157 hull->ineq[k] + 1, v.len);
2158 if (neg)
2159 isl_int_neg(ineq_j[0], ineq_j[0]);
2160 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2161 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2162 if (neg)
2163 isl_int_neg(ineq_j[0], ineq_j[0]);
2164 continue;
2166 bound = is_bound(data, set, j, hull->ineq[k]);
2167 if (bound < 0)
2168 goto error;
2169 if (!bound)
2170 break;
2172 if (j < set->n) {
2173 isl_basic_set_free_inequality(hull, 1);
2174 return hull;
2177 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2178 has_ineq, &v, 1);
2179 if (!entry)
2180 goto error;
2181 entry->data = hull->ineq[k];
2183 return hull;
2184 error:
2185 isl_basic_set_free(hull);
2186 return NULL;
2189 /* Check if any inequality from basic set "i" can be relaxed to
2190 * become a bound on the whole set. If so, add the (relaxed) inequality
2191 * to "hull".
2193 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2194 struct sh_data *data, struct isl_set *set, int i)
2196 int j, k;
2197 unsigned dim = isl_basic_set_total_dim(bset);
2199 for (j = 0; j < set->p[i]->n_eq; ++j) {
2200 for (k = 0; k < 2; ++k) {
2201 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2202 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2205 for (j = 0; j < set->p[i]->n_ineq; ++j)
2206 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2207 return bset;
2210 /* Compute a superset of the convex hull of set that is described
2211 * by only translates of the constraints in the constituents of set.
2213 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2215 struct sh_data *data = NULL;
2216 struct isl_basic_set *hull = NULL;
2217 unsigned n_ineq;
2218 int i;
2220 if (!set)
2221 return NULL;
2223 n_ineq = 0;
2224 for (i = 0; i < set->n; ++i) {
2225 if (!set->p[i])
2226 goto error;
2227 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2230 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2231 if (!hull)
2232 goto error;
2234 data = sh_data_alloc(set, n_ineq);
2235 if (!data)
2236 goto error;
2238 for (i = 0; i < set->n; ++i)
2239 hull = add_bounds(hull, data, set, i);
2241 sh_data_free(data);
2242 isl_set_free(set);
2244 return hull;
2245 error:
2246 sh_data_free(data);
2247 isl_basic_set_free(hull);
2248 isl_set_free(set);
2249 return NULL;
2252 /* Compute a superset of the convex hull of map that is described
2253 * by only translates of the constraints in the constituents of map.
2255 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2257 struct isl_set *set = NULL;
2258 struct isl_basic_map *model = NULL;
2259 struct isl_basic_map *hull;
2260 struct isl_basic_map *affine_hull;
2261 struct isl_basic_set *bset = NULL;
2263 if (!map)
2264 return NULL;
2265 if (map->n == 0) {
2266 hull = isl_basic_map_empty_like_map(map);
2267 isl_map_free(map);
2268 return hull;
2270 if (map->n == 1) {
2271 hull = isl_basic_map_copy(map->p[0]);
2272 isl_map_free(map);
2273 return hull;
2276 map = isl_map_detect_equalities(map);
2277 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2278 map = isl_map_align_divs(map);
2279 model = isl_basic_map_copy(map->p[0]);
2281 set = isl_map_underlying_set(map);
2283 bset = uset_simple_hull(set);
2285 hull = isl_basic_map_overlying_set(bset, model);
2287 hull = isl_basic_map_intersect(hull, affine_hull);
2288 hull = isl_basic_map_convex_hull(hull);
2289 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2290 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2292 return hull;
2295 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2297 return (struct isl_basic_set *)
2298 isl_map_simple_hull((struct isl_map *)set);
2301 /* Given a set "set", return parametric bounds on the dimension "dim".
2303 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2305 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2306 set = isl_set_copy(set);
2307 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2308 set = isl_set_eliminate_dims(set, 0, dim);
2309 return isl_set_convex_hull(set);
2312 /* Computes a "simple hull" and then check if each dimension in the
2313 * resulting hull is bounded by a symbolic constant. If not, the
2314 * hull is intersected with the corresponding bounds on the whole set.
2316 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2318 int i, j;
2319 struct isl_basic_set *hull;
2320 unsigned nparam, left;
2321 int removed_divs = 0;
2323 hull = isl_set_simple_hull(isl_set_copy(set));
2324 if (!hull)
2325 goto error;
2327 nparam = isl_basic_set_dim(hull, isl_dim_param);
2328 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2329 int lower = 0, upper = 0;
2330 struct isl_basic_set *bounds;
2332 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2333 for (j = 0; j < hull->n_eq; ++j) {
2334 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2335 continue;
2336 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2337 left) == -1)
2338 break;
2340 if (j < hull->n_eq)
2341 continue;
2343 for (j = 0; j < hull->n_ineq; ++j) {
2344 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2345 continue;
2346 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2347 left) != -1 ||
2348 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2349 i) != -1)
2350 continue;
2351 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2352 lower = 1;
2353 else
2354 upper = 1;
2355 if (lower && upper)
2356 break;
2359 if (lower && upper)
2360 continue;
2362 if (!removed_divs) {
2363 set = isl_set_remove_divs(set);
2364 if (!set)
2365 goto error;
2366 removed_divs = 1;
2368 bounds = set_bounds(set, i);
2369 hull = isl_basic_set_intersect(hull, bounds);
2370 if (!hull)
2371 goto error;
2374 isl_set_free(set);
2375 return hull;
2376 error:
2377 isl_set_free(set);
2378 return NULL;