2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
32 struct isl_basic_map
*isl_basic_map_implicit_equalities(
33 struct isl_basic_map
*bmap
)
40 bmap
= isl_basic_map_gauss(bmap
, NULL
);
41 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
43 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
45 if (bmap
->n_ineq
<= 1)
48 tab
= isl_tab_from_basic_map(bmap
, 0);
49 if (isl_tab_detect_implicit_equalities(tab
) < 0)
51 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
53 bmap
= isl_basic_map_gauss(bmap
, NULL
);
54 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
58 isl_basic_map_free(bmap
);
62 struct isl_basic_set
*isl_basic_set_implicit_equalities(
63 struct isl_basic_set
*bset
)
65 return bset_from_bmap(
66 isl_basic_map_implicit_equalities(bset_to_bmap(bset
)));
69 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
76 for (i
= 0; i
< map
->n
; ++i
) {
77 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
88 /* Make eq[row][col] of both bmaps equal so we can add the row
89 * add the column to the common matrix.
90 * Note that because of the echelon form, the columns of row row
91 * after column col are zero.
93 static void set_common_multiple(
94 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
95 unsigned row
, unsigned col
)
99 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
104 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
105 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
106 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
107 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
108 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
113 /* Delete a given equality, moving all the following equalities one up.
115 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
122 for (r
= row
; r
< bset
->n_eq
; ++r
)
123 bset
->eq
[r
] = bset
->eq
[r
+1];
124 bset
->eq
[bset
->n_eq
] = t
;
127 /* Make first row entries in column col of bset1 identical to
128 * those of bset2, using the fact that entry bset1->eq[row][col]=a
129 * is non-zero. Initially, these elements of bset1 are all zero.
130 * For each row i < row, we set
131 * A[i] = a * A[i] + B[i][col] * A[row]
134 * A[i][col] = B[i][col] = a * old(B[i][col])
136 static void construct_column(
137 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
138 unsigned row
, unsigned col
)
147 total
= 1 + isl_basic_set_n_dim(bset1
);
148 for (r
= 0; r
< row
; ++r
) {
149 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
151 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
152 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
153 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
154 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
155 b
, bset1
->eq
[row
], total
);
156 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
160 delete_row(bset1
, row
);
163 /* Make first row entries in column col of bset1 identical to
164 * those of bset2, using only these entries of the two matrices.
165 * Let t be the last row with different entries.
166 * For each row i < t, we set
167 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
168 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
170 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
172 static int transform_column(
173 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
174 unsigned row
, unsigned col
)
180 for (t
= row
-1; t
>= 0; --t
)
181 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
186 total
= 1 + isl_basic_set_n_dim(bset1
);
190 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
191 for (i
= 0; i
< t
; ++i
) {
192 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
193 isl_int_gcd(g
, a
, b
);
194 isl_int_divexact(a
, a
, g
);
195 isl_int_divexact(g
, b
, g
);
196 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
198 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
204 delete_row(bset1
, t
);
205 delete_row(bset2
, t
);
209 /* The implementation is based on Section 5.2 of Michael Karr,
210 * "Affine Relationships Among Variables of a Program",
211 * except that the echelon form we use starts from the last column
212 * and that we are dealing with integer coefficients.
214 static struct isl_basic_set
*affine_hull(
215 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
221 if (!bset1
|| !bset2
)
224 total
= 1 + isl_basic_set_n_dim(bset1
);
227 for (col
= total
-1; col
>= 0; --col
) {
228 int is_zero1
= row
>= bset1
->n_eq
||
229 isl_int_is_zero(bset1
->eq
[row
][col
]);
230 int is_zero2
= row
>= bset2
->n_eq
||
231 isl_int_is_zero(bset2
->eq
[row
][col
]);
232 if (!is_zero1
&& !is_zero2
) {
233 set_common_multiple(bset1
, bset2
, row
, col
);
235 } else if (!is_zero1
&& is_zero2
) {
236 construct_column(bset1
, bset2
, row
, col
);
237 } else if (is_zero1
&& !is_zero2
) {
238 construct_column(bset2
, bset1
, row
, col
);
240 if (transform_column(bset1
, bset2
, row
, col
))
244 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
245 isl_basic_set_free(bset2
);
246 bset1
= isl_basic_set_normalize_constraints(bset1
);
249 isl_basic_set_free(bset1
);
250 isl_basic_set_free(bset2
);
254 /* Find an integer point in the set represented by "tab"
255 * that lies outside of the equality "eq" e(x) = 0.
256 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
257 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
258 * The point, if found, is returned.
259 * If no point can be found, a zero-length vector is returned.
261 * Before solving an ILP problem, we first check if simply
262 * adding the normal of the constraint to one of the known
263 * integer points in the basic set represented by "tab"
264 * yields another point inside the basic set.
266 * The caller of this function ensures that the tableau is bounded or
267 * that tab->basis and tab->n_unbounded have been set appropriately.
269 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
272 struct isl_vec
*sample
= NULL
;
273 struct isl_tab_undo
*snap
;
281 sample
= isl_vec_alloc(ctx
, 1 + dim
);
284 isl_int_set_si(sample
->el
[0], 1);
285 isl_seq_combine(sample
->el
+ 1,
286 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
287 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
288 if (isl_basic_map_contains(tab
->bmap
, sample
))
290 isl_vec_free(sample
);
293 snap
= isl_tab_snap(tab
);
296 isl_seq_neg(eq
, eq
, 1 + dim
);
297 isl_int_sub_ui(eq
[0], eq
[0], 1);
299 if (isl_tab_extend_cons(tab
, 1) < 0)
301 if (isl_tab_add_ineq(tab
, eq
) < 0)
304 sample
= isl_tab_sample(tab
);
306 isl_int_add_ui(eq
[0], eq
[0], 1);
308 isl_seq_neg(eq
, eq
, 1 + dim
);
310 if (sample
&& isl_tab_rollback(tab
, snap
) < 0)
315 isl_vec_free(sample
);
319 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
323 bset
= isl_basic_set_cow(bset
);
326 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
328 for (i
= 0; i
< bset
->n_eq
; ++i
)
329 isl_int_set_si(bset
->eq
[i
][0], 0);
331 for (i
= 0; i
< bset
->n_ineq
; ++i
)
332 isl_int_set_si(bset
->ineq
[i
][0], 0);
334 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
335 return isl_basic_set_implicit_equalities(bset
);
337 isl_basic_set_free(bset
);
341 /* Move "sample" to a point that is one up (or down) from the original
342 * point in dimension "pos".
344 static void adjacent_point(__isl_keep isl_vec
*sample
, int pos
, int up
)
347 isl_int_add_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
349 isl_int_sub_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
352 /* Check if any points that are adjacent to "sample" also belong to "bset".
353 * If so, add them to "hull" and return the updated hull.
355 * Before checking whether and adjacent point belongs to "bset", we first
356 * check whether it already belongs to "hull" as this test is typically
359 static __isl_give isl_basic_set
*add_adjacent_points(
360 __isl_take isl_basic_set
*hull
, __isl_take isl_vec
*sample
,
361 __isl_keep isl_basic_set
*bset
)
369 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
371 for (i
= 0; i
< dim
; ++i
) {
372 for (up
= 0; up
<= 1; ++up
) {
374 isl_basic_set
*point
;
376 adjacent_point(sample
, i
, up
);
377 contains
= isl_basic_set_contains(hull
, sample
);
381 adjacent_point(sample
, i
, !up
);
384 contains
= isl_basic_set_contains(bset
, sample
);
388 point
= isl_basic_set_from_vec(
389 isl_vec_copy(sample
));
390 hull
= affine_hull(hull
, point
);
392 adjacent_point(sample
, i
, !up
);
398 isl_vec_free(sample
);
402 isl_vec_free(sample
);
403 isl_basic_set_free(hull
);
407 /* Extend an initial (under-)approximation of the affine hull of basic
408 * set represented by the tableau "tab"
409 * by looking for points that do not satisfy one of the equalities
410 * in the current approximation and adding them to that approximation
411 * until no such points can be found any more.
413 * The caller of this function ensures that "tab" is bounded or
414 * that tab->basis and tab->n_unbounded have been set appropriately.
416 * "bset" may be either NULL or the basic set represented by "tab".
417 * If "bset" is not NULL, we check for any point we find if any
418 * of its adjacent points also belong to "bset".
420 static __isl_give isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
421 __isl_take isl_basic_set
*hull
, __isl_keep isl_basic_set
*bset
)
431 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
434 for (i
= 0; i
< dim
; ++i
) {
435 struct isl_vec
*sample
;
436 struct isl_basic_set
*point
;
437 for (j
= 0; j
< hull
->n_eq
; ++j
) {
438 sample
= outside_point(tab
, hull
->eq
[j
], 1);
441 if (sample
->size
> 0)
443 isl_vec_free(sample
);
444 sample
= outside_point(tab
, hull
->eq
[j
], 0);
447 if (sample
->size
> 0)
449 isl_vec_free(sample
);
451 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
457 isl_tab_add_sample(tab
, isl_vec_copy(sample
)) < 0)
458 hull
= isl_basic_set_free(hull
);
460 hull
= add_adjacent_points(hull
, isl_vec_copy(sample
),
462 point
= isl_basic_set_from_vec(sample
);
463 hull
= affine_hull(hull
, point
);
470 isl_basic_set_free(hull
);
474 /* Construct an initial underapproximation of the hull of "bset"
475 * from "sample" and any of its adjacent points that also belong to "bset".
477 static __isl_give isl_basic_set
*initialize_hull(__isl_keep isl_basic_set
*bset
,
478 __isl_take isl_vec
*sample
)
482 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
483 hull
= add_adjacent_points(hull
, sample
, bset
);
488 /* Look for all equalities satisfied by the integer points in bset,
489 * which is assumed to be bounded.
491 * The equalities are obtained by successively looking for
492 * a point that is affinely independent of the points found so far.
493 * In particular, for each equality satisfied by the points so far,
494 * we check if there is any point on a hyperplane parallel to the
495 * corresponding hyperplane shifted by at least one (in either direction).
497 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
499 struct isl_vec
*sample
= NULL
;
500 struct isl_basic_set
*hull
;
501 struct isl_tab
*tab
= NULL
;
504 if (isl_basic_set_plain_is_empty(bset
))
507 dim
= isl_basic_set_n_dim(bset
);
509 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
510 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
516 sample
= isl_vec_copy(bset
->sample
);
518 isl_vec_free(bset
->sample
);
523 tab
= isl_tab_from_basic_set(bset
, 1);
528 isl_vec_free(sample
);
529 return isl_basic_set_set_to_empty(bset
);
533 struct isl_tab_undo
*snap
;
534 snap
= isl_tab_snap(tab
);
535 sample
= isl_tab_sample(tab
);
536 if (isl_tab_rollback(tab
, snap
) < 0)
538 isl_vec_free(tab
->bmap
->sample
);
539 tab
->bmap
->sample
= isl_vec_copy(sample
);
544 if (sample
->size
== 0) {
546 isl_vec_free(sample
);
547 return isl_basic_set_set_to_empty(bset
);
550 hull
= initialize_hull(bset
, sample
);
552 hull
= extend_affine_hull(tab
, hull
, bset
);
553 isl_basic_set_free(bset
);
558 isl_vec_free(sample
);
560 isl_basic_set_free(bset
);
564 /* Given an unbounded tableau and an integer point satisfying the tableau,
565 * construct an initial affine hull containing the recession cone
566 * shifted to the given point.
568 * The unbounded directions are taken from the last rows of the basis,
569 * which is assumed to have been initialized appropriately.
571 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
572 __isl_take isl_vec
*vec
)
576 struct isl_basic_set
*bset
= NULL
;
583 isl_assert(ctx
, vec
->size
!= 0, goto error
);
585 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
588 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
589 for (i
= 0; i
< dim
; ++i
) {
590 k
= isl_basic_set_alloc_equality(bset
);
593 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
595 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
596 vec
->size
- 1, &bset
->eq
[k
][0]);
597 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
600 bset
= isl_basic_set_gauss(bset
, NULL
);
604 isl_basic_set_free(bset
);
609 /* Given a tableau of a set and a tableau of the corresponding
610 * recession cone, detect and add all equalities to the tableau.
611 * If the tableau is bounded, then we can simply keep the
612 * tableau in its state after the return from extend_affine_hull.
613 * However, if the tableau is unbounded, then
614 * isl_tab_set_initial_basis_with_cone will add some additional
615 * constraints to the tableau that have to be removed again.
616 * In this case, we therefore rollback to the state before
617 * any constraints were added and then add the equalities back in.
619 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
620 struct isl_tab
*tab_cone
)
623 struct isl_vec
*sample
;
624 struct isl_basic_set
*hull
= NULL
;
625 struct isl_tab_undo
*snap
;
627 if (!tab
|| !tab_cone
)
630 snap
= isl_tab_snap(tab
);
632 isl_mat_free(tab
->basis
);
635 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
636 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
637 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
638 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
640 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
643 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
647 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
649 isl_vec_free(tab
->bmap
->sample
);
650 tab
->bmap
->sample
= isl_vec_copy(sample
);
652 if (tab
->n_unbounded
== 0)
653 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
655 hull
= initial_hull(tab
, isl_vec_copy(sample
));
657 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
658 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
659 hull
= affine_hull(hull
,
660 isl_basic_set_from_vec(isl_vec_copy(sample
)));
663 isl_vec_free(sample
);
665 hull
= extend_affine_hull(tab
, hull
, NULL
);
669 if (tab
->n_unbounded
== 0) {
670 isl_basic_set_free(hull
);
674 if (isl_tab_rollback(tab
, snap
) < 0)
677 if (hull
->n_eq
> tab
->n_zero
) {
678 for (j
= 0; j
< hull
->n_eq
; ++j
) {
679 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
680 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
685 isl_basic_set_free(hull
);
689 isl_basic_set_free(hull
);
694 /* Compute the affine hull of "bset", where "cone" is the recession cone
697 * We first compute a unimodular transformation that puts the unbounded
698 * directions in the last dimensions. In particular, we take a transformation
699 * that maps all equalities to equalities (in HNF) on the first dimensions.
700 * Let x be the original dimensions and y the transformed, with y_1 bounded
703 * [ y_1 ] [ y_1 ] [ Q_1 ]
704 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
706 * Let's call the input basic set S. We compute S' = preimage(S, U)
707 * and drop the final dimensions including any constraints involving them.
708 * This results in set S''.
709 * Then we compute the affine hull A'' of S''.
710 * Let F y_1 >= g be the constraint system of A''. In the transformed
711 * space the y_2 are unbounded, so we can add them back without any constraints,
715 * [ F 0 ] [ y_2 ] >= g
718 * [ F 0 ] [ Q_2 ] x >= g
722 * The affine hull in the original space is then obtained as
723 * A = preimage(A'', Q_1).
725 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
726 struct isl_basic_set
*cone
)
730 struct isl_basic_set
*hull
;
731 struct isl_mat
*M
, *U
, *Q
;
736 total
= isl_basic_set_total_dim(cone
);
737 cone_dim
= total
- cone
->n_eq
;
739 M
= isl_mat_sub_alloc6(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
740 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
745 U
= isl_mat_lin_to_aff(U
);
746 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
748 bset
= isl_basic_set_drop_constraints_involving(bset
, total
- cone_dim
,
750 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
752 Q
= isl_mat_lin_to_aff(Q
);
753 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
755 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
756 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
758 hull
= uset_affine_hull_bounded(bset
);
764 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
765 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
766 if (sample
&& sample
->size
> 0)
767 sample
= isl_mat_vec_product(U
, sample
);
770 hull
= isl_basic_set_preimage(hull
, Q
);
772 isl_vec_free(hull
->sample
);
773 hull
->sample
= sample
;
775 isl_vec_free(sample
);
778 isl_basic_set_free(cone
);
782 isl_basic_set_free(bset
);
783 isl_basic_set_free(cone
);
787 /* Look for all equalities satisfied by the integer points in bset,
788 * which is assumed not to have any explicit equalities.
790 * The equalities are obtained by successively looking for
791 * a point that is affinely independent of the points found so far.
792 * In particular, for each equality satisfied by the points so far,
793 * we check if there is any point on a hyperplane parallel to the
794 * corresponding hyperplane shifted by at least one (in either direction).
796 * Before looking for any outside points, we first compute the recession
797 * cone. The directions of this recession cone will always be part
798 * of the affine hull, so there is no need for looking for any points
799 * in these directions.
800 * In particular, if the recession cone is full-dimensional, then
801 * the affine hull is simply the whole universe.
803 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
805 struct isl_basic_set
*cone
;
807 if (isl_basic_set_plain_is_empty(bset
))
810 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
813 if (cone
->n_eq
== 0) {
815 space
= isl_basic_set_get_space(bset
);
816 isl_basic_set_free(cone
);
817 isl_basic_set_free(bset
);
818 return isl_basic_set_universe(space
);
821 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
822 return affine_hull_with_cone(bset
, cone
);
824 isl_basic_set_free(cone
);
825 return uset_affine_hull_bounded(bset
);
827 isl_basic_set_free(bset
);
831 /* Look for all equalities satisfied by the integer points in bmap
832 * that are independent of the equalities already explicitly available
835 * We first remove all equalities already explicitly available,
836 * then look for additional equalities in the reduced space
837 * and then transform the result to the original space.
838 * The original equalities are _not_ added to this set. This is
839 * the responsibility of the calling function.
840 * The resulting basic set has all meaning about the dimensions removed.
841 * In particular, dimensions that correspond to existential variables
842 * in bmap and that are found to be fixed are not removed.
844 static struct isl_basic_set
*equalities_in_underlying_set(
845 struct isl_basic_map
*bmap
)
847 struct isl_mat
*T1
= NULL
;
848 struct isl_mat
*T2
= NULL
;
849 struct isl_basic_set
*bset
= NULL
;
850 struct isl_basic_set
*hull
= NULL
;
852 bset
= isl_basic_map_underlying_set(bmap
);
856 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
860 hull
= uset_affine_hull(bset
);
868 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
869 if (sample
&& sample
->size
> 0)
870 sample
= isl_mat_vec_product(T1
, sample
);
873 hull
= isl_basic_set_preimage(hull
, T2
);
875 isl_vec_free(hull
->sample
);
876 hull
->sample
= sample
;
878 isl_vec_free(sample
);
885 isl_basic_set_free(bset
);
886 isl_basic_set_free(hull
);
890 /* Detect and make explicit all equalities satisfied by the (integer)
893 struct isl_basic_map
*isl_basic_map_detect_equalities(
894 struct isl_basic_map
*bmap
)
897 struct isl_basic_set
*hull
= NULL
;
901 if (bmap
->n_ineq
== 0)
903 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
905 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
907 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
908 return isl_basic_map_implicit_equalities(bmap
);
910 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
913 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
914 isl_basic_set_free(hull
);
915 return isl_basic_map_set_to_empty(bmap
);
917 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
), 0,
919 for (i
= 0; i
< hull
->n_eq
; ++i
) {
920 j
= isl_basic_map_alloc_equality(bmap
);
923 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
924 1 + isl_basic_set_total_dim(hull
));
926 isl_vec_free(bmap
->sample
);
927 bmap
->sample
= isl_vec_copy(hull
->sample
);
928 isl_basic_set_free(hull
);
929 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
930 bmap
= isl_basic_map_simplify(bmap
);
931 return isl_basic_map_finalize(bmap
);
933 isl_basic_set_free(hull
);
934 isl_basic_map_free(bmap
);
938 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
939 __isl_take isl_basic_set
*bset
)
941 return bset_from_bmap(
942 isl_basic_map_detect_equalities(bset_to_bmap(bset
)));
945 __isl_give isl_map
*isl_map_detect_equalities(__isl_take isl_map
*map
)
947 return isl_map_inline_foreach_basic_map(map
,
948 &isl_basic_map_detect_equalities
);
951 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
953 return set_from_map(isl_map_detect_equalities(set_to_map(set
)));
956 /* Return the superset of "bmap" described by the equalities
957 * satisfied by "bmap" that are already known.
959 __isl_give isl_basic_map
*isl_basic_map_plain_affine_hull(
960 __isl_take isl_basic_map
*bmap
)
962 bmap
= isl_basic_map_cow(bmap
);
964 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
965 bmap
= isl_basic_map_finalize(bmap
);
969 /* Return the superset of "bset" described by the equalities
970 * satisfied by "bset" that are already known.
972 __isl_give isl_basic_set
*isl_basic_set_plain_affine_hull(
973 __isl_take isl_basic_set
*bset
)
975 return isl_basic_map_plain_affine_hull(bset
);
978 /* After computing the rational affine hull (by detecting the implicit
979 * equalities), we compute the additional equalities satisfied by
980 * the integer points (if any) and add the original equalities back in.
982 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
984 bmap
= isl_basic_map_detect_equalities(bmap
);
985 bmap
= isl_basic_map_plain_affine_hull(bmap
);
989 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
991 return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset
)));
994 /* Given a rational affine matrix "M", add stride constraints to "bmap"
999 * is an integer vector. The variables x include all the variables
1000 * of "bmap" except the unknown divs.
1002 * If d is the common denominator of M, then we need to impose that
1008 * exists alpha : d M(x) = d alpha
1010 * This function is similar to add_strides in isl_morph.c
1012 static __isl_give isl_basic_map
*add_strides(__isl_take isl_basic_map
*bmap
,
1013 __isl_keep isl_mat
*M
, int n_known
)
1018 if (isl_int_is_one(M
->row
[0][0]))
1021 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1022 M
->n_row
- 1, M
->n_row
- 1, 0);
1025 for (i
= 1; i
< M
->n_row
; ++i
) {
1026 isl_seq_gcd(M
->row
[i
], M
->n_col
, &gcd
);
1027 if (isl_int_is_divisible_by(gcd
, M
->row
[0][0]))
1029 div
= isl_basic_map_alloc_div(bmap
);
1032 isl_int_set_si(bmap
->div
[div
][0], 0);
1033 k
= isl_basic_map_alloc_equality(bmap
);
1036 isl_seq_cpy(bmap
->eq
[k
], M
->row
[i
], M
->n_col
);
1037 isl_seq_clr(bmap
->eq
[k
] + M
->n_col
, bmap
->n_div
- n_known
);
1038 isl_int_set(bmap
->eq
[k
][M
->n_col
- n_known
+ div
],
1046 isl_basic_map_free(bmap
);
1050 /* If there are any equalities that involve (multiple) unknown divs,
1051 * then extract the stride information encoded by those equalities
1052 * and make it explicitly available in "bmap".
1054 * We first sort the divs so that the unknown divs appear last and
1055 * then we count how many equalities involve these divs.
1057 * Let these equalities be of the form
1061 * where y represents the unknown divs and x the remaining variables.
1062 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1066 * Then x is a solution of the equalities iff
1068 * H^-1 A(x) (= - [I 0] Q y)
1070 * is an integer vector. Let d be the common denominator of H^-1.
1073 * d H^-1 A(x) = d alpha
1075 * in add_strides, with alpha fresh existentially quantified variables.
1077 static __isl_give isl_basic_map
*isl_basic_map_make_strides_explicit(
1078 __isl_take isl_basic_map
*bmap
)
1087 known
= isl_basic_map_divs_known(bmap
);
1089 return isl_basic_map_free(bmap
);
1092 bmap
= isl_basic_map_sort_divs(bmap
);
1093 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1097 for (n_known
= 0; n_known
< bmap
->n_div
; ++n_known
)
1098 if (isl_int_is_zero(bmap
->div
[n_known
][0]))
1100 ctx
= isl_basic_map_get_ctx(bmap
);
1101 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1102 for (n
= 0; n
< bmap
->n_eq
; ++n
)
1103 if (isl_seq_first_non_zero(bmap
->eq
[n
] + 1 + total
+ n_known
,
1104 bmap
->n_div
- n_known
) == -1)
1108 B
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, n
, 0, 1 + total
+ n_known
);
1109 n_col
= bmap
->n_div
- n_known
;
1110 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, n
, 1 + total
+ n_known
, n_col
);
1111 A
= isl_mat_left_hermite(A
, 0, NULL
, NULL
);
1112 A
= isl_mat_drop_cols(A
, n
, n_col
- n
);
1113 A
= isl_mat_lin_to_aff(A
);
1114 A
= isl_mat_right_inverse(A
);
1115 B
= isl_mat_insert_zero_rows(B
, 0, 1);
1116 B
= isl_mat_set_element_si(B
, 0, 0, 1);
1117 M
= isl_mat_product(A
, B
);
1119 return isl_basic_map_free(bmap
);
1120 bmap
= add_strides(bmap
, M
, n_known
);
1121 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1127 /* Compute the affine hull of each basic map in "map" separately
1128 * and make all stride information explicit so that we can remove
1129 * all unknown divs without losing this information.
1130 * The result is also guaranteed to be gaussed.
1132 * In simple cases where a div is determined by an equality,
1133 * calling isl_basic_map_gauss is enough to make the stride information
1134 * explicit, as it will derive an explicit representation for the div
1135 * from the equality. If, however, the stride information
1136 * is encoded through multiple unknown divs then we need to make
1137 * some extra effort in isl_basic_map_make_strides_explicit.
1139 static __isl_give isl_map
*isl_map_local_affine_hull(__isl_take isl_map
*map
)
1143 map
= isl_map_cow(map
);
1147 for (i
= 0; i
< map
->n
; ++i
) {
1148 map
->p
[i
] = isl_basic_map_affine_hull(map
->p
[i
]);
1149 map
->p
[i
] = isl_basic_map_gauss(map
->p
[i
], NULL
);
1150 map
->p
[i
] = isl_basic_map_make_strides_explicit(map
->p
[i
]);
1152 return isl_map_free(map
);
1158 static __isl_give isl_set
*isl_set_local_affine_hull(__isl_take isl_set
*set
)
1160 return isl_map_local_affine_hull(set
);
1163 /* Return an empty basic map living in the same space as "map".
1165 static __isl_give isl_basic_map
*replace_map_by_empty_basic_map(
1166 __isl_take isl_map
*map
)
1170 space
= isl_map_get_space(map
);
1172 return isl_basic_map_empty(space
);
1175 /* Compute the affine hull of "map".
1177 * We first compute the affine hull of each basic map separately.
1178 * Then we align the divs and recompute the affine hulls of the basic
1179 * maps since some of them may now have extra divs.
1180 * In order to avoid performing parametric integer programming to
1181 * compute explicit expressions for the divs, possible leading to
1182 * an explosion in the number of basic maps, we first drop all unknown
1183 * divs before aligning the divs. Note that isl_map_local_affine_hull tries
1184 * to make sure that all stride information is explicitly available
1185 * in terms of known divs. This involves calling isl_basic_set_gauss,
1186 * which is also needed because affine_hull assumes its input has been gaussed,
1187 * while isl_map_affine_hull may be called on input that has not been gaussed,
1188 * in particular from initial_facet_constraint.
1189 * Similarly, align_divs may reorder some divs so that we need to
1190 * gauss the result again.
1191 * Finally, we combine the individual affine hulls into a single
1194 __isl_give isl_basic_map
*isl_map_affine_hull(__isl_take isl_map
*map
)
1196 struct isl_basic_map
*model
= NULL
;
1197 struct isl_basic_map
*hull
= NULL
;
1198 struct isl_set
*set
;
1199 isl_basic_set
*bset
;
1201 map
= isl_map_detect_equalities(map
);
1202 map
= isl_map_local_affine_hull(map
);
1203 map
= isl_map_remove_empty_parts(map
);
1204 map
= isl_map_remove_unknown_divs(map
);
1205 map
= isl_map_align_divs(map
);
1211 return replace_map_by_empty_basic_map(map
);
1213 model
= isl_basic_map_copy(map
->p
[0]);
1214 set
= isl_map_underlying_set(map
);
1215 set
= isl_set_cow(set
);
1216 set
= isl_set_local_affine_hull(set
);
1221 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
1223 bset
= isl_basic_set_copy(set
->p
[0]);
1224 hull
= isl_basic_map_overlying_set(bset
, model
);
1226 hull
= isl_basic_map_simplify(hull
);
1227 return isl_basic_map_finalize(hull
);
1229 isl_basic_map_free(model
);
1234 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
1236 return bset_from_bmap(isl_map_affine_hull(set_to_map(set
)));