2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_aff_private.h>
21 #include <isl_options_private.h>
22 #include <isl_config.h>
25 * The implementation of parametric integer linear programming in this file
26 * was inspired by the paper "Parametric Integer Programming" and the
27 * report "Solving systems of affine (in)equalities" by Paul Feautrier
30 * The strategy used for obtaining a feasible solution is different
31 * from the one used in isl_tab.c. In particular, in isl_tab.c,
32 * upon finding a constraint that is not yet satisfied, we pivot
33 * in a row that increases the constant term of the row holding the
34 * constraint, making sure the sample solution remains feasible
35 * for all the constraints it already satisfied.
36 * Here, we always pivot in the row holding the constraint,
37 * choosing a column that induces the lexicographically smallest
38 * increment to the sample solution.
40 * By starting out from a sample value that is lexicographically
41 * smaller than any integer point in the problem space, the first
42 * feasible integer sample point we find will also be the lexicographically
43 * smallest. If all variables can be assumed to be non-negative,
44 * then the initial sample value may be chosen equal to zero.
45 * However, we will not make this assumption. Instead, we apply
46 * the "big parameter" trick. Any variable x is then not directly
47 * used in the tableau, but instead it is represented by another
48 * variable x' = M + x, where M is an arbitrarily large (positive)
49 * value. x' is therefore always non-negative, whatever the value of x.
50 * Taking as initial sample value x' = 0 corresponds to x = -M,
51 * which is always smaller than any possible value of x.
53 * The big parameter trick is used in the main tableau and
54 * also in the context tableau if isl_context_lex is used.
55 * In this case, each tableaus has its own big parameter.
56 * Before doing any real work, we check if all the parameters
57 * happen to be non-negative. If so, we drop the column corresponding
58 * to M from the initial context tableau.
59 * If isl_context_gbr is used, then the big parameter trick is only
60 * used in the main tableau.
64 struct isl_context_op
{
65 /* detect nonnegative parameters in context and mark them in tab */
66 struct isl_tab
*(*detect_nonnegative_parameters
)(
67 struct isl_context
*context
, struct isl_tab
*tab
);
68 /* return temporary reference to basic set representation of context */
69 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
70 /* return temporary reference to tableau representation of context */
71 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
72 /* add equality; check is 1 if eq may not be valid;
73 * update is 1 if we may want to call ineq_sign on context later.
75 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
76 int check
, int update
);
77 /* add inequality; check is 1 if ineq may not be valid;
78 * update is 1 if we may want to call ineq_sign on context later.
80 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
81 int check
, int update
);
82 /* check sign of ineq based on previous information.
83 * strict is 1 if saturation should be treated as a positive sign.
85 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
86 isl_int
*ineq
, int strict
);
87 /* check if inequality maintains feasibility */
88 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
89 /* return index of a div that corresponds to "div" */
90 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
92 /* add div "div" to context and return non-negativity */
93 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
94 int (*detect_equalities
)(struct isl_context
*context
,
96 /* return row index of "best" split */
97 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
98 /* check if context has already been determined to be empty */
99 int (*is_empty
)(struct isl_context
*context
);
100 /* check if context is still usable */
101 int (*is_ok
)(struct isl_context
*context
);
102 /* save a copy/snapshot of context */
103 void *(*save
)(struct isl_context
*context
);
104 /* restore saved context */
105 void (*restore
)(struct isl_context
*context
, void *);
106 /* discard saved context */
107 void (*discard
)(void *);
108 /* invalidate context */
109 void (*invalidate
)(struct isl_context
*context
);
111 void (*free
)(struct isl_context
*context
);
115 struct isl_context_op
*op
;
118 struct isl_context_lex
{
119 struct isl_context context
;
123 /* A stack (linked list) of solutions of subtrees of the search space.
125 * "M" describes the solution in terms of the dimensions of "dom".
126 * The number of columns of "M" is one more than the total number
127 * of dimensions of "dom".
129 * If "M" is NULL, then there is no solution on "dom".
131 struct isl_partial_sol
{
133 struct isl_basic_set
*dom
;
136 struct isl_partial_sol
*next
;
140 struct isl_sol_callback
{
141 struct isl_tab_callback callback
;
145 /* isl_sol is an interface for constructing a solution to
146 * a parametric integer linear programming problem.
147 * Every time the algorithm reaches a state where a solution
148 * can be read off from the tableau (including cases where the tableau
149 * is empty), the function "add" is called on the isl_sol passed
150 * to find_solutions_main.
152 * The context tableau is owned by isl_sol and is updated incrementally.
154 * There are currently two implementations of this interface,
155 * isl_sol_map, which simply collects the solutions in an isl_map
156 * and (optionally) the parts of the context where there is no solution
158 * isl_sol_for, which calls a user-defined function for each part of
167 struct isl_context
*context
;
168 struct isl_partial_sol
*partial
;
169 void (*add
)(struct isl_sol
*sol
,
170 struct isl_basic_set
*dom
, struct isl_mat
*M
);
171 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
172 void (*free
)(struct isl_sol
*sol
);
173 struct isl_sol_callback dec_level
;
176 static void sol_free(struct isl_sol
*sol
)
178 struct isl_partial_sol
*partial
, *next
;
181 for (partial
= sol
->partial
; partial
; partial
= next
) {
182 next
= partial
->next
;
183 isl_basic_set_free(partial
->dom
);
184 isl_mat_free(partial
->M
);
190 /* Push a partial solution represented by a domain and mapping M
191 * onto the stack of partial solutions.
193 static void sol_push_sol(struct isl_sol
*sol
,
194 struct isl_basic_set
*dom
, struct isl_mat
*M
)
196 struct isl_partial_sol
*partial
;
198 if (sol
->error
|| !dom
)
201 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
205 partial
->level
= sol
->level
;
208 partial
->next
= sol
->partial
;
210 sol
->partial
= partial
;
214 isl_basic_set_free(dom
);
219 /* Pop one partial solution from the partial solution stack and
220 * pass it on to sol->add or sol->add_empty.
222 static void sol_pop_one(struct isl_sol
*sol
)
224 struct isl_partial_sol
*partial
;
226 partial
= sol
->partial
;
227 sol
->partial
= partial
->next
;
230 sol
->add(sol
, partial
->dom
, partial
->M
);
232 sol
->add_empty(sol
, partial
->dom
);
236 /* Return a fresh copy of the domain represented by the context tableau.
238 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
240 struct isl_basic_set
*bset
;
245 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
246 bset
= isl_basic_set_update_from_tab(bset
,
247 sol
->context
->op
->peek_tab(sol
->context
));
252 /* Check whether two partial solutions have the same mapping, where n_div
253 * is the number of divs that the two partial solutions have in common.
255 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
261 if (!s1
->M
!= !s2
->M
)
266 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
268 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
269 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
270 s1
->M
->n_col
-1-dim
-n_div
) != -1)
272 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
273 s2
->M
->n_col
-1-dim
-n_div
) != -1)
275 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
281 /* Pop all solutions from the partial solution stack that were pushed onto
282 * the stack at levels that are deeper than the current level.
283 * If the two topmost elements on the stack have the same level
284 * and represent the same solution, then their domains are combined.
285 * This combined domain is the same as the current context domain
286 * as sol_pop is called each time we move back to a higher level.
288 static void sol_pop(struct isl_sol
*sol
)
290 struct isl_partial_sol
*partial
;
296 if (sol
->level
== 0) {
297 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
302 partial
= sol
->partial
;
306 if (partial
->level
<= sol
->level
)
309 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
310 n_div
= isl_basic_set_dim(
311 sol
->context
->op
->peek_basic_set(sol
->context
),
314 if (!same_solution(partial
, partial
->next
, n_div
)) {
318 struct isl_basic_set
*bset
;
322 n
= isl_basic_set_dim(partial
->next
->dom
, isl_dim_div
);
324 bset
= sol_domain(sol
);
325 isl_basic_set_free(partial
->next
->dom
);
326 partial
->next
->dom
= bset
;
327 M
= partial
->next
->M
;
329 M
= isl_mat_drop_cols(M
, M
->n_col
- n
, n
);
330 partial
->next
->M
= M
;
334 partial
->next
->level
= sol
->level
;
339 sol
->partial
= partial
->next
;
340 isl_basic_set_free(partial
->dom
);
341 isl_mat_free(partial
->M
);
348 error
: sol
->error
= 1;
351 static void sol_dec_level(struct isl_sol
*sol
)
361 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
363 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
365 sol_dec_level(callback
->sol
);
367 return callback
->sol
->error
? -1 : 0;
370 /* Move down to next level and push callback onto context tableau
371 * to decrease the level again when it gets rolled back across
372 * the current state. That is, dec_level will be called with
373 * the context tableau in the same state as it is when inc_level
376 static void sol_inc_level(struct isl_sol
*sol
)
384 tab
= sol
->context
->op
->peek_tab(sol
->context
);
385 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
389 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
393 if (isl_int_is_one(m
))
396 for (i
= 0; i
< n_row
; ++i
)
397 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
400 /* Add the solution identified by the tableau and the context tableau.
402 * The layout of the variables is as follows.
403 * tab->n_var is equal to the total number of variables in the input
404 * map (including divs that were copied from the context)
405 * + the number of extra divs constructed
406 * Of these, the first tab->n_param and the last tab->n_div variables
407 * correspond to the variables in the context, i.e.,
408 * tab->n_param + tab->n_div = context_tab->n_var
409 * tab->n_param is equal to the number of parameters and input
410 * dimensions in the input map
411 * tab->n_div is equal to the number of divs in the context
413 * If there is no solution, then call add_empty with a basic set
414 * that corresponds to the context tableau. (If add_empty is NULL,
417 * If there is a solution, then first construct a matrix that maps
418 * all dimensions of the context to the output variables, i.e.,
419 * the output dimensions in the input map.
420 * The divs in the input map (if any) that do not correspond to any
421 * div in the context do not appear in the solution.
422 * The algorithm will make sure that they have an integer value,
423 * but these values themselves are of no interest.
424 * We have to be careful not to drop or rearrange any divs in the
425 * context because that would change the meaning of the matrix.
427 * To extract the value of the output variables, it should be noted
428 * that we always use a big parameter M in the main tableau and so
429 * the variable stored in this tableau is not an output variable x itself, but
430 * x' = M + x (in case of minimization)
432 * x' = M - x (in case of maximization)
433 * If x' appears in a column, then its optimal value is zero,
434 * which means that the optimal value of x is an unbounded number
435 * (-M for minimization and M for maximization).
436 * We currently assume that the output dimensions in the original map
437 * are bounded, so this cannot occur.
438 * Similarly, when x' appears in a row, then the coefficient of M in that
439 * row is necessarily 1.
440 * If the row in the tableau represents
441 * d x' = c + d M + e(y)
442 * then, in case of minimization, the corresponding row in the matrix
445 * with a d = m, the (updated) common denominator of the matrix.
446 * In case of maximization, the row will be
449 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
451 struct isl_basic_set
*bset
= NULL
;
452 struct isl_mat
*mat
= NULL
;
457 if (sol
->error
|| !tab
)
460 if (tab
->empty
&& !sol
->add_empty
)
462 if (sol
->context
->op
->is_empty(sol
->context
))
465 bset
= sol_domain(sol
);
468 sol_push_sol(sol
, bset
, NULL
);
474 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
475 1 + tab
->n_param
+ tab
->n_div
);
481 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
482 isl_int_set_si(mat
->row
[0][0], 1);
483 for (row
= 0; row
< sol
->n_out
; ++row
) {
484 int i
= tab
->n_param
+ row
;
487 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
488 if (!tab
->var
[i
].is_row
) {
490 isl_die(mat
->ctx
, isl_error_invalid
,
491 "unbounded optimum", goto error2
);
495 r
= tab
->var
[i
].index
;
497 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
498 isl_die(mat
->ctx
, isl_error_invalid
,
499 "unbounded optimum", goto error2
);
500 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
501 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
502 scale_rows(mat
, m
, 1 + row
);
503 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
504 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
505 for (j
= 0; j
< tab
->n_param
; ++j
) {
507 if (tab
->var
[j
].is_row
)
509 col
= tab
->var
[j
].index
;
510 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
511 tab
->mat
->row
[r
][off
+ col
]);
513 for (j
= 0; j
< tab
->n_div
; ++j
) {
515 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
517 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
518 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
519 tab
->mat
->row
[r
][off
+ col
]);
522 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
528 sol_push_sol(sol
, bset
, mat
);
533 isl_basic_set_free(bset
);
541 struct isl_set
*empty
;
544 static void sol_map_free(struct isl_sol_map
*sol_map
)
548 if (sol_map
->sol
.context
)
549 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
550 isl_map_free(sol_map
->map
);
551 isl_set_free(sol_map
->empty
);
555 static void sol_map_free_wrap(struct isl_sol
*sol
)
557 sol_map_free((struct isl_sol_map
*)sol
);
560 /* This function is called for parts of the context where there is
561 * no solution, with "bset" corresponding to the context tableau.
562 * Simply add the basic set to the set "empty".
564 static void sol_map_add_empty(struct isl_sol_map
*sol
,
565 struct isl_basic_set
*bset
)
567 if (!bset
|| !sol
->empty
)
570 sol
->empty
= isl_set_grow(sol
->empty
, 1);
571 bset
= isl_basic_set_simplify(bset
);
572 bset
= isl_basic_set_finalize(bset
);
573 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
576 isl_basic_set_free(bset
);
579 isl_basic_set_free(bset
);
583 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
584 struct isl_basic_set
*bset
)
586 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
589 /* Given a basic map "dom" that represents the context and an affine
590 * matrix "M" that maps the dimensions of the context to the
591 * output variables, construct a basic map with the same parameters
592 * and divs as the context, the dimensions of the context as input
593 * dimensions and a number of output dimensions that is equal to
594 * the number of output dimensions in the input map.
596 * The constraints and divs of the context are simply copied
597 * from "dom". For each row
601 * is added, with d the common denominator of M.
603 static void sol_map_add(struct isl_sol_map
*sol
,
604 struct isl_basic_set
*dom
, struct isl_mat
*M
)
607 struct isl_basic_map
*bmap
= NULL
;
615 if (sol
->sol
.error
|| !dom
|| !M
)
618 n_out
= sol
->sol
.n_out
;
619 n_eq
= dom
->n_eq
+ n_out
;
620 n_ineq
= dom
->n_ineq
;
622 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
623 total
= isl_map_dim(sol
->map
, isl_dim_all
);
624 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
625 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
628 if (sol
->sol
.rational
)
629 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
630 for (i
= 0; i
< dom
->n_div
; ++i
) {
631 int k
= isl_basic_map_alloc_div(bmap
);
634 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
635 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
636 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
637 dom
->div
[i
] + 1 + 1 + nparam
, i
);
639 for (i
= 0; i
< dom
->n_eq
; ++i
) {
640 int k
= isl_basic_map_alloc_equality(bmap
);
643 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
644 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
645 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
646 dom
->eq
[i
] + 1 + nparam
, n_div
);
648 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
649 int k
= isl_basic_map_alloc_inequality(bmap
);
652 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
653 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
654 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
655 dom
->ineq
[i
] + 1 + nparam
, n_div
);
657 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
658 int k
= isl_basic_map_alloc_equality(bmap
);
661 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
662 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
663 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
664 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
665 M
->row
[1 + i
] + 1 + nparam
, n_div
);
667 bmap
= isl_basic_map_simplify(bmap
);
668 bmap
= isl_basic_map_finalize(bmap
);
669 sol
->map
= isl_map_grow(sol
->map
, 1);
670 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
671 isl_basic_set_free(dom
);
677 isl_basic_set_free(dom
);
679 isl_basic_map_free(bmap
);
683 static void sol_map_add_wrap(struct isl_sol
*sol
,
684 struct isl_basic_set
*dom
, struct isl_mat
*M
)
686 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
690 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
691 * i.e., the constant term and the coefficients of all variables that
692 * appear in the context tableau.
693 * Note that the coefficient of the big parameter M is NOT copied.
694 * The context tableau may not have a big parameter and even when it
695 * does, it is a different big parameter.
697 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
700 unsigned off
= 2 + tab
->M
;
702 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
703 for (i
= 0; i
< tab
->n_param
; ++i
) {
704 if (tab
->var
[i
].is_row
)
705 isl_int_set_si(line
[1 + i
], 0);
707 int col
= tab
->var
[i
].index
;
708 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
711 for (i
= 0; i
< tab
->n_div
; ++i
) {
712 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
713 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
715 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
716 isl_int_set(line
[1 + tab
->n_param
+ i
],
717 tab
->mat
->row
[row
][off
+ col
]);
722 /* Check if rows "row1" and "row2" have identical "parametric constants",
723 * as explained above.
724 * In this case, we also insist that the coefficients of the big parameter
725 * be the same as the values of the constants will only be the same
726 * if these coefficients are also the same.
728 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
731 unsigned off
= 2 + tab
->M
;
733 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
736 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
737 tab
->mat
->row
[row2
][2]))
740 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
741 int pos
= i
< tab
->n_param
? i
:
742 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
745 if (tab
->var
[pos
].is_row
)
747 col
= tab
->var
[pos
].index
;
748 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
749 tab
->mat
->row
[row2
][off
+ col
]))
755 /* Return an inequality that expresses that the "parametric constant"
756 * should be non-negative.
757 * This function is only called when the coefficient of the big parameter
760 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
762 struct isl_vec
*ineq
;
764 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
768 get_row_parameter_line(tab
, row
, ineq
->el
);
770 ineq
= isl_vec_normalize(ineq
);
775 /* Normalize a div expression of the form
777 * [(g*f(x) + c)/(g * m)]
779 * with c the constant term and f(x) the remaining coefficients, to
783 static void normalize_div(__isl_keep isl_vec
*div
)
785 isl_ctx
*ctx
= isl_vec_get_ctx(div
);
786 int len
= div
->size
- 2;
788 isl_seq_gcd(div
->el
+ 2, len
, &ctx
->normalize_gcd
);
789 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, div
->el
[0]);
791 if (isl_int_is_one(ctx
->normalize_gcd
))
794 isl_int_divexact(div
->el
[0], div
->el
[0], ctx
->normalize_gcd
);
795 isl_int_fdiv_q(div
->el
[1], div
->el
[1], ctx
->normalize_gcd
);
796 isl_seq_scale_down(div
->el
+ 2, div
->el
+ 2, ctx
->normalize_gcd
, len
);
799 /* Return a integer division for use in a parametric cut based on the given row.
800 * In particular, let the parametric constant of the row be
804 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
805 * The div returned is equal to
807 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
809 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
813 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
817 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
818 get_row_parameter_line(tab
, row
, div
->el
+ 1);
819 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
821 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
826 /* Return a integer division for use in transferring an integrality constraint
828 * In particular, let the parametric constant of the row be
832 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
833 * The the returned div is equal to
835 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
837 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
841 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
845 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
846 get_row_parameter_line(tab
, row
, div
->el
+ 1);
848 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
853 /* Construct and return an inequality that expresses an upper bound
855 * In particular, if the div is given by
859 * then the inequality expresses
863 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
867 struct isl_vec
*ineq
;
872 total
= isl_basic_set_total_dim(bset
);
873 div_pos
= 1 + total
- bset
->n_div
+ div
;
875 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
879 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
880 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
884 /* Given a row in the tableau and a div that was created
885 * using get_row_split_div and that has been constrained to equality, i.e.,
887 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
889 * replace the expression "\sum_i {a_i} y_i" in the row by d,
890 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
891 * The coefficients of the non-parameters in the tableau have been
892 * verified to be integral. We can therefore simply replace coefficient b
893 * by floor(b). For the coefficients of the parameters we have
894 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
897 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
899 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
900 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
902 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
904 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
905 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
907 isl_assert(tab
->mat
->ctx
,
908 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
909 isl_seq_combine(tab
->mat
->row
[row
] + 1,
910 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
911 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
912 1 + tab
->M
+ tab
->n_col
);
914 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
916 isl_int_add_ui(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
],
917 tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
926 /* Check if the (parametric) constant of the given row is obviously
927 * negative, meaning that we don't need to consult the context tableau.
928 * If there is a big parameter and its coefficient is non-zero,
929 * then this coefficient determines the outcome.
930 * Otherwise, we check whether the constant is negative and
931 * all non-zero coefficients of parameters are negative and
932 * belong to non-negative parameters.
934 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
938 unsigned off
= 2 + tab
->M
;
941 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
943 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
947 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
949 for (i
= 0; i
< tab
->n_param
; ++i
) {
950 /* Eliminated parameter */
951 if (tab
->var
[i
].is_row
)
953 col
= tab
->var
[i
].index
;
954 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
956 if (!tab
->var
[i
].is_nonneg
)
958 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
961 for (i
= 0; i
< tab
->n_div
; ++i
) {
962 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
964 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
965 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
967 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
969 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
975 /* Check if the (parametric) constant of the given row is obviously
976 * non-negative, meaning that we don't need to consult the context tableau.
977 * If there is a big parameter and its coefficient is non-zero,
978 * then this coefficient determines the outcome.
979 * Otherwise, we check whether the constant is non-negative and
980 * all non-zero coefficients of parameters are positive and
981 * belong to non-negative parameters.
983 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
987 unsigned off
= 2 + tab
->M
;
990 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
992 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
996 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
998 for (i
= 0; i
< tab
->n_param
; ++i
) {
999 /* Eliminated parameter */
1000 if (tab
->var
[i
].is_row
)
1002 col
= tab
->var
[i
].index
;
1003 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1005 if (!tab
->var
[i
].is_nonneg
)
1007 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1010 for (i
= 0; i
< tab
->n_div
; ++i
) {
1011 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1013 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1014 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1016 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
1018 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1024 /* Given a row r and two columns, return the column that would
1025 * lead to the lexicographically smallest increment in the sample
1026 * solution when leaving the basis in favor of the row.
1027 * Pivoting with column c will increment the sample value by a non-negative
1028 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1029 * corresponding to the non-parametric variables.
1030 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1031 * with all other entries in this virtual row equal to zero.
1032 * If variable v appears in a row, then a_{v,c} is the element in column c
1035 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1036 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1037 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1038 * increment. Otherwise, it's c2.
1040 static int lexmin_col_pair(struct isl_tab
*tab
,
1041 int row
, int col1
, int col2
, isl_int tmp
)
1046 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1048 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1052 if (!tab
->var
[i
].is_row
) {
1053 if (tab
->var
[i
].index
== col1
)
1055 if (tab
->var
[i
].index
== col2
)
1060 if (tab
->var
[i
].index
== row
)
1063 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1064 s1
= isl_int_sgn(r
[col1
]);
1065 s2
= isl_int_sgn(r
[col2
]);
1066 if (s1
== 0 && s2
== 0)
1073 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1074 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1075 if (isl_int_is_pos(tmp
))
1077 if (isl_int_is_neg(tmp
))
1083 /* Given a row in the tableau, find and return the column that would
1084 * result in the lexicographically smallest, but positive, increment
1085 * in the sample point.
1086 * If there is no such column, then return tab->n_col.
1087 * If anything goes wrong, return -1.
1089 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1092 int col
= tab
->n_col
;
1096 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1100 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1101 if (tab
->col_var
[j
] >= 0 &&
1102 (tab
->col_var
[j
] < tab
->n_param
||
1103 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1106 if (!isl_int_is_pos(tr
[j
]))
1109 if (col
== tab
->n_col
)
1112 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1113 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1123 /* Return the first known violated constraint, i.e., a non-negative
1124 * constraint that currently has an either obviously negative value
1125 * or a previously determined to be negative value.
1127 * If any constraint has a negative coefficient for the big parameter,
1128 * if any, then we return one of these first.
1130 static int first_neg(struct isl_tab
*tab
)
1135 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1136 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1138 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1141 tab
->row_sign
[row
] = isl_tab_row_neg
;
1144 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1145 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1147 if (tab
->row_sign
) {
1148 if (tab
->row_sign
[row
] == 0 &&
1149 is_obviously_neg(tab
, row
))
1150 tab
->row_sign
[row
] = isl_tab_row_neg
;
1151 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1153 } else if (!is_obviously_neg(tab
, row
))
1160 /* Check whether the invariant that all columns are lexico-positive
1161 * is satisfied. This function is not called from the current code
1162 * but is useful during debugging.
1164 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1165 static void check_lexpos(struct isl_tab
*tab
)
1167 unsigned off
= 2 + tab
->M
;
1172 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1173 if (tab
->col_var
[col
] >= 0 &&
1174 (tab
->col_var
[col
] < tab
->n_param
||
1175 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1177 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1178 if (!tab
->var
[var
].is_row
) {
1179 if (tab
->var
[var
].index
== col
)
1184 row
= tab
->var
[var
].index
;
1185 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1187 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1189 fprintf(stderr
, "lexneg column %d (row %d)\n",
1192 if (var
>= tab
->n_var
- tab
->n_div
)
1193 fprintf(stderr
, "zero column %d\n", col
);
1197 /* Report to the caller that the given constraint is part of an encountered
1200 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1202 return tab
->conflict(con
, tab
->conflict_user
);
1205 /* Given a conflicting row in the tableau, report all constraints
1206 * involved in the row to the caller. That is, the row itself
1207 * (if it represents a constraint) and all constraint columns with
1208 * non-zero (and therefore negative) coefficients.
1210 static int report_conflict(struct isl_tab
*tab
, int row
)
1218 if (tab
->row_var
[row
] < 0 &&
1219 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1222 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1224 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1225 if (tab
->col_var
[j
] >= 0 &&
1226 (tab
->col_var
[j
] < tab
->n_param
||
1227 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1230 if (!isl_int_is_neg(tr
[j
]))
1233 if (tab
->col_var
[j
] < 0 &&
1234 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1241 /* Resolve all known or obviously violated constraints through pivoting.
1242 * In particular, as long as we can find any violated constraint, we
1243 * look for a pivoting column that would result in the lexicographically
1244 * smallest increment in the sample point. If there is no such column
1245 * then the tableau is infeasible.
1247 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1248 static int restore_lexmin(struct isl_tab
*tab
)
1256 while ((row
= first_neg(tab
)) != -1) {
1257 col
= lexmin_pivot_col(tab
, row
);
1258 if (col
>= tab
->n_col
) {
1259 if (report_conflict(tab
, row
) < 0)
1261 if (isl_tab_mark_empty(tab
) < 0)
1267 if (isl_tab_pivot(tab
, row
, col
) < 0)
1273 /* Given a row that represents an equality, look for an appropriate
1275 * In particular, if there are any non-zero coefficients among
1276 * the non-parameter variables, then we take the last of these
1277 * variables. Eliminating this variable in terms of the other
1278 * variables and/or parameters does not influence the property
1279 * that all column in the initial tableau are lexicographically
1280 * positive. The row corresponding to the eliminated variable
1281 * will only have non-zero entries below the diagonal of the
1282 * initial tableau. That is, we transform
1288 * If there is no such non-parameter variable, then we are dealing with
1289 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1290 * for elimination. This will ensure that the eliminated parameter
1291 * always has an integer value whenever all the other parameters are integral.
1292 * If there is no such parameter then we return -1.
1294 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1296 unsigned off
= 2 + tab
->M
;
1299 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1301 if (tab
->var
[i
].is_row
)
1303 col
= tab
->var
[i
].index
;
1304 if (col
<= tab
->n_dead
)
1306 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1309 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1310 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1312 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1318 /* Add an equality that is known to be valid to the tableau.
1319 * We first check if we can eliminate a variable or a parameter.
1320 * If not, we add the equality as two inequalities.
1321 * In this case, the equality was a pure parameter equality and there
1322 * is no need to resolve any constraint violations.
1324 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1331 r
= isl_tab_add_row(tab
, eq
);
1335 r
= tab
->con
[r
].index
;
1336 i
= last_var_col_or_int_par_col(tab
, r
);
1338 tab
->con
[r
].is_nonneg
= 1;
1339 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1341 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1342 r
= isl_tab_add_row(tab
, eq
);
1345 tab
->con
[r
].is_nonneg
= 1;
1346 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1349 if (isl_tab_pivot(tab
, r
, i
) < 0)
1351 if (isl_tab_kill_col(tab
, i
) < 0)
1362 /* Check if the given row is a pure constant.
1364 static int is_constant(struct isl_tab
*tab
, int row
)
1366 unsigned off
= 2 + tab
->M
;
1368 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1369 tab
->n_col
- tab
->n_dead
) == -1;
1372 /* Add an equality that may or may not be valid to the tableau.
1373 * If the resulting row is a pure constant, then it must be zero.
1374 * Otherwise, the resulting tableau is empty.
1376 * If the row is not a pure constant, then we add two inequalities,
1377 * each time checking that they can be satisfied.
1378 * In the end we try to use one of the two constraints to eliminate
1381 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1382 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1386 struct isl_tab_undo
*snap
;
1390 snap
= isl_tab_snap(tab
);
1391 r1
= isl_tab_add_row(tab
, eq
);
1394 tab
->con
[r1
].is_nonneg
= 1;
1395 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1398 row
= tab
->con
[r1
].index
;
1399 if (is_constant(tab
, row
)) {
1400 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1401 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1402 if (isl_tab_mark_empty(tab
) < 0)
1406 if (isl_tab_rollback(tab
, snap
) < 0)
1411 if (restore_lexmin(tab
) < 0)
1416 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1418 r2
= isl_tab_add_row(tab
, eq
);
1421 tab
->con
[r2
].is_nonneg
= 1;
1422 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1425 if (restore_lexmin(tab
) < 0)
1430 if (!tab
->con
[r1
].is_row
) {
1431 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1433 } else if (!tab
->con
[r2
].is_row
) {
1434 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1439 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1440 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1442 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1443 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1444 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1445 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1454 /* Add an inequality to the tableau, resolving violations using
1457 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1464 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1465 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1470 r
= isl_tab_add_row(tab
, ineq
);
1473 tab
->con
[r
].is_nonneg
= 1;
1474 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1476 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1477 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1482 if (restore_lexmin(tab
) < 0)
1484 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1485 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1486 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1494 /* Check if the coefficients of the parameters are all integral.
1496 static int integer_parameter(struct isl_tab
*tab
, int row
)
1500 unsigned off
= 2 + tab
->M
;
1502 for (i
= 0; i
< tab
->n_param
; ++i
) {
1503 /* Eliminated parameter */
1504 if (tab
->var
[i
].is_row
)
1506 col
= tab
->var
[i
].index
;
1507 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1508 tab
->mat
->row
[row
][0]))
1511 for (i
= 0; i
< tab
->n_div
; ++i
) {
1512 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1514 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1515 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1516 tab
->mat
->row
[row
][0]))
1522 /* Check if the coefficients of the non-parameter variables are all integral.
1524 static int integer_variable(struct isl_tab
*tab
, int row
)
1527 unsigned off
= 2 + tab
->M
;
1529 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1530 if (tab
->col_var
[i
] >= 0 &&
1531 (tab
->col_var
[i
] < tab
->n_param
||
1532 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1534 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1535 tab
->mat
->row
[row
][0]))
1541 /* Check if the constant term is integral.
1543 static int integer_constant(struct isl_tab
*tab
, int row
)
1545 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1546 tab
->mat
->row
[row
][0]);
1549 #define I_CST 1 << 0
1550 #define I_PAR 1 << 1
1551 #define I_VAR 1 << 2
1553 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1554 * that is non-integer and therefore requires a cut and return
1555 * the index of the variable.
1556 * For parametric tableaus, there are three parts in a row,
1557 * the constant, the coefficients of the parameters and the rest.
1558 * For each part, we check whether the coefficients in that part
1559 * are all integral and if so, set the corresponding flag in *f.
1560 * If the constant and the parameter part are integral, then the
1561 * current sample value is integral and no cut is required
1562 * (irrespective of whether the variable part is integral).
1564 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1566 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1568 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1571 if (!tab
->var
[var
].is_row
)
1573 row
= tab
->var
[var
].index
;
1574 if (integer_constant(tab
, row
))
1575 ISL_FL_SET(flags
, I_CST
);
1576 if (integer_parameter(tab
, row
))
1577 ISL_FL_SET(flags
, I_PAR
);
1578 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1580 if (integer_variable(tab
, row
))
1581 ISL_FL_SET(flags
, I_VAR
);
1588 /* Check for first (non-parameter) variable that is non-integer and
1589 * therefore requires a cut and return the corresponding row.
1590 * For parametric tableaus, there are three parts in a row,
1591 * the constant, the coefficients of the parameters and the rest.
1592 * For each part, we check whether the coefficients in that part
1593 * are all integral and if so, set the corresponding flag in *f.
1594 * If the constant and the parameter part are integral, then the
1595 * current sample value is integral and no cut is required
1596 * (irrespective of whether the variable part is integral).
1598 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1600 int var
= next_non_integer_var(tab
, -1, f
);
1602 return var
< 0 ? -1 : tab
->var
[var
].index
;
1605 /* Add a (non-parametric) cut to cut away the non-integral sample
1606 * value of the given row.
1608 * If the row is given by
1610 * m r = f + \sum_i a_i y_i
1614 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1616 * The big parameter, if any, is ignored, since it is assumed to be big
1617 * enough to be divisible by any integer.
1618 * If the tableau is actually a parametric tableau, then this function
1619 * is only called when all coefficients of the parameters are integral.
1620 * The cut therefore has zero coefficients for the parameters.
1622 * The current value is known to be negative, so row_sign, if it
1623 * exists, is set accordingly.
1625 * Return the row of the cut or -1.
1627 static int add_cut(struct isl_tab
*tab
, int row
)
1632 unsigned off
= 2 + tab
->M
;
1634 if (isl_tab_extend_cons(tab
, 1) < 0)
1636 r
= isl_tab_allocate_con(tab
);
1640 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1641 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1642 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1643 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1644 isl_int_neg(r_row
[1], r_row
[1]);
1646 isl_int_set_si(r_row
[2], 0);
1647 for (i
= 0; i
< tab
->n_col
; ++i
)
1648 isl_int_fdiv_r(r_row
[off
+ i
],
1649 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1651 tab
->con
[r
].is_nonneg
= 1;
1652 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1655 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1657 return tab
->con
[r
].index
;
1663 /* Given a non-parametric tableau, add cuts until an integer
1664 * sample point is obtained or until the tableau is determined
1665 * to be integer infeasible.
1666 * As long as there is any non-integer value in the sample point,
1667 * we add appropriate cuts, if possible, for each of these
1668 * non-integer values and then resolve the violated
1669 * cut constraints using restore_lexmin.
1670 * If one of the corresponding rows is equal to an integral
1671 * combination of variables/constraints plus a non-integral constant,
1672 * then there is no way to obtain an integer point and we return
1673 * a tableau that is marked empty.
1674 * The parameter cutting_strategy controls the strategy used when adding cuts
1675 * to remove non-integer points. CUT_ALL adds all possible cuts
1676 * before continuing the search. CUT_ONE adds only one cut at a time.
1678 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
,
1679 int cutting_strategy
)
1690 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1692 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1693 if (isl_tab_mark_empty(tab
) < 0)
1697 row
= tab
->var
[var
].index
;
1698 row
= add_cut(tab
, row
);
1701 if (cutting_strategy
== CUT_ONE
)
1703 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1704 if (restore_lexmin(tab
) < 0)
1715 /* Check whether all the currently active samples also satisfy the inequality
1716 * "ineq" (treated as an equality if eq is set).
1717 * Remove those samples that do not.
1719 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1727 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1728 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1729 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1732 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1734 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1735 1 + tab
->n_var
, &v
);
1736 sgn
= isl_int_sgn(v
);
1737 if (eq
? (sgn
== 0) : (sgn
>= 0))
1739 tab
= isl_tab_drop_sample(tab
, i
);
1751 /* Check whether the sample value of the tableau is finite,
1752 * i.e., either the tableau does not use a big parameter, or
1753 * all values of the variables are equal to the big parameter plus
1754 * some constant. This constant is the actual sample value.
1756 static int sample_is_finite(struct isl_tab
*tab
)
1763 for (i
= 0; i
< tab
->n_var
; ++i
) {
1765 if (!tab
->var
[i
].is_row
)
1767 row
= tab
->var
[i
].index
;
1768 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1774 /* Check if the context tableau of sol has any integer points.
1775 * Leave tab in empty state if no integer point can be found.
1776 * If an integer point can be found and if moreover it is finite,
1777 * then it is added to the list of sample values.
1779 * This function is only called when none of the currently active sample
1780 * values satisfies the most recently added constraint.
1782 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1784 struct isl_tab_undo
*snap
;
1789 snap
= isl_tab_snap(tab
);
1790 if (isl_tab_push_basis(tab
) < 0)
1793 tab
= cut_to_integer_lexmin(tab
, CUT_ALL
);
1797 if (!tab
->empty
&& sample_is_finite(tab
)) {
1798 struct isl_vec
*sample
;
1800 sample
= isl_tab_get_sample_value(tab
);
1802 if (isl_tab_add_sample(tab
, sample
) < 0)
1806 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1815 /* Check if any of the currently active sample values satisfies
1816 * the inequality "ineq" (an equality if eq is set).
1818 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1826 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1827 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1828 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1831 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1833 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1834 1 + tab
->n_var
, &v
);
1835 sgn
= isl_int_sgn(v
);
1836 if (eq
? (sgn
== 0) : (sgn
>= 0))
1841 return i
< tab
->n_sample
;
1844 /* Add a div specified by "div" to the tableau "tab" and return
1845 * 1 if the div is obviously non-negative.
1847 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1848 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1852 struct isl_mat
*samples
;
1855 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1858 nonneg
= tab
->var
[r
].is_nonneg
;
1859 tab
->var
[r
].frozen
= 1;
1861 samples
= isl_mat_extend(tab
->samples
,
1862 tab
->n_sample
, 1 + tab
->n_var
);
1863 tab
->samples
= samples
;
1866 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1867 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1868 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1869 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1870 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1876 /* Add a div specified by "div" to both the main tableau and
1877 * the context tableau. In case of the main tableau, we only
1878 * need to add an extra div. In the context tableau, we also
1879 * need to express the meaning of the div.
1880 * Return the index of the div or -1 if anything went wrong.
1882 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1883 struct isl_vec
*div
)
1888 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1891 if (!context
->op
->is_ok(context
))
1894 if (isl_tab_extend_vars(tab
, 1) < 0)
1896 r
= isl_tab_allocate_var(tab
);
1900 tab
->var
[r
].is_nonneg
= 1;
1901 tab
->var
[r
].frozen
= 1;
1904 return tab
->n_div
- 1;
1906 context
->op
->invalidate(context
);
1910 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1913 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1915 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1916 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1918 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1925 /* Return the index of a div that corresponds to "div".
1926 * We first check if we already have such a div and if not, we create one.
1928 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1929 struct isl_vec
*div
)
1932 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1937 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1941 return add_div(tab
, context
, div
);
1944 /* Add a parametric cut to cut away the non-integral sample value
1946 * Let a_i be the coefficients of the constant term and the parameters
1947 * and let b_i be the coefficients of the variables or constraints
1948 * in basis of the tableau.
1949 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1951 * The cut is expressed as
1953 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1955 * If q did not already exist in the context tableau, then it is added first.
1956 * If q is in a column of the main tableau then the "+ q" can be accomplished
1957 * by setting the corresponding entry to the denominator of the constraint.
1958 * If q happens to be in a row of the main tableau, then the corresponding
1959 * row needs to be added instead (taking care of the denominators).
1960 * Note that this is very unlikely, but perhaps not entirely impossible.
1962 * The current value of the cut is known to be negative (or at least
1963 * non-positive), so row_sign is set accordingly.
1965 * Return the row of the cut or -1.
1967 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1968 struct isl_context
*context
)
1970 struct isl_vec
*div
;
1977 unsigned off
= 2 + tab
->M
;
1982 div
= get_row_parameter_div(tab
, row
);
1987 d
= context
->op
->get_div(context
, tab
, div
);
1992 if (isl_tab_extend_cons(tab
, 1) < 0)
1994 r
= isl_tab_allocate_con(tab
);
1998 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1999 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
2000 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
2001 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
2002 isl_int_neg(r_row
[1], r_row
[1]);
2004 isl_int_set_si(r_row
[2], 0);
2005 for (i
= 0; i
< tab
->n_param
; ++i
) {
2006 if (tab
->var
[i
].is_row
)
2008 col
= tab
->var
[i
].index
;
2009 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2010 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2011 tab
->mat
->row
[row
][0]);
2012 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2014 for (i
= 0; i
< tab
->n_div
; ++i
) {
2015 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
2017 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
2018 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2019 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2020 tab
->mat
->row
[row
][0]);
2021 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2023 for (i
= 0; i
< tab
->n_col
; ++i
) {
2024 if (tab
->col_var
[i
] >= 0 &&
2025 (tab
->col_var
[i
] < tab
->n_param
||
2026 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
2028 isl_int_fdiv_r(r_row
[off
+ i
],
2029 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
2031 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
2033 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2035 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
2036 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
2037 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
2038 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
2039 r_row
[0], tab
->mat
->row
[d_row
] + 1,
2040 off
- 1 + tab
->n_col
);
2041 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
2044 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2045 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
2048 tab
->con
[r
].is_nonneg
= 1;
2049 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2052 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
2054 row
= tab
->con
[r
].index
;
2056 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2062 /* Construct a tableau for bmap that can be used for computing
2063 * the lexicographic minimum (or maximum) of bmap.
2064 * If not NULL, then dom is the domain where the minimum
2065 * should be computed. In this case, we set up a parametric
2066 * tableau with row signs (initialized to "unknown").
2067 * If M is set, then the tableau will use a big parameter.
2068 * If max is set, then a maximum should be computed instead of a minimum.
2069 * This means that for each variable x, the tableau will contain the variable
2070 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2071 * of the variables in all constraints are negated prior to adding them
2074 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2075 struct isl_basic_set
*dom
, unsigned M
, int max
)
2078 struct isl_tab
*tab
;
2082 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2083 isl_basic_map_total_dim(bmap
), M
);
2087 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2089 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2090 tab
->n_div
= dom
->n_div
;
2091 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2092 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2093 if (tab
->mat
->n_row
&& !tab
->row_sign
)
2096 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2097 if (isl_tab_mark_empty(tab
) < 0)
2102 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2103 tab
->var
[i
].is_nonneg
= 1;
2104 tab
->var
[i
].frozen
= 1;
2106 o_var
= 1 + tab
->n_param
;
2107 n_var
= tab
->n_var
- tab
->n_param
- tab
->n_div
;
2108 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2110 isl_seq_neg(bmap
->eq
[i
] + o_var
,
2111 bmap
->eq
[i
] + o_var
, n_var
);
2112 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2114 isl_seq_neg(bmap
->eq
[i
] + o_var
,
2115 bmap
->eq
[i
] + o_var
, n_var
);
2116 if (!tab
|| tab
->empty
)
2119 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2121 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2123 isl_seq_neg(bmap
->ineq
[i
] + o_var
,
2124 bmap
->ineq
[i
] + o_var
, n_var
);
2125 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2127 isl_seq_neg(bmap
->ineq
[i
] + o_var
,
2128 bmap
->ineq
[i
] + o_var
, n_var
);
2129 if (!tab
|| tab
->empty
)
2138 /* Given a main tableau where more than one row requires a split,
2139 * determine and return the "best" row to split on.
2141 * Given two rows in the main tableau, if the inequality corresponding
2142 * to the first row is redundant with respect to that of the second row
2143 * in the current tableau, then it is better to split on the second row,
2144 * since in the positive part, both row will be positive.
2145 * (In the negative part a pivot will have to be performed and just about
2146 * anything can happen to the sign of the other row.)
2148 * As a simple heuristic, we therefore select the row that makes the most
2149 * of the other rows redundant.
2151 * Perhaps it would also be useful to look at the number of constraints
2152 * that conflict with any given constraint.
2154 * best is the best row so far (-1 when we have not found any row yet).
2155 * best_r is the number of other rows made redundant by row best.
2156 * When best is still -1, bset_r is meaningless, but it is initialized
2157 * to some arbitrary value (0) anyway. Without this redundant initialization
2158 * valgrind may warn about uninitialized memory accesses when isl
2159 * is compiled with some versions of gcc.
2161 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2163 struct isl_tab_undo
*snap
;
2169 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2172 snap
= isl_tab_snap(context_tab
);
2174 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2175 struct isl_tab_undo
*snap2
;
2176 struct isl_vec
*ineq
= NULL
;
2180 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2182 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2185 ineq
= get_row_parameter_ineq(tab
, split
);
2188 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2193 snap2
= isl_tab_snap(context_tab
);
2195 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2196 struct isl_tab_var
*var
;
2200 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2202 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2205 ineq
= get_row_parameter_ineq(tab
, row
);
2208 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2212 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2213 if (!context_tab
->empty
&&
2214 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2216 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2219 if (best
== -1 || r
> best_r
) {
2223 if (isl_tab_rollback(context_tab
, snap
) < 0)
2230 static struct isl_basic_set
*context_lex_peek_basic_set(
2231 struct isl_context
*context
)
2233 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2236 return isl_tab_peek_bset(clex
->tab
);
2239 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2241 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2245 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2246 int check
, int update
)
2248 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2249 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2251 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2254 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2258 clex
->tab
= check_integer_feasible(clex
->tab
);
2261 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2264 isl_tab_free(clex
->tab
);
2268 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2269 int check
, int update
)
2271 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2272 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2274 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2276 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2280 clex
->tab
= check_integer_feasible(clex
->tab
);
2283 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2286 isl_tab_free(clex
->tab
);
2290 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2292 struct isl_context
*context
= (struct isl_context
*)user
;
2293 context_lex_add_ineq(context
, ineq
, 0, 0);
2294 return context
->op
->is_ok(context
) ? 0 : -1;
2297 /* Check which signs can be obtained by "ineq" on all the currently
2298 * active sample values. See row_sign for more information.
2300 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2306 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2308 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2309 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2310 return isl_tab_row_unknown
);
2313 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2314 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2315 1 + tab
->n_var
, &tmp
);
2316 sgn
= isl_int_sgn(tmp
);
2317 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2318 if (res
== isl_tab_row_unknown
)
2319 res
= isl_tab_row_pos
;
2320 if (res
== isl_tab_row_neg
)
2321 res
= isl_tab_row_any
;
2324 if (res
== isl_tab_row_unknown
)
2325 res
= isl_tab_row_neg
;
2326 if (res
== isl_tab_row_pos
)
2327 res
= isl_tab_row_any
;
2329 if (res
== isl_tab_row_any
)
2337 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2338 isl_int
*ineq
, int strict
)
2340 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2341 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2344 /* Check whether "ineq" can be added to the tableau without rendering
2347 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2349 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2350 struct isl_tab_undo
*snap
;
2356 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2359 snap
= isl_tab_snap(clex
->tab
);
2360 if (isl_tab_push_basis(clex
->tab
) < 0)
2362 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2363 clex
->tab
= check_integer_feasible(clex
->tab
);
2366 feasible
= !clex
->tab
->empty
;
2367 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2373 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2374 struct isl_vec
*div
)
2376 return get_div(tab
, context
, div
);
2379 /* Add a div specified by "div" to the context tableau and return
2380 * 1 if the div is obviously non-negative.
2381 * context_tab_add_div will always return 1, because all variables
2382 * in a isl_context_lex tableau are non-negative.
2383 * However, if we are using a big parameter in the context, then this only
2384 * reflects the non-negativity of the variable used to _encode_ the
2385 * div, i.e., div' = M + div, so we can't draw any conclusions.
2387 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2389 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2391 nonneg
= context_tab_add_div(clex
->tab
, div
,
2392 context_lex_add_ineq_wrap
, context
);
2400 static int context_lex_detect_equalities(struct isl_context
*context
,
2401 struct isl_tab
*tab
)
2406 static int context_lex_best_split(struct isl_context
*context
,
2407 struct isl_tab
*tab
)
2409 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2410 struct isl_tab_undo
*snap
;
2413 snap
= isl_tab_snap(clex
->tab
);
2414 if (isl_tab_push_basis(clex
->tab
) < 0)
2416 r
= best_split(tab
, clex
->tab
);
2418 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2424 static int context_lex_is_empty(struct isl_context
*context
)
2426 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2429 return clex
->tab
->empty
;
2432 static void *context_lex_save(struct isl_context
*context
)
2434 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2435 struct isl_tab_undo
*snap
;
2437 snap
= isl_tab_snap(clex
->tab
);
2438 if (isl_tab_push_basis(clex
->tab
) < 0)
2440 if (isl_tab_save_samples(clex
->tab
) < 0)
2446 static void context_lex_restore(struct isl_context
*context
, void *save
)
2448 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2449 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2450 isl_tab_free(clex
->tab
);
2455 static void context_lex_discard(void *save
)
2459 static int context_lex_is_ok(struct isl_context
*context
)
2461 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2465 /* For each variable in the context tableau, check if the variable can
2466 * only attain non-negative values. If so, mark the parameter as non-negative
2467 * in the main tableau. This allows for a more direct identification of some
2468 * cases of violated constraints.
2470 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2471 struct isl_tab
*context_tab
)
2474 struct isl_tab_undo
*snap
;
2475 struct isl_vec
*ineq
= NULL
;
2476 struct isl_tab_var
*var
;
2479 if (context_tab
->n_var
== 0)
2482 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2486 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2489 snap
= isl_tab_snap(context_tab
);
2492 isl_seq_clr(ineq
->el
, ineq
->size
);
2493 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2494 isl_int_set_si(ineq
->el
[1 + i
], 1);
2495 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2497 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2498 if (!context_tab
->empty
&&
2499 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2501 if (i
>= tab
->n_param
)
2502 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2503 tab
->var
[j
].is_nonneg
= 1;
2506 isl_int_set_si(ineq
->el
[1 + i
], 0);
2507 if (isl_tab_rollback(context_tab
, snap
) < 0)
2511 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2512 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2524 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2525 struct isl_context
*context
, struct isl_tab
*tab
)
2527 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2528 struct isl_tab_undo
*snap
;
2533 snap
= isl_tab_snap(clex
->tab
);
2534 if (isl_tab_push_basis(clex
->tab
) < 0)
2537 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2539 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2548 static void context_lex_invalidate(struct isl_context
*context
)
2550 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2551 isl_tab_free(clex
->tab
);
2555 static void context_lex_free(struct isl_context
*context
)
2557 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2558 isl_tab_free(clex
->tab
);
2562 struct isl_context_op isl_context_lex_op
= {
2563 context_lex_detect_nonnegative_parameters
,
2564 context_lex_peek_basic_set
,
2565 context_lex_peek_tab
,
2567 context_lex_add_ineq
,
2568 context_lex_ineq_sign
,
2569 context_lex_test_ineq
,
2570 context_lex_get_div
,
2571 context_lex_add_div
,
2572 context_lex_detect_equalities
,
2573 context_lex_best_split
,
2574 context_lex_is_empty
,
2577 context_lex_restore
,
2578 context_lex_discard
,
2579 context_lex_invalidate
,
2583 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2585 struct isl_tab
*tab
;
2589 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2592 if (isl_tab_track_bset(tab
, bset
) < 0)
2594 tab
= isl_tab_init_samples(tab
);
2597 isl_basic_set_free(bset
);
2601 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2603 struct isl_context_lex
*clex
;
2608 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2612 clex
->context
.op
= &isl_context_lex_op
;
2614 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2615 if (restore_lexmin(clex
->tab
) < 0)
2617 clex
->tab
= check_integer_feasible(clex
->tab
);
2621 return &clex
->context
;
2623 clex
->context
.op
->free(&clex
->context
);
2627 /* Representation of the context when using generalized basis reduction.
2629 * "shifted" contains the offsets of the unit hypercubes that lie inside the
2630 * context. Any rational point in "shifted" can therefore be rounded
2631 * up to an integer point in the context.
2632 * If the context is constrained by any equality, then "shifted" is not used
2633 * as it would be empty.
2635 struct isl_context_gbr
{
2636 struct isl_context context
;
2637 struct isl_tab
*tab
;
2638 struct isl_tab
*shifted
;
2639 struct isl_tab
*cone
;
2642 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2643 struct isl_context
*context
, struct isl_tab
*tab
)
2645 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2648 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2651 static struct isl_basic_set
*context_gbr_peek_basic_set(
2652 struct isl_context
*context
)
2654 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2657 return isl_tab_peek_bset(cgbr
->tab
);
2660 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2662 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2666 /* Initialize the "shifted" tableau of the context, which
2667 * contains the constraints of the original tableau shifted
2668 * by the sum of all negative coefficients. This ensures
2669 * that any rational point in the shifted tableau can
2670 * be rounded up to yield an integer point in the original tableau.
2672 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2675 struct isl_vec
*cst
;
2676 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2677 unsigned dim
= isl_basic_set_total_dim(bset
);
2679 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2683 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2684 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2685 for (j
= 0; j
< dim
; ++j
) {
2686 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2688 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2689 bset
->ineq
[i
][1 + j
]);
2693 cgbr
->shifted
= isl_tab_from_basic_set(bset
, 0);
2695 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2696 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2701 /* Check if the shifted tableau is non-empty, and if so
2702 * use the sample point to construct an integer point
2703 * of the context tableau.
2705 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2707 struct isl_vec
*sample
;
2710 gbr_init_shifted(cgbr
);
2713 if (cgbr
->shifted
->empty
)
2714 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2716 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2717 sample
= isl_vec_ceil(sample
);
2722 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2729 for (i
= 0; i
< bset
->n_eq
; ++i
)
2730 isl_int_set_si(bset
->eq
[i
][0], 0);
2732 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2733 isl_int_set_si(bset
->ineq
[i
][0], 0);
2738 static int use_shifted(struct isl_context_gbr
*cgbr
)
2742 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2745 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2747 struct isl_basic_set
*bset
;
2748 struct isl_basic_set
*cone
;
2750 if (isl_tab_sample_is_integer(cgbr
->tab
))
2751 return isl_tab_get_sample_value(cgbr
->tab
);
2753 if (use_shifted(cgbr
)) {
2754 struct isl_vec
*sample
;
2756 sample
= gbr_get_shifted_sample(cgbr
);
2757 if (!sample
|| sample
->size
> 0)
2760 isl_vec_free(sample
);
2764 bset
= isl_tab_peek_bset(cgbr
->tab
);
2765 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2768 if (isl_tab_track_bset(cgbr
->cone
,
2769 isl_basic_set_copy(bset
)) < 0)
2772 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2775 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2776 struct isl_vec
*sample
;
2777 struct isl_tab_undo
*snap
;
2779 if (cgbr
->tab
->basis
) {
2780 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2781 isl_mat_free(cgbr
->tab
->basis
);
2782 cgbr
->tab
->basis
= NULL
;
2784 cgbr
->tab
->n_zero
= 0;
2785 cgbr
->tab
->n_unbounded
= 0;
2788 snap
= isl_tab_snap(cgbr
->tab
);
2790 sample
= isl_tab_sample(cgbr
->tab
);
2792 if (!sample
|| isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2793 isl_vec_free(sample
);
2800 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2801 cone
= drop_constant_terms(cone
);
2802 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2803 cone
= isl_basic_set_underlying_set(cone
);
2804 cone
= isl_basic_set_gauss(cone
, NULL
);
2806 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2807 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2808 bset
= isl_basic_set_underlying_set(bset
);
2809 bset
= isl_basic_set_gauss(bset
, NULL
);
2811 return isl_basic_set_sample_with_cone(bset
, cone
);
2814 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2816 struct isl_vec
*sample
;
2821 if (cgbr
->tab
->empty
)
2824 sample
= gbr_get_sample(cgbr
);
2828 if (sample
->size
== 0) {
2829 isl_vec_free(sample
);
2830 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2835 if (isl_tab_add_sample(cgbr
->tab
, sample
) < 0)
2840 isl_tab_free(cgbr
->tab
);
2844 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2849 if (isl_tab_extend_cons(tab
, 2) < 0)
2852 if (isl_tab_add_eq(tab
, eq
) < 0)
2861 /* Add the equality described by "eq" to the context.
2862 * If "check" is set, then we check if the context is empty after
2863 * adding the equality.
2864 * If "update" is set, then we check if the samples are still valid.
2866 * We do not explicitly add shifted copies of the equality to
2867 * cgbr->shifted since they would conflict with each other.
2868 * Instead, we directly mark cgbr->shifted empty.
2870 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2871 int check
, int update
)
2873 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2875 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2877 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2878 if (isl_tab_mark_empty(cgbr
->shifted
) < 0)
2882 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2883 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2885 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2890 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2894 check_gbr_integer_feasible(cgbr
);
2897 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2900 isl_tab_free(cgbr
->tab
);
2904 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2909 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2912 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2915 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2918 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2920 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2923 for (i
= 0; i
< dim
; ++i
) {
2924 if (!isl_int_is_neg(ineq
[1 + i
]))
2926 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2929 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2932 for (i
= 0; i
< dim
; ++i
) {
2933 if (!isl_int_is_neg(ineq
[1 + i
]))
2935 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2939 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2940 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2942 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2948 isl_tab_free(cgbr
->tab
);
2952 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2953 int check
, int update
)
2955 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2957 add_gbr_ineq(cgbr
, ineq
);
2962 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2966 check_gbr_integer_feasible(cgbr
);
2969 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2972 isl_tab_free(cgbr
->tab
);
2976 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2978 struct isl_context
*context
= (struct isl_context
*)user
;
2979 context_gbr_add_ineq(context
, ineq
, 0, 0);
2980 return context
->op
->is_ok(context
) ? 0 : -1;
2983 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2984 isl_int
*ineq
, int strict
)
2986 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2987 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2990 /* Check whether "ineq" can be added to the tableau without rendering
2993 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2995 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2996 struct isl_tab_undo
*snap
;
2997 struct isl_tab_undo
*shifted_snap
= NULL
;
2998 struct isl_tab_undo
*cone_snap
= NULL
;
3004 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
3007 snap
= isl_tab_snap(cgbr
->tab
);
3009 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3011 cone_snap
= isl_tab_snap(cgbr
->cone
);
3012 add_gbr_ineq(cgbr
, ineq
);
3013 check_gbr_integer_feasible(cgbr
);
3016 feasible
= !cgbr
->tab
->empty
;
3017 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3020 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
3022 } else if (cgbr
->shifted
) {
3023 isl_tab_free(cgbr
->shifted
);
3024 cgbr
->shifted
= NULL
;
3027 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
3029 } else if (cgbr
->cone
) {
3030 isl_tab_free(cgbr
->cone
);
3037 /* Return the column of the last of the variables associated to
3038 * a column that has a non-zero coefficient.
3039 * This function is called in a context where only coefficients
3040 * of parameters or divs can be non-zero.
3042 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
3047 if (tab
->n_var
== 0)
3050 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
3051 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
3053 if (tab
->var
[i
].is_row
)
3055 col
= tab
->var
[i
].index
;
3056 if (!isl_int_is_zero(p
[col
]))
3063 /* Look through all the recently added equalities in the context
3064 * to see if we can propagate any of them to the main tableau.
3066 * The newly added equalities in the context are encoded as pairs
3067 * of inequalities starting at inequality "first".
3069 * We tentatively add each of these equalities to the main tableau
3070 * and if this happens to result in a row with a final coefficient
3071 * that is one or negative one, we use it to kill a column
3072 * in the main tableau. Otherwise, we discard the tentatively
3075 * Return 0 on success and -1 on failure.
3077 static int propagate_equalities(struct isl_context_gbr
*cgbr
,
3078 struct isl_tab
*tab
, unsigned first
)
3081 struct isl_vec
*eq
= NULL
;
3083 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
3087 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
3090 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
3091 tab
->n_var
- tab
->n_param
- tab
->n_div
);
3092 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
3095 struct isl_tab_undo
*snap
;
3096 snap
= isl_tab_snap(tab
);
3098 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
3099 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
3100 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3103 r
= isl_tab_add_row(tab
, eq
->el
);
3106 r
= tab
->con
[r
].index
;
3107 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3108 if (j
< 0 || j
< tab
->n_dead
||
3109 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3110 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3111 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3112 if (isl_tab_rollback(tab
, snap
) < 0)
3116 if (isl_tab_pivot(tab
, r
, j
) < 0)
3118 if (isl_tab_kill_col(tab
, j
) < 0)
3121 if (restore_lexmin(tab
) < 0)
3130 isl_tab_free(cgbr
->tab
);
3135 static int context_gbr_detect_equalities(struct isl_context
*context
,
3136 struct isl_tab
*tab
)
3138 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3142 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3143 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3146 if (isl_tab_track_bset(cgbr
->cone
,
3147 isl_basic_set_copy(bset
)) < 0)
3150 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3153 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3154 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3157 if (cgbr
->tab
->bmap
->n_ineq
> n_ineq
&&
3158 propagate_equalities(cgbr
, tab
, n_ineq
) < 0)
3163 isl_tab_free(cgbr
->tab
);
3168 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3169 struct isl_vec
*div
)
3171 return get_div(tab
, context
, div
);
3174 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3176 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3180 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3182 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3184 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3187 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3188 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3189 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3192 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3193 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3196 return context_tab_add_div(cgbr
->tab
, div
,
3197 context_gbr_add_ineq_wrap
, context
);
3200 static int context_gbr_best_split(struct isl_context
*context
,
3201 struct isl_tab
*tab
)
3203 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3204 struct isl_tab_undo
*snap
;
3207 snap
= isl_tab_snap(cgbr
->tab
);
3208 r
= best_split(tab
, cgbr
->tab
);
3210 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3216 static int context_gbr_is_empty(struct isl_context
*context
)
3218 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3221 return cgbr
->tab
->empty
;
3224 struct isl_gbr_tab_undo
{
3225 struct isl_tab_undo
*tab_snap
;
3226 struct isl_tab_undo
*shifted_snap
;
3227 struct isl_tab_undo
*cone_snap
;
3230 static void *context_gbr_save(struct isl_context
*context
)
3232 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3233 struct isl_gbr_tab_undo
*snap
;
3238 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3242 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3243 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3247 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3249 snap
->shifted_snap
= NULL
;
3252 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3254 snap
->cone_snap
= NULL
;
3262 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3264 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3265 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3268 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0)
3271 if (snap
->shifted_snap
) {
3272 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3274 } else if (cgbr
->shifted
) {
3275 isl_tab_free(cgbr
->shifted
);
3276 cgbr
->shifted
= NULL
;
3279 if (snap
->cone_snap
) {
3280 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3282 } else if (cgbr
->cone
) {
3283 isl_tab_free(cgbr
->cone
);
3292 isl_tab_free(cgbr
->tab
);
3296 static void context_gbr_discard(void *save
)
3298 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3302 static int context_gbr_is_ok(struct isl_context
*context
)
3304 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3308 static void context_gbr_invalidate(struct isl_context
*context
)
3310 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3311 isl_tab_free(cgbr
->tab
);
3315 static void context_gbr_free(struct isl_context
*context
)
3317 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3318 isl_tab_free(cgbr
->tab
);
3319 isl_tab_free(cgbr
->shifted
);
3320 isl_tab_free(cgbr
->cone
);
3324 struct isl_context_op isl_context_gbr_op
= {
3325 context_gbr_detect_nonnegative_parameters
,
3326 context_gbr_peek_basic_set
,
3327 context_gbr_peek_tab
,
3329 context_gbr_add_ineq
,
3330 context_gbr_ineq_sign
,
3331 context_gbr_test_ineq
,
3332 context_gbr_get_div
,
3333 context_gbr_add_div
,
3334 context_gbr_detect_equalities
,
3335 context_gbr_best_split
,
3336 context_gbr_is_empty
,
3339 context_gbr_restore
,
3340 context_gbr_discard
,
3341 context_gbr_invalidate
,
3345 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3347 struct isl_context_gbr
*cgbr
;
3352 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3356 cgbr
->context
.op
= &isl_context_gbr_op
;
3358 cgbr
->shifted
= NULL
;
3360 cgbr
->tab
= isl_tab_from_basic_set(dom
, 1);
3361 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3364 check_gbr_integer_feasible(cgbr
);
3366 return &cgbr
->context
;
3368 cgbr
->context
.op
->free(&cgbr
->context
);
3372 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3377 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3378 return isl_context_lex_alloc(dom
);
3380 return isl_context_gbr_alloc(dom
);
3383 /* Construct an isl_sol_map structure for accumulating the solution.
3384 * If track_empty is set, then we also keep track of the parts
3385 * of the context where there is no solution.
3386 * If max is set, then we are solving a maximization, rather than
3387 * a minimization problem, which means that the variables in the
3388 * tableau have value "M - x" rather than "M + x".
3390 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3391 struct isl_basic_set
*dom
, int track_empty
, int max
)
3393 struct isl_sol_map
*sol_map
= NULL
;
3398 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3402 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3403 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3404 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3405 sol_map
->sol
.max
= max
;
3406 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3407 sol_map
->sol
.add
= &sol_map_add_wrap
;
3408 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3409 sol_map
->sol
.free
= &sol_map_free_wrap
;
3410 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3415 sol_map
->sol
.context
= isl_context_alloc(dom
);
3416 if (!sol_map
->sol
.context
)
3420 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3421 1, ISL_SET_DISJOINT
);
3422 if (!sol_map
->empty
)
3426 isl_basic_set_free(dom
);
3427 return &sol_map
->sol
;
3429 isl_basic_set_free(dom
);
3430 sol_map_free(sol_map
);
3434 /* Check whether all coefficients of (non-parameter) variables
3435 * are non-positive, meaning that no pivots can be performed on the row.
3437 static int is_critical(struct isl_tab
*tab
, int row
)
3440 unsigned off
= 2 + tab
->M
;
3442 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3443 if (tab
->col_var
[j
] >= 0 &&
3444 (tab
->col_var
[j
] < tab
->n_param
||
3445 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3448 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3455 /* Check whether the inequality represented by vec is strict over the integers,
3456 * i.e., there are no integer values satisfying the constraint with
3457 * equality. This happens if the gcd of the coefficients is not a divisor
3458 * of the constant term. If so, scale the constraint down by the gcd
3459 * of the coefficients.
3461 static int is_strict(struct isl_vec
*vec
)
3467 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3468 if (!isl_int_is_one(gcd
)) {
3469 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3470 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3471 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3478 /* Determine the sign of the given row of the main tableau.
3479 * The result is one of
3480 * isl_tab_row_pos: always non-negative; no pivot needed
3481 * isl_tab_row_neg: always non-positive; pivot
3482 * isl_tab_row_any: can be both positive and negative; split
3484 * We first handle some simple cases
3485 * - the row sign may be known already
3486 * - the row may be obviously non-negative
3487 * - the parametric constant may be equal to that of another row
3488 * for which we know the sign. This sign will be either "pos" or
3489 * "any". If it had been "neg" then we would have pivoted before.
3491 * If none of these cases hold, we check the value of the row for each
3492 * of the currently active samples. Based on the signs of these values
3493 * we make an initial determination of the sign of the row.
3495 * all zero -> unk(nown)
3496 * all non-negative -> pos
3497 * all non-positive -> neg
3498 * both negative and positive -> all
3500 * If we end up with "all", we are done.
3501 * Otherwise, we perform a check for positive and/or negative
3502 * values as follows.
3504 * samples neg unk pos
3510 * There is no special sign for "zero", because we can usually treat zero
3511 * as either non-negative or non-positive, whatever works out best.
3512 * However, if the row is "critical", meaning that pivoting is impossible
3513 * then we don't want to limp zero with the non-positive case, because
3514 * then we we would lose the solution for those values of the parameters
3515 * where the value of the row is zero. Instead, we treat 0 as non-negative
3516 * ensuring a split if the row can attain both zero and negative values.
3517 * The same happens when the original constraint was one that could not
3518 * be satisfied with equality by any integer values of the parameters.
3519 * In this case, we normalize the constraint, but then a value of zero
3520 * for the normalized constraint is actually a positive value for the
3521 * original constraint, so again we need to treat zero as non-negative.
3522 * In both these cases, we have the following decision tree instead:
3524 * all non-negative -> pos
3525 * all negative -> neg
3526 * both negative and non-negative -> all
3534 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3535 struct isl_sol
*sol
, int row
)
3537 struct isl_vec
*ineq
= NULL
;
3538 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3543 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3544 return tab
->row_sign
[row
];
3545 if (is_obviously_nonneg(tab
, row
))
3546 return isl_tab_row_pos
;
3547 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3548 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3550 if (identical_parameter_line(tab
, row
, row2
))
3551 return tab
->row_sign
[row2
];
3554 critical
= is_critical(tab
, row
);
3556 ineq
= get_row_parameter_ineq(tab
, row
);
3560 strict
= is_strict(ineq
);
3562 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3563 critical
|| strict
);
3565 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3566 /* test for negative values */
3568 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3569 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3571 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3575 res
= isl_tab_row_pos
;
3577 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3579 if (res
== isl_tab_row_neg
) {
3580 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3581 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3585 if (res
== isl_tab_row_neg
) {
3586 /* test for positive values */
3588 if (!critical
&& !strict
)
3589 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3591 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3595 res
= isl_tab_row_any
;
3602 return isl_tab_row_unknown
;
3605 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3607 /* Find solutions for values of the parameters that satisfy the given
3610 * We currently take a snapshot of the context tableau that is reset
3611 * when we return from this function, while we make a copy of the main
3612 * tableau, leaving the original main tableau untouched.
3613 * These are fairly arbitrary choices. Making a copy also of the context
3614 * tableau would obviate the need to undo any changes made to it later,
3615 * while taking a snapshot of the main tableau could reduce memory usage.
3616 * If we were to switch to taking a snapshot of the main tableau,
3617 * we would have to keep in mind that we need to save the row signs
3618 * and that we need to do this before saving the current basis
3619 * such that the basis has been restore before we restore the row signs.
3621 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3627 saved
= sol
->context
->op
->save(sol
->context
);
3629 tab
= isl_tab_dup(tab
);
3633 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3635 find_solutions(sol
, tab
);
3638 sol
->context
->op
->restore(sol
->context
, saved
);
3640 sol
->context
->op
->discard(saved
);
3646 /* Record the absence of solutions for those values of the parameters
3647 * that do not satisfy the given inequality with equality.
3649 static void no_sol_in_strict(struct isl_sol
*sol
,
3650 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3655 if (!sol
->context
|| sol
->error
)
3657 saved
= sol
->context
->op
->save(sol
->context
);
3659 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3661 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3670 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3672 sol
->context
->op
->restore(sol
->context
, saved
);
3678 /* Compute the lexicographic minimum of the set represented by the main
3679 * tableau "tab" within the context "sol->context_tab".
3680 * On entry the sample value of the main tableau is lexicographically
3681 * less than or equal to this lexicographic minimum.
3682 * Pivots are performed until a feasible point is found, which is then
3683 * necessarily equal to the minimum, or until the tableau is found to
3684 * be infeasible. Some pivots may need to be performed for only some
3685 * feasible values of the context tableau. If so, the context tableau
3686 * is split into a part where the pivot is needed and a part where it is not.
3688 * Whenever we enter the main loop, the main tableau is such that no
3689 * "obvious" pivots need to be performed on it, where "obvious" means
3690 * that the given row can be seen to be negative without looking at
3691 * the context tableau. In particular, for non-parametric problems,
3692 * no pivots need to be performed on the main tableau.
3693 * The caller of find_solutions is responsible for making this property
3694 * hold prior to the first iteration of the loop, while restore_lexmin
3695 * is called before every other iteration.
3697 * Inside the main loop, we first examine the signs of the rows of
3698 * the main tableau within the context of the context tableau.
3699 * If we find a row that is always non-positive for all values of
3700 * the parameters satisfying the context tableau and negative for at
3701 * least one value of the parameters, we perform the appropriate pivot
3702 * and start over. An exception is the case where no pivot can be
3703 * performed on the row. In this case, we require that the sign of
3704 * the row is negative for all values of the parameters (rather than just
3705 * non-positive). This special case is handled inside row_sign, which
3706 * will say that the row can have any sign if it determines that it can
3707 * attain both negative and zero values.
3709 * If we can't find a row that always requires a pivot, but we can find
3710 * one or more rows that require a pivot for some values of the parameters
3711 * (i.e., the row can attain both positive and negative signs), then we split
3712 * the context tableau into two parts, one where we force the sign to be
3713 * non-negative and one where we force is to be negative.
3714 * The non-negative part is handled by a recursive call (through find_in_pos).
3715 * Upon returning from this call, we continue with the negative part and
3716 * perform the required pivot.
3718 * If no such rows can be found, all rows are non-negative and we have
3719 * found a (rational) feasible point. If we only wanted a rational point
3721 * Otherwise, we check if all values of the sample point of the tableau
3722 * are integral for the variables. If so, we have found the minimal
3723 * integral point and we are done.
3724 * If the sample point is not integral, then we need to make a distinction
3725 * based on whether the constant term is non-integral or the coefficients
3726 * of the parameters. Furthermore, in order to decide how to handle
3727 * the non-integrality, we also need to know whether the coefficients
3728 * of the other columns in the tableau are integral. This leads
3729 * to the following table. The first two rows do not correspond
3730 * to a non-integral sample point and are only mentioned for completeness.
3732 * constant parameters other
3735 * int int rat | -> no problem
3737 * rat int int -> fail
3739 * rat int rat -> cut
3742 * rat rat rat | -> parametric cut
3745 * rat rat int | -> split context
3747 * If the parametric constant is completely integral, then there is nothing
3748 * to be done. If the constant term is non-integral, but all the other
3749 * coefficient are integral, then there is nothing that can be done
3750 * and the tableau has no integral solution.
3751 * If, on the other hand, one or more of the other columns have rational
3752 * coefficients, but the parameter coefficients are all integral, then
3753 * we can perform a regular (non-parametric) cut.
3754 * Finally, if there is any parameter coefficient that is non-integral,
3755 * then we need to involve the context tableau. There are two cases here.
3756 * If at least one other column has a rational coefficient, then we
3757 * can perform a parametric cut in the main tableau by adding a new
3758 * integer division in the context tableau.
3759 * If all other columns have integral coefficients, then we need to
3760 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3761 * is always integral. We do this by introducing an integer division
3762 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3763 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3764 * Since q is expressed in the tableau as
3765 * c + \sum a_i y_i - m q >= 0
3766 * -c - \sum a_i y_i + m q + m - 1 >= 0
3767 * it is sufficient to add the inequality
3768 * -c - \sum a_i y_i + m q >= 0
3769 * In the part of the context where this inequality does not hold, the
3770 * main tableau is marked as being empty.
3772 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3774 struct isl_context
*context
;
3777 if (!tab
|| sol
->error
)
3780 context
= sol
->context
;
3784 if (context
->op
->is_empty(context
))
3787 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3790 enum isl_tab_row_sign sgn
;
3794 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3795 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3797 sgn
= row_sign(tab
, sol
, row
);
3800 tab
->row_sign
[row
] = sgn
;
3801 if (sgn
== isl_tab_row_any
)
3803 if (sgn
== isl_tab_row_any
&& split
== -1)
3805 if (sgn
== isl_tab_row_neg
)
3808 if (row
< tab
->n_row
)
3811 struct isl_vec
*ineq
;
3813 split
= context
->op
->best_split(context
, tab
);
3816 ineq
= get_row_parameter_ineq(tab
, split
);
3820 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3821 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3823 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3824 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3826 tab
->row_sign
[split
] = isl_tab_row_pos
;
3828 find_in_pos(sol
, tab
, ineq
->el
);
3829 tab
->row_sign
[split
] = isl_tab_row_neg
;
3830 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3831 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3833 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3841 row
= first_non_integer_row(tab
, &flags
);
3844 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3845 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3846 if (isl_tab_mark_empty(tab
) < 0)
3850 row
= add_cut(tab
, row
);
3851 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3852 struct isl_vec
*div
;
3853 struct isl_vec
*ineq
;
3855 div
= get_row_split_div(tab
, row
);
3858 d
= context
->op
->get_div(context
, tab
, div
);
3862 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3866 no_sol_in_strict(sol
, tab
, ineq
);
3867 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3868 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3870 if (sol
->error
|| !context
->op
->is_ok(context
))
3872 tab
= set_row_cst_to_div(tab
, row
, d
);
3873 if (context
->op
->is_empty(context
))
3876 row
= add_parametric_cut(tab
, row
, context
);
3891 /* Does "sol" contain a pair of partial solutions that could potentially
3894 * We currently only check that "sol" is not in an error state
3895 * and that there are at least two partial solutions of which the final two
3896 * are defined at the same level.
3898 static int sol_has_mergeable_solutions(struct isl_sol
*sol
)
3904 if (!sol
->partial
->next
)
3906 return sol
->partial
->level
== sol
->partial
->next
->level
;
3909 /* Compute the lexicographic minimum of the set represented by the main
3910 * tableau "tab" within the context "sol->context_tab".
3912 * As a preprocessing step, we first transfer all the purely parametric
3913 * equalities from the main tableau to the context tableau, i.e.,
3914 * parameters that have been pivoted to a row.
3915 * These equalities are ignored by the main algorithm, because the
3916 * corresponding rows may not be marked as being non-negative.
3917 * In parts of the context where the added equality does not hold,
3918 * the main tableau is marked as being empty.
3920 * Before we embark on the actual computation, we save a copy
3921 * of the context. When we return, we check if there are any
3922 * partial solutions that can potentially be merged. If so,
3923 * we perform a rollback to the initial state of the context.
3924 * The merging of partial solutions happens inside calls to
3925 * sol_dec_level that are pushed onto the undo stack of the context.
3926 * If there are no partial solutions that can potentially be merged
3927 * then the rollback is skipped as it would just be wasted effort.
3929 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3939 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3943 if (tab
->row_var
[row
] < 0)
3945 if (tab
->row_var
[row
] >= tab
->n_param
&&
3946 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3948 if (tab
->row_var
[row
] < tab
->n_param
)
3949 p
= tab
->row_var
[row
];
3951 p
= tab
->row_var
[row
]
3952 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3954 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3957 get_row_parameter_line(tab
, row
, eq
->el
);
3958 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3959 eq
= isl_vec_normalize(eq
);
3962 no_sol_in_strict(sol
, tab
, eq
);
3964 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3966 no_sol_in_strict(sol
, tab
, eq
);
3967 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3969 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3973 if (isl_tab_mark_redundant(tab
, row
) < 0)
3976 if (sol
->context
->op
->is_empty(sol
->context
))
3979 row
= tab
->n_redundant
- 1;
3982 saved
= sol
->context
->op
->save(sol
->context
);
3984 find_solutions(sol
, tab
);
3986 if (sol_has_mergeable_solutions(sol
))
3987 sol
->context
->op
->restore(sol
->context
, saved
);
3989 sol
->context
->op
->discard(saved
);
4000 /* Check if integer division "div" of "dom" also occurs in "bmap".
4001 * If so, return its position within the divs.
4002 * If not, return -1.
4004 static int find_context_div(struct isl_basic_map
*bmap
,
4005 struct isl_basic_set
*dom
, unsigned div
)
4008 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4009 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
4011 if (isl_int_is_zero(dom
->div
[div
][0]))
4013 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
4016 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4017 if (isl_int_is_zero(bmap
->div
[i
][0]))
4019 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
4020 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
4022 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
4028 /* The correspondence between the variables in the main tableau,
4029 * the context tableau, and the input map and domain is as follows.
4030 * The first n_param and the last n_div variables of the main tableau
4031 * form the variables of the context tableau.
4032 * In the basic map, these n_param variables correspond to the
4033 * parameters and the input dimensions. In the domain, they correspond
4034 * to the parameters and the set dimensions.
4035 * The n_div variables correspond to the integer divisions in the domain.
4036 * To ensure that everything lines up, we may need to copy some of the
4037 * integer divisions of the domain to the map. These have to be placed
4038 * in the same order as those in the context and they have to be placed
4039 * after any other integer divisions that the map may have.
4040 * This function performs the required reordering.
4042 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
4043 struct isl_basic_set
*dom
)
4049 for (i
= 0; i
< dom
->n_div
; ++i
)
4050 if (find_context_div(bmap
, dom
, i
) != -1)
4052 other
= bmap
->n_div
- common
;
4053 if (dom
->n_div
- common
> 0) {
4054 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
4055 dom
->n_div
- common
, 0, 0);
4059 for (i
= 0; i
< dom
->n_div
; ++i
) {
4060 int pos
= find_context_div(bmap
, dom
, i
);
4062 pos
= isl_basic_map_alloc_div(bmap
);
4065 isl_int_set_si(bmap
->div
[pos
][0], 0);
4067 if (pos
!= other
+ i
)
4068 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
4072 isl_basic_map_free(bmap
);
4076 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4077 * some obvious symmetries.
4079 * We make sure the divs in the domain are properly ordered,
4080 * because they will be added one by one in the given order
4081 * during the construction of the solution map.
4083 static struct isl_sol
*basic_map_partial_lexopt_base(
4084 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4085 __isl_give isl_set
**empty
, int max
,
4086 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
4087 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
4089 struct isl_tab
*tab
;
4090 struct isl_sol
*sol
= NULL
;
4091 struct isl_context
*context
;
4094 dom
= isl_basic_set_order_divs(dom
);
4095 bmap
= align_context_divs(bmap
, dom
);
4097 sol
= init(bmap
, dom
, !!empty
, max
);
4101 context
= sol
->context
;
4102 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
4104 else if (isl_basic_map_plain_is_empty(bmap
)) {
4107 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
4109 tab
= tab_for_lexmin(bmap
,
4110 context
->op
->peek_basic_set(context
), 1, max
);
4111 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4112 find_solutions_main(sol
, tab
);
4117 isl_basic_map_free(bmap
);
4121 isl_basic_map_free(bmap
);
4125 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4126 * some obvious symmetries.
4128 * We call basic_map_partial_lexopt_base and extract the results.
4130 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
4131 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4132 __isl_give isl_set
**empty
, int max
)
4134 isl_map
*result
= NULL
;
4135 struct isl_sol
*sol
;
4136 struct isl_sol_map
*sol_map
;
4138 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
4142 sol_map
= (struct isl_sol_map
*) sol
;
4144 result
= isl_map_copy(sol_map
->map
);
4146 *empty
= isl_set_copy(sol_map
->empty
);
4147 sol_free(&sol_map
->sol
);
4151 /* Structure used during detection of parallel constraints.
4152 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4153 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4154 * val: the coefficients of the output variables
4156 struct isl_constraint_equal_info
{
4157 isl_basic_map
*bmap
;
4163 /* Check whether the coefficients of the output variables
4164 * of the constraint in "entry" are equal to info->val.
4166 static int constraint_equal(const void *entry
, const void *val
)
4168 isl_int
**row
= (isl_int
**)entry
;
4169 const struct isl_constraint_equal_info
*info
= val
;
4171 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4174 /* Check whether "bmap" has a pair of constraints that have
4175 * the same coefficients for the output variables.
4176 * Note that the coefficients of the existentially quantified
4177 * variables need to be zero since the existentially quantified
4178 * of the result are usually not the same as those of the input.
4179 * the isl_dim_out and isl_dim_div dimensions.
4180 * If so, return 1 and return the row indices of the two constraints
4181 * in *first and *second.
4183 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4184 int *first
, int *second
)
4188 struct isl_hash_table
*table
= NULL
;
4189 struct isl_hash_table_entry
*entry
;
4190 struct isl_constraint_equal_info info
;
4194 ctx
= isl_basic_map_get_ctx(bmap
);
4195 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4199 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4200 isl_basic_map_dim(bmap
, isl_dim_in
);
4202 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4203 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4204 info
.n_out
= n_out
+ n_div
;
4205 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4208 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4209 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4211 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4213 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4214 entry
= isl_hash_table_find(ctx
, table
, hash
,
4215 constraint_equal
, &info
, 1);
4220 entry
->data
= &bmap
->ineq
[i
];
4223 if (i
< bmap
->n_ineq
) {
4224 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4228 isl_hash_table_free(ctx
, table
);
4230 return i
< bmap
->n_ineq
;
4232 isl_hash_table_free(ctx
, table
);
4236 /* Given a set of upper bounds in "var", add constraints to "bset"
4237 * that make the i-th bound smallest.
4239 * In particular, if there are n bounds b_i, then add the constraints
4241 * b_i <= b_j for j > i
4242 * b_i < b_j for j < i
4244 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4245 __isl_keep isl_mat
*var
, int i
)
4250 ctx
= isl_mat_get_ctx(var
);
4252 for (j
= 0; j
< var
->n_row
; ++j
) {
4255 k
= isl_basic_set_alloc_inequality(bset
);
4258 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4259 ctx
->negone
, var
->row
[i
], var
->n_col
);
4260 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4262 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4265 bset
= isl_basic_set_finalize(bset
);
4269 isl_basic_set_free(bset
);
4273 /* Given a set of upper bounds on the last "input" variable m,
4274 * construct a set that assigns the minimal upper bound to m, i.e.,
4275 * construct a set that divides the space into cells where one
4276 * of the upper bounds is smaller than all the others and assign
4277 * this upper bound to m.
4279 * In particular, if there are n bounds b_i, then the result
4280 * consists of n basic sets, each one of the form
4283 * b_i <= b_j for j > i
4284 * b_i < b_j for j < i
4286 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4287 __isl_take isl_mat
*var
)
4290 isl_basic_set
*bset
= NULL
;
4291 isl_set
*set
= NULL
;
4296 set
= isl_set_alloc_space(isl_space_copy(dim
),
4297 var
->n_row
, ISL_SET_DISJOINT
);
4299 for (i
= 0; i
< var
->n_row
; ++i
) {
4300 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4302 k
= isl_basic_set_alloc_equality(bset
);
4305 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4306 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4307 bset
= select_minimum(bset
, var
, i
);
4308 set
= isl_set_add_basic_set(set
, bset
);
4311 isl_space_free(dim
);
4315 isl_basic_set_free(bset
);
4317 isl_space_free(dim
);
4322 /* Given that the last input variable of "bmap" represents the minimum
4323 * of the bounds in "cst", check whether we need to split the domain
4324 * based on which bound attains the minimum.
4326 * A split is needed when the minimum appears in an integer division
4327 * or in an equality. Otherwise, it is only needed if it appears in
4328 * an upper bound that is different from the upper bounds on which it
4331 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4332 __isl_keep isl_mat
*cst
)
4338 pos
= cst
->n_col
- 1;
4339 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4341 for (i
= 0; i
< bmap
->n_div
; ++i
)
4342 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4345 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4346 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4349 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4350 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4352 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4354 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4355 total
- pos
- 1) >= 0)
4358 for (j
= 0; j
< cst
->n_row
; ++j
)
4359 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4361 if (j
>= cst
->n_row
)
4368 /* Given that the last set variable of "bset" represents the minimum
4369 * of the bounds in "cst", check whether we need to split the domain
4370 * based on which bound attains the minimum.
4372 * We simply call need_split_basic_map here. This is safe because
4373 * the position of the minimum is computed from "cst" and not
4376 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4377 __isl_keep isl_mat
*cst
)
4379 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4382 /* Given that the last set variable of "set" represents the minimum
4383 * of the bounds in "cst", check whether we need to split the domain
4384 * based on which bound attains the minimum.
4386 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4390 for (i
= 0; i
< set
->n
; ++i
)
4391 if (need_split_basic_set(set
->p
[i
], cst
))
4397 /* Given a set of which the last set variable is the minimum
4398 * of the bounds in "cst", split each basic set in the set
4399 * in pieces where one of the bounds is (strictly) smaller than the others.
4400 * This subdivision is given in "min_expr".
4401 * The variable is subsequently projected out.
4403 * We only do the split when it is needed.
4404 * For example if the last input variable m = min(a,b) and the only
4405 * constraints in the given basic set are lower bounds on m,
4406 * i.e., l <= m = min(a,b), then we can simply project out m
4407 * to obtain l <= a and l <= b, without having to split on whether
4408 * m is equal to a or b.
4410 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4411 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4418 if (!empty
|| !min_expr
|| !cst
)
4421 n_in
= isl_set_dim(empty
, isl_dim_set
);
4422 dim
= isl_set_get_space(empty
);
4423 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4424 res
= isl_set_empty(dim
);
4426 for (i
= 0; i
< empty
->n
; ++i
) {
4429 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4430 if (need_split_basic_set(empty
->p
[i
], cst
))
4431 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4432 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4434 res
= isl_set_union_disjoint(res
, set
);
4437 isl_set_free(empty
);
4438 isl_set_free(min_expr
);
4442 isl_set_free(empty
);
4443 isl_set_free(min_expr
);
4448 /* Given a map of which the last input variable is the minimum
4449 * of the bounds in "cst", split each basic set in the set
4450 * in pieces where one of the bounds is (strictly) smaller than the others.
4451 * This subdivision is given in "min_expr".
4452 * The variable is subsequently projected out.
4454 * The implementation is essentially the same as that of "split".
4456 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4457 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4464 if (!opt
|| !min_expr
|| !cst
)
4467 n_in
= isl_map_dim(opt
, isl_dim_in
);
4468 dim
= isl_map_get_space(opt
);
4469 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4470 res
= isl_map_empty(dim
);
4472 for (i
= 0; i
< opt
->n
; ++i
) {
4475 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4476 if (need_split_basic_map(opt
->p
[i
], cst
))
4477 map
= isl_map_intersect_domain(map
,
4478 isl_set_copy(min_expr
));
4479 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4481 res
= isl_map_union_disjoint(res
, map
);
4485 isl_set_free(min_expr
);
4490 isl_set_free(min_expr
);
4495 static __isl_give isl_map
*basic_map_partial_lexopt(
4496 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4497 __isl_give isl_set
**empty
, int max
);
4502 isl_pw_multi_aff
*pma
;
4505 /* This function is called from basic_map_partial_lexopt_symm.
4506 * The last variable of "bmap" and "dom" corresponds to the minimum
4507 * of the bounds in "cst". "map_space" is the space of the original
4508 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4509 * is the space of the original domain.
4511 * We recursively call basic_map_partial_lexopt and then plug in
4512 * the definition of the minimum in the result.
4514 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4515 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4516 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4517 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4521 union isl_lex_res res
;
4523 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4525 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4528 *empty
= split(*empty
,
4529 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4530 *empty
= isl_set_reset_space(*empty
, set_space
);
4533 opt
= split_domain(opt
, min_expr
, cst
);
4534 opt
= isl_map_reset_space(opt
, map_space
);
4540 /* Given a basic map with at least two parallel constraints (as found
4541 * by the function parallel_constraints), first look for more constraints
4542 * parallel to the two constraint and replace the found list of parallel
4543 * constraints by a single constraint with as "input" part the minimum
4544 * of the input parts of the list of constraints. Then, recursively call
4545 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4546 * and plug in the definition of the minimum in the result.
4548 * More specifically, given a set of constraints
4552 * Replace this set by a single constraint
4556 * with u a new parameter with constraints
4560 * Any solution to the new system is also a solution for the original system
4563 * a x >= -u >= -b_i(p)
4565 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4566 * therefore be plugged into the solution.
4568 static union isl_lex_res
basic_map_partial_lexopt_symm(
4569 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4570 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4571 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4572 __isl_take isl_basic_set
*dom
,
4573 __isl_give isl_set
**empty
,
4574 int max
, __isl_take isl_mat
*cst
,
4575 __isl_take isl_space
*map_space
,
4576 __isl_take isl_space
*set_space
))
4580 unsigned n_in
, n_out
, n_div
;
4582 isl_vec
*var
= NULL
;
4583 isl_mat
*cst
= NULL
;
4584 isl_space
*map_space
, *set_space
;
4585 union isl_lex_res res
;
4587 map_space
= isl_basic_map_get_space(bmap
);
4588 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4590 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4591 isl_basic_map_dim(bmap
, isl_dim_in
);
4592 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4594 ctx
= isl_basic_map_get_ctx(bmap
);
4595 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4596 var
= isl_vec_alloc(ctx
, n_out
);
4597 if ((bmap
->n_ineq
&& !list
) || (n_out
&& !var
))
4602 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4603 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4604 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4608 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4612 for (i
= 0; i
< n
; ++i
)
4613 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4615 bmap
= isl_basic_map_cow(bmap
);
4618 for (i
= n
- 1; i
>= 0; --i
)
4619 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4622 bmap
= isl_basic_map_add_dims(bmap
, isl_dim_in
, 1);
4623 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4624 k
= isl_basic_map_alloc_inequality(bmap
);
4627 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4628 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4629 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4630 bmap
= isl_basic_map_finalize(bmap
);
4632 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4633 dom
= isl_basic_set_add_dims(dom
, isl_dim_set
, 1);
4634 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4635 for (i
= 0; i
< n
; ++i
) {
4636 k
= isl_basic_set_alloc_inequality(dom
);
4639 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4640 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4641 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4647 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4649 isl_space_free(map_space
);
4650 isl_space_free(set_space
);
4654 isl_basic_set_free(dom
);
4655 isl_basic_map_free(bmap
);
4660 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4661 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4662 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4664 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4665 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4668 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4669 * equalities and removing redundant constraints.
4671 * We first check if there are any parallel constraints (left).
4672 * If not, we are in the base case.
4673 * If there are parallel constraints, we replace them by a single
4674 * constraint in basic_map_partial_lexopt_symm and then call
4675 * this function recursively to look for more parallel constraints.
4677 static __isl_give isl_map
*basic_map_partial_lexopt(
4678 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4679 __isl_give isl_set
**empty
, int max
)
4687 if (bmap
->ctx
->opt
->pip_symmetry
)
4688 par
= parallel_constraints(bmap
, &first
, &second
);
4692 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4694 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4697 isl_basic_set_free(dom
);
4698 isl_basic_map_free(bmap
);
4702 /* Compute the lexicographic minimum (or maximum if "max" is set)
4703 * of "bmap" over the domain "dom" and return the result as a map.
4704 * If "empty" is not NULL, then *empty is assigned a set that
4705 * contains those parts of the domain where there is no solution.
4706 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4707 * then we compute the rational optimum. Otherwise, we compute
4708 * the integral optimum.
4710 * We perform some preprocessing. As the PILP solver does not
4711 * handle implicit equalities very well, we first make sure all
4712 * the equalities are explicitly available.
4714 * We also add context constraints to the basic map and remove
4715 * redundant constraints. This is only needed because of the
4716 * way we handle simple symmetries. In particular, we currently look
4717 * for symmetries on the constraints, before we set up the main tableau.
4718 * It is then no good to look for symmetries on possibly redundant constraints.
4720 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4721 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4722 struct isl_set
**empty
, int max
)
4729 isl_assert(bmap
->ctx
,
4730 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4732 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4733 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4735 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4736 bmap
= isl_basic_map_detect_equalities(bmap
);
4737 bmap
= isl_basic_map_remove_redundancies(bmap
);
4739 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4741 isl_basic_set_free(dom
);
4742 isl_basic_map_free(bmap
);
4746 struct isl_sol_for
{
4748 int (*fn
)(__isl_take isl_basic_set
*dom
,
4749 __isl_take isl_aff_list
*list
, void *user
);
4753 static void sol_for_free(struct isl_sol_for
*sol_for
)
4757 if (sol_for
->sol
.context
)
4758 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4762 static void sol_for_free_wrap(struct isl_sol
*sol
)
4764 sol_for_free((struct isl_sol_for
*)sol
);
4767 /* Add the solution identified by the tableau and the context tableau.
4769 * See documentation of sol_add for more details.
4771 * Instead of constructing a basic map, this function calls a user
4772 * defined function with the current context as a basic set and
4773 * a list of affine expressions representing the relation between
4774 * the input and output. The space over which the affine expressions
4775 * are defined is the same as that of the domain. The number of
4776 * affine expressions in the list is equal to the number of output variables.
4778 static void sol_for_add(struct isl_sol_for
*sol
,
4779 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4783 isl_local_space
*ls
;
4787 if (sol
->sol
.error
|| !dom
|| !M
)
4790 ctx
= isl_basic_set_get_ctx(dom
);
4791 ls
= isl_basic_set_get_local_space(dom
);
4792 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4793 for (i
= 1; i
< M
->n_row
; ++i
) {
4794 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4796 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4797 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4799 aff
= isl_aff_normalize(aff
);
4800 list
= isl_aff_list_add(list
, aff
);
4802 isl_local_space_free(ls
);
4804 dom
= isl_basic_set_finalize(dom
);
4806 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4809 isl_basic_set_free(dom
);
4813 isl_basic_set_free(dom
);
4818 static void sol_for_add_wrap(struct isl_sol
*sol
,
4819 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4821 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4824 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4825 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4829 struct isl_sol_for
*sol_for
= NULL
;
4831 struct isl_basic_set
*dom
= NULL
;
4833 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4837 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4838 dom
= isl_basic_set_universe(dom_dim
);
4840 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4841 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4842 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4844 sol_for
->user
= user
;
4845 sol_for
->sol
.max
= max
;
4846 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4847 sol_for
->sol
.add
= &sol_for_add_wrap
;
4848 sol_for
->sol
.add_empty
= NULL
;
4849 sol_for
->sol
.free
= &sol_for_free_wrap
;
4851 sol_for
->sol
.context
= isl_context_alloc(dom
);
4852 if (!sol_for
->sol
.context
)
4855 isl_basic_set_free(dom
);
4858 isl_basic_set_free(dom
);
4859 sol_for_free(sol_for
);
4863 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4864 struct isl_tab
*tab
)
4866 find_solutions_main(&sol_for
->sol
, tab
);
4869 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4870 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4874 struct isl_sol_for
*sol_for
= NULL
;
4876 bmap
= isl_basic_map_copy(bmap
);
4877 bmap
= isl_basic_map_detect_equalities(bmap
);
4881 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4885 if (isl_basic_map_plain_is_empty(bmap
))
4888 struct isl_tab
*tab
;
4889 struct isl_context
*context
= sol_for
->sol
.context
;
4890 tab
= tab_for_lexmin(bmap
,
4891 context
->op
->peek_basic_set(context
), 1, max
);
4892 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4893 sol_for_find_solutions(sol_for
, tab
);
4894 if (sol_for
->sol
.error
)
4898 sol_free(&sol_for
->sol
);
4899 isl_basic_map_free(bmap
);
4902 sol_free(&sol_for
->sol
);
4903 isl_basic_map_free(bmap
);
4907 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4908 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4912 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4915 /* Check if the given sequence of len variables starting at pos
4916 * represents a trivial (i.e., zero) solution.
4917 * The variables are assumed to be non-negative and to come in pairs,
4918 * with each pair representing a variable of unrestricted sign.
4919 * The solution is trivial if each such pair in the sequence consists
4920 * of two identical values, meaning that the variable being represented
4923 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4930 for (i
= 0; i
< len
; i
+= 2) {
4934 neg_row
= tab
->var
[pos
+ i
].is_row
?
4935 tab
->var
[pos
+ i
].index
: -1;
4936 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4937 tab
->var
[pos
+ i
+ 1].index
: -1;
4940 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4942 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4945 if (neg_row
< 0 || pos_row
< 0)
4947 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4948 tab
->mat
->row
[pos_row
][1]))
4955 /* Return the index of the first trivial region or -1 if all regions
4958 static int first_trivial_region(struct isl_tab
*tab
,
4959 int n_region
, struct isl_region
*region
)
4963 for (i
= 0; i
< n_region
; ++i
) {
4964 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4971 /* Check if the solution is optimal, i.e., whether the first
4972 * n_op entries are zero.
4974 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4978 for (i
= 0; i
< n_op
; ++i
)
4979 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4984 /* Add constraints to "tab" that ensure that any solution is significantly
4985 * better that that represented by "sol". That is, find the first
4986 * relevant (within first n_op) non-zero coefficient and force it (along
4987 * with all previous coefficients) to be zero.
4988 * If the solution is already optimal (all relevant coefficients are zero),
4989 * then just mark the table as empty.
4991 static int force_better_solution(struct isl_tab
*tab
,
4992 __isl_keep isl_vec
*sol
, int n_op
)
5001 for (i
= 0; i
< n_op
; ++i
)
5002 if (!isl_int_is_zero(sol
->el
[1 + i
]))
5006 if (isl_tab_mark_empty(tab
) < 0)
5011 ctx
= isl_vec_get_ctx(sol
);
5012 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5016 for (; i
>= 0; --i
) {
5018 isl_int_set_si(v
->el
[1 + i
], -1);
5019 if (add_lexmin_eq(tab
, v
->el
) < 0)
5030 struct isl_trivial
{
5034 struct isl_tab_undo
*snap
;
5037 /* Return the lexicographically smallest non-trivial solution of the
5038 * given ILP problem.
5040 * All variables are assumed to be non-negative.
5042 * n_op is the number of initial coordinates to optimize.
5043 * That is, once a solution has been found, we will only continue looking
5044 * for solution that result in significantly better values for those
5045 * initial coordinates. That is, we only continue looking for solutions
5046 * that increase the number of initial zeros in this sequence.
5048 * A solution is non-trivial, if it is non-trivial on each of the
5049 * specified regions. Each region represents a sequence of pairs
5050 * of variables. A solution is non-trivial on such a region if
5051 * at least one of these pairs consists of different values, i.e.,
5052 * such that the non-negative variable represented by the pair is non-zero.
5054 * Whenever a conflict is encountered, all constraints involved are
5055 * reported to the caller through a call to "conflict".
5057 * We perform a simple branch-and-bound backtracking search.
5058 * Each level in the search represents initially trivial region that is forced
5059 * to be non-trivial.
5060 * At each level we consider n cases, where n is the length of the region.
5061 * In terms of the n/2 variables of unrestricted signs being encoded by
5062 * the region, we consider the cases
5065 * x_0 = 0 and x_1 >= 1
5066 * x_0 = 0 and x_1 <= -1
5067 * x_0 = 0 and x_1 = 0 and x_2 >= 1
5068 * x_0 = 0 and x_1 = 0 and x_2 <= -1
5070 * The cases are considered in this order, assuming that each pair
5071 * x_i_a x_i_b represents the value x_i_b - x_i_a.
5072 * That is, x_0 >= 1 is enforced by adding the constraint
5073 * x_0_b - x_0_a >= 1
5075 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
5076 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
5077 struct isl_region
*region
,
5078 int (*conflict
)(int con
, void *user
), void *user
)
5084 isl_vec
*sol
= NULL
;
5085 struct isl_tab
*tab
;
5086 struct isl_trivial
*triv
= NULL
;
5092 ctx
= isl_basic_set_get_ctx(bset
);
5093 sol
= isl_vec_alloc(ctx
, 0);
5095 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5098 tab
->conflict
= conflict
;
5099 tab
->conflict_user
= user
;
5101 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5102 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
5103 if (!v
|| (n_region
&& !triv
))
5109 while (level
>= 0) {
5113 tab
= cut_to_integer_lexmin(tab
, CUT_ONE
);
5118 r
= first_trivial_region(tab
, n_region
, region
);
5120 for (i
= 0; i
< level
; ++i
)
5123 sol
= isl_tab_get_sample_value(tab
);
5126 if (is_optimal(sol
, n_op
))
5130 if (level
>= n_region
)
5131 isl_die(ctx
, isl_error_internal
,
5132 "nesting level too deep", goto error
);
5133 if (isl_tab_extend_cons(tab
,
5134 2 * region
[r
].len
+ 2 * n_op
) < 0)
5136 triv
[level
].region
= r
;
5137 triv
[level
].side
= 0;
5140 r
= triv
[level
].region
;
5141 side
= triv
[level
].side
;
5142 base
= 2 * (side
/2);
5144 if (side
>= region
[r
].len
) {
5149 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5154 if (triv
[level
].update
) {
5155 if (force_better_solution(tab
, sol
, n_op
) < 0)
5157 triv
[level
].update
= 0;
5160 if (side
== base
&& base
>= 2) {
5161 for (j
= base
- 2; j
< base
; ++j
) {
5163 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5164 if (add_lexmin_eq(tab
, v
->el
) < 0)
5169 triv
[level
].snap
= isl_tab_snap(tab
);
5170 if (isl_tab_push_basis(tab
) < 0)
5174 isl_int_set_si(v
->el
[0], -1);
5175 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5176 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5177 tab
= add_lexmin_ineq(tab
, v
->el
);
5187 isl_basic_set_free(bset
);
5194 isl_basic_set_free(bset
);
5199 /* Return the lexicographically smallest rational point in "bset",
5200 * assuming that all variables are non-negative.
5201 * If "bset" is empty, then return a zero-length vector.
5203 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5204 __isl_take isl_basic_set
*bset
)
5206 struct isl_tab
*tab
;
5207 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5213 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5217 sol
= isl_vec_alloc(ctx
, 0);
5219 sol
= isl_tab_get_sample_value(tab
);
5221 isl_basic_set_free(bset
);
5225 isl_basic_set_free(bset
);
5229 struct isl_sol_pma
{
5231 isl_pw_multi_aff
*pma
;
5235 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5239 if (sol_pma
->sol
.context
)
5240 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5241 isl_pw_multi_aff_free(sol_pma
->pma
);
5242 isl_set_free(sol_pma
->empty
);
5246 /* This function is called for parts of the context where there is
5247 * no solution, with "bset" corresponding to the context tableau.
5248 * Simply add the basic set to the set "empty".
5250 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5251 __isl_take isl_basic_set
*bset
)
5253 if (!bset
|| !sol
->empty
)
5256 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5257 bset
= isl_basic_set_simplify(bset
);
5258 bset
= isl_basic_set_finalize(bset
);
5259 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5264 isl_basic_set_free(bset
);
5268 /* Given a basic map "dom" that represents the context and an affine
5269 * matrix "M" that maps the dimensions of the context to the
5270 * output variables, construct an isl_pw_multi_aff with a single
5271 * cell corresponding to "dom" and affine expressions copied from "M".
5273 static void sol_pma_add(struct isl_sol_pma
*sol
,
5274 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5277 isl_local_space
*ls
;
5279 isl_multi_aff
*maff
;
5280 isl_pw_multi_aff
*pma
;
5282 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5283 ls
= isl_basic_set_get_local_space(dom
);
5284 for (i
= 1; i
< M
->n_row
; ++i
) {
5285 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5287 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5288 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5290 aff
= isl_aff_normalize(aff
);
5291 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5293 isl_local_space_free(ls
);
5295 dom
= isl_basic_set_simplify(dom
);
5296 dom
= isl_basic_set_finalize(dom
);
5297 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5298 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5303 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5305 sol_pma_free((struct isl_sol_pma
*)sol
);
5308 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5309 __isl_take isl_basic_set
*bset
)
5311 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5314 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5315 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5317 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5320 /* Construct an isl_sol_pma structure for accumulating the solution.
5321 * If track_empty is set, then we also keep track of the parts
5322 * of the context where there is no solution.
5323 * If max is set, then we are solving a maximization, rather than
5324 * a minimization problem, which means that the variables in the
5325 * tableau have value "M - x" rather than "M + x".
5327 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5328 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5330 struct isl_sol_pma
*sol_pma
= NULL
;
5335 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5339 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5340 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5341 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5342 sol_pma
->sol
.max
= max
;
5343 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5344 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5345 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5346 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5347 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5351 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5352 if (!sol_pma
->sol
.context
)
5356 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5357 1, ISL_SET_DISJOINT
);
5358 if (!sol_pma
->empty
)
5362 isl_basic_set_free(dom
);
5363 return &sol_pma
->sol
;
5365 isl_basic_set_free(dom
);
5366 sol_pma_free(sol_pma
);
5370 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5371 * some obvious symmetries.
5373 * We call basic_map_partial_lexopt_base and extract the results.
5375 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5376 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5377 __isl_give isl_set
**empty
, int max
)
5379 isl_pw_multi_aff
*result
= NULL
;
5380 struct isl_sol
*sol
;
5381 struct isl_sol_pma
*sol_pma
;
5383 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5387 sol_pma
= (struct isl_sol_pma
*) sol
;
5389 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5391 *empty
= isl_set_copy(sol_pma
->empty
);
5392 sol_free(&sol_pma
->sol
);
5396 /* Given that the last input variable of "maff" represents the minimum
5397 * of some bounds, check whether we need to plug in the expression
5400 * In particular, check if the last input variable appears in any
5401 * of the expressions in "maff".
5403 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5408 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5410 for (i
= 0; i
< maff
->n
; ++i
)
5411 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5417 /* Given a set of upper bounds on the last "input" variable m,
5418 * construct a piecewise affine expression that selects
5419 * the minimal upper bound to m, i.e.,
5420 * divide the space into cells where one
5421 * of the upper bounds is smaller than all the others and select
5422 * this upper bound on that cell.
5424 * In particular, if there are n bounds b_i, then the result
5425 * consists of n cell, each one of the form
5427 * b_i <= b_j for j > i
5428 * b_i < b_j for j < i
5430 * The affine expression on this cell is
5434 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5435 __isl_take isl_mat
*var
)
5438 isl_aff
*aff
= NULL
;
5439 isl_basic_set
*bset
= NULL
;
5440 isl_pw_aff
*paff
= NULL
;
5441 isl_space
*pw_space
;
5442 isl_local_space
*ls
= NULL
;
5447 ls
= isl_local_space_from_space(isl_space_copy(space
));
5448 pw_space
= isl_space_copy(space
);
5449 pw_space
= isl_space_from_domain(pw_space
);
5450 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5451 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5453 for (i
= 0; i
< var
->n_row
; ++i
) {
5456 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5457 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5461 isl_int_set_si(aff
->v
->el
[0], 1);
5462 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5463 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5464 bset
= select_minimum(bset
, var
, i
);
5465 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5466 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5469 isl_local_space_free(ls
);
5470 isl_space_free(space
);
5475 isl_basic_set_free(bset
);
5476 isl_pw_aff_free(paff
);
5477 isl_local_space_free(ls
);
5478 isl_space_free(space
);
5483 /* Given a piecewise multi-affine expression of which the last input variable
5484 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5485 * This minimum expression is given in "min_expr_pa".
5486 * The set "min_expr" contains the same information, but in the form of a set.
5487 * The variable is subsequently projected out.
5489 * The implementation is similar to those of "split" and "split_domain".
5490 * If the variable appears in a given expression, then minimum expression
5491 * is plugged in. Otherwise, if the variable appears in the constraints
5492 * and a split is required, then the domain is split. Otherwise, no split
5495 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5496 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5497 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5502 isl_pw_multi_aff
*res
;
5504 if (!opt
|| !min_expr
|| !cst
)
5507 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5508 space
= isl_pw_multi_aff_get_space(opt
);
5509 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5510 res
= isl_pw_multi_aff_empty(space
);
5512 for (i
= 0; i
< opt
->n
; ++i
) {
5513 isl_pw_multi_aff
*pma
;
5515 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5516 isl_multi_aff_copy(opt
->p
[i
].maff
));
5517 if (need_substitution(opt
->p
[i
].maff
))
5518 pma
= isl_pw_multi_aff_substitute(pma
,
5519 isl_dim_in
, n_in
- 1, min_expr_pa
);
5520 else if (need_split_set(opt
->p
[i
].set
, cst
))
5521 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5522 isl_set_copy(min_expr
));
5523 pma
= isl_pw_multi_aff_project_out(pma
,
5524 isl_dim_in
, n_in
- 1, 1);
5526 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5529 isl_pw_multi_aff_free(opt
);
5530 isl_pw_aff_free(min_expr_pa
);
5531 isl_set_free(min_expr
);
5535 isl_pw_multi_aff_free(opt
);
5536 isl_pw_aff_free(min_expr_pa
);
5537 isl_set_free(min_expr
);
5542 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5543 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5544 __isl_give isl_set
**empty
, int max
);
5546 /* This function is called from basic_map_partial_lexopt_symm.
5547 * The last variable of "bmap" and "dom" corresponds to the minimum
5548 * of the bounds in "cst". "map_space" is the space of the original
5549 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5550 * is the space of the original domain.
5552 * We recursively call basic_map_partial_lexopt and then plug in
5553 * the definition of the minimum in the result.
5555 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5556 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5557 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5558 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5560 isl_pw_multi_aff
*opt
;
5561 isl_pw_aff
*min_expr_pa
;
5563 union isl_lex_res res
;
5565 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5566 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5569 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5572 *empty
= split(*empty
,
5573 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5574 *empty
= isl_set_reset_space(*empty
, set_space
);
5577 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5578 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5584 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5585 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5586 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5588 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5589 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5592 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5593 * equalities and removing redundant constraints.
5595 * We first check if there are any parallel constraints (left).
5596 * If not, we are in the base case.
5597 * If there are parallel constraints, we replace them by a single
5598 * constraint in basic_map_partial_lexopt_symm_pma and then call
5599 * this function recursively to look for more parallel constraints.
5601 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5602 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5603 __isl_give isl_set
**empty
, int max
)
5611 if (bmap
->ctx
->opt
->pip_symmetry
)
5612 par
= parallel_constraints(bmap
, &first
, &second
);
5616 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5618 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5621 isl_basic_set_free(dom
);
5622 isl_basic_map_free(bmap
);
5626 /* Compute the lexicographic minimum (or maximum if "max" is set)
5627 * of "bmap" over the domain "dom" and return the result as a piecewise
5628 * multi-affine expression.
5629 * If "empty" is not NULL, then *empty is assigned a set that
5630 * contains those parts of the domain where there is no solution.
5631 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5632 * then we compute the rational optimum. Otherwise, we compute
5633 * the integral optimum.
5635 * We perform some preprocessing. As the PILP solver does not
5636 * handle implicit equalities very well, we first make sure all
5637 * the equalities are explicitly available.
5639 * We also add context constraints to the basic map and remove
5640 * redundant constraints. This is only needed because of the
5641 * way we handle simple symmetries. In particular, we currently look
5642 * for symmetries on the constraints, before we set up the main tableau.
5643 * It is then no good to look for symmetries on possibly redundant constraints.
5645 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5646 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5647 __isl_give isl_set
**empty
, int max
)
5654 isl_assert(bmap
->ctx
,
5655 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5657 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5658 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5660 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5661 bmap
= isl_basic_map_detect_equalities(bmap
);
5662 bmap
= isl_basic_map_remove_redundancies(bmap
);
5664 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5666 isl_basic_set_free(dom
);
5667 isl_basic_map_free(bmap
);