2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
16 #include <isl_mat_private.h>
18 #define STATUS_ERROR -1
19 #define STATUS_REDUNDANT 1
20 #define STATUS_VALID 2
21 #define STATUS_SEPARATE 3
23 #define STATUS_ADJ_EQ 5
24 #define STATUS_ADJ_INEQ 6
26 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
28 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
31 case isl_ineq_error
: return STATUS_ERROR
;
32 case isl_ineq_redundant
: return STATUS_VALID
;
33 case isl_ineq_separate
: return STATUS_SEPARATE
;
34 case isl_ineq_cut
: return STATUS_CUT
;
35 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
36 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
40 /* Compute the position of the equalities of basic map "i"
41 * with respect to basic map "j".
42 * The resulting array has twice as many entries as the number
43 * of equalities corresponding to the two inequalties to which
44 * each equality corresponds.
46 static int *eq_status_in(struct isl_map
*map
, int i
, int j
,
47 struct isl_tab
**tabs
)
50 int *eq
= isl_calloc_array(map
->ctx
, int, 2 * map
->p
[i
]->n_eq
);
53 dim
= isl_basic_map_total_dim(map
->p
[i
]);
54 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
55 for (l
= 0; l
< 2; ++l
) {
56 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
57 eq
[2 * k
+ l
] = status_in(map
->p
[i
]->eq
[k
], tabs
[j
]);
58 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
61 if (eq
[2 * k
] == STATUS_SEPARATE
||
62 eq
[2 * k
+ 1] == STATUS_SEPARATE
)
72 /* Compute the position of the inequalities of basic map "i"
73 * with respect to basic map "j".
75 static int *ineq_status_in(struct isl_map
*map
, int i
, int j
,
76 struct isl_tab
**tabs
)
79 unsigned n_eq
= map
->p
[i
]->n_eq
;
80 int *ineq
= isl_calloc_array(map
->ctx
, int, map
->p
[i
]->n_ineq
);
82 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
83 if (isl_tab_is_redundant(tabs
[i
], n_eq
+ k
)) {
84 ineq
[k
] = STATUS_REDUNDANT
;
87 ineq
[k
] = status_in(map
->p
[i
]->ineq
[k
], tabs
[j
]);
88 if (ineq
[k
] == STATUS_ERROR
)
90 if (ineq
[k
] == STATUS_SEPARATE
)
100 static int any(int *con
, unsigned len
, int status
)
104 for (i
= 0; i
< len
; ++i
)
105 if (con
[i
] == status
)
110 static int count(int *con
, unsigned len
, int status
)
115 for (i
= 0; i
< len
; ++i
)
116 if (con
[i
] == status
)
121 static int all(int *con
, unsigned len
, int status
)
125 for (i
= 0; i
< len
; ++i
) {
126 if (con
[i
] == STATUS_REDUNDANT
)
128 if (con
[i
] != status
)
134 static void drop(struct isl_map
*map
, int i
, struct isl_tab
**tabs
)
136 isl_basic_map_free(map
->p
[i
]);
137 isl_tab_free(tabs
[i
]);
139 if (i
!= map
->n
- 1) {
140 map
->p
[i
] = map
->p
[map
->n
- 1];
141 tabs
[i
] = tabs
[map
->n
- 1];
143 tabs
[map
->n
- 1] = NULL
;
147 /* Replace the pair of basic maps i and j by the basic map bounded
148 * by the valid constraints in both basic maps and the constraint
149 * in extra (if not NULL).
151 static int fuse(struct isl_map
*map
, int i
, int j
,
152 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
,
153 __isl_keep isl_mat
*extra
)
156 struct isl_basic_map
*fused
= NULL
;
157 struct isl_tab
*fused_tab
= NULL
;
158 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
159 unsigned extra_rows
= extra
? extra
->n_row
: 0;
161 fused
= isl_basic_map_alloc_dim(isl_dim_copy(map
->p
[i
]->dim
),
163 map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
,
164 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
+ extra_rows
);
168 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
169 if (eq_i
&& (eq_i
[2 * k
] != STATUS_VALID
||
170 eq_i
[2 * k
+ 1] != STATUS_VALID
))
172 l
= isl_basic_map_alloc_equality(fused
);
175 isl_seq_cpy(fused
->eq
[l
], map
->p
[i
]->eq
[k
], 1 + total
);
178 for (k
= 0; k
< map
->p
[j
]->n_eq
; ++k
) {
179 if (eq_j
&& (eq_j
[2 * k
] != STATUS_VALID
||
180 eq_j
[2 * k
+ 1] != STATUS_VALID
))
182 l
= isl_basic_map_alloc_equality(fused
);
185 isl_seq_cpy(fused
->eq
[l
], map
->p
[j
]->eq
[k
], 1 + total
);
188 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
189 if (ineq_i
[k
] != STATUS_VALID
)
191 l
= isl_basic_map_alloc_inequality(fused
);
194 isl_seq_cpy(fused
->ineq
[l
], map
->p
[i
]->ineq
[k
], 1 + total
);
197 for (k
= 0; k
< map
->p
[j
]->n_ineq
; ++k
) {
198 if (ineq_j
[k
] != STATUS_VALID
)
200 l
= isl_basic_map_alloc_inequality(fused
);
203 isl_seq_cpy(fused
->ineq
[l
], map
->p
[j
]->ineq
[k
], 1 + total
);
206 for (k
= 0; k
< map
->p
[i
]->n_div
; ++k
) {
207 int l
= isl_basic_map_alloc_div(fused
);
210 isl_seq_cpy(fused
->div
[l
], map
->p
[i
]->div
[k
], 1 + 1 + total
);
213 for (k
= 0; k
< extra_rows
; ++k
) {
214 l
= isl_basic_map_alloc_inequality(fused
);
217 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
220 fused
= isl_basic_map_gauss(fused
, NULL
);
221 ISL_F_SET(fused
, ISL_BASIC_MAP_FINAL
);
222 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) &&
223 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
224 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
226 fused_tab
= isl_tab_from_basic_map(fused
);
227 if (isl_tab_detect_redundant(fused_tab
) < 0)
230 isl_basic_map_free(map
->p
[i
]);
232 isl_tab_free(tabs
[i
]);
238 isl_tab_free(fused_tab
);
239 isl_basic_map_free(fused
);
243 /* Given a pair of basic maps i and j such that all constraints are either
244 * "valid" or "cut", check if the facets corresponding to the "cut"
245 * constraints of i lie entirely within basic map j.
246 * If so, replace the pair by the basic map consisting of the valid
247 * constraints in both basic maps.
249 * To see that we are not introducing any extra points, call the
250 * two basic maps A and B and the resulting map U and let x
251 * be an element of U \setminus ( A \cup B ).
252 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
253 * violates them. Let X be the intersection of U with the opposites
254 * of these constraints. Then x \in X.
255 * The facet corresponding to c_1 contains the corresponding facet of A.
256 * This facet is entirely contained in B, so c_2 is valid on the facet.
257 * However, since it is also (part of) a facet of X, -c_2 is also valid
258 * on the facet. This means c_2 is saturated on the facet, so c_1 and
259 * c_2 must be opposites of each other, but then x could not violate
262 static int check_facets(struct isl_map
*map
, int i
, int j
,
263 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
266 struct isl_tab_undo
*snap
;
267 unsigned n_eq
= map
->p
[i
]->n_eq
;
269 snap
= isl_tab_snap(tabs
[i
]);
271 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
272 if (ineq_i
[k
] != STATUS_CUT
)
274 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
276 for (l
= 0; l
< map
->p
[j
]->n_ineq
; ++l
) {
278 if (ineq_j
[l
] != STATUS_CUT
)
280 stat
= status_in(map
->p
[j
]->ineq
[l
], tabs
[i
]);
281 if (stat
!= STATUS_VALID
)
284 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
286 if (l
< map
->p
[j
]->n_ineq
)
290 if (k
< map
->p
[i
]->n_ineq
)
293 return fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
296 /* Both basic maps have at least one inequality with and adjacent
297 * (but opposite) inequality in the other basic map.
298 * Check that there are no cut constraints and that there is only
299 * a single pair of adjacent inequalities.
300 * If so, we can replace the pair by a single basic map described
301 * by all but the pair of adjacent inequalities.
302 * Any additional points introduced lie strictly between the two
303 * adjacent hyperplanes and can therefore be integral.
312 * The test for a single pair of adjancent inequalities is important
313 * for avoiding the combination of two basic maps like the following
323 static int check_adj_ineq(struct isl_map
*map
, int i
, int j
,
324 struct isl_tab
**tabs
, int *ineq_i
, int *ineq_j
)
328 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
) ||
329 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_CUT
))
332 else if (count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) == 1 &&
333 count(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
) == 1)
334 changed
= fuse(map
, i
, j
, tabs
, NULL
, ineq_i
, NULL
, ineq_j
, NULL
);
335 /* else ADJ INEQ TOO MANY */
340 /* Check if basic map "i" contains the basic map represented
341 * by the tableau "tab".
343 static int contains(struct isl_map
*map
, int i
, int *ineq_i
,
349 dim
= isl_basic_map_total_dim(map
->p
[i
]);
350 for (k
= 0; k
< map
->p
[i
]->n_eq
; ++k
) {
351 for (l
= 0; l
< 2; ++l
) {
353 isl_seq_neg(map
->p
[i
]->eq
[k
], map
->p
[i
]->eq
[k
], 1+dim
);
354 stat
= status_in(map
->p
[i
]->eq
[k
], tab
);
355 if (stat
!= STATUS_VALID
)
360 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
) {
362 if (ineq_i
[k
] == STATUS_REDUNDANT
)
364 stat
= status_in(map
->p
[i
]->ineq
[k
], tab
);
365 if (stat
!= STATUS_VALID
)
371 /* Basic map "i" has an inequality "k" that is adjacent to some equality
372 * of basic map "j". All the other inequalities are valid for "j".
373 * Check if basic map "j" forms an extension of basic map "i".
375 * In particular, we relax constraint "k", compute the corresponding
376 * facet and check whether it is included in the other basic map.
377 * If so, we know that relaxing the constraint extends the basic
378 * map with exactly the other basic map (we already know that this
379 * other basic map is included in the extension, because there
380 * were no "cut" inequalities in "i") and we can replace the
381 * two basic maps by thie extension.
389 static int is_extension(struct isl_map
*map
, int i
, int j
, int k
,
390 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
394 struct isl_tab_undo
*snap
, *snap2
;
395 unsigned n_eq
= map
->p
[i
]->n_eq
;
397 snap
= isl_tab_snap(tabs
[i
]);
398 tabs
[i
] = isl_tab_relax(tabs
[i
], n_eq
+ k
);
399 snap2
= isl_tab_snap(tabs
[i
]);
400 if (isl_tab_select_facet(tabs
[i
], n_eq
+ k
) < 0)
402 super
= contains(map
, j
, ineq_j
, tabs
[i
]);
404 if (isl_tab_rollback(tabs
[i
], snap2
) < 0)
406 map
->p
[i
] = isl_basic_map_cow(map
->p
[i
]);
409 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
410 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_FINAL
);
414 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
420 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
421 * wrap the constraint around "bound" such that it includes the whole
422 * set "set" and append the resulting constraint to "wraps".
423 * "wraps" is assumed to have been pre-allocated to the appropriate size.
424 * wraps->n_row is the number of actual wrapped constraints that have
426 * If any of the wrapping problems results in a constraint that is
427 * identical to "bound", then this means that "set" is unbounded in such
428 * way that no wrapping is possible. If this happens then wraps->n_row
431 static int add_wraps(__isl_keep isl_mat
*wraps
, __isl_keep isl_basic_map
*bmap
,
432 struct isl_tab
*tab
, isl_int
*bound
, __isl_keep isl_set
*set
)
436 unsigned total
= isl_basic_map_total_dim(bmap
);
440 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
441 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], 1 + total
))
443 if (isl_seq_eq(bound
, bmap
->ineq
[l
], 1 + total
))
445 if (isl_tab_is_redundant(tab
, bmap
->n_eq
+ l
))
448 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
449 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], bmap
->ineq
[l
]))
451 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
455 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
456 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], 1 + total
))
458 if (isl_seq_eq(bound
, bmap
->eq
[l
], 1 + total
))
461 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
462 isl_seq_neg(wraps
->row
[w
+ 1], bmap
->eq
[l
], 1 + total
);
463 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], wraps
->row
[w
+ 1]))
465 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
469 isl_seq_cpy(wraps
->row
[w
], bound
, 1 + total
);
470 if (!isl_set_wrap_facet(set
, wraps
->row
[w
], bmap
->eq
[l
]))
472 if (isl_seq_eq(wraps
->row
[w
], bound
, 1 + total
))
484 /* Check if the constraints in "wraps" from "first" until the last
485 * are all valid for the basic set represented by "tab".
486 * If not, wraps->n_row is set to zero.
488 static int check_wraps(__isl_keep isl_mat
*wraps
, int first
,
493 for (i
= first
; i
< wraps
->n_row
; ++i
) {
494 enum isl_ineq_type type
;
495 type
= isl_tab_ineq_type(tab
, wraps
->row
[i
]);
496 if (type
== isl_ineq_error
)
498 if (type
== isl_ineq_redundant
)
507 /* Return a set that corresponds to the non-redudant constraints
508 * (as recorded in tab) of bmap.
510 * It's important to remove the redundant constraints as some
511 * of the other constraints may have been modified after the
512 * constraints were marked redundant.
513 * In particular, a constraint may have been relaxed.
514 * Redundant constraints are ignored when a constraint is relaxed
515 * and should therefore continue to be ignored ever after.
516 * Otherwise, the relaxation might be thwarted by some of
519 static __isl_give isl_set
*set_from_updated_bmap(__isl_keep isl_basic_map
*bmap
,
522 bmap
= isl_basic_map_copy(bmap
);
523 bmap
= isl_basic_map_cow(bmap
);
524 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
525 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap
));
528 /* Given a basic set i with a constraint k that is adjacent to either the
529 * whole of basic set j or a facet of basic set j, check if we can wrap
530 * both the facet corresponding to k and the facet of j (or the whole of j)
531 * around their ridges to include the other set.
532 * If so, replace the pair of basic sets by their union.
534 * All constraints of i (except k) are assumed to be valid for j.
536 * However, the constraints of j may not be valid for i and so
537 * we have to check that the wrapping constraints for j are valid for i.
539 * In the case where j has a facet adjacent to i, tab[j] is assumed
540 * to have been restricted to this facet, so that the non-redundant
541 * constraints in tab[j] are the ridges of the facet.
542 * Note that for the purpose of wrapping, it does not matter whether
543 * we wrap the ridges of i around the whole of j or just around
544 * the facet since all the other constraints are assumed to be valid for j.
545 * In practice, we wrap to include the whole of j.
554 static int can_wrap_in_facet(struct isl_map
*map
, int i
, int j
, int k
,
555 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
558 struct isl_mat
*wraps
= NULL
;
559 struct isl_set
*set_i
= NULL
;
560 struct isl_set
*set_j
= NULL
;
561 struct isl_vec
*bound
= NULL
;
562 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
563 struct isl_tab_undo
*snap
;
566 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
567 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
568 wraps
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
569 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
571 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
572 if (!set_i
|| !set_j
|| !wraps
|| !bound
)
575 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
576 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
578 isl_seq_cpy(wraps
->row
[0], bound
->el
, 1 + total
);
581 if (add_wraps(wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
586 snap
= isl_tab_snap(tabs
[i
]);
588 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ k
) < 0)
590 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
593 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[k
], 1 + total
);
596 if (add_wraps(wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
599 if (isl_tab_rollback(tabs
[i
], snap
) < 0)
601 if (check_wraps(wraps
, n
, tabs
[i
]) < 0)
606 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
);
625 /* Set the is_redundant property of the "n" constraints in "cuts",
627 * This is a fairly tricky operation as it bypasses isl_tab.c.
628 * The reason we want to temporarily mark some constraints redundant
629 * is that we want to ignore them in add_wraps.
631 * Initially all cut constraints are non-redundant, but the
632 * selection of a facet right before the call to this function
633 * may have made some of them redundant.
634 * Likewise, the same constraints are marked non-redundant
635 * in the second call to this function, before they are officially
636 * made non-redundant again in the subsequent rollback.
638 static void set_is_redundant(struct isl_tab
*tab
, unsigned n_eq
,
639 int *cuts
, int n
, int k
, int v
)
643 for (l
= 0; l
< n
; ++l
) {
646 tab
->con
[n_eq
+ cuts
[l
]].is_redundant
= v
;
650 /* Given a pair of basic maps i and j such that j sticks out
651 * of i at n cut constraints, each time by at most one,
652 * try to compute wrapping constraints and replace the two
653 * basic maps by a single basic map.
654 * The other constraints of i are assumed to be valid for j.
656 * The facets of i corresponding to the cut constraints are
657 * wrapped around their ridges, except those ridges determined
658 * by any of the other cut constraints.
659 * The intersections of cut constraints need to be ignored
660 * as the result of wrapping one cut constraint around another
661 * would result in a constraint cutting the union.
662 * In each case, the facets are wrapped to include the union
663 * of the two basic maps.
665 * The pieces of j that lie at an offset of exactly one from
666 * one of the cut constraints of i are wrapped around their edges.
667 * Here, there is no need to ignore intersections because we
668 * are wrapping around the union of the two basic maps.
670 * If any wrapping fails, i.e., if we cannot wrap to touch
671 * the union, then we give up.
672 * Otherwise, the pair of basic maps is replaced by their union.
674 static int wrap_in_facets(struct isl_map
*map
, int i
, int j
,
675 int *cuts
, int n
, struct isl_tab
**tabs
,
676 int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
679 isl_mat
*wraps
= NULL
;
681 isl_vec
*bound
= NULL
;
682 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
685 struct isl_tab_undo
*snap_i
, *snap_j
;
687 if (isl_tab_extend_cons(tabs
[j
], 1) < 0)
690 max_wrap
= 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
691 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
;
694 set
= isl_set_union(set_from_updated_bmap(map
->p
[i
], tabs
[i
]),
695 set_from_updated_bmap(map
->p
[j
], tabs
[j
]));
696 wraps
= isl_mat_alloc(map
->ctx
, max_wrap
, 1 + total
);
697 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
698 if (!set
|| !wraps
|| !bound
)
701 snap_i
= isl_tab_snap(tabs
[i
]);
702 snap_j
= isl_tab_snap(tabs
[j
]);
706 for (k
= 0; k
< n
; ++k
) {
707 if (isl_tab_select_facet(tabs
[i
], map
->p
[i
]->n_eq
+ cuts
[k
]) < 0)
709 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
711 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 1);
713 isl_seq_neg(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
714 if (add_wraps(wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set
) < 0)
717 set_is_redundant(tabs
[i
], map
->p
[i
]->n_eq
, cuts
, n
, k
, 0);
718 if (isl_tab_rollback(tabs
[i
], snap_i
) < 0)
724 isl_seq_cpy(bound
->el
, map
->p
[i
]->ineq
[cuts
[k
]], 1 + total
);
725 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
726 if (isl_tab_add_eq(tabs
[j
], bound
->el
) < 0)
728 if (isl_tab_detect_redundant(tabs
[j
]) < 0)
731 if (!tabs
[j
]->empty
&&
732 add_wraps(wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set
) < 0)
735 if (isl_tab_rollback(tabs
[j
], snap_j
) < 0)
743 changed
= fuse(map
, i
, j
, tabs
,
744 eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
);
758 /* Given two basic sets i and j such that i has no cut equalities,
759 * check if relaxing all the cut inequalities of i by one turns
760 * them into valid constraint for j and check if we can wrap in
761 * the bits that are sticking out.
762 * If so, replace the pair by their union.
764 * We first check if all relaxed cut inequalities of i are valid for j
765 * and then try to wrap in the intersections of the relaxed cut inequalities
768 * During this wrapping, we consider the points of j that lie at a distance
769 * of exactly 1 from i. In particular, we ignore the points that lie in
770 * between this lower-dimensional space and the basic map i.
771 * We can therefore only apply this to integer maps.
797 * Wrapping can fail if the result of wrapping one of the facets
798 * around its edges does not produce any new facet constraint.
799 * In particular, this happens when we try to wrap in unbounded sets.
801 * _______________________________________________________________________
805 * |_| |_________________________________________________________________
808 * The following is not an acceptable result of coalescing the above two
809 * sets as it includes extra integer points.
810 * _______________________________________________________________________
815 * \______________________________________________________________________
817 static int can_wrap_in_set(struct isl_map
*map
, int i
, int j
,
818 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
825 if (ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_RATIONAL
) ||
826 ISL_F_ISSET(map
->p
[j
], ISL_BASIC_MAP_RATIONAL
))
829 n
= count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
);
833 cuts
= isl_alloc_array(map
->ctx
, int, n
);
837 for (k
= 0, m
= 0; m
< n
; ++k
) {
838 enum isl_ineq_type type
;
840 if (ineq_i
[k
] != STATUS_CUT
)
843 isl_int_add_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
844 type
= isl_tab_ineq_type(tabs
[j
], map
->p
[i
]->ineq
[k
]);
845 isl_int_sub_ui(map
->p
[i
]->ineq
[k
][0], map
->p
[i
]->ineq
[k
][0], 1);
846 if (type
== isl_ineq_error
)
848 if (type
!= isl_ineq_redundant
)
855 changed
= wrap_in_facets(map
, i
, j
, cuts
, n
, tabs
,
856 eq_i
, ineq_i
, eq_j
, ineq_j
);
866 /* Check if either i or j has a single cut constraint that can
867 * be used to wrap in (a facet of) the other basic set.
868 * if so, replace the pair by their union.
870 static int check_wrap(struct isl_map
*map
, int i
, int j
,
871 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
875 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
876 changed
= can_wrap_in_set(map
, i
, j
, tabs
,
877 eq_i
, ineq_i
, eq_j
, ineq_j
);
881 if (!any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
882 changed
= can_wrap_in_set(map
, j
, i
, tabs
,
883 eq_j
, ineq_j
, eq_i
, ineq_i
);
887 /* At least one of the basic maps has an equality that is adjacent
888 * to inequality. Make sure that only one of the basic maps has
889 * such an equality and that the other basic map has exactly one
890 * inequality adjacent to an equality.
891 * We call the basic map that has the inequality "i" and the basic
892 * map that has the equality "j".
893 * If "i" has any "cut" (in)equality, then relaxing the inequality
894 * by one would not result in a basic map that contains the other
897 static int check_adj_eq(struct isl_map
*map
, int i
, int j
,
898 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
903 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) &&
904 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
))
905 /* ADJ EQ TOO MANY */
908 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
))
909 return check_adj_eq(map
, j
, i
, tabs
,
910 eq_j
, ineq_j
, eq_i
, ineq_i
);
912 /* j has an equality adjacent to an inequality in i */
914 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
))
916 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_CUT
))
919 if (count(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
) != 1 ||
920 count(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) != 1 ||
921 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
) ||
922 any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
923 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
))
924 /* ADJ EQ TOO MANY */
927 for (k
= 0; k
< map
->p
[i
]->n_ineq
; ++k
)
928 if (ineq_i
[k
] == STATUS_ADJ_EQ
)
931 changed
= is_extension(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
935 changed
= can_wrap_in_facet(map
, i
, j
, k
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
);
940 /* The two basic maps lie on adjacent hyperplanes. In particular,
941 * basic map "i" has an equality that lies parallel to basic map "j".
942 * Check if we can wrap the facets around the parallel hyperplanes
943 * to include the other set.
945 * We perform basically the same operations as can_wrap_in_facet,
946 * except that we don't need to select a facet of one of the sets.
952 * We only allow one equality of "i" to be adjacent to an equality of "j"
953 * to avoid coalescing
955 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
956 * x <= 10 and y <= 10;
957 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
958 * y >= 5 and y <= 15 }
962 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
963 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
964 * y2 <= 1 + x + y - x2 and y2 >= y and
965 * y2 >= 1 + x + y - x2 }
967 static int check_eq_adj_eq(struct isl_map
*map
, int i
, int j
,
968 struct isl_tab
**tabs
, int *eq_i
, int *ineq_i
, int *eq_j
, int *ineq_j
)
972 struct isl_mat
*wraps
= NULL
;
973 struct isl_set
*set_i
= NULL
;
974 struct isl_set
*set_j
= NULL
;
975 struct isl_vec
*bound
= NULL
;
976 unsigned total
= isl_basic_map_total_dim(map
->p
[i
]);
978 if (count(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
) != 1)
981 for (k
= 0; k
< 2 * map
->p
[i
]->n_eq
; ++k
)
982 if (eq_i
[k
] == STATUS_ADJ_EQ
)
985 set_i
= set_from_updated_bmap(map
->p
[i
], tabs
[i
]);
986 set_j
= set_from_updated_bmap(map
->p
[j
], tabs
[j
]);
987 wraps
= isl_mat_alloc(map
->ctx
, 2 * (map
->p
[i
]->n_eq
+ map
->p
[j
]->n_eq
) +
988 map
->p
[i
]->n_ineq
+ map
->p
[j
]->n_ineq
,
990 bound
= isl_vec_alloc(map
->ctx
, 1 + total
);
991 if (!set_i
|| !set_j
|| !wraps
|| !bound
)
995 isl_seq_neg(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
997 isl_seq_cpy(bound
->el
, map
->p
[i
]->eq
[k
/ 2], 1 + total
);
998 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1000 isl_seq_cpy(wraps
->row
[0], bound
->el
, 1 + total
);
1003 if (add_wraps(wraps
, map
->p
[j
], tabs
[j
], bound
->el
, set_i
) < 0)
1008 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
1009 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
1011 isl_seq_cpy(wraps
->row
[wraps
->n_row
], bound
->el
, 1 + total
);
1014 if (add_wraps(wraps
, map
->p
[i
], tabs
[i
], bound
->el
, set_j
) < 0)
1019 changed
= fuse(map
, i
, j
, tabs
, eq_i
, ineq_i
, eq_j
, ineq_j
, wraps
);
1022 error
: changed
= -1;
1026 isl_mat_free(wraps
);
1027 isl_set_free(set_i
);
1028 isl_set_free(set_j
);
1029 isl_vec_free(bound
);
1034 /* Check if the union of the given pair of basic maps
1035 * can be represented by a single basic map.
1036 * If so, replace the pair by the single basic map and return 1.
1037 * Otherwise, return 0;
1039 * We first check the effect of each constraint of one basic map
1040 * on the other basic map.
1041 * The constraint may be
1042 * redundant the constraint is redundant in its own
1043 * basic map and should be ignore and removed
1045 * valid all (integer) points of the other basic map
1046 * satisfy the constraint
1047 * separate no (integer) point of the other basic map
1048 * satisfies the constraint
1049 * cut some but not all points of the other basic map
1050 * satisfy the constraint
1051 * adj_eq the given constraint is adjacent (on the outside)
1052 * to an equality of the other basic map
1053 * adj_ineq the given constraint is adjacent (on the outside)
1054 * to an inequality of the other basic map
1056 * We consider seven cases in which we can replace the pair by a single
1057 * basic map. We ignore all "redundant" constraints.
1059 * 1. all constraints of one basic map are valid
1060 * => the other basic map is a subset and can be removed
1062 * 2. all constraints of both basic maps are either "valid" or "cut"
1063 * and the facets corresponding to the "cut" constraints
1064 * of one of the basic maps lies entirely inside the other basic map
1065 * => the pair can be replaced by a basic map consisting
1066 * of the valid constraints in both basic maps
1068 * 3. there is a single pair of adjacent inequalities
1069 * (all other constraints are "valid")
1070 * => the pair can be replaced by a basic map consisting
1071 * of the valid constraints in both basic maps
1073 * 4. there is a single adjacent pair of an inequality and an equality,
1074 * the other constraints of the basic map containing the inequality are
1075 * "valid". Moreover, if the inequality the basic map is relaxed
1076 * and then turned into an equality, then resulting facet lies
1077 * entirely inside the other basic map
1078 * => the pair can be replaced by the basic map containing
1079 * the inequality, with the inequality relaxed.
1081 * 5. there is a single adjacent pair of an inequality and an equality,
1082 * the other constraints of the basic map containing the inequality are
1083 * "valid". Moreover, the facets corresponding to both
1084 * the inequality and the equality can be wrapped around their
1085 * ridges to include the other basic map
1086 * => the pair can be replaced by a basic map consisting
1087 * of the valid constraints in both basic maps together
1088 * with all wrapping constraints
1090 * 6. one of the basic maps extends beyond the other by at most one.
1091 * Moreover, the facets corresponding to the cut constraints and
1092 * the pieces of the other basic map at offset one from these cut
1093 * constraints can be wrapped around their ridges to include
1094 * the union of the two basic maps
1095 * => the pair can be replaced by a basic map consisting
1096 * of the valid constraints in both basic maps together
1097 * with all wrapping constraints
1099 * 7. the two basic maps live in adjacent hyperplanes. In principle
1100 * such sets can always be combined through wrapping, but we impose
1101 * that there is only one such pair, to avoid overeager coalescing.
1103 * Throughout the computation, we maintain a collection of tableaus
1104 * corresponding to the basic maps. When the basic maps are dropped
1105 * or combined, the tableaus are modified accordingly.
1107 static int coalesce_pair(struct isl_map
*map
, int i
, int j
,
1108 struct isl_tab
**tabs
)
1116 eq_i
= eq_status_in(map
, i
, j
, tabs
);
1119 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ERROR
))
1121 if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_SEPARATE
))
1124 eq_j
= eq_status_in(map
, j
, i
, tabs
);
1127 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ERROR
))
1129 if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_SEPARATE
))
1132 ineq_i
= ineq_status_in(map
, i
, j
, tabs
);
1135 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ERROR
))
1137 if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_SEPARATE
))
1140 ineq_j
= ineq_status_in(map
, j
, i
, tabs
);
1143 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ERROR
))
1145 if (any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_SEPARATE
))
1148 if (all(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_VALID
) &&
1149 all(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_VALID
)) {
1152 } else if (all(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_VALID
) &&
1153 all(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_VALID
)) {
1156 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_EQ
)) {
1157 changed
= check_eq_adj_eq(map
, i
, j
, tabs
,
1158 eq_i
, ineq_i
, eq_j
, ineq_j
);
1159 } else if (any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_EQ
)) {
1160 changed
= check_eq_adj_eq(map
, j
, i
, tabs
,
1161 eq_j
, ineq_j
, eq_i
, ineq_i
);
1162 } else if (any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_ADJ_INEQ
) ||
1163 any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_ADJ_INEQ
)) {
1164 changed
= check_adj_eq(map
, i
, j
, tabs
,
1165 eq_i
, ineq_i
, eq_j
, ineq_j
);
1166 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_EQ
) ||
1167 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_EQ
)) {
1170 } else if (any(ineq_i
, map
->p
[i
]->n_ineq
, STATUS_ADJ_INEQ
) ||
1171 any(ineq_j
, map
->p
[j
]->n_ineq
, STATUS_ADJ_INEQ
)) {
1172 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1173 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1174 changed
= check_adj_ineq(map
, i
, j
, tabs
,
1177 if (!any(eq_i
, 2 * map
->p
[i
]->n_eq
, STATUS_CUT
) &&
1178 !any(eq_j
, 2 * map
->p
[j
]->n_eq
, STATUS_CUT
))
1179 changed
= check_facets(map
, i
, j
, tabs
, ineq_i
, ineq_j
);
1181 changed
= check_wrap(map
, i
, j
, tabs
,
1182 eq_i
, ineq_i
, eq_j
, ineq_j
);
1199 static struct isl_map
*coalesce(struct isl_map
*map
, struct isl_tab
**tabs
)
1203 for (i
= map
->n
- 2; i
>= 0; --i
)
1205 for (j
= i
+ 1; j
< map
->n
; ++j
) {
1207 changed
= coalesce_pair(map
, i
, j
, tabs
);
1219 /* For each pair of basic maps in the map, check if the union of the two
1220 * can be represented by a single basic map.
1221 * If so, replace the pair by the single basic map and start over.
1223 struct isl_map
*isl_map_coalesce(struct isl_map
*map
)
1227 struct isl_tab
**tabs
= NULL
;
1235 map
= isl_map_align_divs(map
);
1237 tabs
= isl_calloc_array(map
->ctx
, struct isl_tab
*, map
->n
);
1242 for (i
= 0; i
< map
->n
; ++i
) {
1243 tabs
[i
] = isl_tab_from_basic_map(map
->p
[i
]);
1246 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
))
1247 if (isl_tab_detect_implicit_equalities(tabs
[i
]) < 0)
1249 if (!ISL_F_ISSET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
))
1250 if (isl_tab_detect_redundant(tabs
[i
]) < 0)
1253 for (i
= map
->n
- 1; i
>= 0; --i
)
1257 map
= coalesce(map
, tabs
);
1260 for (i
= 0; i
< map
->n
; ++i
) {
1261 map
->p
[i
] = isl_basic_map_update_from_tab(map
->p
[i
],
1263 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1266 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_IMPLICIT
);
1267 ISL_F_SET(map
->p
[i
], ISL_BASIC_MAP_NO_REDUNDANT
);
1270 for (i
= 0; i
< n
; ++i
)
1271 isl_tab_free(tabs
[i
]);
1278 for (i
= 0; i
< n
; ++i
)
1279 isl_tab_free(tabs
[i
]);
1284 /* For each pair of basic sets in the set, check if the union of the two
1285 * can be represented by a single basic set.
1286 * If so, replace the pair by the single basic set and start over.
1288 struct isl_set
*isl_set_coalesce(struct isl_set
*set
)
1290 return (struct isl_set
*)isl_map_coalesce((struct isl_map
*)set
);