2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
32 struct isl_basic_map
*isl_basic_map_implicit_equalities(
33 struct isl_basic_map
*bmap
)
40 bmap
= isl_basic_map_gauss(bmap
, NULL
);
41 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
43 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
45 if (bmap
->n_ineq
<= 1)
48 tab
= isl_tab_from_basic_map(bmap
, 0);
49 if (isl_tab_detect_implicit_equalities(tab
) < 0)
51 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
53 bmap
= isl_basic_map_gauss(bmap
, NULL
);
54 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
58 isl_basic_map_free(bmap
);
62 struct isl_basic_set
*isl_basic_set_implicit_equalities(
63 struct isl_basic_set
*bset
)
65 return bset_from_bmap(
66 isl_basic_map_implicit_equalities(bset_to_bmap(bset
)));
69 /* Make eq[row][col] of both bmaps equal so we can add the row
70 * add the column to the common matrix.
71 * Note that because of the echelon form, the columns of row row
72 * after column col are zero.
74 static void set_common_multiple(
75 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
76 unsigned row
, unsigned col
)
80 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
85 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
86 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
87 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
88 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
89 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
94 /* Delete a given equality, moving all the following equalities one up.
96 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
103 for (r
= row
; r
< bset
->n_eq
; ++r
)
104 bset
->eq
[r
] = bset
->eq
[r
+1];
105 bset
->eq
[bset
->n_eq
] = t
;
108 /* Make first row entries in column col of bset1 identical to
109 * those of bset2, using the fact that entry bset1->eq[row][col]=a
110 * is non-zero. Initially, these elements of bset1 are all zero.
111 * For each row i < row, we set
112 * A[i] = a * A[i] + B[i][col] * A[row]
115 * A[i][col] = B[i][col] = a * old(B[i][col])
117 static void construct_column(
118 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
119 unsigned row
, unsigned col
)
128 total
= 1 + isl_basic_set_n_dim(bset1
);
129 for (r
= 0; r
< row
; ++r
) {
130 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
132 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
133 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
134 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
135 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
136 b
, bset1
->eq
[row
], total
);
137 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
141 delete_row(bset1
, row
);
144 /* Make first row entries in column col of bset1 identical to
145 * those of bset2, using only these entries of the two matrices.
146 * Let t be the last row with different entries.
147 * For each row i < t, we set
148 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
149 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
151 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
153 static int transform_column(
154 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
155 unsigned row
, unsigned col
)
161 for (t
= row
-1; t
>= 0; --t
)
162 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
167 total
= 1 + isl_basic_set_n_dim(bset1
);
171 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
172 for (i
= 0; i
< t
; ++i
) {
173 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
174 isl_int_gcd(g
, a
, b
);
175 isl_int_divexact(a
, a
, g
);
176 isl_int_divexact(g
, b
, g
);
177 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
179 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
185 delete_row(bset1
, t
);
186 delete_row(bset2
, t
);
190 /* The implementation is based on Section 5.2 of Michael Karr,
191 * "Affine Relationships Among Variables of a Program",
192 * except that the echelon form we use starts from the last column
193 * and that we are dealing with integer coefficients.
195 static struct isl_basic_set
*affine_hull(
196 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
202 if (!bset1
|| !bset2
)
205 total
= 1 + isl_basic_set_n_dim(bset1
);
208 for (col
= total
-1; col
>= 0; --col
) {
209 int is_zero1
= row
>= bset1
->n_eq
||
210 isl_int_is_zero(bset1
->eq
[row
][col
]);
211 int is_zero2
= row
>= bset2
->n_eq
||
212 isl_int_is_zero(bset2
->eq
[row
][col
]);
213 if (!is_zero1
&& !is_zero2
) {
214 set_common_multiple(bset1
, bset2
, row
, col
);
216 } else if (!is_zero1
&& is_zero2
) {
217 construct_column(bset1
, bset2
, row
, col
);
218 } else if (is_zero1
&& !is_zero2
) {
219 construct_column(bset2
, bset1
, row
, col
);
221 if (transform_column(bset1
, bset2
, row
, col
))
225 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
226 isl_basic_set_free(bset2
);
227 bset1
= isl_basic_set_normalize_constraints(bset1
);
230 isl_basic_set_free(bset1
);
231 isl_basic_set_free(bset2
);
235 /* Find an integer point in the set represented by "tab"
236 * that lies outside of the equality "eq" e(x) = 0.
237 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
238 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
239 * The point, if found, is returned.
240 * If no point can be found, a zero-length vector is returned.
242 * Before solving an ILP problem, we first check if simply
243 * adding the normal of the constraint to one of the known
244 * integer points in the basic set represented by "tab"
245 * yields another point inside the basic set.
247 * The caller of this function ensures that the tableau is bounded or
248 * that tab->basis and tab->n_unbounded have been set appropriately.
250 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
253 struct isl_vec
*sample
= NULL
;
254 struct isl_tab_undo
*snap
;
262 sample
= isl_vec_alloc(ctx
, 1 + dim
);
265 isl_int_set_si(sample
->el
[0], 1);
266 isl_seq_combine(sample
->el
+ 1,
267 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
268 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
269 if (isl_basic_map_contains(tab
->bmap
, sample
))
271 isl_vec_free(sample
);
274 snap
= isl_tab_snap(tab
);
277 isl_seq_neg(eq
, eq
, 1 + dim
);
278 isl_int_sub_ui(eq
[0], eq
[0], 1);
280 if (isl_tab_extend_cons(tab
, 1) < 0)
282 if (isl_tab_add_ineq(tab
, eq
) < 0)
285 sample
= isl_tab_sample(tab
);
287 isl_int_add_ui(eq
[0], eq
[0], 1);
289 isl_seq_neg(eq
, eq
, 1 + dim
);
291 if (sample
&& isl_tab_rollback(tab
, snap
) < 0)
296 isl_vec_free(sample
);
300 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
304 bset
= isl_basic_set_cow(bset
);
307 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
309 for (i
= 0; i
< bset
->n_eq
; ++i
)
310 isl_int_set_si(bset
->eq
[i
][0], 0);
312 for (i
= 0; i
< bset
->n_ineq
; ++i
)
313 isl_int_set_si(bset
->ineq
[i
][0], 0);
315 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
316 return isl_basic_set_implicit_equalities(bset
);
318 isl_basic_set_free(bset
);
322 /* Move "sample" to a point that is one up (or down) from the original
323 * point in dimension "pos".
325 static void adjacent_point(__isl_keep isl_vec
*sample
, int pos
, int up
)
328 isl_int_add_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
330 isl_int_sub_ui(sample
->el
[1 + pos
], sample
->el
[1 + pos
], 1);
333 /* Check if any points that are adjacent to "sample" also belong to "bset".
334 * If so, add them to "hull" and return the updated hull.
336 * Before checking whether and adjacent point belongs to "bset", we first
337 * check whether it already belongs to "hull" as this test is typically
340 static __isl_give isl_basic_set
*add_adjacent_points(
341 __isl_take isl_basic_set
*hull
, __isl_take isl_vec
*sample
,
342 __isl_keep isl_basic_set
*bset
)
350 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
352 for (i
= 0; i
< dim
; ++i
) {
353 for (up
= 0; up
<= 1; ++up
) {
355 isl_basic_set
*point
;
357 adjacent_point(sample
, i
, up
);
358 contains
= isl_basic_set_contains(hull
, sample
);
362 adjacent_point(sample
, i
, !up
);
365 contains
= isl_basic_set_contains(bset
, sample
);
369 point
= isl_basic_set_from_vec(
370 isl_vec_copy(sample
));
371 hull
= affine_hull(hull
, point
);
373 adjacent_point(sample
, i
, !up
);
379 isl_vec_free(sample
);
383 isl_vec_free(sample
);
384 isl_basic_set_free(hull
);
388 /* Extend an initial (under-)approximation of the affine hull of basic
389 * set represented by the tableau "tab"
390 * by looking for points that do not satisfy one of the equalities
391 * in the current approximation and adding them to that approximation
392 * until no such points can be found any more.
394 * The caller of this function ensures that "tab" is bounded or
395 * that tab->basis and tab->n_unbounded have been set appropriately.
397 * "bset" may be either NULL or the basic set represented by "tab".
398 * If "bset" is not NULL, we check for any point we find if any
399 * of its adjacent points also belong to "bset".
401 static __isl_give isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
402 __isl_take isl_basic_set
*hull
, __isl_keep isl_basic_set
*bset
)
412 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
415 for (i
= 0; i
< dim
; ++i
) {
416 struct isl_vec
*sample
;
417 struct isl_basic_set
*point
;
418 for (j
= 0; j
< hull
->n_eq
; ++j
) {
419 sample
= outside_point(tab
, hull
->eq
[j
], 1);
422 if (sample
->size
> 0)
424 isl_vec_free(sample
);
425 sample
= outside_point(tab
, hull
->eq
[j
], 0);
428 if (sample
->size
> 0)
430 isl_vec_free(sample
);
432 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
438 isl_tab_add_sample(tab
, isl_vec_copy(sample
)) < 0)
439 hull
= isl_basic_set_free(hull
);
441 hull
= add_adjacent_points(hull
, isl_vec_copy(sample
),
443 point
= isl_basic_set_from_vec(sample
);
444 hull
= affine_hull(hull
, point
);
451 isl_basic_set_free(hull
);
455 /* Construct an initial underapproximation of the hull of "bset"
456 * from "sample" and any of its adjacent points that also belong to "bset".
458 static __isl_give isl_basic_set
*initialize_hull(__isl_keep isl_basic_set
*bset
,
459 __isl_take isl_vec
*sample
)
463 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
464 hull
= add_adjacent_points(hull
, sample
, bset
);
469 /* Look for all equalities satisfied by the integer points in bset,
470 * which is assumed to be bounded.
472 * The equalities are obtained by successively looking for
473 * a point that is affinely independent of the points found so far.
474 * In particular, for each equality satisfied by the points so far,
475 * we check if there is any point on a hyperplane parallel to the
476 * corresponding hyperplane shifted by at least one (in either direction).
478 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
480 struct isl_vec
*sample
= NULL
;
481 struct isl_basic_set
*hull
;
482 struct isl_tab
*tab
= NULL
;
485 if (isl_basic_set_plain_is_empty(bset
))
488 dim
= isl_basic_set_n_dim(bset
);
490 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
491 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
497 sample
= isl_vec_copy(bset
->sample
);
499 isl_vec_free(bset
->sample
);
504 tab
= isl_tab_from_basic_set(bset
, 1);
509 isl_vec_free(sample
);
510 return isl_basic_set_set_to_empty(bset
);
514 struct isl_tab_undo
*snap
;
515 snap
= isl_tab_snap(tab
);
516 sample
= isl_tab_sample(tab
);
517 if (isl_tab_rollback(tab
, snap
) < 0)
519 isl_vec_free(tab
->bmap
->sample
);
520 tab
->bmap
->sample
= isl_vec_copy(sample
);
525 if (sample
->size
== 0) {
527 isl_vec_free(sample
);
528 return isl_basic_set_set_to_empty(bset
);
531 hull
= initialize_hull(bset
, sample
);
533 hull
= extend_affine_hull(tab
, hull
, bset
);
534 isl_basic_set_free(bset
);
539 isl_vec_free(sample
);
541 isl_basic_set_free(bset
);
545 /* Given an unbounded tableau and an integer point satisfying the tableau,
546 * construct an initial affine hull containing the recession cone
547 * shifted to the given point.
549 * The unbounded directions are taken from the last rows of the basis,
550 * which is assumed to have been initialized appropriately.
552 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
553 __isl_take isl_vec
*vec
)
557 struct isl_basic_set
*bset
= NULL
;
564 isl_assert(ctx
, vec
->size
!= 0, goto error
);
566 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
569 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
570 for (i
= 0; i
< dim
; ++i
) {
571 k
= isl_basic_set_alloc_equality(bset
);
574 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
576 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
577 vec
->size
- 1, &bset
->eq
[k
][0]);
578 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
581 bset
= isl_basic_set_gauss(bset
, NULL
);
585 isl_basic_set_free(bset
);
590 /* Given a tableau of a set and a tableau of the corresponding
591 * recession cone, detect and add all equalities to the tableau.
592 * If the tableau is bounded, then we can simply keep the
593 * tableau in its state after the return from extend_affine_hull.
594 * However, if the tableau is unbounded, then
595 * isl_tab_set_initial_basis_with_cone will add some additional
596 * constraints to the tableau that have to be removed again.
597 * In this case, we therefore rollback to the state before
598 * any constraints were added and then add the equalities back in.
600 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
601 struct isl_tab
*tab_cone
)
604 struct isl_vec
*sample
;
605 struct isl_basic_set
*hull
= NULL
;
606 struct isl_tab_undo
*snap
;
608 if (!tab
|| !tab_cone
)
611 snap
= isl_tab_snap(tab
);
613 isl_mat_free(tab
->basis
);
616 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
617 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
618 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
619 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
621 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
624 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
628 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
630 isl_vec_free(tab
->bmap
->sample
);
631 tab
->bmap
->sample
= isl_vec_copy(sample
);
633 if (tab
->n_unbounded
== 0)
634 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
636 hull
= initial_hull(tab
, isl_vec_copy(sample
));
638 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
639 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
640 hull
= affine_hull(hull
,
641 isl_basic_set_from_vec(isl_vec_copy(sample
)));
644 isl_vec_free(sample
);
646 hull
= extend_affine_hull(tab
, hull
, NULL
);
650 if (tab
->n_unbounded
== 0) {
651 isl_basic_set_free(hull
);
655 if (isl_tab_rollback(tab
, snap
) < 0)
658 if (hull
->n_eq
> tab
->n_zero
) {
659 for (j
= 0; j
< hull
->n_eq
; ++j
) {
660 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
661 if (isl_tab_add_eq(tab
, hull
->eq
[j
]) < 0)
666 isl_basic_set_free(hull
);
670 isl_basic_set_free(hull
);
675 /* Compute the affine hull of "bset", where "cone" is the recession cone
678 * We first compute a unimodular transformation that puts the unbounded
679 * directions in the last dimensions. In particular, we take a transformation
680 * that maps all equalities to equalities (in HNF) on the first dimensions.
681 * Let x be the original dimensions and y the transformed, with y_1 bounded
684 * [ y_1 ] [ y_1 ] [ Q_1 ]
685 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
687 * Let's call the input basic set S. We compute S' = preimage(S, U)
688 * and drop the final dimensions including any constraints involving them.
689 * This results in set S''.
690 * Then we compute the affine hull A'' of S''.
691 * Let F y_1 >= g be the constraint system of A''. In the transformed
692 * space the y_2 are unbounded, so we can add them back without any constraints,
696 * [ F 0 ] [ y_2 ] >= g
699 * [ F 0 ] [ Q_2 ] x >= g
703 * The affine hull in the original space is then obtained as
704 * A = preimage(A'', Q_1).
706 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
707 struct isl_basic_set
*cone
)
711 struct isl_basic_set
*hull
;
712 struct isl_mat
*M
, *U
, *Q
;
717 total
= isl_basic_set_total_dim(cone
);
718 cone_dim
= total
- cone
->n_eq
;
720 M
= isl_mat_sub_alloc6(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
721 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
726 U
= isl_mat_lin_to_aff(U
);
727 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
729 bset
= isl_basic_set_drop_constraints_involving(bset
, total
- cone_dim
,
731 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
733 Q
= isl_mat_lin_to_aff(Q
);
734 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
736 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
737 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
739 hull
= uset_affine_hull_bounded(bset
);
745 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
746 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
747 if (sample
&& sample
->size
> 0)
748 sample
= isl_mat_vec_product(U
, sample
);
751 hull
= isl_basic_set_preimage(hull
, Q
);
753 isl_vec_free(hull
->sample
);
754 hull
->sample
= sample
;
756 isl_vec_free(sample
);
759 isl_basic_set_free(cone
);
763 isl_basic_set_free(bset
);
764 isl_basic_set_free(cone
);
768 /* Look for all equalities satisfied by the integer points in bset,
769 * which is assumed not to have any explicit equalities.
771 * The equalities are obtained by successively looking for
772 * a point that is affinely independent of the points found so far.
773 * In particular, for each equality satisfied by the points so far,
774 * we check if there is any point on a hyperplane parallel to the
775 * corresponding hyperplane shifted by at least one (in either direction).
777 * Before looking for any outside points, we first compute the recession
778 * cone. The directions of this recession cone will always be part
779 * of the affine hull, so there is no need for looking for any points
780 * in these directions.
781 * In particular, if the recession cone is full-dimensional, then
782 * the affine hull is simply the whole universe.
784 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
786 struct isl_basic_set
*cone
;
788 if (isl_basic_set_plain_is_empty(bset
))
791 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
794 if (cone
->n_eq
== 0) {
796 space
= isl_basic_set_get_space(bset
);
797 isl_basic_set_free(cone
);
798 isl_basic_set_free(bset
);
799 return isl_basic_set_universe(space
);
802 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
803 return affine_hull_with_cone(bset
, cone
);
805 isl_basic_set_free(cone
);
806 return uset_affine_hull_bounded(bset
);
808 isl_basic_set_free(bset
);
812 /* Look for all equalities satisfied by the integer points in bmap
813 * that are independent of the equalities already explicitly available
816 * We first remove all equalities already explicitly available,
817 * then look for additional equalities in the reduced space
818 * and then transform the result to the original space.
819 * The original equalities are _not_ added to this set. This is
820 * the responsibility of the calling function.
821 * The resulting basic set has all meaning about the dimensions removed.
822 * In particular, dimensions that correspond to existential variables
823 * in bmap and that are found to be fixed are not removed.
825 static struct isl_basic_set
*equalities_in_underlying_set(
826 struct isl_basic_map
*bmap
)
828 struct isl_mat
*T1
= NULL
;
829 struct isl_mat
*T2
= NULL
;
830 struct isl_basic_set
*bset
= NULL
;
831 struct isl_basic_set
*hull
= NULL
;
833 bset
= isl_basic_map_underlying_set(bmap
);
837 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
841 hull
= uset_affine_hull(bset
);
849 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
850 if (sample
&& sample
->size
> 0)
851 sample
= isl_mat_vec_product(T1
, sample
);
854 hull
= isl_basic_set_preimage(hull
, T2
);
856 isl_vec_free(hull
->sample
);
857 hull
->sample
= sample
;
859 isl_vec_free(sample
);
866 isl_basic_set_free(bset
);
867 isl_basic_set_free(hull
);
871 /* Detect and make explicit all equalities satisfied by the (integer)
874 struct isl_basic_map
*isl_basic_map_detect_equalities(
875 struct isl_basic_map
*bmap
)
878 struct isl_basic_set
*hull
= NULL
;
882 if (bmap
->n_ineq
== 0)
884 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
886 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
888 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
889 return isl_basic_map_implicit_equalities(bmap
);
891 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
894 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
895 isl_basic_set_free(hull
);
896 return isl_basic_map_set_to_empty(bmap
);
898 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
), 0,
900 for (i
= 0; i
< hull
->n_eq
; ++i
) {
901 j
= isl_basic_map_alloc_equality(bmap
);
904 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
905 1 + isl_basic_set_total_dim(hull
));
907 isl_vec_free(bmap
->sample
);
908 bmap
->sample
= isl_vec_copy(hull
->sample
);
909 isl_basic_set_free(hull
);
910 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
911 bmap
= isl_basic_map_simplify(bmap
);
912 return isl_basic_map_finalize(bmap
);
914 isl_basic_set_free(hull
);
915 isl_basic_map_free(bmap
);
919 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
920 __isl_take isl_basic_set
*bset
)
922 return bset_from_bmap(
923 isl_basic_map_detect_equalities(bset_to_bmap(bset
)));
926 __isl_give isl_map
*isl_map_detect_equalities(__isl_take isl_map
*map
)
928 return isl_map_inline_foreach_basic_map(map
,
929 &isl_basic_map_detect_equalities
);
932 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
934 return set_from_map(isl_map_detect_equalities(set_to_map(set
)));
937 /* Return the superset of "bmap" described by the equalities
938 * satisfied by "bmap" that are already known.
940 __isl_give isl_basic_map
*isl_basic_map_plain_affine_hull(
941 __isl_take isl_basic_map
*bmap
)
943 bmap
= isl_basic_map_cow(bmap
);
945 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
946 bmap
= isl_basic_map_finalize(bmap
);
950 /* Return the superset of "bset" described by the equalities
951 * satisfied by "bset" that are already known.
953 __isl_give isl_basic_set
*isl_basic_set_plain_affine_hull(
954 __isl_take isl_basic_set
*bset
)
956 return isl_basic_map_plain_affine_hull(bset
);
959 /* After computing the rational affine hull (by detecting the implicit
960 * equalities), we compute the additional equalities satisfied by
961 * the integer points (if any) and add the original equalities back in.
963 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
965 bmap
= isl_basic_map_detect_equalities(bmap
);
966 bmap
= isl_basic_map_plain_affine_hull(bmap
);
970 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
972 return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset
)));
975 /* Given a rational affine matrix "M", add stride constraints to "bmap"
980 * is an integer vector. The variables x include all the variables
981 * of "bmap" except the unknown divs.
983 * If d is the common denominator of M, then we need to impose that
989 * exists alpha : d M(x) = d alpha
991 * This function is similar to add_strides in isl_morph.c
993 static __isl_give isl_basic_map
*add_strides(__isl_take isl_basic_map
*bmap
,
994 __isl_keep isl_mat
*M
, int n_known
)
999 if (isl_int_is_one(M
->row
[0][0]))
1002 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1003 M
->n_row
- 1, M
->n_row
- 1, 0);
1006 for (i
= 1; i
< M
->n_row
; ++i
) {
1007 isl_seq_gcd(M
->row
[i
], M
->n_col
, &gcd
);
1008 if (isl_int_is_divisible_by(gcd
, M
->row
[0][0]))
1010 div
= isl_basic_map_alloc_div(bmap
);
1013 isl_int_set_si(bmap
->div
[div
][0], 0);
1014 k
= isl_basic_map_alloc_equality(bmap
);
1017 isl_seq_cpy(bmap
->eq
[k
], M
->row
[i
], M
->n_col
);
1018 isl_seq_clr(bmap
->eq
[k
] + M
->n_col
, bmap
->n_div
- n_known
);
1019 isl_int_set(bmap
->eq
[k
][M
->n_col
- n_known
+ div
],
1027 isl_basic_map_free(bmap
);
1031 /* If there are any equalities that involve (multiple) unknown divs,
1032 * then extract the stride information encoded by those equalities
1033 * and make it explicitly available in "bmap".
1035 * We first sort the divs so that the unknown divs appear last and
1036 * then we count how many equalities involve these divs.
1038 * Let these equalities be of the form
1042 * where y represents the unknown divs and x the remaining variables.
1043 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1047 * Then x is a solution of the equalities iff
1049 * H^-1 A(x) (= - [I 0] Q y)
1051 * is an integer vector. Let d be the common denominator of H^-1.
1054 * d H^-1 A(x) = d alpha
1056 * in add_strides, with alpha fresh existentially quantified variables.
1058 static __isl_give isl_basic_map
*isl_basic_map_make_strides_explicit(
1059 __isl_take isl_basic_map
*bmap
)
1068 known
= isl_basic_map_divs_known(bmap
);
1070 return isl_basic_map_free(bmap
);
1073 bmap
= isl_basic_map_sort_divs(bmap
);
1074 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1078 for (n_known
= 0; n_known
< bmap
->n_div
; ++n_known
)
1079 if (isl_int_is_zero(bmap
->div
[n_known
][0]))
1081 ctx
= isl_basic_map_get_ctx(bmap
);
1082 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1083 for (n
= 0; n
< bmap
->n_eq
; ++n
)
1084 if (isl_seq_first_non_zero(bmap
->eq
[n
] + 1 + total
+ n_known
,
1085 bmap
->n_div
- n_known
) == -1)
1089 B
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, n
, 0, 1 + total
+ n_known
);
1090 n_col
= bmap
->n_div
- n_known
;
1091 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, n
, 1 + total
+ n_known
, n_col
);
1092 A
= isl_mat_left_hermite(A
, 0, NULL
, NULL
);
1093 A
= isl_mat_drop_cols(A
, n
, n_col
- n
);
1094 A
= isl_mat_lin_to_aff(A
);
1095 A
= isl_mat_right_inverse(A
);
1096 B
= isl_mat_insert_zero_rows(B
, 0, 1);
1097 B
= isl_mat_set_element_si(B
, 0, 0, 1);
1098 M
= isl_mat_product(A
, B
);
1100 return isl_basic_map_free(bmap
);
1101 bmap
= add_strides(bmap
, M
, n_known
);
1102 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1108 /* Compute the affine hull of each basic map in "map" separately
1109 * and make all stride information explicit so that we can remove
1110 * all unknown divs without losing this information.
1111 * The result is also guaranteed to be gaussed.
1113 * In simple cases where a div is determined by an equality,
1114 * calling isl_basic_map_gauss is enough to make the stride information
1115 * explicit, as it will derive an explicit representation for the div
1116 * from the equality. If, however, the stride information
1117 * is encoded through multiple unknown divs then we need to make
1118 * some extra effort in isl_basic_map_make_strides_explicit.
1120 static __isl_give isl_map
*isl_map_local_affine_hull(__isl_take isl_map
*map
)
1124 map
= isl_map_cow(map
);
1128 for (i
= 0; i
< map
->n
; ++i
) {
1129 map
->p
[i
] = isl_basic_map_affine_hull(map
->p
[i
]);
1130 map
->p
[i
] = isl_basic_map_gauss(map
->p
[i
], NULL
);
1131 map
->p
[i
] = isl_basic_map_make_strides_explicit(map
->p
[i
]);
1133 return isl_map_free(map
);
1139 static __isl_give isl_set
*isl_set_local_affine_hull(__isl_take isl_set
*set
)
1141 return isl_map_local_affine_hull(set
);
1144 /* Return an empty basic map living in the same space as "map".
1146 static __isl_give isl_basic_map
*replace_map_by_empty_basic_map(
1147 __isl_take isl_map
*map
)
1151 space
= isl_map_get_space(map
);
1153 return isl_basic_map_empty(space
);
1156 /* Compute the affine hull of "map".
1158 * We first compute the affine hull of each basic map separately.
1159 * Then we align the divs and recompute the affine hulls of the basic
1160 * maps since some of them may now have extra divs.
1161 * In order to avoid performing parametric integer programming to
1162 * compute explicit expressions for the divs, possible leading to
1163 * an explosion in the number of basic maps, we first drop all unknown
1164 * divs before aligning the divs. Note that isl_map_local_affine_hull tries
1165 * to make sure that all stride information is explicitly available
1166 * in terms of known divs. This involves calling isl_basic_set_gauss,
1167 * which is also needed because affine_hull assumes its input has been gaussed,
1168 * while isl_map_affine_hull may be called on input that has not been gaussed,
1169 * in particular from initial_facet_constraint.
1170 * Similarly, align_divs may reorder some divs so that we need to
1171 * gauss the result again.
1172 * Finally, we combine the individual affine hulls into a single
1175 __isl_give isl_basic_map
*isl_map_affine_hull(__isl_take isl_map
*map
)
1177 struct isl_basic_map
*model
= NULL
;
1178 struct isl_basic_map
*hull
= NULL
;
1179 struct isl_set
*set
;
1180 isl_basic_set
*bset
;
1182 map
= isl_map_detect_equalities(map
);
1183 map
= isl_map_local_affine_hull(map
);
1184 map
= isl_map_remove_empty_parts(map
);
1185 map
= isl_map_remove_unknown_divs(map
);
1186 map
= isl_map_align_divs_internal(map
);
1192 return replace_map_by_empty_basic_map(map
);
1194 model
= isl_basic_map_copy(map
->p
[0]);
1195 set
= isl_map_underlying_set(map
);
1196 set
= isl_set_cow(set
);
1197 set
= isl_set_local_affine_hull(set
);
1202 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
1204 bset
= isl_basic_set_copy(set
->p
[0]);
1205 hull
= isl_basic_map_overlying_set(bset
, model
);
1207 hull
= isl_basic_map_simplify(hull
);
1208 return isl_basic_map_finalize(hull
);
1210 isl_basic_map_free(model
);
1215 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
1217 return bset_from_bmap(isl_map_affine_hull(set_to_map(set
)));