2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
32 case isl_dim_param
: return 0;
33 case isl_dim_in
: return dim
->nparam
;
34 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
39 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
47 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
52 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
54 return (struct isl_upoly_cst
*)up
;
57 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
62 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
64 return (struct isl_upoly_rec
*)up
;
67 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
68 __isl_keep
struct isl_upoly
*up2
)
71 struct isl_upoly_rec
*rec1
, *rec2
;
77 if (up1
->var
!= up2
->var
)
79 if (isl_upoly_is_cst(up1
)) {
80 struct isl_upoly_cst
*cst1
, *cst2
;
81 cst1
= isl_upoly_as_cst(up1
);
82 cst2
= isl_upoly_as_cst(up2
);
85 return isl_int_eq(cst1
->n
, cst2
->n
) &&
86 isl_int_eq(cst1
->d
, cst2
->d
);
89 rec1
= isl_upoly_as_rec(up1
);
90 rec2
= isl_upoly_as_rec(up2
);
94 if (rec1
->n
!= rec2
->n
)
97 for (i
= 0; i
< rec1
->n
; ++i
) {
98 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
106 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
108 struct isl_upoly_cst
*cst
;
112 if (!isl_upoly_is_cst(up
))
115 cst
= isl_upoly_as_cst(up
);
119 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
122 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
124 struct isl_upoly_cst
*cst
;
128 if (!isl_upoly_is_cst(up
))
131 cst
= isl_upoly_as_cst(up
);
135 return isl_int_sgn(cst
->n
);
138 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
140 struct isl_upoly_cst
*cst
;
144 if (!isl_upoly_is_cst(up
))
147 cst
= isl_upoly_as_cst(up
);
151 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
154 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
156 struct isl_upoly_cst
*cst
;
160 if (!isl_upoly_is_cst(up
))
163 cst
= isl_upoly_as_cst(up
);
167 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
170 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
172 struct isl_upoly_cst
*cst
;
176 if (!isl_upoly_is_cst(up
))
179 cst
= isl_upoly_as_cst(up
);
183 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
186 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
188 struct isl_upoly_cst
*cst
;
192 if (!isl_upoly_is_cst(up
))
195 cst
= isl_upoly_as_cst(up
);
199 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
202 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
204 struct isl_upoly_cst
*cst
;
208 if (!isl_upoly_is_cst(up
))
211 cst
= isl_upoly_as_cst(up
);
215 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
218 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
220 struct isl_upoly_cst
*cst
;
222 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
231 isl_int_init(cst
->n
);
232 isl_int_init(cst
->d
);
237 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
239 struct isl_upoly_cst
*cst
;
241 cst
= isl_upoly_cst_alloc(ctx
);
245 isl_int_set_si(cst
->n
, 0);
246 isl_int_set_si(cst
->d
, 1);
251 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
253 struct isl_upoly_cst
*cst
;
255 cst
= isl_upoly_cst_alloc(ctx
);
259 isl_int_set_si(cst
->n
, 1);
260 isl_int_set_si(cst
->d
, 1);
265 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
267 struct isl_upoly_cst
*cst
;
269 cst
= isl_upoly_cst_alloc(ctx
);
273 isl_int_set_si(cst
->n
, 1);
274 isl_int_set_si(cst
->d
, 0);
279 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
281 struct isl_upoly_cst
*cst
;
283 cst
= isl_upoly_cst_alloc(ctx
);
287 isl_int_set_si(cst
->n
, -1);
288 isl_int_set_si(cst
->d
, 0);
293 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
295 struct isl_upoly_cst
*cst
;
297 cst
= isl_upoly_cst_alloc(ctx
);
301 isl_int_set_si(cst
->n
, 0);
302 isl_int_set_si(cst
->d
, 0);
307 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
308 isl_int n
, isl_int d
)
310 struct isl_upoly_cst
*cst
;
312 cst
= isl_upoly_cst_alloc(ctx
);
316 isl_int_set(cst
->n
, n
);
317 isl_int_set(cst
->d
, d
);
322 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
325 struct isl_upoly_rec
*rec
;
327 isl_assert(ctx
, var
>= 0, return NULL
);
328 isl_assert(ctx
, size
>= 0, return NULL
);
329 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
330 sizeof(struct isl_upoly_rec
) +
331 size
* sizeof(struct isl_upoly
*));
346 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
349 qp
= isl_qpolynomial_cow(qp
);
353 isl_space_free(qp
->dim
);
358 isl_qpolynomial_free(qp
);
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
367 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
369 __isl_take isl_space
*domain
)
371 isl_space_free(space
);
372 return isl_qpolynomial_reset_domain_space(qp
, domain
);
375 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
377 return qp
? qp
->dim
->ctx
: NULL
;
380 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial
*qp
)
383 return qp
? isl_space_copy(qp
->dim
) : NULL
;
386 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
391 space
= isl_space_copy(qp
->dim
);
392 space
= isl_space_from_domain(space
);
393 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
401 enum isl_dim_type type
)
405 if (type
== isl_dim_out
)
407 if (type
== isl_dim_in
)
409 return isl_space_dim(qp
->dim
, type
);
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
414 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
419 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
424 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
429 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
434 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
439 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
442 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
444 isl_int_clear(cst
->n
);
445 isl_int_clear(cst
->d
);
448 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
452 for (i
= 0; i
< rec
->n
; ++i
)
453 isl_upoly_free(rec
->p
[i
]);
456 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
465 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
467 struct isl_upoly_cst
*cst
;
468 struct isl_upoly_cst
*dup
;
470 cst
= isl_upoly_as_cst(up
);
474 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
477 isl_int_set(dup
->n
, cst
->n
);
478 isl_int_set(dup
->d
, cst
->d
);
483 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
486 struct isl_upoly_rec
*rec
;
487 struct isl_upoly_rec
*dup
;
489 rec
= isl_upoly_as_rec(up
);
493 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
497 for (i
= 0; i
< rec
->n
; ++i
) {
498 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
506 isl_upoly_free(&dup
->up
);
510 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
515 if (isl_upoly_is_cst(up
))
516 return isl_upoly_dup_cst(up
);
518 return isl_upoly_dup_rec(up
);
521 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
529 return isl_upoly_dup(up
);
532 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
541 upoly_free_cst((struct isl_upoly_cst
*)up
);
543 upoly_free_rec((struct isl_upoly_rec
*)up
);
545 isl_ctx_deref(up
->ctx
);
549 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
554 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
555 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
556 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
557 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
562 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
563 __isl_take
struct isl_upoly
*up2
)
565 struct isl_upoly_cst
*cst1
;
566 struct isl_upoly_cst
*cst2
;
568 up1
= isl_upoly_cow(up1
);
572 cst1
= isl_upoly_as_cst(up1
);
573 cst2
= isl_upoly_as_cst(up2
);
575 if (isl_int_eq(cst1
->d
, cst2
->d
))
576 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
578 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
579 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
580 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
583 isl_upoly_cst_reduce(cst1
);
593 static __isl_give
struct isl_upoly
*replace_by_zero(
594 __isl_take
struct isl_upoly
*up
)
602 return isl_upoly_zero(ctx
);
605 static __isl_give
struct isl_upoly
*replace_by_constant_term(
606 __isl_take
struct isl_upoly
*up
)
608 struct isl_upoly_rec
*rec
;
609 struct isl_upoly
*cst
;
614 rec
= isl_upoly_as_rec(up
);
617 cst
= isl_upoly_copy(rec
->p
[0]);
625 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
626 __isl_take
struct isl_upoly
*up2
)
629 struct isl_upoly_rec
*rec1
, *rec2
;
634 if (isl_upoly_is_nan(up1
)) {
639 if (isl_upoly_is_nan(up2
)) {
644 if (isl_upoly_is_zero(up1
)) {
649 if (isl_upoly_is_zero(up2
)) {
654 if (up1
->var
< up2
->var
)
655 return isl_upoly_sum(up2
, up1
);
657 if (up2
->var
< up1
->var
) {
658 struct isl_upoly_rec
*rec
;
659 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
663 up1
= isl_upoly_cow(up1
);
664 rec
= isl_upoly_as_rec(up1
);
667 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
669 up1
= replace_by_constant_term(up1
);
673 if (isl_upoly_is_cst(up1
))
674 return isl_upoly_sum_cst(up1
, up2
);
676 rec1
= isl_upoly_as_rec(up1
);
677 rec2
= isl_upoly_as_rec(up2
);
681 if (rec1
->n
< rec2
->n
)
682 return isl_upoly_sum(up2
, up1
);
684 up1
= isl_upoly_cow(up1
);
685 rec1
= isl_upoly_as_rec(up1
);
689 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
690 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
691 isl_upoly_copy(rec2
->p
[i
]));
694 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
695 isl_upoly_free(rec1
->p
[i
]);
701 up1
= replace_by_zero(up1
);
702 else if (rec1
->n
== 1)
703 up1
= replace_by_constant_term(up1
);
714 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
715 __isl_take
struct isl_upoly
*up
, isl_int v
)
717 struct isl_upoly_cst
*cst
;
719 up
= isl_upoly_cow(up
);
723 cst
= isl_upoly_as_cst(up
);
725 isl_int_addmul(cst
->n
, cst
->d
, v
);
730 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
731 __isl_take
struct isl_upoly
*up
, isl_int v
)
733 struct isl_upoly_rec
*rec
;
738 if (isl_upoly_is_cst(up
))
739 return isl_upoly_cst_add_isl_int(up
, v
);
741 up
= isl_upoly_cow(up
);
742 rec
= isl_upoly_as_rec(up
);
746 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
756 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
757 __isl_take
struct isl_upoly
*up
, isl_int v
)
759 struct isl_upoly_cst
*cst
;
761 if (isl_upoly_is_zero(up
))
764 up
= isl_upoly_cow(up
);
768 cst
= isl_upoly_as_cst(up
);
770 isl_int_mul(cst
->n
, cst
->n
, v
);
775 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
776 __isl_take
struct isl_upoly
*up
, isl_int v
)
779 struct isl_upoly_rec
*rec
;
784 if (isl_upoly_is_cst(up
))
785 return isl_upoly_cst_mul_isl_int(up
, v
);
787 up
= isl_upoly_cow(up
);
788 rec
= isl_upoly_as_rec(up
);
792 for (i
= 0; i
< rec
->n
; ++i
) {
793 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
804 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
805 __isl_take
struct isl_upoly
*up2
)
807 struct isl_upoly_cst
*cst1
;
808 struct isl_upoly_cst
*cst2
;
810 up1
= isl_upoly_cow(up1
);
814 cst1
= isl_upoly_as_cst(up1
);
815 cst2
= isl_upoly_as_cst(up2
);
817 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
818 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
820 isl_upoly_cst_reduce(cst1
);
830 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
831 __isl_take
struct isl_upoly
*up2
)
833 struct isl_upoly_rec
*rec1
;
834 struct isl_upoly_rec
*rec2
;
835 struct isl_upoly_rec
*res
= NULL
;
839 rec1
= isl_upoly_as_rec(up1
);
840 rec2
= isl_upoly_as_rec(up2
);
843 size
= rec1
->n
+ rec2
->n
- 1;
844 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
848 for (i
= 0; i
< rec1
->n
; ++i
) {
849 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
850 isl_upoly_copy(rec1
->p
[i
]));
855 for (; i
< size
; ++i
) {
856 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
861 for (i
= 0; i
< rec1
->n
; ++i
) {
862 for (j
= 1; j
< rec2
->n
; ++j
) {
863 struct isl_upoly
*up
;
864 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
865 isl_upoly_copy(rec1
->p
[i
]));
866 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
879 isl_upoly_free(&res
->up
);
883 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
884 __isl_take
struct isl_upoly
*up2
)
889 if (isl_upoly_is_nan(up1
)) {
894 if (isl_upoly_is_nan(up2
)) {
899 if (isl_upoly_is_zero(up1
)) {
904 if (isl_upoly_is_zero(up2
)) {
909 if (isl_upoly_is_one(up1
)) {
914 if (isl_upoly_is_one(up2
)) {
919 if (up1
->var
< up2
->var
)
920 return isl_upoly_mul(up2
, up1
);
922 if (up2
->var
< up1
->var
) {
924 struct isl_upoly_rec
*rec
;
925 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
926 isl_ctx
*ctx
= up1
->ctx
;
929 return isl_upoly_nan(ctx
);
931 up1
= isl_upoly_cow(up1
);
932 rec
= isl_upoly_as_rec(up1
);
936 for (i
= 0; i
< rec
->n
; ++i
) {
937 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
938 isl_upoly_copy(up2
));
946 if (isl_upoly_is_cst(up1
))
947 return isl_upoly_mul_cst(up1
, up2
);
949 return isl_upoly_mul_rec(up1
, up2
);
956 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
959 struct isl_upoly
*res
;
967 res
= isl_upoly_copy(up
);
969 res
= isl_upoly_one(up
->ctx
);
971 while (power
>>= 1) {
972 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
974 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
981 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
982 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
984 struct isl_qpolynomial
*qp
= NULL
;
990 if (!isl_space_is_set(dim
))
991 isl_die(isl_space_get_ctx(dim
), isl_error_invalid
,
992 "domain of polynomial should be a set", goto error
);
994 total
= isl_space_dim(dim
, isl_dim_all
);
996 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
1001 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1010 isl_space_free(dim
);
1012 isl_qpolynomial_free(qp
);
1016 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1025 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1027 struct isl_qpolynomial
*dup
;
1032 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1033 isl_upoly_copy(qp
->upoly
));
1036 isl_mat_free(dup
->div
);
1037 dup
->div
= isl_mat_copy(qp
->div
);
1043 isl_qpolynomial_free(dup
);
1047 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1055 return isl_qpolynomial_dup(qp
);
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial
*qp
)
1066 isl_space_free(qp
->dim
);
1067 isl_mat_free(qp
->div
);
1068 isl_upoly_free(qp
->upoly
);
1074 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1077 struct isl_upoly_rec
*rec
;
1078 struct isl_upoly_cst
*cst
;
1080 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1083 for (i
= 0; i
< 1 + power
; ++i
) {
1084 rec
->p
[i
] = isl_upoly_zero(ctx
);
1089 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1090 isl_int_set_si(cst
->n
, 1);
1094 isl_upoly_free(&rec
->up
);
1098 /* r array maps original positions to new positions.
1100 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1104 struct isl_upoly_rec
*rec
;
1105 struct isl_upoly
*base
;
1106 struct isl_upoly
*res
;
1108 if (isl_upoly_is_cst(up
))
1111 rec
= isl_upoly_as_rec(up
);
1115 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1117 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1118 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1120 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1121 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1122 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1125 isl_upoly_free(base
);
1134 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1139 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1140 div1
->n_col
>= div2
->n_col
, return -1);
1142 if (div1
->n_row
== div2
->n_row
)
1143 return isl_mat_is_equal(div1
, div2
);
1145 n_row
= div1
->n_row
;
1146 n_col
= div1
->n_col
;
1147 div1
->n_row
= div2
->n_row
;
1148 div1
->n_col
= div2
->n_col
;
1150 equal
= isl_mat_is_equal(div1
, div2
);
1152 div1
->n_row
= n_row
;
1153 div1
->n_col
= n_col
;
1158 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1162 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1163 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1168 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1171 struct isl_div_sort_info
{
1176 static int div_sort_cmp(const void *p1
, const void *p2
)
1178 const struct isl_div_sort_info
*i1
, *i2
;
1179 i1
= (const struct isl_div_sort_info
*) p1
;
1180 i2
= (const struct isl_div_sort_info
*) p2
;
1182 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1185 /* Sort divs and remove duplicates.
1187 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1192 struct isl_div_sort_info
*array
= NULL
;
1193 int *pos
= NULL
, *at
= NULL
;
1194 int *reordering
= NULL
;
1199 if (qp
->div
->n_row
<= 1)
1202 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1204 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1206 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1207 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1208 len
= qp
->div
->n_col
- 2;
1209 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1210 if (!array
|| !pos
|| !at
|| !reordering
)
1213 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1214 array
[i
].div
= qp
->div
;
1220 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1223 for (i
= 0; i
< div_pos
; ++i
)
1226 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1227 if (pos
[array
[i
].row
] == i
)
1229 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1230 pos
[at
[i
]] = pos
[array
[i
].row
];
1231 at
[pos
[array
[i
].row
]] = at
[i
];
1232 at
[i
] = array
[i
].row
;
1233 pos
[array
[i
].row
] = i
;
1237 for (i
= 0; i
< len
- div_pos
; ++i
) {
1239 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1240 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1241 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1242 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1243 2 + div_pos
+ i
- skip
);
1244 qp
->div
= isl_mat_drop_cols(qp
->div
,
1245 2 + div_pos
+ i
- skip
, 1);
1248 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1251 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1253 if (!qp
->upoly
|| !qp
->div
)
1267 isl_qpolynomial_free(qp
);
1271 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1272 int *exp
, int first
)
1275 struct isl_upoly_rec
*rec
;
1277 if (isl_upoly_is_cst(up
))
1280 if (up
->var
< first
)
1283 if (exp
[up
->var
- first
] == up
->var
- first
)
1286 up
= isl_upoly_cow(up
);
1290 up
->var
= exp
[up
->var
- first
] + first
;
1292 rec
= isl_upoly_as_rec(up
);
1296 for (i
= 0; i
< rec
->n
; ++i
) {
1297 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1308 static __isl_give isl_qpolynomial
*with_merged_divs(
1309 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1310 __isl_take isl_qpolynomial
*qp2
),
1311 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1315 isl_mat
*div
= NULL
;
1317 qp1
= isl_qpolynomial_cow(qp1
);
1318 qp2
= isl_qpolynomial_cow(qp2
);
1323 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1324 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1326 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, qp1
->div
->n_row
);
1327 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, qp2
->div
->n_row
);
1331 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1335 isl_mat_free(qp1
->div
);
1336 qp1
->div
= isl_mat_copy(div
);
1337 isl_mat_free(qp2
->div
);
1338 qp2
->div
= isl_mat_copy(div
);
1340 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1341 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1343 if (!qp1
->upoly
|| !qp2
->upoly
)
1350 return fn(qp1
, qp2
);
1355 isl_qpolynomial_free(qp1
);
1356 isl_qpolynomial_free(qp2
);
1360 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1361 __isl_take isl_qpolynomial
*qp2
)
1363 qp1
= isl_qpolynomial_cow(qp1
);
1368 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1369 return isl_qpolynomial_add(qp2
, qp1
);
1371 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1372 if (!compatible_divs(qp1
->div
, qp2
->div
))
1373 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1375 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1379 isl_qpolynomial_free(qp2
);
1383 isl_qpolynomial_free(qp1
);
1384 isl_qpolynomial_free(qp2
);
1388 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set
*dom
,
1390 __isl_take isl_qpolynomial
*qp1
,
1391 __isl_take isl_qpolynomial
*qp2
)
1393 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1394 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1398 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1399 __isl_take isl_qpolynomial
*qp2
)
1401 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1404 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1407 if (isl_int_is_zero(v
))
1410 qp
= isl_qpolynomial_cow(qp
);
1414 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1420 isl_qpolynomial_free(qp
);
1425 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1430 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1433 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1436 if (isl_int_is_one(v
))
1439 if (qp
&& isl_int_is_zero(v
)) {
1440 isl_qpolynomial
*zero
;
1441 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1442 isl_qpolynomial_free(qp
);
1446 qp
= isl_qpolynomial_cow(qp
);
1450 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1456 isl_qpolynomial_free(qp
);
1460 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1463 return isl_qpolynomial_mul_isl_int(qp
, v
);
1466 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1467 __isl_take isl_qpolynomial
*qp2
)
1469 qp1
= isl_qpolynomial_cow(qp1
);
1474 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1475 return isl_qpolynomial_mul(qp2
, qp1
);
1477 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1478 if (!compatible_divs(qp1
->div
, qp2
->div
))
1479 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1481 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1485 isl_qpolynomial_free(qp2
);
1489 isl_qpolynomial_free(qp1
);
1490 isl_qpolynomial_free(qp2
);
1494 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1497 qp
= isl_qpolynomial_cow(qp
);
1502 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1508 isl_qpolynomial_free(qp
);
1512 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1520 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1524 for (i
= 0; i
< pwqp
->n
; ++i
) {
1525 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1527 return isl_pw_qpolynomial_free(pwqp
);
1533 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space
*dim
)
1538 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1541 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space
*dim
)
1546 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1549 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space
*dim
)
1554 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1557 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space
*dim
)
1562 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1565 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space
*dim
)
1570 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1573 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space
*dim
,
1577 struct isl_qpolynomial
*qp
;
1578 struct isl_upoly_cst
*cst
;
1583 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1587 cst
= isl_upoly_as_cst(qp
->upoly
);
1588 isl_int_set(cst
->n
, v
);
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1594 isl_int
*n
, isl_int
*d
)
1596 struct isl_upoly_cst
*cst
;
1601 if (!isl_upoly_is_cst(qp
->upoly
))
1604 cst
= isl_upoly_as_cst(qp
->upoly
);
1609 isl_int_set(*n
, cst
->n
);
1611 isl_int_set(*d
, cst
->d
);
1616 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1619 struct isl_upoly_rec
*rec
;
1627 rec
= isl_upoly_as_rec(up
);
1634 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1636 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1642 return isl_upoly_is_affine(rec
->p
[0]);
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1650 if (qp
->div
->n_row
> 0)
1653 return isl_upoly_is_affine(qp
->upoly
);
1656 static void update_coeff(__isl_keep isl_vec
*aff
,
1657 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1662 if (isl_int_is_zero(cst
->n
))
1667 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1668 isl_int_divexact(f
, cst
->d
, gcd
);
1669 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1670 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1671 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1676 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1677 __isl_keep isl_vec
*aff
)
1679 struct isl_upoly_cst
*cst
;
1680 struct isl_upoly_rec
*rec
;
1686 struct isl_upoly_cst
*cst
;
1688 cst
= isl_upoly_as_cst(up
);
1691 update_coeff(aff
, cst
, 0);
1695 rec
= isl_upoly_as_rec(up
);
1698 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1700 cst
= isl_upoly_as_cst(rec
->p
[1]);
1703 update_coeff(aff
, cst
, 1 + up
->var
);
1705 return isl_upoly_update_affine(rec
->p
[0], aff
);
1708 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial
*qp
)
1717 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1718 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1722 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1723 isl_int_set_si(aff
->el
[0], 1);
1725 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1735 __isl_keep isl_qpolynomial
*qp2
)
1742 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
1743 if (equal
< 0 || !equal
)
1746 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1747 if (equal
< 0 || !equal
)
1750 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1753 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1756 struct isl_upoly_rec
*rec
;
1758 if (isl_upoly_is_cst(up
)) {
1759 struct isl_upoly_cst
*cst
;
1760 cst
= isl_upoly_as_cst(up
);
1763 isl_int_lcm(*d
, *d
, cst
->d
);
1767 rec
= isl_upoly_as_rec(up
);
1771 for (i
= 0; i
< rec
->n
; ++i
)
1772 upoly_update_den(rec
->p
[i
], d
);
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1777 isl_int_set_si(*d
, 1);
1780 upoly_update_den(qp
->upoly
, d
);
1783 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space
*dim
, int pos
, int power
)
1786 struct isl_ctx
*ctx
;
1793 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1796 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(__isl_take isl_space
*dim
,
1797 enum isl_dim_type type
, unsigned pos
)
1802 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
1803 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
1805 if (type
== isl_dim_set
)
1806 pos
+= isl_space_dim(dim
, isl_dim_param
);
1808 return isl_qpolynomial_var_pow_on_domain(dim
, pos
, 1);
1810 isl_space_free(dim
);
1814 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1815 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1818 struct isl_upoly_rec
*rec
;
1819 struct isl_upoly
*base
, *res
;
1824 if (isl_upoly_is_cst(up
))
1827 if (up
->var
< first
)
1830 rec
= isl_upoly_as_rec(up
);
1834 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1836 if (up
->var
>= first
+ n
)
1837 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1839 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1841 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1842 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1843 struct isl_upoly
*t
;
1844 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1845 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1846 res
= isl_upoly_sum(res
, t
);
1849 isl_upoly_free(base
);
1858 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1859 isl_int denom
, unsigned len
)
1862 struct isl_upoly
*up
;
1864 isl_assert(ctx
, len
>= 1, return NULL
);
1866 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
1867 for (i
= 0; i
< len
- 1; ++i
) {
1868 struct isl_upoly
*t
;
1869 struct isl_upoly
*c
;
1871 if (isl_int_is_zero(f
[1 + i
]))
1874 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
1875 t
= isl_upoly_var_pow(ctx
, i
, 1);
1876 t
= isl_upoly_mul(c
, t
);
1877 up
= isl_upoly_sum(up
, t
);
1883 /* Remove common factor of non-constant terms and denominator.
1885 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
1887 isl_ctx
*ctx
= qp
->div
->ctx
;
1888 unsigned total
= qp
->div
->n_col
- 2;
1890 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
1891 isl_int_gcd(ctx
->normalize_gcd
,
1892 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
1893 if (isl_int_is_one(ctx
->normalize_gcd
))
1896 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
1897 ctx
->normalize_gcd
, total
);
1898 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
1899 ctx
->normalize_gcd
);
1900 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
1901 ctx
->normalize_gcd
);
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1908 static __isl_give isl_qpolynomial
*substitute_div(
1909 __isl_take isl_qpolynomial
*qp
,
1910 int div
, __isl_take
struct isl_upoly
*s
)
1919 qp
= isl_qpolynomial_cow(qp
);
1923 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1924 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
1928 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
1931 for (i
= 0; i
< total
+ div
; ++i
)
1933 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
1934 reordering
[i
] = i
- 1;
1935 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
1936 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
1937 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1940 if (!qp
->upoly
|| !qp
->div
)
1946 isl_qpolynomial_free(qp
);
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1954 static __isl_give isl_qpolynomial
*substitute_non_divs(
1955 __isl_take isl_qpolynomial
*qp
)
1959 struct isl_upoly
*s
;
1964 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
1965 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
1966 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
1968 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
1969 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
1971 isl_seq_combine(qp
->div
->row
[j
] + 1,
1972 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
1973 qp
->div
->row
[j
][2 + total
+ i
],
1974 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
1975 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
1976 normalize_div(qp
, j
);
1978 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
1979 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
1980 qp
= substitute_div(qp
, i
, s
);
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1996 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
1997 __isl_keep isl_vec
*aff
)
2001 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2004 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2005 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2006 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2008 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2009 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2010 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2011 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2012 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
2013 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2014 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2016 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2017 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2030 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2035 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2036 if (isl_int_is_zero(div
->row
[row
][i
]))
2038 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2039 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2040 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2055 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2056 __isl_keep isl_vec
*aff
)
2058 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2060 isl_seq_neg(qp
->div
->row
[div
] + 1,
2061 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2062 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2063 isl_int_add(qp
->div
->row
[div
][1],
2064 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2065 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2066 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2067 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2068 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2081 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2084 isl_vec
*aff
= NULL
;
2085 struct isl_upoly
*s
;
2091 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2092 aff
= isl_vec_clr(aff
);
2096 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2098 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2099 normalize_div(qp
, i
);
2100 reduce_div(qp
, i
, aff
);
2101 if (needs_invert(qp
->div
, i
)) {
2102 invert_div(qp
, i
, aff
);
2103 reduce_div(qp
, i
, aff
);
2107 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2108 qp
->div
->ctx
->one
, aff
->size
);
2109 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2116 n_div
= qp
->div
->n_row
;
2117 qp
= substitute_non_divs(qp
);
2119 if (qp
&& qp
->div
->n_row
< n_div
)
2120 return reduce_divs(qp
);
2124 isl_qpolynomial_free(qp
);
2129 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space
*dim
, const isl_int n
, const isl_int d
)
2132 struct isl_qpolynomial
*qp
;
2133 struct isl_upoly_cst
*cst
;
2138 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2142 cst
= isl_upoly_as_cst(qp
->upoly
);
2143 isl_int_set(cst
->n
, n
);
2144 isl_int_set(cst
->d
, d
);
2149 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2151 struct isl_upoly_rec
*rec
;
2157 if (isl_upoly_is_cst(up
))
2161 active
[up
->var
] = 1;
2163 rec
= isl_upoly_as_rec(up
);
2164 for (i
= 0; i
< rec
->n
; ++i
)
2165 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2171 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2174 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2179 for (i
= 0; i
< d
; ++i
)
2180 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2181 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2187 return up_set_active(qp
->upoly
, active
, d
);
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2191 enum isl_dim_type type
, unsigned first
, unsigned n
)
2202 isl_assert(qp
->dim
->ctx
,
2203 first
+ n
<= isl_qpolynomial_dim(qp
, type
), return -1);
2204 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2205 type
== isl_dim_in
, return -1);
2207 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2208 isl_space_dim(qp
->dim
, isl_dim_all
));
2209 if (set_active(qp
, active
) < 0)
2212 if (type
== isl_dim_in
)
2213 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2214 for (i
= 0; i
< n
; ++i
)
2215 if (active
[first
+ i
]) {
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2231 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2232 __isl_take isl_qpolynomial
*qp
)
2239 int *reordering
= NULL
;
2246 if (qp
->div
->n_row
== 0)
2249 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2250 len
= qp
->div
->n_col
- 2;
2251 ctx
= isl_qpolynomial_get_ctx(qp
);
2252 active
= isl_calloc_array(ctx
, int, len
);
2256 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2259 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2260 if (!active
[d
+ i
]) {
2264 for (j
= 0; j
< i
; ++j
) {
2265 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2277 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2281 for (i
= 0; i
< d
; ++i
)
2285 n_div
= qp
->div
->n_row
;
2286 for (i
= 0; i
< n_div
; ++i
) {
2287 if (!active
[d
+ i
]) {
2288 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2289 qp
->div
= isl_mat_drop_cols(qp
->div
,
2290 2 + d
+ i
- skip
, 1);
2293 reordering
[d
+ i
] = d
+ i
- skip
;
2296 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2298 if (!qp
->upoly
|| !qp
->div
)
2308 isl_qpolynomial_free(qp
);
2312 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2313 unsigned first
, unsigned n
)
2316 struct isl_upoly_rec
*rec
;
2320 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2322 if (up
->var
< first
+ n
) {
2323 up
= replace_by_constant_term(up
);
2324 return isl_upoly_drop(up
, first
, n
);
2326 up
= isl_upoly_cow(up
);
2330 rec
= isl_upoly_as_rec(up
);
2334 for (i
= 0; i
< rec
->n
; ++i
) {
2335 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2346 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial
*qp
,
2348 enum isl_dim_type type
, unsigned pos
, const char *s
)
2350 qp
= isl_qpolynomial_cow(qp
);
2353 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2358 isl_qpolynomial_free(qp
);
2362 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial
*qp
,
2364 enum isl_dim_type type
, unsigned first
, unsigned n
)
2368 if (type
== isl_dim_out
)
2369 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2370 "cannot drop output/set dimension",
2372 if (type
== isl_dim_in
)
2374 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2377 qp
= isl_qpolynomial_cow(qp
);
2381 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2383 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2384 type
== isl_dim_set
, goto error
);
2386 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2390 if (type
== isl_dim_set
)
2391 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2393 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2397 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2403 isl_qpolynomial_free(qp
);
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2410 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial
*qp
)
2417 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2418 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2420 return isl_qpolynomial_free(qp
);
2422 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp
));
2425 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2426 space
= isl_qpolynomial_get_domain_space(qp
);
2427 space
= isl_space_params(space
);
2428 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2432 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2439 struct isl_upoly
*up
;
2443 if (eq
->n_eq
== 0) {
2444 isl_basic_set_free(eq
);
2448 qp
= isl_qpolynomial_cow(qp
);
2451 qp
->div
= isl_mat_cow(qp
->div
);
2455 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2457 isl_int_init(denom
);
2458 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2459 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2460 if (j
< 0 || j
== 0 || j
>= total
)
2463 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2464 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2466 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2467 &qp
->div
->row
[k
][0]);
2468 normalize_div(qp
, k
);
2471 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2472 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2473 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2474 isl_int_set_si(eq
->eq
[i
][j
], 0);
2476 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2477 eq
->eq
[i
], denom
, total
);
2478 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2481 isl_int_clear(denom
);
2486 isl_basic_set_free(eq
);
2488 qp
= substitute_non_divs(qp
);
2493 isl_basic_set_free(eq
);
2494 isl_qpolynomial_free(qp
);
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2500 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2505 if (qp
->div
->n_row
> 0)
2506 eq
= isl_basic_set_add(eq
, isl_dim_set
, qp
->div
->n_row
);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2509 isl_basic_set_free(eq
);
2510 isl_qpolynomial_free(qp
);
2514 static __isl_give isl_basic_set
*add_div_constraints(
2515 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2523 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2526 total
= isl_basic_set_total_dim(bset
);
2527 for (i
= 0; i
< div
->n_row
; ++i
)
2528 if (isl_basic_set_add_div_constraints_var(bset
,
2529 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2536 isl_basic_set_free(bset
);
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2545 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2552 if (qp
->div
->n_row
> 0) {
2553 isl_basic_set
*bset
;
2554 context
= isl_set_add_dims(context
, isl_dim_set
,
2556 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2557 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2558 context
= isl_set_intersect(context
,
2559 isl_set_from_basic_set(bset
));
2562 aff
= isl_set_affine_hull(context
);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2565 isl_qpolynomial_free(qp
);
2566 isl_set_free(context
);
2570 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2571 __isl_take isl_qpolynomial
*qp
)
2577 if (isl_qpolynomial_is_zero(qp
)) {
2578 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2579 isl_qpolynomial_free(qp
);
2580 return isl_pw_qpolynomial_zero(dim
);
2583 dom
= isl_set_universe(isl_qpolynomial_get_domain_space(qp
));
2584 return isl_pw_qpolynomial_alloc(dom
, qp
);
2588 #define PW isl_pw_qpolynomial
2590 #define EL isl_qpolynomial
2592 #define EL_IS_ZERO is_zero
2596 #define IS_ZERO is_zero
2600 #include <isl_pw_templ.c>
2603 #define UNION isl_union_pw_qpolynomial
2605 #define PART isl_pw_qpolynomial
2607 #define PARTS pw_qpolynomial
2608 #define ALIGN_DOMAIN
2610 #include <isl_union_templ.c>
2612 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2620 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2623 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2626 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
2627 __isl_take isl_pw_qpolynomial
*pwqp1
,
2628 __isl_take isl_pw_qpolynomial
*pwqp2
)
2630 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
2633 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2634 __isl_take isl_pw_qpolynomial
*pwqp1
,
2635 __isl_take isl_pw_qpolynomial
*pwqp2
)
2638 struct isl_pw_qpolynomial
*res
;
2640 if (!pwqp1
|| !pwqp2
)
2643 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
2646 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2647 isl_pw_qpolynomial_free(pwqp2
);
2651 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2652 isl_pw_qpolynomial_free(pwqp1
);
2656 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2657 isl_pw_qpolynomial_free(pwqp1
);
2661 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2662 isl_pw_qpolynomial_free(pwqp2
);
2666 n
= pwqp1
->n
* pwqp2
->n
;
2667 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
2669 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2670 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2671 struct isl_set
*common
;
2672 struct isl_qpolynomial
*prod
;
2673 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2674 isl_set_copy(pwqp2
->p
[j
].set
));
2675 if (isl_set_plain_is_empty(common
)) {
2676 isl_set_free(common
);
2680 prod
= isl_qpolynomial_mul(
2681 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2682 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2684 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2688 isl_pw_qpolynomial_free(pwqp1
);
2689 isl_pw_qpolynomial_free(pwqp2
);
2693 isl_pw_qpolynomial_free(pwqp1
);
2694 isl_pw_qpolynomial_free(pwqp2
);
2698 __isl_give
struct isl_upoly
*isl_upoly_eval(
2699 __isl_take
struct isl_upoly
*up
, __isl_take isl_vec
*vec
)
2702 struct isl_upoly_rec
*rec
;
2703 struct isl_upoly
*res
;
2704 struct isl_upoly
*base
;
2706 if (isl_upoly_is_cst(up
)) {
2711 rec
= isl_upoly_as_rec(up
);
2715 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2717 base
= isl_upoly_rat_cst(up
->ctx
, vec
->el
[1 + up
->var
], vec
->el
[0]);
2719 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2722 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2723 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2724 res
= isl_upoly_sum(res
,
2725 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2726 isl_vec_copy(vec
)));
2729 isl_upoly_free(base
);
2739 __isl_give isl_qpolynomial
*isl_qpolynomial_eval(
2740 __isl_take isl_qpolynomial
*qp
, __isl_take isl_point
*pnt
)
2743 struct isl_upoly
*up
;
2748 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
2750 if (qp
->div
->n_row
== 0)
2751 ext
= isl_vec_copy(pnt
->vec
);
2754 unsigned dim
= isl_space_dim(qp
->dim
, isl_dim_all
);
2755 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2759 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2760 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2761 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2762 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2763 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2764 qp
->div
->row
[i
][0]);
2768 up
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2772 dim
= isl_space_copy(qp
->dim
);
2773 isl_qpolynomial_free(qp
);
2774 isl_point_free(pnt
);
2776 return isl_qpolynomial_alloc(dim
, 0, up
);
2778 isl_qpolynomial_free(qp
);
2779 isl_point_free(pnt
);
2783 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2784 __isl_keep
struct isl_upoly_cst
*cst2
)
2789 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2790 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2791 cmp
= isl_int_sgn(t
);
2796 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial
*qp1
,
2797 __isl_keep isl_qpolynomial
*qp2
)
2799 struct isl_upoly_cst
*cst1
, *cst2
;
2803 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), return -1);
2804 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), return -1);
2805 if (isl_qpolynomial_is_nan(qp1
))
2807 if (isl_qpolynomial_is_nan(qp2
))
2809 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2810 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2812 return isl_upoly_cmp(cst1
, cst2
) <= 0;
2815 __isl_give isl_qpolynomial
*isl_qpolynomial_min_cst(
2816 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2818 struct isl_upoly_cst
*cst1
, *cst2
;
2823 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2824 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2825 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2826 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2827 cmp
= isl_upoly_cmp(cst1
, cst2
);
2830 isl_qpolynomial_free(qp2
);
2832 isl_qpolynomial_free(qp1
);
2837 isl_qpolynomial_free(qp1
);
2838 isl_qpolynomial_free(qp2
);
2842 __isl_give isl_qpolynomial
*isl_qpolynomial_max_cst(
2843 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
2845 struct isl_upoly_cst
*cst1
, *cst2
;
2850 isl_assert(qp1
->dim
->ctx
, isl_upoly_is_cst(qp1
->upoly
), goto error
);
2851 isl_assert(qp2
->dim
->ctx
, isl_upoly_is_cst(qp2
->upoly
), goto error
);
2852 cst1
= isl_upoly_as_cst(qp1
->upoly
);
2853 cst2
= isl_upoly_as_cst(qp2
->upoly
);
2854 cmp
= isl_upoly_cmp(cst1
, cst2
);
2857 isl_qpolynomial_free(qp2
);
2859 isl_qpolynomial_free(qp1
);
2864 isl_qpolynomial_free(qp1
);
2865 isl_qpolynomial_free(qp2
);
2869 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2870 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2871 unsigned first
, unsigned n
)
2879 if (type
== isl_dim_out
)
2880 isl_die(qp
->div
->ctx
, isl_error_invalid
,
2881 "cannot insert output/set dimensions",
2883 if (type
== isl_dim_in
)
2885 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2888 qp
= isl_qpolynomial_cow(qp
);
2892 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
2895 g_pos
= pos(qp
->dim
, type
) + first
;
2897 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
2901 total
= qp
->div
->n_col
- 2;
2902 if (total
> g_pos
) {
2904 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
2907 for (i
= 0; i
< total
- g_pos
; ++i
)
2909 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
2915 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
2921 isl_qpolynomial_free(qp
);
2925 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
2926 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
2930 pos
= isl_qpolynomial_dim(qp
, type
);
2932 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
2935 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
2936 __isl_take isl_pw_qpolynomial
*pwqp
,
2937 enum isl_dim_type type
, unsigned n
)
2941 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
2943 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
2946 static int *reordering_move(isl_ctx
*ctx
,
2947 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
2952 reordering
= isl_alloc_array(ctx
, int, len
);
2957 for (i
= 0; i
< dst
; ++i
)
2959 for (i
= 0; i
< n
; ++i
)
2960 reordering
[src
+ i
] = dst
+ i
;
2961 for (i
= 0; i
< src
- dst
; ++i
)
2962 reordering
[dst
+ i
] = dst
+ n
+ i
;
2963 for (i
= 0; i
< len
- src
- n
; ++i
)
2964 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
2966 for (i
= 0; i
< src
; ++i
)
2968 for (i
= 0; i
< n
; ++i
)
2969 reordering
[src
+ i
] = dst
+ i
;
2970 for (i
= 0; i
< dst
- src
; ++i
)
2971 reordering
[src
+ n
+ i
] = src
+ i
;
2972 for (i
= 0; i
< len
- dst
- n
; ++i
)
2973 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
2979 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
2980 __isl_take isl_qpolynomial
*qp
,
2981 enum isl_dim_type dst_type
, unsigned dst_pos
,
2982 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
2988 qp
= isl_qpolynomial_cow(qp
);
2992 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
2993 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2994 "cannot move output/set dimension",
2996 if (dst_type
== isl_dim_in
)
2997 dst_type
= isl_dim_set
;
2998 if (src_type
== isl_dim_in
)
2999 src_type
= isl_dim_set
;
3001 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
3004 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3005 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3006 if (dst_type
> src_type
)
3009 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
3016 reordering
= reordering_move(qp
->dim
->ctx
,
3017 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
3021 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3026 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3032 isl_qpolynomial_free(qp
);
3036 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3037 isl_int
*f
, isl_int denom
)
3039 struct isl_upoly
*up
;
3041 dim
= isl_space_domain(dim
);
3045 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3046 1 + isl_space_dim(dim
, isl_dim_all
));
3048 return isl_qpolynomial_alloc(dim
, 0, up
);
3051 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3054 struct isl_upoly
*up
;
3055 isl_qpolynomial
*qp
;
3060 ctx
= isl_aff_get_ctx(aff
);
3061 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3064 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3065 aff
->ls
->div
->n_row
, up
);
3069 isl_mat_free(qp
->div
);
3070 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3071 qp
->div
= isl_mat_cow(qp
->div
);
3076 qp
= reduce_divs(qp
);
3077 qp
= remove_redundant_divs(qp
);
3084 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3085 __isl_take isl_pw_aff
*pwaff
)
3088 isl_pw_qpolynomial
*pwqp
;
3093 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3096 for (i
= 0; i
< pwaff
->n
; ++i
) {
3098 isl_qpolynomial
*qp
;
3100 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3101 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3102 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3105 isl_pw_aff_free(pwaff
);
3109 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3110 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3114 aff
= isl_constraint_get_bound(c
, type
, pos
);
3115 isl_constraint_free(c
);
3116 return isl_qpolynomial_from_aff(aff
);
3119 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3120 * in "qp" by subs[i].
3122 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3123 __isl_take isl_qpolynomial
*qp
,
3124 enum isl_dim_type type
, unsigned first
, unsigned n
,
3125 __isl_keep isl_qpolynomial
**subs
)
3128 struct isl_upoly
**ups
;
3133 qp
= isl_qpolynomial_cow(qp
);
3137 if (type
== isl_dim_out
)
3138 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3139 "cannot substitute output/set dimension",
3141 if (type
== isl_dim_in
)
3144 for (i
= 0; i
< n
; ++i
)
3148 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3151 for (i
= 0; i
< n
; ++i
)
3152 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3155 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3156 for (i
= 0; i
< n
; ++i
)
3157 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3159 first
+= pos(qp
->dim
, type
);
3161 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3164 for (i
= 0; i
< n
; ++i
)
3165 ups
[i
] = subs
[i
]->upoly
;
3167 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3176 isl_qpolynomial_free(qp
);
3180 /* Extend "bset" with extra set dimensions for each integer division
3181 * in "qp" and then call "fn" with the extended bset and the polynomial
3182 * that results from replacing each of the integer divisions by the
3183 * corresponding extra set dimension.
3185 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3186 __isl_keep isl_basic_set
*bset
,
3187 int (*fn
)(__isl_take isl_basic_set
*bset
,
3188 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3192 isl_qpolynomial
*poly
;
3196 if (qp
->div
->n_row
== 0)
3197 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3200 div
= isl_mat_copy(qp
->div
);
3201 dim
= isl_space_copy(qp
->dim
);
3202 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3203 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3204 bset
= isl_basic_set_copy(bset
);
3205 bset
= isl_basic_set_add(bset
, isl_dim_set
, qp
->div
->n_row
);
3206 bset
= add_div_constraints(bset
, div
);
3208 return fn(bset
, poly
, user
);
3213 /* Return total degree in variables first (inclusive) up to last (exclusive).
3215 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3219 struct isl_upoly_rec
*rec
;
3223 if (isl_upoly_is_zero(up
))
3225 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3228 rec
= isl_upoly_as_rec(up
);
3232 for (i
= 0; i
< rec
->n
; ++i
) {
3235 if (isl_upoly_is_zero(rec
->p
[i
]))
3237 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3247 /* Return total degree in set variables.
3249 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3257 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3258 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3259 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3262 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3263 unsigned pos
, int deg
)
3266 struct isl_upoly_rec
*rec
;
3271 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3273 return isl_upoly_copy(up
);
3275 return isl_upoly_zero(up
->ctx
);
3278 rec
= isl_upoly_as_rec(up
);
3282 if (up
->var
== pos
) {
3284 return isl_upoly_copy(rec
->p
[deg
]);
3286 return isl_upoly_zero(up
->ctx
);
3289 up
= isl_upoly_copy(up
);
3290 up
= isl_upoly_cow(up
);
3291 rec
= isl_upoly_as_rec(up
);
3295 for (i
= 0; i
< rec
->n
; ++i
) {
3296 struct isl_upoly
*t
;
3297 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3300 isl_upoly_free(rec
->p
[i
]);
3310 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3312 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3313 __isl_keep isl_qpolynomial
*qp
,
3314 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3317 struct isl_upoly
*up
;
3323 if (type
== isl_dim_out
)
3324 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3325 "output/set dimension does not have a coefficient",
3327 if (type
== isl_dim_in
)
3330 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3333 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3334 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3336 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3339 isl_mat_free(c
->div
);
3340 c
->div
= isl_mat_copy(qp
->div
);
3345 isl_qpolynomial_free(c
);
3349 /* Homogenize the polynomial in the variables first (inclusive) up to
3350 * last (exclusive) by inserting powers of variable first.
3351 * Variable first is assumed not to appear in the input.
3353 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3354 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3355 int first
, int last
)
3358 struct isl_upoly_rec
*rec
;
3362 if (isl_upoly_is_zero(up
))
3366 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3367 struct isl_upoly
*hom
;
3369 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3372 rec
= isl_upoly_as_rec(hom
);
3373 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3378 up
= isl_upoly_cow(up
);
3379 rec
= isl_upoly_as_rec(up
);
3383 for (i
= 0; i
< rec
->n
; ++i
) {
3384 if (isl_upoly_is_zero(rec
->p
[i
]))
3386 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3387 up
->var
< last
? deg
+ i
: i
, target
,
3399 /* Homogenize the polynomial in the set variables by introducing
3400 * powers of an extra set variable at position 0.
3402 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3403 __isl_take isl_qpolynomial
*poly
)
3407 int deg
= isl_qpolynomial_degree(poly
);
3412 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3413 poly
= isl_qpolynomial_cow(poly
);
3417 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3418 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3419 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3426 isl_qpolynomial_free(poly
);
3430 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3431 __isl_take isl_mat
*div
)
3439 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3441 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3442 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3449 isl_int_init(term
->n
);
3450 isl_int_init(term
->d
);
3454 isl_space_free(dim
);
3459 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3468 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3477 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3479 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3483 isl_int_set(dup
->n
, term
->n
);
3484 isl_int_set(dup
->d
, term
->d
);
3486 for (i
= 0; i
< total
; ++i
)
3487 dup
->pow
[i
] = term
->pow
[i
];
3492 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3500 return isl_term_dup(term
);
3503 void isl_term_free(__isl_take isl_term
*term
)
3508 if (--term
->ref
> 0)
3511 isl_space_free(term
->dim
);
3512 isl_mat_free(term
->div
);
3513 isl_int_clear(term
->n
);
3514 isl_int_clear(term
->d
);
3518 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3526 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3527 case isl_dim_div
: return term
->div
->n_row
;
3528 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3534 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3536 return term
? term
->dim
->ctx
: NULL
;
3539 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3543 isl_int_set(*n
, term
->n
);
3546 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3550 isl_int_set(*d
, term
->d
);
3553 int isl_term_get_exp(__isl_keep isl_term
*term
,
3554 enum isl_dim_type type
, unsigned pos
)
3559 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3561 if (type
>= isl_dim_set
)
3562 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3563 if (type
>= isl_dim_div
)
3564 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3566 return term
->pow
[pos
];
3569 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3571 isl_local_space
*ls
;
3578 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3581 total
= term
->div
->n_col
- term
->div
->n_row
- 2;
3582 /* No nested divs for now */
3583 isl_assert(term
->dim
->ctx
,
3584 isl_seq_first_non_zero(term
->div
->row
[pos
] + 2 + total
,
3585 term
->div
->n_row
) == -1,
3588 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
3589 isl_mat_copy(term
->div
));
3590 aff
= isl_aff_alloc(ls
);
3594 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
3599 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3600 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3601 __isl_take isl_term
*term
, void *user
)
3604 struct isl_upoly_rec
*rec
;
3609 if (isl_upoly_is_zero(up
))
3612 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3613 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3614 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3616 if (isl_upoly_is_cst(up
)) {
3617 struct isl_upoly_cst
*cst
;
3618 cst
= isl_upoly_as_cst(up
);
3621 term
= isl_term_cow(term
);
3624 isl_int_set(term
->n
, cst
->n
);
3625 isl_int_set(term
->d
, cst
->d
);
3626 if (fn(isl_term_copy(term
), user
) < 0)
3631 rec
= isl_upoly_as_rec(up
);
3635 for (i
= 0; i
< rec
->n
; ++i
) {
3636 term
= isl_term_cow(term
);
3639 term
->pow
[up
->var
] = i
;
3640 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3644 term
->pow
[up
->var
] = 0;
3648 isl_term_free(term
);
3652 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3653 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3660 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3664 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3666 isl_term_free(term
);
3668 return term
? 0 : -1;
3671 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3673 struct isl_upoly
*up
;
3674 isl_qpolynomial
*qp
;
3680 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3682 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3683 for (i
= 0; i
< n
; ++i
) {
3686 up
= isl_upoly_mul(up
,
3687 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3690 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3693 isl_mat_free(qp
->div
);
3694 qp
->div
= isl_mat_copy(term
->div
);
3698 isl_term_free(term
);
3701 isl_qpolynomial_free(qp
);
3702 isl_term_free(term
);
3706 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3707 __isl_take isl_space
*dim
)
3716 if (isl_space_is_equal(qp
->dim
, dim
)) {
3717 isl_space_free(dim
);
3721 qp
= isl_qpolynomial_cow(qp
);
3725 extra
= isl_space_dim(dim
, isl_dim_set
) -
3726 isl_space_dim(qp
->dim
, isl_dim_set
);
3727 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
3728 if (qp
->div
->n_row
) {
3731 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3734 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3736 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3741 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3744 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3745 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3747 isl_space_free(qp
->dim
);
3752 isl_space_free(dim
);
3753 isl_qpolynomial_free(qp
);
3757 /* For each parameter or variable that does not appear in qp,
3758 * first eliminate the variable from all constraints and then set it to zero.
3760 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3761 __isl_keep isl_qpolynomial
*qp
)
3772 d
= isl_space_dim(set
->dim
, isl_dim_all
);
3773 active
= isl_calloc_array(set
->ctx
, int, d
);
3774 if (set_active(qp
, active
) < 0)
3777 for (i
= 0; i
< d
; ++i
)
3786 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
3787 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
3788 for (i
= 0; i
< nparam
; ++i
) {
3791 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3792 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3794 for (i
= 0; i
< nvar
; ++i
) {
3795 if (active
[nparam
+ i
])
3797 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3798 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3810 struct isl_opt_data
{
3811 isl_qpolynomial
*qp
;
3813 isl_qpolynomial
*opt
;
3817 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3819 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3820 isl_qpolynomial
*val
;
3822 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3826 } else if (data
->max
) {
3827 data
->opt
= isl_qpolynomial_max_cst(data
->opt
, val
);
3829 data
->opt
= isl_qpolynomial_min_cst(data
->opt
, val
);
3835 __isl_give isl_qpolynomial
*isl_qpolynomial_opt_on_domain(
3836 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3838 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3843 if (isl_upoly_is_cst(qp
->upoly
)) {
3848 set
= fix_inactive(set
, qp
);
3851 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3855 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
3856 data
.opt
= isl_qpolynomial_zero_on_domain(space
);
3860 isl_qpolynomial_free(qp
);
3864 isl_qpolynomial_free(qp
);
3865 isl_qpolynomial_free(data
.opt
);
3869 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
3870 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
3875 struct isl_upoly
**subs
;
3876 isl_mat
*mat
, *diag
;
3878 qp
= isl_qpolynomial_cow(qp
);
3883 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
3885 n_sub
= morph
->inv
->n_row
- 1;
3886 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3887 n_sub
+= qp
->div
->n_row
;
3888 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
3892 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
3893 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
3894 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
3895 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
3896 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3897 subs
[morph
->inv
->n_row
- 1 + i
] =
3898 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
3900 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
3902 for (i
= 0; i
< n_sub
; ++i
)
3903 isl_upoly_free(subs
[i
]);
3906 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
3907 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
3908 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
3909 mat
= isl_mat_diagonal(mat
, diag
);
3910 qp
->div
= isl_mat_product(qp
->div
, mat
);
3911 isl_space_free(qp
->dim
);
3912 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
3914 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
3917 isl_morph_free(morph
);
3921 isl_qpolynomial_free(qp
);
3922 isl_morph_free(morph
);
3926 static int neg_entry(void **entry
, void *user
)
3928 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
3930 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
3932 return *pwqp
? 0 : -1;
3935 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
3936 __isl_take isl_union_pw_qpolynomial
*upwqp
)
3938 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
3942 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
3943 &neg_entry
, NULL
) < 0)
3948 isl_union_pw_qpolynomial_free(upwqp
);
3952 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_sub(
3953 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3954 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3956 return isl_union_pw_qpolynomial_add(upwqp1
,
3957 isl_union_pw_qpolynomial_neg(upwqp2
));
3960 static int mul_entry(void **entry
, void *user
)
3962 struct isl_union_pw_qpolynomial_match_bin_data
*data
= user
;
3964 struct isl_hash_table_entry
*entry2
;
3965 isl_pw_qpolynomial
*pwpq
= *entry
;
3968 hash
= isl_space_get_hash(pwpq
->dim
);
3969 entry2
= isl_hash_table_find(data
->u2
->dim
->ctx
, &data
->u2
->table
,
3970 hash
, &has_dim
, pwpq
->dim
, 0);
3974 pwpq
= isl_pw_qpolynomial_copy(pwpq
);
3975 pwpq
= isl_pw_qpolynomial_mul(pwpq
,
3976 isl_pw_qpolynomial_copy(entry2
->data
));
3978 empty
= isl_pw_qpolynomial_is_zero(pwpq
);
3980 isl_pw_qpolynomial_free(pwpq
);
3984 isl_pw_qpolynomial_free(pwpq
);
3988 data
->res
= isl_union_pw_qpolynomial_add_pw_qpolynomial(data
->res
, pwpq
);
3993 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
3994 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
3995 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
3997 return match_bin_op(upwqp1
, upwqp2
, &mul_entry
);
4000 /* Reorder the columns of the given div definitions according to the
4003 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
4004 __isl_take isl_reordering
*r
)
4013 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
4014 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
4018 for (i
= 0; i
< div
->n_row
; ++i
) {
4019 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
4020 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
4021 for (j
= 0; j
< r
->len
; ++j
)
4022 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
4023 div
->row
[i
][2 + j
]);
4026 isl_reordering_free(r
);
4030 isl_reordering_free(r
);
4035 /* Reorder the dimension of "qp" according to the given reordering.
4037 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4038 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4040 qp
= isl_qpolynomial_cow(qp
);
4044 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4048 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4052 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4056 qp
= isl_qpolynomial_reset_domain_space(qp
, isl_space_copy(r
->dim
));
4058 isl_reordering_free(r
);
4061 isl_qpolynomial_free(qp
);
4062 isl_reordering_free(r
);
4066 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4067 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4072 if (!isl_space_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4073 isl_reordering
*exp
;
4075 model
= isl_space_drop_dims(model
, isl_dim_in
,
4076 0, isl_space_dim(model
, isl_dim_in
));
4077 model
= isl_space_drop_dims(model
, isl_dim_out
,
4078 0, isl_space_dim(model
, isl_dim_out
));
4079 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4080 exp
= isl_reordering_extend_space(exp
,
4081 isl_qpolynomial_get_domain_space(qp
));
4082 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4085 isl_space_free(model
);
4088 isl_space_free(model
);
4089 isl_qpolynomial_free(qp
);
4093 struct isl_split_periods_data
{
4095 isl_pw_qpolynomial
*res
;
4098 /* Create a slice where the integer division "div" has the fixed value "v".
4099 * In particular, if "div" refers to floor(f/m), then create a slice
4101 * m v <= f <= m v + (m - 1)
4106 * -f + m v + (m - 1) >= 0
4108 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4109 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4112 isl_basic_set
*bset
= NULL
;
4118 total
= isl_space_dim(dim
, isl_dim_all
);
4119 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4121 k
= isl_basic_set_alloc_inequality(bset
);
4124 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4125 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4127 k
= isl_basic_set_alloc_inequality(bset
);
4130 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4131 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4132 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4133 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4135 isl_space_free(dim
);
4136 return isl_set_from_basic_set(bset
);
4138 isl_basic_set_free(bset
);
4139 isl_space_free(dim
);
4143 static int split_periods(__isl_take isl_set
*set
,
4144 __isl_take isl_qpolynomial
*qp
, void *user
);
4146 /* Create a slice of the domain "set" such that integer division "div"
4147 * has the fixed value "v" and add the results to data->res,
4148 * replacing the integer division by "v" in "qp".
4150 static int set_div(__isl_take isl_set
*set
,
4151 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4152 struct isl_split_periods_data
*data
)
4157 struct isl_upoly
*cst
;
4159 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4160 set
= isl_set_intersect(set
, slice
);
4165 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4167 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4168 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4170 isl_int_addmul(qp
->div
->row
[i
][1],
4171 qp
->div
->row
[i
][2 + total
+ div
], v
);
4172 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4175 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4176 qp
= substitute_div(qp
, div
, cst
);
4178 return split_periods(set
, qp
, data
);
4181 isl_qpolynomial_free(qp
);
4185 /* Split the domain "set" such that integer division "div"
4186 * has a fixed value (ranging from "min" to "max") on each slice
4187 * and add the results to data->res.
4189 static int split_div(__isl_take isl_set
*set
,
4190 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4191 struct isl_split_periods_data
*data
)
4193 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4194 isl_set
*set_i
= isl_set_copy(set
);
4195 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4197 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4201 isl_qpolynomial_free(qp
);
4205 isl_qpolynomial_free(qp
);
4209 /* If "qp" refers to any integer division
4210 * that can only attain "max_periods" distinct values on "set"
4211 * then split the domain along those distinct values.
4212 * Add the results (or the original if no splitting occurs)
4215 static int split_periods(__isl_take isl_set
*set
,
4216 __isl_take isl_qpolynomial
*qp
, void *user
)
4219 isl_pw_qpolynomial
*pwqp
;
4220 struct isl_split_periods_data
*data
;
4225 data
= (struct isl_split_periods_data
*)user
;
4230 if (qp
->div
->n_row
== 0) {
4231 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4232 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4238 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4239 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4240 enum isl_lp_result lp_res
;
4242 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4243 qp
->div
->n_row
) != -1)
4246 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4247 set
->ctx
->one
, &min
, NULL
, NULL
);
4248 if (lp_res
== isl_lp_error
)
4250 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4252 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4254 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4255 set
->ctx
->one
, &max
, NULL
, NULL
);
4256 if (lp_res
== isl_lp_error
)
4258 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4260 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4262 isl_int_sub(max
, max
, min
);
4263 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4264 isl_int_add(max
, max
, min
);
4269 if (i
< qp
->div
->n_row
) {
4270 r
= split_div(set
, qp
, i
, min
, max
, data
);
4272 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4273 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4285 isl_qpolynomial_free(qp
);
4289 /* If any quasi-polynomial in pwqp refers to any integer division
4290 * that can only attain "max_periods" distinct values on its domain
4291 * then split the domain along those distinct values.
4293 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4294 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4296 struct isl_split_periods_data data
;
4298 data
.max_periods
= max_periods
;
4299 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4301 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4304 isl_pw_qpolynomial_free(pwqp
);
4308 isl_pw_qpolynomial_free(data
.res
);
4309 isl_pw_qpolynomial_free(pwqp
);
4313 /* Construct a piecewise quasipolynomial that is constant on the given
4314 * domain. In particular, it is
4317 * infinity if cst == -1
4319 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4320 __isl_take isl_basic_set
*bset
, int cst
)
4323 isl_qpolynomial
*qp
;
4328 bset
= isl_basic_set_params(bset
);
4329 dim
= isl_basic_set_get_space(bset
);
4331 qp
= isl_qpolynomial_infty_on_domain(dim
);
4333 qp
= isl_qpolynomial_zero_on_domain(dim
);
4335 qp
= isl_qpolynomial_one_on_domain(dim
);
4336 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4339 /* Factor bset, call fn on each of the factors and return the product.
4341 * If no factors can be found, simply call fn on the input.
4342 * Otherwise, construct the factors based on the factorizer,
4343 * call fn on each factor and compute the product.
4345 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4346 __isl_take isl_basic_set
*bset
,
4347 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4353 isl_qpolynomial
*qp
;
4354 isl_pw_qpolynomial
*pwqp
;
4358 f
= isl_basic_set_factorizer(bset
);
4361 if (f
->n_group
== 0) {
4362 isl_factorizer_free(f
);
4366 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4367 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4369 dim
= isl_basic_set_get_space(bset
);
4370 dim
= isl_space_domain(dim
);
4371 set
= isl_set_universe(isl_space_copy(dim
));
4372 qp
= isl_qpolynomial_one_on_domain(dim
);
4373 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4375 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4377 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4378 isl_basic_set
*bset_i
;
4379 isl_pw_qpolynomial
*pwqp_i
;
4381 bset_i
= isl_basic_set_copy(bset
);
4382 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4383 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4384 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4386 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4387 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4388 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4390 pwqp_i
= fn(bset_i
);
4391 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4396 isl_basic_set_free(bset
);
4397 isl_factorizer_free(f
);
4401 isl_basic_set_free(bset
);
4405 /* Factor bset, call fn on each of the factors and return the product.
4406 * The function is assumed to evaluate to zero on empty domains,
4407 * to one on zero-dimensional domains and to infinity on unbounded domains
4408 * and will not be called explicitly on zero-dimensional or unbounded domains.
4410 * We first check for some special cases and remove all equalities.
4411 * Then we hand over control to compressed_multiplicative_call.
4413 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4414 __isl_take isl_basic_set
*bset
,
4415 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4419 isl_pw_qpolynomial
*pwqp
;
4424 if (isl_basic_set_plain_is_empty(bset
))
4425 return constant_on_domain(bset
, 0);
4427 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4428 return constant_on_domain(bset
, 1);
4430 bounded
= isl_basic_set_is_bounded(bset
);
4434 return constant_on_domain(bset
, -1);
4436 if (bset
->n_eq
== 0)
4437 return compressed_multiplicative_call(bset
, fn
);
4439 morph
= isl_basic_set_full_compression(bset
);
4440 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4442 pwqp
= compressed_multiplicative_call(bset
, fn
);
4444 morph
= isl_morph_dom_params(morph
);
4445 morph
= isl_morph_ran_params(morph
);
4446 morph
= isl_morph_inverse(morph
);
4448 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4452 isl_basic_set_free(bset
);
4456 /* Drop all floors in "qp", turning each integer division [a/m] into
4457 * a rational division a/m. If "down" is set, then the integer division
4458 * is replaces by (a-(m-1))/m instead.
4460 static __isl_give isl_qpolynomial
*qp_drop_floors(
4461 __isl_take isl_qpolynomial
*qp
, int down
)
4464 struct isl_upoly
*s
;
4468 if (qp
->div
->n_row
== 0)
4471 qp
= isl_qpolynomial_cow(qp
);
4475 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4477 isl_int_sub(qp
->div
->row
[i
][1],
4478 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4479 isl_int_add_ui(qp
->div
->row
[i
][1],
4480 qp
->div
->row
[i
][1], 1);
4482 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4483 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4484 qp
= substitute_div(qp
, i
, s
);
4492 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4493 * a rational division a/m.
4495 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4496 __isl_take isl_pw_qpolynomial
*pwqp
)
4503 if (isl_pw_qpolynomial_is_zero(pwqp
))
4506 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4510 for (i
= 0; i
< pwqp
->n
; ++i
) {
4511 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4518 isl_pw_qpolynomial_free(pwqp
);
4522 /* Adjust all the integer divisions in "qp" such that they are at least
4523 * one over the given orthant (identified by "signs"). This ensures
4524 * that they will still be non-negative even after subtracting (m-1)/m.
4526 * In particular, f is replaced by f' + v, changing f = [a/m]
4527 * to f' = [(a - m v)/m].
4528 * If the constant term k in a is smaller than m,
4529 * the constant term of v is set to floor(k/m) - 1.
4530 * For any other term, if the coefficient c and the variable x have
4531 * the same sign, then no changes are needed.
4532 * Otherwise, if the variable is positive (and c is negative),
4533 * then the coefficient of x in v is set to floor(c/m).
4534 * If the variable is negative (and c is positive),
4535 * then the coefficient of x in v is set to ceil(c/m).
4537 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4543 struct isl_upoly
*s
;
4545 qp
= isl_qpolynomial_cow(qp
);
4548 qp
->div
= isl_mat_cow(qp
->div
);
4552 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4553 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4555 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4556 isl_int
*row
= qp
->div
->row
[i
];
4560 if (isl_int_lt(row
[1], row
[0])) {
4561 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4562 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4563 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4565 for (j
= 0; j
< total
; ++j
) {
4566 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4569 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4571 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4572 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4574 for (j
= 0; j
< i
; ++j
) {
4575 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4577 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4578 row
[2 + total
+ j
], row
[0]);
4579 isl_int_submul(row
[2 + total
+ j
],
4580 row
[0], v
->el
[1 + total
+ j
]);
4582 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4583 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4585 isl_seq_combine(qp
->div
->row
[j
] + 1,
4586 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4587 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4589 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4590 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4591 qp
->div
->ctx
->one
, v
->size
);
4592 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4602 isl_qpolynomial_free(qp
);
4606 struct isl_to_poly_data
{
4608 isl_pw_qpolynomial
*res
;
4609 isl_qpolynomial
*qp
;
4612 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4613 * We first make all integer divisions positive and then split the
4614 * quasipolynomials into terms with sign data->sign (the direction
4615 * of the requested approximation) and terms with the opposite sign.
4616 * In the first set of terms, each integer division [a/m] is
4617 * overapproximated by a/m, while in the second it is underapproximated
4620 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4623 struct isl_to_poly_data
*data
= user
;
4624 isl_pw_qpolynomial
*t
;
4625 isl_qpolynomial
*qp
, *up
, *down
;
4627 qp
= isl_qpolynomial_copy(data
->qp
);
4628 qp
= make_divs_pos(qp
, signs
);
4630 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4631 up
= qp_drop_floors(up
, 0);
4632 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4633 down
= qp_drop_floors(down
, 1);
4635 isl_qpolynomial_free(qp
);
4636 qp
= isl_qpolynomial_add(up
, down
);
4638 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4639 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4644 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4645 * the polynomial will be an overapproximation. If "sign" is negative,
4646 * it will be an underapproximation. If "sign" is zero, the approximation
4647 * will lie somewhere in between.
4649 * In particular, is sign == 0, we simply drop the floors, turning
4650 * the integer divisions into rational divisions.
4651 * Otherwise, we split the domains into orthants, make all integer divisions
4652 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4653 * depending on the requested sign and the sign of the term in which
4654 * the integer division appears.
4656 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4657 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4660 struct isl_to_poly_data data
;
4663 return pwqp_drop_floors(pwqp
);
4669 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4671 for (i
= 0; i
< pwqp
->n
; ++i
) {
4672 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4673 isl_pw_qpolynomial
*t
;
4674 t
= isl_pw_qpolynomial_alloc(
4675 isl_set_copy(pwqp
->p
[i
].set
),
4676 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4677 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4680 data
.qp
= pwqp
->p
[i
].qp
;
4681 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4682 &to_polynomial_on_orthant
, &data
) < 0)
4686 isl_pw_qpolynomial_free(pwqp
);
4690 isl_pw_qpolynomial_free(pwqp
);
4691 isl_pw_qpolynomial_free(data
.res
);
4695 static int poly_entry(void **entry
, void *user
)
4698 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4700 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4702 return *pwqp
? 0 : -1;
4705 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4706 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4708 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4712 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4713 &poly_entry
, &sign
) < 0)
4718 isl_union_pw_qpolynomial_free(upwqp
);
4722 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4723 __isl_take isl_qpolynomial
*qp
)
4727 isl_vec
*aff
= NULL
;
4728 isl_basic_map
*bmap
= NULL
;
4734 if (!isl_upoly_is_affine(qp
->upoly
))
4735 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4736 "input quasi-polynomial not affine", goto error
);
4737 aff
= isl_qpolynomial_extract_affine(qp
);
4740 dim
= isl_qpolynomial_get_space(qp
);
4741 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4742 n_div
= qp
->div
->n_row
;
4743 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4745 for (i
= 0; i
< n_div
; ++i
) {
4746 k
= isl_basic_map_alloc_div(bmap
);
4749 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4750 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4751 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4754 k
= isl_basic_map_alloc_equality(bmap
);
4757 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4758 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4759 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4762 isl_qpolynomial_free(qp
);
4763 bmap
= isl_basic_map_finalize(bmap
);
4767 isl_qpolynomial_free(qp
);
4768 isl_basic_map_free(bmap
);