2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
31 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
34 case isl_dim_param
: return 0;
35 case isl_dim_in
: return dim
->nparam
;
36 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
41 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
49 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
54 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
56 return (struct isl_upoly_cst
*)up
;
59 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
64 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
66 return (struct isl_upoly_rec
*)up
;
69 /* Compare two polynomials.
71 * Return -1 if "up1" is "smaller" than "up2", 1 if "up1" is "greater"
72 * than "up2" and 0 if they are equal.
74 static int isl_upoly_plain_cmp(__isl_keep
struct isl_upoly
*up1
,
75 __isl_keep
struct isl_upoly
*up2
)
78 struct isl_upoly_rec
*rec1
, *rec2
;
86 if (up1
->var
!= up2
->var
)
87 return up1
->var
- up2
->var
;
89 if (isl_upoly_is_cst(up1
)) {
90 struct isl_upoly_cst
*cst1
, *cst2
;
93 cst1
= isl_upoly_as_cst(up1
);
94 cst2
= isl_upoly_as_cst(up2
);
97 cmp
= isl_int_cmp(cst1
->n
, cst2
->n
);
100 return isl_int_cmp(cst1
->d
, cst2
->d
);
103 rec1
= isl_upoly_as_rec(up1
);
104 rec2
= isl_upoly_as_rec(up2
);
108 if (rec1
->n
!= rec2
->n
)
109 return rec1
->n
- rec2
->n
;
111 for (i
= 0; i
< rec1
->n
; ++i
) {
112 int cmp
= isl_upoly_plain_cmp(rec1
->p
[i
], rec2
->p
[i
]);
120 isl_bool
isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
121 __isl_keep
struct isl_upoly
*up2
)
124 struct isl_upoly_rec
*rec1
, *rec2
;
127 return isl_bool_error
;
129 return isl_bool_true
;
130 if (up1
->var
!= up2
->var
)
131 return isl_bool_false
;
132 if (isl_upoly_is_cst(up1
)) {
133 struct isl_upoly_cst
*cst1
, *cst2
;
134 cst1
= isl_upoly_as_cst(up1
);
135 cst2
= isl_upoly_as_cst(up2
);
137 return isl_bool_error
;
138 return isl_int_eq(cst1
->n
, cst2
->n
) &&
139 isl_int_eq(cst1
->d
, cst2
->d
);
142 rec1
= isl_upoly_as_rec(up1
);
143 rec2
= isl_upoly_as_rec(up2
);
145 return isl_bool_error
;
147 if (rec1
->n
!= rec2
->n
)
148 return isl_bool_false
;
150 for (i
= 0; i
< rec1
->n
; ++i
) {
151 isl_bool eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
156 return isl_bool_true
;
159 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
161 struct isl_upoly_cst
*cst
;
165 if (!isl_upoly_is_cst(up
))
168 cst
= isl_upoly_as_cst(up
);
172 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
175 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
177 struct isl_upoly_cst
*cst
;
181 if (!isl_upoly_is_cst(up
))
184 cst
= isl_upoly_as_cst(up
);
188 return isl_int_sgn(cst
->n
);
191 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
193 struct isl_upoly_cst
*cst
;
197 if (!isl_upoly_is_cst(up
))
200 cst
= isl_upoly_as_cst(up
);
204 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
207 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
209 struct isl_upoly_cst
*cst
;
213 if (!isl_upoly_is_cst(up
))
216 cst
= isl_upoly_as_cst(up
);
220 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
223 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
225 struct isl_upoly_cst
*cst
;
229 if (!isl_upoly_is_cst(up
))
232 cst
= isl_upoly_as_cst(up
);
236 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
239 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
241 struct isl_upoly_cst
*cst
;
245 if (!isl_upoly_is_cst(up
))
248 cst
= isl_upoly_as_cst(up
);
252 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
255 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
257 struct isl_upoly_cst
*cst
;
261 if (!isl_upoly_is_cst(up
))
264 cst
= isl_upoly_as_cst(up
);
268 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
271 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
273 struct isl_upoly_cst
*cst
;
275 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
284 isl_int_init(cst
->n
);
285 isl_int_init(cst
->d
);
290 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
292 struct isl_upoly_cst
*cst
;
294 cst
= isl_upoly_cst_alloc(ctx
);
298 isl_int_set_si(cst
->n
, 0);
299 isl_int_set_si(cst
->d
, 1);
304 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
306 struct isl_upoly_cst
*cst
;
308 cst
= isl_upoly_cst_alloc(ctx
);
312 isl_int_set_si(cst
->n
, 1);
313 isl_int_set_si(cst
->d
, 1);
318 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
320 struct isl_upoly_cst
*cst
;
322 cst
= isl_upoly_cst_alloc(ctx
);
326 isl_int_set_si(cst
->n
, 1);
327 isl_int_set_si(cst
->d
, 0);
332 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
334 struct isl_upoly_cst
*cst
;
336 cst
= isl_upoly_cst_alloc(ctx
);
340 isl_int_set_si(cst
->n
, -1);
341 isl_int_set_si(cst
->d
, 0);
346 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
348 struct isl_upoly_cst
*cst
;
350 cst
= isl_upoly_cst_alloc(ctx
);
354 isl_int_set_si(cst
->n
, 0);
355 isl_int_set_si(cst
->d
, 0);
360 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
361 isl_int n
, isl_int d
)
363 struct isl_upoly_cst
*cst
;
365 cst
= isl_upoly_cst_alloc(ctx
);
369 isl_int_set(cst
->n
, n
);
370 isl_int_set(cst
->d
, d
);
375 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
378 struct isl_upoly_rec
*rec
;
380 isl_assert(ctx
, var
>= 0, return NULL
);
381 isl_assert(ctx
, size
>= 0, return NULL
);
382 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
383 sizeof(struct isl_upoly_rec
) +
384 size
* sizeof(struct isl_upoly
*));
399 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
400 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
402 qp
= isl_qpolynomial_cow(qp
);
406 isl_space_free(qp
->dim
);
411 isl_qpolynomial_free(qp
);
416 /* Reset the space of "qp". This function is called from isl_pw_templ.c
417 * and doesn't know if the space of an element object is represented
418 * directly or through its domain. It therefore passes along both.
420 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
421 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
422 __isl_take isl_space
*domain
)
424 isl_space_free(space
);
425 return isl_qpolynomial_reset_domain_space(qp
, domain
);
428 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
430 return qp
? qp
->dim
->ctx
: NULL
;
433 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
434 __isl_keep isl_qpolynomial
*qp
)
436 return qp
? isl_space_copy(qp
->dim
) : NULL
;
439 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
444 space
= isl_space_copy(qp
->dim
);
445 space
= isl_space_from_domain(space
);
446 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
450 /* Return the number of variables of the given type in the domain of "qp".
452 unsigned isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial
*qp
,
453 enum isl_dim_type type
)
457 if (type
== isl_dim_div
)
458 return qp
->div
->n_row
;
459 if (type
== isl_dim_all
)
460 return isl_space_dim(qp
->dim
, isl_dim_all
) +
461 isl_qpolynomial_domain_dim(qp
, isl_dim_div
);
462 return isl_space_dim(qp
->dim
, type
);
465 /* Externally, an isl_qpolynomial has a map space, but internally, the
466 * ls field corresponds to the domain of that space.
468 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
469 enum isl_dim_type type
)
473 if (type
== isl_dim_out
)
475 if (type
== isl_dim_in
)
477 return isl_qpolynomial_domain_dim(qp
, type
);
480 /* Return the offset of the first coefficient of type "type" in
481 * the domain of "qp".
483 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial
*qp
,
484 enum isl_dim_type type
)
493 return 1 + isl_space_offset(qp
->dim
, type
);
495 return 1 + isl_space_dim(qp
->dim
, isl_dim_all
);
501 isl_bool
isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
503 return qp
? isl_upoly_is_zero(qp
->upoly
) : isl_bool_error
;
506 isl_bool
isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
508 return qp
? isl_upoly_is_one(qp
->upoly
) : isl_bool_error
;
511 isl_bool
isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
513 return qp
? isl_upoly_is_nan(qp
->upoly
) : isl_bool_error
;
516 isl_bool
isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
518 return qp
? isl_upoly_is_infty(qp
->upoly
) : isl_bool_error
;
521 isl_bool
isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
523 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : isl_bool_error
;
526 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
528 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
531 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
533 isl_int_clear(cst
->n
);
534 isl_int_clear(cst
->d
);
537 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
541 for (i
= 0; i
< rec
->n
; ++i
)
542 isl_upoly_free(rec
->p
[i
]);
545 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
554 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
556 struct isl_upoly_cst
*cst
;
557 struct isl_upoly_cst
*dup
;
559 cst
= isl_upoly_as_cst(up
);
563 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
566 isl_int_set(dup
->n
, cst
->n
);
567 isl_int_set(dup
->d
, cst
->d
);
572 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
575 struct isl_upoly_rec
*rec
;
576 struct isl_upoly_rec
*dup
;
578 rec
= isl_upoly_as_rec(up
);
582 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
586 for (i
= 0; i
< rec
->n
; ++i
) {
587 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
595 isl_upoly_free(&dup
->up
);
599 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
604 if (isl_upoly_is_cst(up
))
605 return isl_upoly_dup_cst(up
);
607 return isl_upoly_dup_rec(up
);
610 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
618 return isl_upoly_dup(up
);
621 __isl_null
struct isl_upoly
*isl_upoly_free(__isl_take
struct isl_upoly
*up
)
630 upoly_free_cst((struct isl_upoly_cst
*)up
);
632 upoly_free_rec((struct isl_upoly_rec
*)up
);
634 isl_ctx_deref(up
->ctx
);
639 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
644 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
645 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
646 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
647 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
652 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
653 __isl_take
struct isl_upoly
*up2
)
655 struct isl_upoly_cst
*cst1
;
656 struct isl_upoly_cst
*cst2
;
658 up1
= isl_upoly_cow(up1
);
662 cst1
= isl_upoly_as_cst(up1
);
663 cst2
= isl_upoly_as_cst(up2
);
665 if (isl_int_eq(cst1
->d
, cst2
->d
))
666 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
668 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
669 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
670 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
673 isl_upoly_cst_reduce(cst1
);
683 static __isl_give
struct isl_upoly
*replace_by_zero(
684 __isl_take
struct isl_upoly
*up
)
692 return isl_upoly_zero(ctx
);
695 static __isl_give
struct isl_upoly
*replace_by_constant_term(
696 __isl_take
struct isl_upoly
*up
)
698 struct isl_upoly_rec
*rec
;
699 struct isl_upoly
*cst
;
704 rec
= isl_upoly_as_rec(up
);
707 cst
= isl_upoly_copy(rec
->p
[0]);
715 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
716 __isl_take
struct isl_upoly
*up2
)
719 struct isl_upoly_rec
*rec1
, *rec2
;
724 if (isl_upoly_is_nan(up1
)) {
729 if (isl_upoly_is_nan(up2
)) {
734 if (isl_upoly_is_zero(up1
)) {
739 if (isl_upoly_is_zero(up2
)) {
744 if (up1
->var
< up2
->var
)
745 return isl_upoly_sum(up2
, up1
);
747 if (up2
->var
< up1
->var
) {
748 struct isl_upoly_rec
*rec
;
749 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
753 up1
= isl_upoly_cow(up1
);
754 rec
= isl_upoly_as_rec(up1
);
757 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
759 up1
= replace_by_constant_term(up1
);
763 if (isl_upoly_is_cst(up1
))
764 return isl_upoly_sum_cst(up1
, up2
);
766 rec1
= isl_upoly_as_rec(up1
);
767 rec2
= isl_upoly_as_rec(up2
);
771 if (rec1
->n
< rec2
->n
)
772 return isl_upoly_sum(up2
, up1
);
774 up1
= isl_upoly_cow(up1
);
775 rec1
= isl_upoly_as_rec(up1
);
779 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
780 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
781 isl_upoly_copy(rec2
->p
[i
]));
784 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
785 isl_upoly_free(rec1
->p
[i
]);
791 up1
= replace_by_zero(up1
);
792 else if (rec1
->n
== 1)
793 up1
= replace_by_constant_term(up1
);
804 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
805 __isl_take
struct isl_upoly
*up
, isl_int v
)
807 struct isl_upoly_cst
*cst
;
809 up
= isl_upoly_cow(up
);
813 cst
= isl_upoly_as_cst(up
);
815 isl_int_addmul(cst
->n
, cst
->d
, v
);
820 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
821 __isl_take
struct isl_upoly
*up
, isl_int v
)
823 struct isl_upoly_rec
*rec
;
828 if (isl_upoly_is_cst(up
))
829 return isl_upoly_cst_add_isl_int(up
, v
);
831 up
= isl_upoly_cow(up
);
832 rec
= isl_upoly_as_rec(up
);
836 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
846 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
847 __isl_take
struct isl_upoly
*up
, isl_int v
)
849 struct isl_upoly_cst
*cst
;
851 if (isl_upoly_is_zero(up
))
854 up
= isl_upoly_cow(up
);
858 cst
= isl_upoly_as_cst(up
);
860 isl_int_mul(cst
->n
, cst
->n
, v
);
865 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
866 __isl_take
struct isl_upoly
*up
, isl_int v
)
869 struct isl_upoly_rec
*rec
;
874 if (isl_upoly_is_cst(up
))
875 return isl_upoly_cst_mul_isl_int(up
, v
);
877 up
= isl_upoly_cow(up
);
878 rec
= isl_upoly_as_rec(up
);
882 for (i
= 0; i
< rec
->n
; ++i
) {
883 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
894 /* Multiply the constant polynomial "up" by "v".
896 static __isl_give
struct isl_upoly
*isl_upoly_cst_scale_val(
897 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
899 struct isl_upoly_cst
*cst
;
901 if (isl_upoly_is_zero(up
))
904 up
= isl_upoly_cow(up
);
908 cst
= isl_upoly_as_cst(up
);
910 isl_int_mul(cst
->n
, cst
->n
, v
->n
);
911 isl_int_mul(cst
->d
, cst
->d
, v
->d
);
912 isl_upoly_cst_reduce(cst
);
917 /* Multiply the polynomial "up" by "v".
919 static __isl_give
struct isl_upoly
*isl_upoly_scale_val(
920 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
923 struct isl_upoly_rec
*rec
;
928 if (isl_upoly_is_cst(up
))
929 return isl_upoly_cst_scale_val(up
, v
);
931 up
= isl_upoly_cow(up
);
932 rec
= isl_upoly_as_rec(up
);
936 for (i
= 0; i
< rec
->n
; ++i
) {
937 rec
->p
[i
] = isl_upoly_scale_val(rec
->p
[i
], v
);
948 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
949 __isl_take
struct isl_upoly
*up2
)
951 struct isl_upoly_cst
*cst1
;
952 struct isl_upoly_cst
*cst2
;
954 up1
= isl_upoly_cow(up1
);
958 cst1
= isl_upoly_as_cst(up1
);
959 cst2
= isl_upoly_as_cst(up2
);
961 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
962 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
964 isl_upoly_cst_reduce(cst1
);
974 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
975 __isl_take
struct isl_upoly
*up2
)
977 struct isl_upoly_rec
*rec1
;
978 struct isl_upoly_rec
*rec2
;
979 struct isl_upoly_rec
*res
= NULL
;
983 rec1
= isl_upoly_as_rec(up1
);
984 rec2
= isl_upoly_as_rec(up2
);
987 size
= rec1
->n
+ rec2
->n
- 1;
988 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
992 for (i
= 0; i
< rec1
->n
; ++i
) {
993 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
994 isl_upoly_copy(rec1
->p
[i
]));
999 for (; i
< size
; ++i
) {
1000 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
1005 for (i
= 0; i
< rec1
->n
; ++i
) {
1006 for (j
= 1; j
< rec2
->n
; ++j
) {
1007 struct isl_upoly
*up
;
1008 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
1009 isl_upoly_copy(rec1
->p
[i
]));
1010 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
1016 isl_upoly_free(up1
);
1017 isl_upoly_free(up2
);
1021 isl_upoly_free(up1
);
1022 isl_upoly_free(up2
);
1023 isl_upoly_free(&res
->up
);
1027 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
1028 __isl_take
struct isl_upoly
*up2
)
1033 if (isl_upoly_is_nan(up1
)) {
1034 isl_upoly_free(up2
);
1038 if (isl_upoly_is_nan(up2
)) {
1039 isl_upoly_free(up1
);
1043 if (isl_upoly_is_zero(up1
)) {
1044 isl_upoly_free(up2
);
1048 if (isl_upoly_is_zero(up2
)) {
1049 isl_upoly_free(up1
);
1053 if (isl_upoly_is_one(up1
)) {
1054 isl_upoly_free(up1
);
1058 if (isl_upoly_is_one(up2
)) {
1059 isl_upoly_free(up2
);
1063 if (up1
->var
< up2
->var
)
1064 return isl_upoly_mul(up2
, up1
);
1066 if (up2
->var
< up1
->var
) {
1068 struct isl_upoly_rec
*rec
;
1069 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
1070 isl_ctx
*ctx
= up1
->ctx
;
1071 isl_upoly_free(up1
);
1072 isl_upoly_free(up2
);
1073 return isl_upoly_nan(ctx
);
1075 up1
= isl_upoly_cow(up1
);
1076 rec
= isl_upoly_as_rec(up1
);
1080 for (i
= 0; i
< rec
->n
; ++i
) {
1081 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
1082 isl_upoly_copy(up2
));
1086 isl_upoly_free(up2
);
1090 if (isl_upoly_is_cst(up1
))
1091 return isl_upoly_mul_cst(up1
, up2
);
1093 return isl_upoly_mul_rec(up1
, up2
);
1095 isl_upoly_free(up1
);
1096 isl_upoly_free(up2
);
1100 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
1103 struct isl_upoly
*res
;
1111 res
= isl_upoly_copy(up
);
1113 res
= isl_upoly_one(up
->ctx
);
1115 while (power
>>= 1) {
1116 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
1118 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
1125 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
1126 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
1128 struct isl_qpolynomial
*qp
= NULL
;
1134 if (!isl_space_is_set(dim
))
1135 isl_die(isl_space_get_ctx(dim
), isl_error_invalid
,
1136 "domain of polynomial should be a set", goto error
);
1138 total
= isl_space_dim(dim
, isl_dim_all
);
1140 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
1145 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1154 isl_space_free(dim
);
1156 isl_qpolynomial_free(qp
);
1160 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1169 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1171 struct isl_qpolynomial
*dup
;
1176 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1177 isl_upoly_copy(qp
->upoly
));
1180 isl_mat_free(dup
->div
);
1181 dup
->div
= isl_mat_copy(qp
->div
);
1187 isl_qpolynomial_free(dup
);
1191 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1199 return isl_qpolynomial_dup(qp
);
1202 __isl_null isl_qpolynomial
*isl_qpolynomial_free(
1203 __isl_take isl_qpolynomial
*qp
)
1211 isl_space_free(qp
->dim
);
1212 isl_mat_free(qp
->div
);
1213 isl_upoly_free(qp
->upoly
);
1219 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1222 struct isl_upoly_rec
*rec
;
1223 struct isl_upoly_cst
*cst
;
1225 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1228 for (i
= 0; i
< 1 + power
; ++i
) {
1229 rec
->p
[i
] = isl_upoly_zero(ctx
);
1234 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1235 isl_int_set_si(cst
->n
, 1);
1239 isl_upoly_free(&rec
->up
);
1243 /* r array maps original positions to new positions.
1245 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1249 struct isl_upoly_rec
*rec
;
1250 struct isl_upoly
*base
;
1251 struct isl_upoly
*res
;
1253 if (isl_upoly_is_cst(up
))
1256 rec
= isl_upoly_as_rec(up
);
1260 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1262 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1263 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1265 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1266 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1267 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1270 isl_upoly_free(base
);
1279 static isl_bool
compatible_divs(__isl_keep isl_mat
*div1
,
1280 __isl_keep isl_mat
*div2
)
1285 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1286 div1
->n_col
>= div2
->n_col
,
1287 return isl_bool_error
);
1289 if (div1
->n_row
== div2
->n_row
)
1290 return isl_mat_is_equal(div1
, div2
);
1292 n_row
= div1
->n_row
;
1293 n_col
= div1
->n_col
;
1294 div1
->n_row
= div2
->n_row
;
1295 div1
->n_col
= div2
->n_col
;
1297 equal
= isl_mat_is_equal(div1
, div2
);
1299 div1
->n_row
= n_row
;
1300 div1
->n_col
= n_col
;
1305 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1309 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1310 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1315 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1318 struct isl_div_sort_info
{
1323 static int div_sort_cmp(const void *p1
, const void *p2
)
1325 const struct isl_div_sort_info
*i1
, *i2
;
1326 i1
= (const struct isl_div_sort_info
*) p1
;
1327 i2
= (const struct isl_div_sort_info
*) p2
;
1329 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1332 /* Sort divs and remove duplicates.
1334 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1339 struct isl_div_sort_info
*array
= NULL
;
1340 int *pos
= NULL
, *at
= NULL
;
1341 int *reordering
= NULL
;
1346 if (qp
->div
->n_row
<= 1)
1349 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1351 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1353 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1354 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1355 len
= qp
->div
->n_col
- 2;
1356 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1357 if (!array
|| !pos
|| !at
|| !reordering
)
1360 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1361 array
[i
].div
= qp
->div
;
1367 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1370 for (i
= 0; i
< div_pos
; ++i
)
1373 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1374 if (pos
[array
[i
].row
] == i
)
1376 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1377 pos
[at
[i
]] = pos
[array
[i
].row
];
1378 at
[pos
[array
[i
].row
]] = at
[i
];
1379 at
[i
] = array
[i
].row
;
1380 pos
[array
[i
].row
] = i
;
1384 for (i
= 0; i
< len
- div_pos
; ++i
) {
1386 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1387 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1388 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1389 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1390 2 + div_pos
+ i
- skip
);
1391 qp
->div
= isl_mat_drop_cols(qp
->div
,
1392 2 + div_pos
+ i
- skip
, 1);
1395 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1398 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1400 if (!qp
->upoly
|| !qp
->div
)
1414 isl_qpolynomial_free(qp
);
1418 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1419 int *exp
, int first
)
1422 struct isl_upoly_rec
*rec
;
1424 if (isl_upoly_is_cst(up
))
1427 if (up
->var
< first
)
1430 if (exp
[up
->var
- first
] == up
->var
- first
)
1433 up
= isl_upoly_cow(up
);
1437 up
->var
= exp
[up
->var
- first
] + first
;
1439 rec
= isl_upoly_as_rec(up
);
1443 for (i
= 0; i
< rec
->n
; ++i
) {
1444 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1455 static __isl_give isl_qpolynomial
*with_merged_divs(
1456 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1457 __isl_take isl_qpolynomial
*qp2
),
1458 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1462 isl_mat
*div
= NULL
;
1465 qp1
= isl_qpolynomial_cow(qp1
);
1466 qp2
= isl_qpolynomial_cow(qp2
);
1471 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1472 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1474 n_div1
= qp1
->div
->n_row
;
1475 n_div2
= qp2
->div
->n_row
;
1476 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, n_div1
);
1477 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, n_div2
);
1478 if ((n_div1
&& !exp1
) || (n_div2
&& !exp2
))
1481 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1485 isl_mat_free(qp1
->div
);
1486 qp1
->div
= isl_mat_copy(div
);
1487 isl_mat_free(qp2
->div
);
1488 qp2
->div
= isl_mat_copy(div
);
1490 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1491 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1493 if (!qp1
->upoly
|| !qp2
->upoly
)
1500 return fn(qp1
, qp2
);
1505 isl_qpolynomial_free(qp1
);
1506 isl_qpolynomial_free(qp2
);
1510 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1511 __isl_take isl_qpolynomial
*qp2
)
1513 isl_bool compatible
;
1515 qp1
= isl_qpolynomial_cow(qp1
);
1520 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1521 return isl_qpolynomial_add(qp2
, qp1
);
1523 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1524 compatible
= compatible_divs(qp1
->div
, qp2
->div
);
1528 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1530 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1534 isl_qpolynomial_free(qp2
);
1538 isl_qpolynomial_free(qp1
);
1539 isl_qpolynomial_free(qp2
);
1543 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1544 __isl_keep isl_set
*dom
,
1545 __isl_take isl_qpolynomial
*qp1
,
1546 __isl_take isl_qpolynomial
*qp2
)
1548 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1549 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1553 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1554 __isl_take isl_qpolynomial
*qp2
)
1556 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1559 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1560 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1562 if (isl_int_is_zero(v
))
1565 qp
= isl_qpolynomial_cow(qp
);
1569 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1575 isl_qpolynomial_free(qp
);
1580 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1585 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1588 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1589 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1591 if (isl_int_is_one(v
))
1594 if (qp
&& isl_int_is_zero(v
)) {
1595 isl_qpolynomial
*zero
;
1596 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1597 isl_qpolynomial_free(qp
);
1601 qp
= isl_qpolynomial_cow(qp
);
1605 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1611 isl_qpolynomial_free(qp
);
1615 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1616 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1618 return isl_qpolynomial_mul_isl_int(qp
, v
);
1621 /* Multiply "qp" by "v".
1623 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_val(
1624 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1629 if (!isl_val_is_rat(v
))
1630 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1631 "expecting rational factor", goto error
);
1633 if (isl_val_is_one(v
)) {
1638 if (isl_val_is_zero(v
)) {
1641 space
= isl_qpolynomial_get_domain_space(qp
);
1642 isl_qpolynomial_free(qp
);
1644 return isl_qpolynomial_zero_on_domain(space
);
1647 qp
= isl_qpolynomial_cow(qp
);
1651 qp
->upoly
= isl_upoly_scale_val(qp
->upoly
, v
);
1653 qp
= isl_qpolynomial_free(qp
);
1659 isl_qpolynomial_free(qp
);
1663 /* Divide "qp" by "v".
1665 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_down_val(
1666 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1671 if (!isl_val_is_rat(v
))
1672 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1673 "expecting rational factor", goto error
);
1674 if (isl_val_is_zero(v
))
1675 isl_die(isl_val_get_ctx(v
), isl_error_invalid
,
1676 "cannot scale down by zero", goto error
);
1678 return isl_qpolynomial_scale_val(qp
, isl_val_inv(v
));
1681 isl_qpolynomial_free(qp
);
1685 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1686 __isl_take isl_qpolynomial
*qp2
)
1688 isl_bool compatible
;
1690 qp1
= isl_qpolynomial_cow(qp1
);
1695 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1696 return isl_qpolynomial_mul(qp2
, qp1
);
1698 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1699 compatible
= compatible_divs(qp1
->div
, qp2
->div
);
1703 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1705 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1709 isl_qpolynomial_free(qp2
);
1713 isl_qpolynomial_free(qp1
);
1714 isl_qpolynomial_free(qp2
);
1718 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1721 qp
= isl_qpolynomial_cow(qp
);
1726 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1732 isl_qpolynomial_free(qp
);
1736 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1737 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1744 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1748 for (i
= 0; i
< pwqp
->n
; ++i
) {
1749 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1751 return isl_pw_qpolynomial_free(pwqp
);
1757 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1758 __isl_take isl_space
*dim
)
1762 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1765 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1766 __isl_take isl_space
*dim
)
1770 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1773 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1774 __isl_take isl_space
*dim
)
1778 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1781 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1782 __isl_take isl_space
*dim
)
1786 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1789 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1790 __isl_take isl_space
*dim
)
1794 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1797 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1798 __isl_take isl_space
*dim
,
1801 struct isl_qpolynomial
*qp
;
1802 struct isl_upoly_cst
*cst
;
1807 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1811 cst
= isl_upoly_as_cst(qp
->upoly
);
1812 isl_int_set(cst
->n
, v
);
1817 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1818 isl_int
*n
, isl_int
*d
)
1820 struct isl_upoly_cst
*cst
;
1825 if (!isl_upoly_is_cst(qp
->upoly
))
1828 cst
= isl_upoly_as_cst(qp
->upoly
);
1833 isl_int_set(*n
, cst
->n
);
1835 isl_int_set(*d
, cst
->d
);
1840 /* Return the constant term of "up".
1842 static __isl_give isl_val
*isl_upoly_get_constant_val(
1843 __isl_keep
struct isl_upoly
*up
)
1845 struct isl_upoly_cst
*cst
;
1850 while (!isl_upoly_is_cst(up
)) {
1851 struct isl_upoly_rec
*rec
;
1853 rec
= isl_upoly_as_rec(up
);
1859 cst
= isl_upoly_as_cst(up
);
1862 return isl_val_rat_from_isl_int(cst
->up
.ctx
, cst
->n
, cst
->d
);
1865 /* Return the constant term of "qp".
1867 __isl_give isl_val
*isl_qpolynomial_get_constant_val(
1868 __isl_keep isl_qpolynomial
*qp
)
1873 return isl_upoly_get_constant_val(qp
->upoly
);
1876 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1879 struct isl_upoly_rec
*rec
;
1887 rec
= isl_upoly_as_rec(up
);
1894 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1896 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1902 return isl_upoly_is_affine(rec
->p
[0]);
1905 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1910 if (qp
->div
->n_row
> 0)
1913 return isl_upoly_is_affine(qp
->upoly
);
1916 static void update_coeff(__isl_keep isl_vec
*aff
,
1917 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1922 if (isl_int_is_zero(cst
->n
))
1927 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1928 isl_int_divexact(f
, cst
->d
, gcd
);
1929 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1930 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1931 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1936 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1937 __isl_keep isl_vec
*aff
)
1939 struct isl_upoly_cst
*cst
;
1940 struct isl_upoly_rec
*rec
;
1946 struct isl_upoly_cst
*cst
;
1948 cst
= isl_upoly_as_cst(up
);
1951 update_coeff(aff
, cst
, 0);
1955 rec
= isl_upoly_as_rec(up
);
1958 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1960 cst
= isl_upoly_as_cst(rec
->p
[1]);
1963 update_coeff(aff
, cst
, 1 + up
->var
);
1965 return isl_upoly_update_affine(rec
->p
[0], aff
);
1968 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1969 __isl_keep isl_qpolynomial
*qp
)
1977 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1978 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1982 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1983 isl_int_set_si(aff
->el
[0], 1);
1985 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1994 /* Compare two quasi-polynomials.
1996 * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
1997 * than "qp2" and 0 if they are equal.
1999 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial
*qp1
,
2000 __isl_keep isl_qpolynomial
*qp2
)
2011 cmp
= isl_space_cmp(qp1
->dim
, qp2
->dim
);
2015 cmp
= isl_local_cmp(qp1
->div
, qp2
->div
);
2019 return isl_upoly_plain_cmp(qp1
->upoly
, qp2
->upoly
);
2022 /* Is "qp1" obviously equal to "qp2"?
2024 * NaN is not equal to anything, not even to another NaN.
2026 isl_bool
isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
2027 __isl_keep isl_qpolynomial
*qp2
)
2032 return isl_bool_error
;
2034 if (isl_qpolynomial_is_nan(qp1
) || isl_qpolynomial_is_nan(qp2
))
2035 return isl_bool_false
;
2037 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
2038 if (equal
< 0 || !equal
)
2041 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
2042 if (equal
< 0 || !equal
)
2045 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
2048 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
2051 struct isl_upoly_rec
*rec
;
2053 if (isl_upoly_is_cst(up
)) {
2054 struct isl_upoly_cst
*cst
;
2055 cst
= isl_upoly_as_cst(up
);
2058 isl_int_lcm(*d
, *d
, cst
->d
);
2062 rec
= isl_upoly_as_rec(up
);
2066 for (i
= 0; i
< rec
->n
; ++i
)
2067 upoly_update_den(rec
->p
[i
], d
);
2070 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
2072 isl_int_set_si(*d
, 1);
2075 upoly_update_den(qp
->upoly
, d
);
2078 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
2079 __isl_take isl_space
*dim
, int pos
, int power
)
2081 struct isl_ctx
*ctx
;
2088 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
2091 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(__isl_take isl_space
*dim
,
2092 enum isl_dim_type type
, unsigned pos
)
2097 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
2098 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
2100 if (type
== isl_dim_set
)
2101 pos
+= isl_space_dim(dim
, isl_dim_param
);
2103 return isl_qpolynomial_var_pow_on_domain(dim
, pos
, 1);
2105 isl_space_free(dim
);
2109 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
2110 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
2113 struct isl_upoly_rec
*rec
;
2114 struct isl_upoly
*base
, *res
;
2119 if (isl_upoly_is_cst(up
))
2122 if (up
->var
< first
)
2125 rec
= isl_upoly_as_rec(up
);
2129 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2131 if (up
->var
>= first
+ n
)
2132 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
2134 base
= isl_upoly_copy(subs
[up
->var
- first
]);
2136 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
2137 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2138 struct isl_upoly
*t
;
2139 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
2140 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
2141 res
= isl_upoly_sum(res
, t
);
2144 isl_upoly_free(base
);
2153 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
2154 isl_int denom
, unsigned len
)
2157 struct isl_upoly
*up
;
2159 isl_assert(ctx
, len
>= 1, return NULL
);
2161 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
2162 for (i
= 0; i
< len
- 1; ++i
) {
2163 struct isl_upoly
*t
;
2164 struct isl_upoly
*c
;
2166 if (isl_int_is_zero(f
[1 + i
]))
2169 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
2170 t
= isl_upoly_var_pow(ctx
, i
, 1);
2171 t
= isl_upoly_mul(c
, t
);
2172 up
= isl_upoly_sum(up
, t
);
2178 /* Remove common factor of non-constant terms and denominator.
2180 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
2182 isl_ctx
*ctx
= qp
->div
->ctx
;
2183 unsigned total
= qp
->div
->n_col
- 2;
2185 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
2186 isl_int_gcd(ctx
->normalize_gcd
,
2187 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
2188 if (isl_int_is_one(ctx
->normalize_gcd
))
2191 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
2192 ctx
->normalize_gcd
, total
);
2193 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
2194 ctx
->normalize_gcd
);
2195 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
2196 ctx
->normalize_gcd
);
2199 /* Replace the integer division identified by "div" by the polynomial "s".
2200 * The integer division is assumed not to appear in the definition
2201 * of any other integer divisions.
2203 static __isl_give isl_qpolynomial
*substitute_div(
2204 __isl_take isl_qpolynomial
*qp
,
2205 int div
, __isl_take
struct isl_upoly
*s
)
2214 qp
= isl_qpolynomial_cow(qp
);
2218 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2219 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
2223 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
2226 for (i
= 0; i
< total
+ div
; ++i
)
2228 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
2229 reordering
[i
] = i
- 1;
2230 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
2231 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
2232 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2235 if (!qp
->upoly
|| !qp
->div
)
2241 isl_qpolynomial_free(qp
);
2246 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2247 * divisions because d is equal to 1 by their definition, i.e., e.
2249 static __isl_give isl_qpolynomial
*substitute_non_divs(
2250 __isl_take isl_qpolynomial
*qp
)
2254 struct isl_upoly
*s
;
2259 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2260 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
2261 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
2263 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
2264 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
2266 isl_seq_combine(qp
->div
->row
[j
] + 1,
2267 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
2268 qp
->div
->row
[j
][2 + total
+ i
],
2269 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
2270 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
2271 normalize_div(qp
, j
);
2273 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
2274 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
2275 qp
= substitute_div(qp
, i
, s
);
2282 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2283 * with d the denominator. When replacing the coefficient e of x by
2284 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2285 * inside the division, so we need to add floor(e/d) * x outside.
2286 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2287 * to adjust the coefficient of x in each later div that depends on the
2288 * current div "div" and also in the affine expressions in the rows of "mat"
2289 * (if they too depend on "div").
2291 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2292 __isl_keep isl_mat
**mat
)
2296 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2299 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2300 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2301 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2303 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2304 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2305 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2306 *mat
= isl_mat_col_addmul(*mat
, i
, v
, 1 + total
+ div
);
2307 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2308 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2310 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2311 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2317 /* Check if the last non-zero coefficient is bigger that half of the
2318 * denominator. If so, we will invert the div to further reduce the number
2319 * of distinct divs that may appear.
2320 * If the last non-zero coefficient is exactly half the denominator,
2321 * then we continue looking for earlier coefficients that are bigger
2322 * than half the denominator.
2324 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2329 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2330 if (isl_int_is_zero(div
->row
[row
][i
]))
2332 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2333 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2334 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2344 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2345 * We only invert the coefficients of e (and the coefficient of q in
2346 * later divs and in the rows of "mat"). After calling this function, the
2347 * coefficients of e should be reduced again.
2349 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2350 __isl_keep isl_mat
**mat
)
2352 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2354 isl_seq_neg(qp
->div
->row
[div
] + 1,
2355 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2356 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2357 isl_int_add(qp
->div
->row
[div
][1],
2358 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2359 *mat
= isl_mat_col_neg(*mat
, 1 + total
+ div
);
2360 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2361 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2364 /* Reduce all divs of "qp" to have coefficients
2365 * in the interval [0, d-1], with d the denominator and such that the
2366 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2367 * The modifications to the integer divisions need to be reflected
2368 * in the factors of the polynomial that refer to the original
2369 * integer divisions. To this end, the modifications are collected
2370 * as a set of affine expressions and then plugged into the polynomial.
2372 * After the reduction, some divs may have become redundant or identical,
2373 * so we call substitute_non_divs and sort_divs. If these functions
2374 * eliminate divs or merge two or more divs into one, the coefficients
2375 * of the enclosing divs may have to be reduced again, so we call
2376 * ourselves recursively if the number of divs decreases.
2378 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2383 struct isl_upoly
**s
;
2384 unsigned o_div
, n_div
, total
;
2389 total
= isl_qpolynomial_domain_dim(qp
, isl_dim_all
);
2390 n_div
= isl_qpolynomial_domain_dim(qp
, isl_dim_div
);
2391 o_div
= isl_qpolynomial_domain_offset(qp
, isl_dim_div
);
2392 ctx
= isl_qpolynomial_get_ctx(qp
);
2393 mat
= isl_mat_zero(ctx
, n_div
, 1 + total
);
2395 for (i
= 0; i
< n_div
; ++i
)
2396 mat
= isl_mat_set_element_si(mat
, i
, o_div
+ i
, 1);
2398 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2399 normalize_div(qp
, i
);
2400 reduce_div(qp
, i
, &mat
);
2401 if (needs_invert(qp
->div
, i
)) {
2402 invert_div(qp
, i
, &mat
);
2403 reduce_div(qp
, i
, &mat
);
2409 s
= isl_alloc_array(ctx
, struct isl_upoly
*, n_div
);
2412 for (i
= 0; i
< n_div
; ++i
)
2413 s
[i
] = isl_upoly_from_affine(ctx
, mat
->row
[i
], ctx
->one
,
2415 qp
->upoly
= isl_upoly_subs(qp
->upoly
, o_div
- 1, n_div
, s
);
2416 for (i
= 0; i
< n_div
; ++i
)
2417 isl_upoly_free(s
[i
]);
2424 qp
= substitute_non_divs(qp
);
2426 if (qp
&& isl_qpolynomial_domain_dim(qp
, isl_dim_div
) < n_div
)
2427 return reduce_divs(qp
);
2431 isl_qpolynomial_free(qp
);
2436 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2437 __isl_take isl_space
*dim
, const isl_int n
, const isl_int d
)
2439 struct isl_qpolynomial
*qp
;
2440 struct isl_upoly_cst
*cst
;
2445 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2449 cst
= isl_upoly_as_cst(qp
->upoly
);
2450 isl_int_set(cst
->n
, n
);
2451 isl_int_set(cst
->d
, d
);
2456 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2458 __isl_give isl_qpolynomial
*isl_qpolynomial_val_on_domain(
2459 __isl_take isl_space
*domain
, __isl_take isl_val
*val
)
2461 isl_qpolynomial
*qp
;
2462 struct isl_upoly_cst
*cst
;
2464 if (!domain
|| !val
)
2467 qp
= isl_qpolynomial_alloc(isl_space_copy(domain
), 0,
2468 isl_upoly_zero(domain
->ctx
));
2472 cst
= isl_upoly_as_cst(qp
->upoly
);
2473 isl_int_set(cst
->n
, val
->n
);
2474 isl_int_set(cst
->d
, val
->d
);
2476 isl_space_free(domain
);
2480 isl_space_free(domain
);
2485 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2487 struct isl_upoly_rec
*rec
;
2493 if (isl_upoly_is_cst(up
))
2497 active
[up
->var
] = 1;
2499 rec
= isl_upoly_as_rec(up
);
2500 for (i
= 0; i
< rec
->n
; ++i
)
2501 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2507 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2510 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2515 for (i
= 0; i
< d
; ++i
)
2516 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2517 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2523 return up_set_active(qp
->upoly
, active
, d
);
2526 isl_bool
isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2527 enum isl_dim_type type
, unsigned first
, unsigned n
)
2531 isl_bool involves
= isl_bool_false
;
2534 return isl_bool_error
;
2536 return isl_bool_false
;
2538 isl_assert(qp
->dim
->ctx
,
2539 first
+ n
<= isl_qpolynomial_dim(qp
, type
),
2540 return isl_bool_error
);
2541 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2542 type
== isl_dim_in
, return isl_bool_error
);
2544 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2545 isl_space_dim(qp
->dim
, isl_dim_all
));
2546 if (set_active(qp
, active
) < 0)
2549 if (type
== isl_dim_in
)
2550 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2551 for (i
= 0; i
< n
; ++i
)
2552 if (active
[first
+ i
]) {
2553 involves
= isl_bool_true
;
2562 return isl_bool_error
;
2565 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2566 * of the divs that do appear in the quasi-polynomial.
2568 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2569 __isl_take isl_qpolynomial
*qp
)
2576 int *reordering
= NULL
;
2583 if (qp
->div
->n_row
== 0)
2586 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2587 len
= qp
->div
->n_col
- 2;
2588 ctx
= isl_qpolynomial_get_ctx(qp
);
2589 active
= isl_calloc_array(ctx
, int, len
);
2593 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2596 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2597 if (!active
[d
+ i
]) {
2601 for (j
= 0; j
< i
; ++j
) {
2602 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2614 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2618 for (i
= 0; i
< d
; ++i
)
2622 n_div
= qp
->div
->n_row
;
2623 for (i
= 0; i
< n_div
; ++i
) {
2624 if (!active
[d
+ i
]) {
2625 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2626 qp
->div
= isl_mat_drop_cols(qp
->div
,
2627 2 + d
+ i
- skip
, 1);
2630 reordering
[d
+ i
] = d
+ i
- skip
;
2633 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2635 if (!qp
->upoly
|| !qp
->div
)
2645 isl_qpolynomial_free(qp
);
2649 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2650 unsigned first
, unsigned n
)
2653 struct isl_upoly_rec
*rec
;
2657 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2659 if (up
->var
< first
+ n
) {
2660 up
= replace_by_constant_term(up
);
2661 return isl_upoly_drop(up
, first
, n
);
2663 up
= isl_upoly_cow(up
);
2667 rec
= isl_upoly_as_rec(up
);
2671 for (i
= 0; i
< rec
->n
; ++i
) {
2672 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2683 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2684 __isl_take isl_qpolynomial
*qp
,
2685 enum isl_dim_type type
, unsigned pos
, const char *s
)
2687 qp
= isl_qpolynomial_cow(qp
);
2690 if (type
== isl_dim_out
)
2691 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2692 "cannot set name of output/set dimension",
2693 return isl_qpolynomial_free(qp
));
2694 if (type
== isl_dim_in
)
2696 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2701 isl_qpolynomial_free(qp
);
2705 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2706 __isl_take isl_qpolynomial
*qp
,
2707 enum isl_dim_type type
, unsigned first
, unsigned n
)
2711 if (type
== isl_dim_out
)
2712 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2713 "cannot drop output/set dimension",
2715 if (type
== isl_dim_in
)
2717 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2720 qp
= isl_qpolynomial_cow(qp
);
2724 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2726 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2727 type
== isl_dim_set
, goto error
);
2729 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2733 if (type
== isl_dim_set
)
2734 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2736 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2740 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2746 isl_qpolynomial_free(qp
);
2750 /* Project the domain of the quasi-polynomial onto its parameter space.
2751 * The quasi-polynomial may not involve any of the domain dimensions.
2753 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2754 __isl_take isl_qpolynomial
*qp
)
2760 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2761 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2763 return isl_qpolynomial_free(qp
);
2765 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2766 "polynomial involves some of the domain dimensions",
2767 return isl_qpolynomial_free(qp
));
2768 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2769 space
= isl_qpolynomial_get_domain_space(qp
);
2770 space
= isl_space_params(space
);
2771 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2775 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2776 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2782 struct isl_upoly
*up
;
2786 if (eq
->n_eq
== 0) {
2787 isl_basic_set_free(eq
);
2791 qp
= isl_qpolynomial_cow(qp
);
2794 qp
->div
= isl_mat_cow(qp
->div
);
2798 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2800 isl_int_init(denom
);
2801 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2802 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2803 if (j
< 0 || j
== 0 || j
>= total
)
2806 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2807 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2809 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2810 &qp
->div
->row
[k
][0]);
2811 normalize_div(qp
, k
);
2814 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2815 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2816 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2817 isl_int_set_si(eq
->eq
[i
][j
], 0);
2819 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2820 eq
->eq
[i
], denom
, total
);
2821 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2824 isl_int_clear(denom
);
2829 isl_basic_set_free(eq
);
2831 qp
= substitute_non_divs(qp
);
2836 isl_basic_set_free(eq
);
2837 isl_qpolynomial_free(qp
);
2841 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2843 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2844 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2848 if (qp
->div
->n_row
> 0)
2849 eq
= isl_basic_set_add_dims(eq
, isl_dim_set
, qp
->div
->n_row
);
2850 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2852 isl_basic_set_free(eq
);
2853 isl_qpolynomial_free(qp
);
2857 static __isl_give isl_basic_set
*add_div_constraints(
2858 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2866 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2869 total
= isl_basic_set_total_dim(bset
);
2870 for (i
= 0; i
< div
->n_row
; ++i
)
2871 if (isl_basic_set_add_div_constraints_var(bset
,
2872 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2879 isl_basic_set_free(bset
);
2883 /* Look for equalities among the variables shared by context and qp
2884 * and the integer divisions of qp, if any.
2885 * The equalities are then used to eliminate variables and/or integer
2886 * divisions from qp.
2888 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2889 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2895 if (qp
->div
->n_row
> 0) {
2896 isl_basic_set
*bset
;
2897 context
= isl_set_add_dims(context
, isl_dim_set
,
2899 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2900 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2901 context
= isl_set_intersect(context
,
2902 isl_set_from_basic_set(bset
));
2905 aff
= isl_set_affine_hull(context
);
2906 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2908 isl_qpolynomial_free(qp
);
2909 isl_set_free(context
);
2913 __isl_give isl_qpolynomial
*isl_qpolynomial_gist_params(
2914 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2916 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
2917 isl_set
*dom_context
= isl_set_universe(space
);
2918 dom_context
= isl_set_intersect_params(dom_context
, context
);
2919 return isl_qpolynomial_gist(qp
, dom_context
);
2922 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2923 __isl_take isl_qpolynomial
*qp
)
2929 if (isl_qpolynomial_is_zero(qp
)) {
2930 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2931 isl_qpolynomial_free(qp
);
2932 return isl_pw_qpolynomial_zero(dim
);
2935 dom
= isl_set_universe(isl_qpolynomial_get_domain_space(qp
));
2936 return isl_pw_qpolynomial_alloc(dom
, qp
);
2939 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
2942 #define PW isl_pw_qpolynomial
2944 #define EL isl_qpolynomial
2946 #define EL_IS_ZERO is_zero
2950 #define IS_ZERO is_zero
2953 #undef DEFAULT_IS_ZERO
2954 #define DEFAULT_IS_ZERO 1
2958 #include <isl_pw_templ.c>
2959 #include <isl_pw_eval.c>
2962 #define UNION isl_union_pw_qpolynomial
2964 #define PART isl_pw_qpolynomial
2966 #define PARTS pw_qpolynomial
2968 #include <isl_union_single.c>
2969 #include <isl_union_eval.c>
2970 #include <isl_union_neg.c>
2972 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2980 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2983 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2986 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
2987 __isl_take isl_pw_qpolynomial
*pwqp1
,
2988 __isl_take isl_pw_qpolynomial
*pwqp2
)
2990 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
2993 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2994 __isl_take isl_pw_qpolynomial
*pwqp1
,
2995 __isl_take isl_pw_qpolynomial
*pwqp2
)
2998 struct isl_pw_qpolynomial
*res
;
3000 if (!pwqp1
|| !pwqp2
)
3003 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
3006 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
3007 isl_pw_qpolynomial_free(pwqp2
);
3011 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
3012 isl_pw_qpolynomial_free(pwqp1
);
3016 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
3017 isl_pw_qpolynomial_free(pwqp1
);
3021 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
3022 isl_pw_qpolynomial_free(pwqp2
);
3026 n
= pwqp1
->n
* pwqp2
->n
;
3027 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
3029 for (i
= 0; i
< pwqp1
->n
; ++i
) {
3030 for (j
= 0; j
< pwqp2
->n
; ++j
) {
3031 struct isl_set
*common
;
3032 struct isl_qpolynomial
*prod
;
3033 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
3034 isl_set_copy(pwqp2
->p
[j
].set
));
3035 if (isl_set_plain_is_empty(common
)) {
3036 isl_set_free(common
);
3040 prod
= isl_qpolynomial_mul(
3041 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
3042 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
3044 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
3048 isl_pw_qpolynomial_free(pwqp1
);
3049 isl_pw_qpolynomial_free(pwqp2
);
3053 isl_pw_qpolynomial_free(pwqp1
);
3054 isl_pw_qpolynomial_free(pwqp2
);
3058 __isl_give isl_val
*isl_upoly_eval(__isl_take
struct isl_upoly
*up
,
3059 __isl_take isl_vec
*vec
)
3062 struct isl_upoly_rec
*rec
;
3066 if (isl_upoly_is_cst(up
)) {
3068 res
= isl_upoly_get_constant_val(up
);
3073 rec
= isl_upoly_as_rec(up
);
3077 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
3079 base
= isl_val_rat_from_isl_int(up
->ctx
,
3080 vec
->el
[1 + up
->var
], vec
->el
[0]);
3082 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
3085 for (i
= rec
->n
- 2; i
>= 0; --i
) {
3086 res
= isl_val_mul(res
, isl_val_copy(base
));
3087 res
= isl_val_add(res
,
3088 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
3089 isl_vec_copy(vec
)));
3102 /* Evaluate "qp" in the void point "pnt".
3103 * In particular, return the value NaN.
3105 static __isl_give isl_val
*eval_void(__isl_take isl_qpolynomial
*qp
,
3106 __isl_take isl_point
*pnt
)
3110 ctx
= isl_point_get_ctx(pnt
);
3111 isl_qpolynomial_free(qp
);
3112 isl_point_free(pnt
);
3113 return isl_val_nan(ctx
);
3116 __isl_give isl_val
*isl_qpolynomial_eval(__isl_take isl_qpolynomial
*qp
,
3117 __isl_take isl_point
*pnt
)
3125 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
3126 is_void
= isl_point_is_void(pnt
);
3130 return eval_void(qp
, pnt
);
3132 ext
= isl_local_extend_point_vec(qp
->div
, isl_vec_copy(pnt
->vec
));
3134 v
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
3136 isl_qpolynomial_free(qp
);
3137 isl_point_free(pnt
);
3141 isl_qpolynomial_free(qp
);
3142 isl_point_free(pnt
);
3146 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
3147 __isl_keep
struct isl_upoly_cst
*cst2
)
3152 isl_int_mul(t
, cst1
->n
, cst2
->d
);
3153 isl_int_submul(t
, cst2
->n
, cst1
->d
);
3154 cmp
= isl_int_sgn(t
);
3159 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
3160 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
3161 unsigned first
, unsigned n
)
3169 if (type
== isl_dim_out
)
3170 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3171 "cannot insert output/set dimensions",
3173 if (type
== isl_dim_in
)
3175 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
3178 qp
= isl_qpolynomial_cow(qp
);
3182 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
3185 g_pos
= pos(qp
->dim
, type
) + first
;
3187 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
3191 total
= qp
->div
->n_col
- 2;
3192 if (total
> g_pos
) {
3194 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
3197 for (i
= 0; i
< total
- g_pos
; ++i
)
3199 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
3205 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
3211 isl_qpolynomial_free(qp
);
3215 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
3216 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
3220 pos
= isl_qpolynomial_dim(qp
, type
);
3222 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
3225 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
3226 __isl_take isl_pw_qpolynomial
*pwqp
,
3227 enum isl_dim_type type
, unsigned n
)
3231 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
3233 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
3236 static int *reordering_move(isl_ctx
*ctx
,
3237 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
3242 reordering
= isl_alloc_array(ctx
, int, len
);
3247 for (i
= 0; i
< dst
; ++i
)
3249 for (i
= 0; i
< n
; ++i
)
3250 reordering
[src
+ i
] = dst
+ i
;
3251 for (i
= 0; i
< src
- dst
; ++i
)
3252 reordering
[dst
+ i
] = dst
+ n
+ i
;
3253 for (i
= 0; i
< len
- src
- n
; ++i
)
3254 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
3256 for (i
= 0; i
< src
; ++i
)
3258 for (i
= 0; i
< n
; ++i
)
3259 reordering
[src
+ i
] = dst
+ i
;
3260 for (i
= 0; i
< dst
- src
; ++i
)
3261 reordering
[src
+ n
+ i
] = src
+ i
;
3262 for (i
= 0; i
< len
- dst
- n
; ++i
)
3263 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
3269 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
3270 __isl_take isl_qpolynomial
*qp
,
3271 enum isl_dim_type dst_type
, unsigned dst_pos
,
3272 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
3281 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
3282 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3283 "cannot move output/set dimension",
3285 if (dst_type
== isl_dim_in
)
3286 dst_type
= isl_dim_set
;
3287 if (src_type
== isl_dim_in
)
3288 src_type
= isl_dim_set
;
3291 !isl_space_is_named_or_nested(qp
->dim
, src_type
) &&
3292 !isl_space_is_named_or_nested(qp
->dim
, dst_type
))
3295 qp
= isl_qpolynomial_cow(qp
);
3299 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
3302 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3303 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3304 if (dst_type
> src_type
)
3307 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
3314 reordering
= reordering_move(qp
->dim
->ctx
,
3315 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
3319 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3324 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3330 isl_qpolynomial_free(qp
);
3334 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3335 isl_int
*f
, isl_int denom
)
3337 struct isl_upoly
*up
;
3339 dim
= isl_space_domain(dim
);
3343 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3344 1 + isl_space_dim(dim
, isl_dim_all
));
3346 return isl_qpolynomial_alloc(dim
, 0, up
);
3349 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3352 struct isl_upoly
*up
;
3353 isl_qpolynomial
*qp
;
3358 ctx
= isl_aff_get_ctx(aff
);
3359 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3362 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3363 aff
->ls
->div
->n_row
, up
);
3367 isl_mat_free(qp
->div
);
3368 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3369 qp
->div
= isl_mat_cow(qp
->div
);
3374 qp
= reduce_divs(qp
);
3375 qp
= remove_redundant_divs(qp
);
3379 return isl_qpolynomial_free(qp
);
3382 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3383 __isl_take isl_pw_aff
*pwaff
)
3386 isl_pw_qpolynomial
*pwqp
;
3391 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3394 for (i
= 0; i
< pwaff
->n
; ++i
) {
3396 isl_qpolynomial
*qp
;
3398 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3399 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3400 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3403 isl_pw_aff_free(pwaff
);
3407 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3408 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3412 aff
= isl_constraint_get_bound(c
, type
, pos
);
3413 isl_constraint_free(c
);
3414 return isl_qpolynomial_from_aff(aff
);
3417 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3418 * in "qp" by subs[i].
3420 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3421 __isl_take isl_qpolynomial
*qp
,
3422 enum isl_dim_type type
, unsigned first
, unsigned n
,
3423 __isl_keep isl_qpolynomial
**subs
)
3426 struct isl_upoly
**ups
;
3431 qp
= isl_qpolynomial_cow(qp
);
3435 if (type
== isl_dim_out
)
3436 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3437 "cannot substitute output/set dimension",
3439 if (type
== isl_dim_in
)
3442 for (i
= 0; i
< n
; ++i
)
3446 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3449 for (i
= 0; i
< n
; ++i
)
3450 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3453 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3454 for (i
= 0; i
< n
; ++i
)
3455 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3457 first
+= pos(qp
->dim
, type
);
3459 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3462 for (i
= 0; i
< n
; ++i
)
3463 ups
[i
] = subs
[i
]->upoly
;
3465 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3474 isl_qpolynomial_free(qp
);
3478 /* Extend "bset" with extra set dimensions for each integer division
3479 * in "qp" and then call "fn" with the extended bset and the polynomial
3480 * that results from replacing each of the integer divisions by the
3481 * corresponding extra set dimension.
3483 isl_stat
isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3484 __isl_keep isl_basic_set
*bset
,
3485 isl_stat (*fn
)(__isl_take isl_basic_set
*bset
,
3486 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3490 isl_qpolynomial
*poly
;
3493 return isl_stat_error
;
3494 if (qp
->div
->n_row
== 0)
3495 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3498 div
= isl_mat_copy(qp
->div
);
3499 dim
= isl_space_copy(qp
->dim
);
3500 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3501 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3502 bset
= isl_basic_set_copy(bset
);
3503 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, qp
->div
->n_row
);
3504 bset
= add_div_constraints(bset
, div
);
3506 return fn(bset
, poly
, user
);
3509 /* Return total degree in variables first (inclusive) up to last (exclusive).
3511 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3515 struct isl_upoly_rec
*rec
;
3519 if (isl_upoly_is_zero(up
))
3521 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3524 rec
= isl_upoly_as_rec(up
);
3528 for (i
= 0; i
< rec
->n
; ++i
) {
3531 if (isl_upoly_is_zero(rec
->p
[i
]))
3533 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3543 /* Return total degree in set variables.
3545 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3553 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3554 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3555 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3558 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3559 unsigned pos
, int deg
)
3562 struct isl_upoly_rec
*rec
;
3567 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3569 return isl_upoly_copy(up
);
3571 return isl_upoly_zero(up
->ctx
);
3574 rec
= isl_upoly_as_rec(up
);
3578 if (up
->var
== pos
) {
3580 return isl_upoly_copy(rec
->p
[deg
]);
3582 return isl_upoly_zero(up
->ctx
);
3585 up
= isl_upoly_copy(up
);
3586 up
= isl_upoly_cow(up
);
3587 rec
= isl_upoly_as_rec(up
);
3591 for (i
= 0; i
< rec
->n
; ++i
) {
3592 struct isl_upoly
*t
;
3593 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3596 isl_upoly_free(rec
->p
[i
]);
3606 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3608 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3609 __isl_keep isl_qpolynomial
*qp
,
3610 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3613 struct isl_upoly
*up
;
3619 if (type
== isl_dim_out
)
3620 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3621 "output/set dimension does not have a coefficient",
3623 if (type
== isl_dim_in
)
3626 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3629 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3630 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3632 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3635 isl_mat_free(c
->div
);
3636 c
->div
= isl_mat_copy(qp
->div
);
3641 isl_qpolynomial_free(c
);
3645 /* Homogenize the polynomial in the variables first (inclusive) up to
3646 * last (exclusive) by inserting powers of variable first.
3647 * Variable first is assumed not to appear in the input.
3649 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3650 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3651 int first
, int last
)
3654 struct isl_upoly_rec
*rec
;
3658 if (isl_upoly_is_zero(up
))
3662 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3663 struct isl_upoly
*hom
;
3665 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3668 rec
= isl_upoly_as_rec(hom
);
3669 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3674 up
= isl_upoly_cow(up
);
3675 rec
= isl_upoly_as_rec(up
);
3679 for (i
= 0; i
< rec
->n
; ++i
) {
3680 if (isl_upoly_is_zero(rec
->p
[i
]))
3682 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3683 up
->var
< last
? deg
+ i
: i
, target
,
3695 /* Homogenize the polynomial in the set variables by introducing
3696 * powers of an extra set variable at position 0.
3698 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3699 __isl_take isl_qpolynomial
*poly
)
3703 int deg
= isl_qpolynomial_degree(poly
);
3708 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3709 poly
= isl_qpolynomial_cow(poly
);
3713 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3714 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3715 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3722 isl_qpolynomial_free(poly
);
3726 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3727 __isl_take isl_mat
*div
)
3735 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3737 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3738 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3745 isl_int_init(term
->n
);
3746 isl_int_init(term
->d
);
3750 isl_space_free(dim
);
3755 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3764 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3773 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3775 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3779 isl_int_set(dup
->n
, term
->n
);
3780 isl_int_set(dup
->d
, term
->d
);
3782 for (i
= 0; i
< total
; ++i
)
3783 dup
->pow
[i
] = term
->pow
[i
];
3788 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3796 return isl_term_dup(term
);
3799 void isl_term_free(__isl_take isl_term
*term
)
3804 if (--term
->ref
> 0)
3807 isl_space_free(term
->dim
);
3808 isl_mat_free(term
->div
);
3809 isl_int_clear(term
->n
);
3810 isl_int_clear(term
->d
);
3814 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3822 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3823 case isl_dim_div
: return term
->div
->n_row
;
3824 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3830 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3832 return term
? term
->dim
->ctx
: NULL
;
3835 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3839 isl_int_set(*n
, term
->n
);
3842 /* Return the coefficient of the term "term".
3844 __isl_give isl_val
*isl_term_get_coefficient_val(__isl_keep isl_term
*term
)
3849 return isl_val_rat_from_isl_int(isl_term_get_ctx(term
),
3853 int isl_term_get_exp(__isl_keep isl_term
*term
,
3854 enum isl_dim_type type
, unsigned pos
)
3859 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3861 if (type
>= isl_dim_set
)
3862 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3863 if (type
>= isl_dim_div
)
3864 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3866 return term
->pow
[pos
];
3869 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3871 isl_local_space
*ls
;
3877 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3880 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
3881 isl_mat_copy(term
->div
));
3882 aff
= isl_aff_alloc(ls
);
3886 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
3888 aff
= isl_aff_normalize(aff
);
3893 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3894 isl_stat (*fn
)(__isl_take isl_term
*term
, void *user
),
3895 __isl_take isl_term
*term
, void *user
)
3898 struct isl_upoly_rec
*rec
;
3903 if (isl_upoly_is_zero(up
))
3906 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3907 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3908 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3910 if (isl_upoly_is_cst(up
)) {
3911 struct isl_upoly_cst
*cst
;
3912 cst
= isl_upoly_as_cst(up
);
3915 term
= isl_term_cow(term
);
3918 isl_int_set(term
->n
, cst
->n
);
3919 isl_int_set(term
->d
, cst
->d
);
3920 if (fn(isl_term_copy(term
), user
) < 0)
3925 rec
= isl_upoly_as_rec(up
);
3929 for (i
= 0; i
< rec
->n
; ++i
) {
3930 term
= isl_term_cow(term
);
3933 term
->pow
[up
->var
] = i
;
3934 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3938 term
->pow
[up
->var
] = 0;
3942 isl_term_free(term
);
3946 isl_stat
isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3947 isl_stat (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3952 return isl_stat_error
;
3954 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3956 return isl_stat_error
;
3958 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3960 isl_term_free(term
);
3962 return term
? isl_stat_ok
: isl_stat_error
;
3965 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3967 struct isl_upoly
*up
;
3968 isl_qpolynomial
*qp
;
3974 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3976 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3977 for (i
= 0; i
< n
; ++i
) {
3980 up
= isl_upoly_mul(up
,
3981 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3984 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3987 isl_mat_free(qp
->div
);
3988 qp
->div
= isl_mat_copy(term
->div
);
3992 isl_term_free(term
);
3995 isl_qpolynomial_free(qp
);
3996 isl_term_free(term
);
4000 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
4001 __isl_take isl_space
*dim
)
4010 if (isl_space_is_equal(qp
->dim
, dim
)) {
4011 isl_space_free(dim
);
4015 qp
= isl_qpolynomial_cow(qp
);
4019 extra
= isl_space_dim(dim
, isl_dim_set
) -
4020 isl_space_dim(qp
->dim
, isl_dim_set
);
4021 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4022 if (qp
->div
->n_row
) {
4025 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
4028 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4030 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
4035 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
4038 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4039 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
4041 isl_space_free(qp
->dim
);
4046 isl_space_free(dim
);
4047 isl_qpolynomial_free(qp
);
4051 /* For each parameter or variable that does not appear in qp,
4052 * first eliminate the variable from all constraints and then set it to zero.
4054 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
4055 __isl_keep isl_qpolynomial
*qp
)
4066 d
= isl_space_dim(set
->dim
, isl_dim_all
);
4067 active
= isl_calloc_array(set
->ctx
, int, d
);
4068 if (set_active(qp
, active
) < 0)
4071 for (i
= 0; i
< d
; ++i
)
4080 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
4081 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
4082 for (i
= 0; i
< nparam
; ++i
) {
4085 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
4086 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
4088 for (i
= 0; i
< nvar
; ++i
) {
4089 if (active
[nparam
+ i
])
4091 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
4092 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
4104 struct isl_opt_data
{
4105 isl_qpolynomial
*qp
;
4111 static isl_stat
opt_fn(__isl_take isl_point
*pnt
, void *user
)
4113 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
4116 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
4120 } else if (data
->max
) {
4121 data
->opt
= isl_val_max(data
->opt
, val
);
4123 data
->opt
= isl_val_min(data
->opt
, val
);
4129 __isl_give isl_val
*isl_qpolynomial_opt_on_domain(
4130 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
4132 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
4137 if (isl_upoly_is_cst(qp
->upoly
)) {
4139 data
.opt
= isl_qpolynomial_get_constant_val(qp
);
4140 isl_qpolynomial_free(qp
);
4144 set
= fix_inactive(set
, qp
);
4147 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
4151 data
.opt
= isl_val_zero(isl_set_get_ctx(set
));
4154 isl_qpolynomial_free(qp
);
4158 isl_qpolynomial_free(qp
);
4159 isl_val_free(data
.opt
);
4163 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
4164 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
4169 struct isl_upoly
**subs
;
4170 isl_mat
*mat
, *diag
;
4172 qp
= isl_qpolynomial_cow(qp
);
4177 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
4179 n_sub
= morph
->inv
->n_row
- 1;
4180 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4181 n_sub
+= qp
->div
->n_row
;
4182 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
4186 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
4187 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
4188 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
4189 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4190 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4191 subs
[morph
->inv
->n_row
- 1 + i
] =
4192 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
4194 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
4196 for (i
= 0; i
< n_sub
; ++i
)
4197 isl_upoly_free(subs
[i
]);
4200 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
4201 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
4202 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
4203 mat
= isl_mat_diagonal(mat
, diag
);
4204 qp
->div
= isl_mat_product(qp
->div
, mat
);
4205 isl_space_free(qp
->dim
);
4206 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
4208 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
4211 isl_morph_free(morph
);
4215 isl_qpolynomial_free(qp
);
4216 isl_morph_free(morph
);
4220 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
4221 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
4222 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
4224 return isl_union_pw_qpolynomial_match_bin_op(upwqp1
, upwqp2
,
4225 &isl_pw_qpolynomial_mul
);
4228 /* Reorder the columns of the given div definitions according to the
4231 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
4232 __isl_take isl_reordering
*r
)
4241 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
4242 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
4246 for (i
= 0; i
< div
->n_row
; ++i
) {
4247 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
4248 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
4249 for (j
= 0; j
< r
->len
; ++j
)
4250 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
4251 div
->row
[i
][2 + j
]);
4254 isl_reordering_free(r
);
4258 isl_reordering_free(r
);
4263 /* Reorder the dimension of "qp" according to the given reordering.
4265 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4266 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4268 qp
= isl_qpolynomial_cow(qp
);
4272 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4276 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4280 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4284 qp
= isl_qpolynomial_reset_domain_space(qp
, isl_space_copy(r
->dim
));
4286 isl_reordering_free(r
);
4289 isl_qpolynomial_free(qp
);
4290 isl_reordering_free(r
);
4294 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4295 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4297 isl_bool equal_params
;
4302 equal_params
= isl_space_has_equal_params(qp
->dim
, model
);
4303 if (equal_params
< 0)
4305 if (!equal_params
) {
4306 isl_reordering
*exp
;
4308 model
= isl_space_drop_dims(model
, isl_dim_in
,
4309 0, isl_space_dim(model
, isl_dim_in
));
4310 model
= isl_space_drop_dims(model
, isl_dim_out
,
4311 0, isl_space_dim(model
, isl_dim_out
));
4312 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4313 exp
= isl_reordering_extend_space(exp
,
4314 isl_qpolynomial_get_domain_space(qp
));
4315 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4318 isl_space_free(model
);
4321 isl_space_free(model
);
4322 isl_qpolynomial_free(qp
);
4326 struct isl_split_periods_data
{
4328 isl_pw_qpolynomial
*res
;
4331 /* Create a slice where the integer division "div" has the fixed value "v".
4332 * In particular, if "div" refers to floor(f/m), then create a slice
4334 * m v <= f <= m v + (m - 1)
4339 * -f + m v + (m - 1) >= 0
4341 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4342 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4345 isl_basic_set
*bset
= NULL
;
4351 total
= isl_space_dim(dim
, isl_dim_all
);
4352 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4354 k
= isl_basic_set_alloc_inequality(bset
);
4357 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4358 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4360 k
= isl_basic_set_alloc_inequality(bset
);
4363 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4364 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4365 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4366 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4368 isl_space_free(dim
);
4369 return isl_set_from_basic_set(bset
);
4371 isl_basic_set_free(bset
);
4372 isl_space_free(dim
);
4376 static isl_stat
split_periods(__isl_take isl_set
*set
,
4377 __isl_take isl_qpolynomial
*qp
, void *user
);
4379 /* Create a slice of the domain "set" such that integer division "div"
4380 * has the fixed value "v" and add the results to data->res,
4381 * replacing the integer division by "v" in "qp".
4383 static isl_stat
set_div(__isl_take isl_set
*set
,
4384 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4385 struct isl_split_periods_data
*data
)
4390 struct isl_upoly
*cst
;
4392 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4393 set
= isl_set_intersect(set
, slice
);
4398 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4400 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4401 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4403 isl_int_addmul(qp
->div
->row
[i
][1],
4404 qp
->div
->row
[i
][2 + total
+ div
], v
);
4405 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4408 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4409 qp
= substitute_div(qp
, div
, cst
);
4411 return split_periods(set
, qp
, data
);
4414 isl_qpolynomial_free(qp
);
4418 /* Split the domain "set" such that integer division "div"
4419 * has a fixed value (ranging from "min" to "max") on each slice
4420 * and add the results to data->res.
4422 static isl_stat
split_div(__isl_take isl_set
*set
,
4423 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4424 struct isl_split_periods_data
*data
)
4426 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4427 isl_set
*set_i
= isl_set_copy(set
);
4428 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4430 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4434 isl_qpolynomial_free(qp
);
4438 isl_qpolynomial_free(qp
);
4439 return isl_stat_error
;
4442 /* If "qp" refers to any integer division
4443 * that can only attain "max_periods" distinct values on "set"
4444 * then split the domain along those distinct values.
4445 * Add the results (or the original if no splitting occurs)
4448 static isl_stat
split_periods(__isl_take isl_set
*set
,
4449 __isl_take isl_qpolynomial
*qp
, void *user
)
4452 isl_pw_qpolynomial
*pwqp
;
4453 struct isl_split_periods_data
*data
;
4456 isl_stat r
= isl_stat_ok
;
4458 data
= (struct isl_split_periods_data
*)user
;
4463 if (qp
->div
->n_row
== 0) {
4464 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4465 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4471 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4472 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4473 enum isl_lp_result lp_res
;
4475 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4476 qp
->div
->n_row
) != -1)
4479 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4480 set
->ctx
->one
, &min
, NULL
, NULL
);
4481 if (lp_res
== isl_lp_error
)
4483 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4485 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4487 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4488 set
->ctx
->one
, &max
, NULL
, NULL
);
4489 if (lp_res
== isl_lp_error
)
4491 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4493 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4495 isl_int_sub(max
, max
, min
);
4496 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4497 isl_int_add(max
, max
, min
);
4502 if (i
< qp
->div
->n_row
) {
4503 r
= split_div(set
, qp
, i
, min
, max
, data
);
4505 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4506 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4518 isl_qpolynomial_free(qp
);
4519 return isl_stat_error
;
4522 /* If any quasi-polynomial in pwqp refers to any integer division
4523 * that can only attain "max_periods" distinct values on its domain
4524 * then split the domain along those distinct values.
4526 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4527 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4529 struct isl_split_periods_data data
;
4531 data
.max_periods
= max_periods
;
4532 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4534 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4537 isl_pw_qpolynomial_free(pwqp
);
4541 isl_pw_qpolynomial_free(data
.res
);
4542 isl_pw_qpolynomial_free(pwqp
);
4546 /* Construct a piecewise quasipolynomial that is constant on the given
4547 * domain. In particular, it is
4550 * infinity if cst == -1
4552 * If cst == -1, then explicitly check whether the domain is empty and,
4553 * if so, return 0 instead.
4555 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4556 __isl_take isl_basic_set
*bset
, int cst
)
4559 isl_qpolynomial
*qp
;
4561 if (cst
< 0 && isl_basic_set_is_empty(bset
) == isl_bool_true
)
4566 bset
= isl_basic_set_params(bset
);
4567 dim
= isl_basic_set_get_space(bset
);
4569 qp
= isl_qpolynomial_infty_on_domain(dim
);
4571 qp
= isl_qpolynomial_zero_on_domain(dim
);
4573 qp
= isl_qpolynomial_one_on_domain(dim
);
4574 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4577 /* Factor bset, call fn on each of the factors and return the product.
4579 * If no factors can be found, simply call fn on the input.
4580 * Otherwise, construct the factors based on the factorizer,
4581 * call fn on each factor and compute the product.
4583 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4584 __isl_take isl_basic_set
*bset
,
4585 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4591 isl_qpolynomial
*qp
;
4592 isl_pw_qpolynomial
*pwqp
;
4596 f
= isl_basic_set_factorizer(bset
);
4599 if (f
->n_group
== 0) {
4600 isl_factorizer_free(f
);
4604 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4605 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4607 space
= isl_basic_set_get_space(bset
);
4608 space
= isl_space_params(space
);
4609 set
= isl_set_universe(isl_space_copy(space
));
4610 qp
= isl_qpolynomial_one_on_domain(space
);
4611 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4613 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4615 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4616 isl_basic_set
*bset_i
;
4617 isl_pw_qpolynomial
*pwqp_i
;
4619 bset_i
= isl_basic_set_copy(bset
);
4620 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4621 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4622 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4624 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4625 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4626 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4628 pwqp_i
= fn(bset_i
);
4629 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4634 isl_basic_set_free(bset
);
4635 isl_factorizer_free(f
);
4639 isl_basic_set_free(bset
);
4643 /* Factor bset, call fn on each of the factors and return the product.
4644 * The function is assumed to evaluate to zero on empty domains,
4645 * to one on zero-dimensional domains and to infinity on unbounded domains
4646 * and will not be called explicitly on zero-dimensional or unbounded domains.
4648 * We first check for some special cases and remove all equalities.
4649 * Then we hand over control to compressed_multiplicative_call.
4651 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4652 __isl_take isl_basic_set
*bset
,
4653 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4657 isl_pw_qpolynomial
*pwqp
;
4662 if (isl_basic_set_plain_is_empty(bset
))
4663 return constant_on_domain(bset
, 0);
4665 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4666 return constant_on_domain(bset
, 1);
4668 bounded
= isl_basic_set_is_bounded(bset
);
4672 return constant_on_domain(bset
, -1);
4674 if (bset
->n_eq
== 0)
4675 return compressed_multiplicative_call(bset
, fn
);
4677 morph
= isl_basic_set_full_compression(bset
);
4678 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4680 pwqp
= compressed_multiplicative_call(bset
, fn
);
4682 morph
= isl_morph_dom_params(morph
);
4683 morph
= isl_morph_ran_params(morph
);
4684 morph
= isl_morph_inverse(morph
);
4686 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4690 isl_basic_set_free(bset
);
4694 /* Drop all floors in "qp", turning each integer division [a/m] into
4695 * a rational division a/m. If "down" is set, then the integer division
4696 * is replaced by (a-(m-1))/m instead.
4698 static __isl_give isl_qpolynomial
*qp_drop_floors(
4699 __isl_take isl_qpolynomial
*qp
, int down
)
4702 struct isl_upoly
*s
;
4706 if (qp
->div
->n_row
== 0)
4709 qp
= isl_qpolynomial_cow(qp
);
4713 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4715 isl_int_sub(qp
->div
->row
[i
][1],
4716 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4717 isl_int_add_ui(qp
->div
->row
[i
][1],
4718 qp
->div
->row
[i
][1], 1);
4720 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4721 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4722 qp
= substitute_div(qp
, i
, s
);
4730 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4731 * a rational division a/m.
4733 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4734 __isl_take isl_pw_qpolynomial
*pwqp
)
4741 if (isl_pw_qpolynomial_is_zero(pwqp
))
4744 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4748 for (i
= 0; i
< pwqp
->n
; ++i
) {
4749 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4756 isl_pw_qpolynomial_free(pwqp
);
4760 /* Adjust all the integer divisions in "qp" such that they are at least
4761 * one over the given orthant (identified by "signs"). This ensures
4762 * that they will still be non-negative even after subtracting (m-1)/m.
4764 * In particular, f is replaced by f' + v, changing f = [a/m]
4765 * to f' = [(a - m v)/m].
4766 * If the constant term k in a is smaller than m,
4767 * the constant term of v is set to floor(k/m) - 1.
4768 * For any other term, if the coefficient c and the variable x have
4769 * the same sign, then no changes are needed.
4770 * Otherwise, if the variable is positive (and c is negative),
4771 * then the coefficient of x in v is set to floor(c/m).
4772 * If the variable is negative (and c is positive),
4773 * then the coefficient of x in v is set to ceil(c/m).
4775 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4781 struct isl_upoly
*s
;
4783 qp
= isl_qpolynomial_cow(qp
);
4786 qp
->div
= isl_mat_cow(qp
->div
);
4790 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4791 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4793 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4794 isl_int
*row
= qp
->div
->row
[i
];
4798 if (isl_int_lt(row
[1], row
[0])) {
4799 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4800 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4801 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4803 for (j
= 0; j
< total
; ++j
) {
4804 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4807 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4809 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4810 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4812 for (j
= 0; j
< i
; ++j
) {
4813 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4815 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4816 row
[2 + total
+ j
], row
[0]);
4817 isl_int_submul(row
[2 + total
+ j
],
4818 row
[0], v
->el
[1 + total
+ j
]);
4820 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4821 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4823 isl_seq_combine(qp
->div
->row
[j
] + 1,
4824 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4825 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4827 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4828 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4829 qp
->div
->ctx
->one
, v
->size
);
4830 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4840 isl_qpolynomial_free(qp
);
4844 struct isl_to_poly_data
{
4846 isl_pw_qpolynomial
*res
;
4847 isl_qpolynomial
*qp
;
4850 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4851 * We first make all integer divisions positive and then split the
4852 * quasipolynomials into terms with sign data->sign (the direction
4853 * of the requested approximation) and terms with the opposite sign.
4854 * In the first set of terms, each integer division [a/m] is
4855 * overapproximated by a/m, while in the second it is underapproximated
4858 static isl_stat
to_polynomial_on_orthant(__isl_take isl_set
*orthant
,
4859 int *signs
, void *user
)
4861 struct isl_to_poly_data
*data
= user
;
4862 isl_pw_qpolynomial
*t
;
4863 isl_qpolynomial
*qp
, *up
, *down
;
4865 qp
= isl_qpolynomial_copy(data
->qp
);
4866 qp
= make_divs_pos(qp
, signs
);
4868 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4869 up
= qp_drop_floors(up
, 0);
4870 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4871 down
= qp_drop_floors(down
, 1);
4873 isl_qpolynomial_free(qp
);
4874 qp
= isl_qpolynomial_add(up
, down
);
4876 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4877 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4882 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4883 * the polynomial will be an overapproximation. If "sign" is negative,
4884 * it will be an underapproximation. If "sign" is zero, the approximation
4885 * will lie somewhere in between.
4887 * In particular, is sign == 0, we simply drop the floors, turning
4888 * the integer divisions into rational divisions.
4889 * Otherwise, we split the domains into orthants, make all integer divisions
4890 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4891 * depending on the requested sign and the sign of the term in which
4892 * the integer division appears.
4894 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4895 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4898 struct isl_to_poly_data data
;
4901 return pwqp_drop_floors(pwqp
);
4907 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4909 for (i
= 0; i
< pwqp
->n
; ++i
) {
4910 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4911 isl_pw_qpolynomial
*t
;
4912 t
= isl_pw_qpolynomial_alloc(
4913 isl_set_copy(pwqp
->p
[i
].set
),
4914 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4915 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4918 data
.qp
= pwqp
->p
[i
].qp
;
4919 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4920 &to_polynomial_on_orthant
, &data
) < 0)
4924 isl_pw_qpolynomial_free(pwqp
);
4928 isl_pw_qpolynomial_free(pwqp
);
4929 isl_pw_qpolynomial_free(data
.res
);
4933 static __isl_give isl_pw_qpolynomial
*poly_entry(
4934 __isl_take isl_pw_qpolynomial
*pwqp
, void *user
)
4938 return isl_pw_qpolynomial_to_polynomial(pwqp
, *sign
);
4941 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4942 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4944 return isl_union_pw_qpolynomial_transform_inplace(upwqp
,
4945 &poly_entry
, &sign
);
4948 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4949 __isl_take isl_qpolynomial
*qp
)
4953 isl_vec
*aff
= NULL
;
4954 isl_basic_map
*bmap
= NULL
;
4960 if (!isl_upoly_is_affine(qp
->upoly
))
4961 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4962 "input quasi-polynomial not affine", goto error
);
4963 aff
= isl_qpolynomial_extract_affine(qp
);
4966 dim
= isl_qpolynomial_get_space(qp
);
4967 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4968 n_div
= qp
->div
->n_row
;
4969 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4971 for (i
= 0; i
< n_div
; ++i
) {
4972 k
= isl_basic_map_alloc_div(bmap
);
4975 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4976 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4977 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4980 k
= isl_basic_map_alloc_equality(bmap
);
4983 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4984 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4985 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4988 isl_qpolynomial_free(qp
);
4989 bmap
= isl_basic_map_finalize(bmap
);
4993 isl_qpolynomial_free(qp
);
4994 isl_basic_map_free(bmap
);