declare isl_multi_aff_get_domain_space
[isl.git] / isl_transitive_closure.c
blob59cb8bd858aad59b154d4f8a0c04e3f07c1973e8
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl/seq.h>
15 #include <isl_space_private.h>
16 #include <isl/lp.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_options_private.h>
21 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
23 isl_map *map2;
24 int closed;
26 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
27 closed = isl_map_is_subset(map2, map);
28 isl_map_free(map2);
30 return closed;
33 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
35 isl_union_map *umap2;
36 int closed;
38 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
39 isl_union_map_copy(umap));
40 closed = isl_union_map_is_subset(umap2, umap);
41 isl_union_map_free(umap2);
43 return closed;
46 /* Given a map that represents a path with the length of the path
47 * encoded as the difference between the last output coordindate
48 * and the last input coordinate, set this length to either
49 * exactly "length" (if "exactly" is set) or at least "length"
50 * (if "exactly" is not set).
52 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
53 int exactly, int length)
55 isl_space *dim;
56 struct isl_basic_map *bmap;
57 unsigned d;
58 unsigned nparam;
59 int k;
60 isl_int *c;
62 if (!map)
63 return NULL;
65 dim = isl_map_get_space(map);
66 d = isl_space_dim(dim, isl_dim_in);
67 nparam = isl_space_dim(dim, isl_dim_param);
68 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
69 if (exactly) {
70 k = isl_basic_map_alloc_equality(bmap);
71 c = bmap->eq[k];
72 } else {
73 k = isl_basic_map_alloc_inequality(bmap);
74 c = bmap->ineq[k];
76 if (k < 0)
77 goto error;
78 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
79 isl_int_set_si(c[0], -length);
80 isl_int_set_si(c[1 + nparam + d - 1], -1);
81 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
83 bmap = isl_basic_map_finalize(bmap);
84 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
86 return map;
87 error:
88 isl_basic_map_free(bmap);
89 isl_map_free(map);
90 return NULL;
93 /* Check whether the overapproximation of the power of "map" is exactly
94 * the power of "map". Let R be "map" and A_k the overapproximation.
95 * The approximation is exact if
97 * A_1 = R
98 * A_k = A_{k-1} \circ R k >= 2
100 * Since A_k is known to be an overapproximation, we only need to check
102 * A_1 \subset R
103 * A_k \subset A_{k-1} \circ R k >= 2
105 * In practice, "app" has an extra input and output coordinate
106 * to encode the length of the path. So, we first need to add
107 * this coordinate to "map" and set the length of the path to
108 * one.
110 static int check_power_exactness(__isl_take isl_map *map,
111 __isl_take isl_map *app)
113 int exact;
114 isl_map *app_1;
115 isl_map *app_2;
117 map = isl_map_add_dims(map, isl_dim_in, 1);
118 map = isl_map_add_dims(map, isl_dim_out, 1);
119 map = set_path_length(map, 1, 1);
121 app_1 = set_path_length(isl_map_copy(app), 1, 1);
123 exact = isl_map_is_subset(app_1, map);
124 isl_map_free(app_1);
126 if (!exact || exact < 0) {
127 isl_map_free(app);
128 isl_map_free(map);
129 return exact;
132 app_1 = set_path_length(isl_map_copy(app), 0, 1);
133 app_2 = set_path_length(app, 0, 2);
134 app_1 = isl_map_apply_range(map, app_1);
136 exact = isl_map_is_subset(app_2, app_1);
138 isl_map_free(app_1);
139 isl_map_free(app_2);
141 return exact;
144 /* Check whether the overapproximation of the power of "map" is exactly
145 * the power of "map", possibly after projecting out the power (if "project"
146 * is set).
148 * If "project" is set and if "steps" can only result in acyclic paths,
149 * then we check
151 * A = R \cup (A \circ R)
153 * where A is the overapproximation with the power projected out, i.e.,
154 * an overapproximation of the transitive closure.
155 * More specifically, since A is known to be an overapproximation, we check
157 * A \subset R \cup (A \circ R)
159 * Otherwise, we check if the power is exact.
161 * Note that "app" has an extra input and output coordinate to encode
162 * the length of the part. If we are only interested in the transitive
163 * closure, then we can simply project out these coordinates first.
165 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
166 int project)
168 isl_map *test;
169 int exact;
170 unsigned d;
172 if (!project)
173 return check_power_exactness(map, app);
175 d = isl_map_dim(map, isl_dim_in);
176 app = set_path_length(app, 0, 1);
177 app = isl_map_project_out(app, isl_dim_in, d, 1);
178 app = isl_map_project_out(app, isl_dim_out, d, 1);
180 app = isl_map_reset_space(app, isl_map_get_space(map));
182 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
183 test = isl_map_union(test, isl_map_copy(map));
185 exact = isl_map_is_subset(app, test);
187 isl_map_free(app);
188 isl_map_free(test);
190 isl_map_free(map);
192 return exact;
196 * The transitive closure implementation is based on the paper
197 * "Computing the Transitive Closure of a Union of Affine Integer
198 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
199 * Albert Cohen.
202 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
203 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
204 * that maps an element x to any element that can be reached
205 * by taking a non-negative number of steps along any of
206 * the extended offsets v'_i = [v_i 1].
207 * That is, construct
209 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
211 * For any element in this relation, the number of steps taken
212 * is equal to the difference in the final coordinates.
214 static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
215 __isl_keep isl_mat *steps)
217 int i, j, k;
218 struct isl_basic_map *path = NULL;
219 unsigned d;
220 unsigned n;
221 unsigned nparam;
223 if (!dim || !steps)
224 goto error;
226 d = isl_space_dim(dim, isl_dim_in);
227 n = steps->n_row;
228 nparam = isl_space_dim(dim, isl_dim_param);
230 path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
232 for (i = 0; i < n; ++i) {
233 k = isl_basic_map_alloc_div(path);
234 if (k < 0)
235 goto error;
236 isl_assert(steps->ctx, i == k, goto error);
237 isl_int_set_si(path->div[k][0], 0);
240 for (i = 0; i < d; ++i) {
241 k = isl_basic_map_alloc_equality(path);
242 if (k < 0)
243 goto error;
244 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
245 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
246 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
247 if (i == d - 1)
248 for (j = 0; j < n; ++j)
249 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
250 else
251 for (j = 0; j < n; ++j)
252 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
253 steps->row[j][i]);
256 for (i = 0; i < n; ++i) {
257 k = isl_basic_map_alloc_inequality(path);
258 if (k < 0)
259 goto error;
260 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
261 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
264 isl_space_free(dim);
266 path = isl_basic_map_simplify(path);
267 path = isl_basic_map_finalize(path);
268 return isl_map_from_basic_map(path);
269 error:
270 isl_space_free(dim);
271 isl_basic_map_free(path);
272 return NULL;
275 #define IMPURE 0
276 #define PURE_PARAM 1
277 #define PURE_VAR 2
278 #define MIXED 3
280 /* Check whether the parametric constant term of constraint c is never
281 * positive in "bset".
283 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
284 isl_int *c, int *div_purity)
286 unsigned d;
287 unsigned n_div;
288 unsigned nparam;
289 int i;
290 int k;
291 int empty;
293 n_div = isl_basic_set_dim(bset, isl_dim_div);
294 d = isl_basic_set_dim(bset, isl_dim_set);
295 nparam = isl_basic_set_dim(bset, isl_dim_param);
297 bset = isl_basic_set_copy(bset);
298 bset = isl_basic_set_cow(bset);
299 bset = isl_basic_set_extend_constraints(bset, 0, 1);
300 k = isl_basic_set_alloc_inequality(bset);
301 if (k < 0)
302 goto error;
303 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
304 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
305 for (i = 0; i < n_div; ++i) {
306 if (div_purity[i] != PURE_PARAM)
307 continue;
308 isl_int_set(bset->ineq[k][1 + nparam + d + i],
309 c[1 + nparam + d + i]);
311 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
312 empty = isl_basic_set_is_empty(bset);
313 isl_basic_set_free(bset);
315 return empty;
316 error:
317 isl_basic_set_free(bset);
318 return -1;
321 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
322 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
323 * Return MIXED if only the coefficients of the parameters and the set
324 * variables are non-zero and if moreover the parametric constant
325 * can never attain positive values.
326 * Return IMPURE otherwise.
328 * If div_purity is NULL then we are dealing with a non-parametric set
329 * and so the constraint is obviously PURE_VAR.
331 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
332 int eq)
334 unsigned d;
335 unsigned n_div;
336 unsigned nparam;
337 int empty;
338 int i;
339 int p = 0, v = 0;
341 if (!div_purity)
342 return PURE_VAR;
344 n_div = isl_basic_set_dim(bset, isl_dim_div);
345 d = isl_basic_set_dim(bset, isl_dim_set);
346 nparam = isl_basic_set_dim(bset, isl_dim_param);
348 for (i = 0; i < n_div; ++i) {
349 if (isl_int_is_zero(c[1 + nparam + d + i]))
350 continue;
351 switch (div_purity[i]) {
352 case PURE_PARAM: p = 1; break;
353 case PURE_VAR: v = 1; break;
354 default: return IMPURE;
357 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
358 return PURE_VAR;
359 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
360 return PURE_PARAM;
362 empty = parametric_constant_never_positive(bset, c, div_purity);
363 if (eq && empty >= 0 && !empty) {
364 isl_seq_neg(c, c, 1 + nparam + d + n_div);
365 empty = parametric_constant_never_positive(bset, c, div_purity);
368 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
371 /* Return an array of integers indicating the type of each div in bset.
372 * If the div is (recursively) defined in terms of only the parameters,
373 * then the type is PURE_PARAM.
374 * If the div is (recursively) defined in terms of only the set variables,
375 * then the type is PURE_VAR.
376 * Otherwise, the type is IMPURE.
378 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
380 int i, j;
381 int *div_purity;
382 unsigned d;
383 unsigned n_div;
384 unsigned nparam;
386 if (!bset)
387 return NULL;
389 n_div = isl_basic_set_dim(bset, isl_dim_div);
390 d = isl_basic_set_dim(bset, isl_dim_set);
391 nparam = isl_basic_set_dim(bset, isl_dim_param);
393 div_purity = isl_alloc_array(bset->ctx, int, n_div);
394 if (!div_purity)
395 return NULL;
397 for (i = 0; i < bset->n_div; ++i) {
398 int p = 0, v = 0;
399 if (isl_int_is_zero(bset->div[i][0])) {
400 div_purity[i] = IMPURE;
401 continue;
403 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
404 p = 1;
405 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
406 v = 1;
407 for (j = 0; j < i; ++j) {
408 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
409 continue;
410 switch (div_purity[j]) {
411 case PURE_PARAM: p = 1; break;
412 case PURE_VAR: v = 1; break;
413 default: p = v = 1; break;
416 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
419 return div_purity;
422 /* Given a path with the as yet unconstrained length at position "pos",
423 * check if setting the length to zero results in only the identity
424 * mapping.
426 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
428 isl_basic_map *test = NULL;
429 isl_basic_map *id = NULL;
430 int k;
431 int is_id;
433 test = isl_basic_map_copy(path);
434 test = isl_basic_map_extend_constraints(test, 1, 0);
435 k = isl_basic_map_alloc_equality(test);
436 if (k < 0)
437 goto error;
438 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
439 isl_int_set_si(test->eq[k][pos], 1);
440 id = isl_basic_map_identity(isl_basic_map_get_space(path));
441 is_id = isl_basic_map_is_equal(test, id);
442 isl_basic_map_free(test);
443 isl_basic_map_free(id);
444 return is_id;
445 error:
446 isl_basic_map_free(test);
447 return -1;
450 /* If any of the constraints is found to be impure then this function
451 * sets *impurity to 1.
453 static __isl_give isl_basic_map *add_delta_constraints(
454 __isl_take isl_basic_map *path,
455 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
456 unsigned d, int *div_purity, int eq, int *impurity)
458 int i, k;
459 int n = eq ? delta->n_eq : delta->n_ineq;
460 isl_int **delta_c = eq ? delta->eq : delta->ineq;
461 unsigned n_div;
463 n_div = isl_basic_set_dim(delta, isl_dim_div);
465 for (i = 0; i < n; ++i) {
466 isl_int *path_c;
467 int p = purity(delta, delta_c[i], div_purity, eq);
468 if (p < 0)
469 goto error;
470 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
471 *impurity = 1;
472 if (p == IMPURE)
473 continue;
474 if (eq && p != MIXED) {
475 k = isl_basic_map_alloc_equality(path);
476 path_c = path->eq[k];
477 } else {
478 k = isl_basic_map_alloc_inequality(path);
479 path_c = path->ineq[k];
481 if (k < 0)
482 goto error;
483 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
484 if (p == PURE_VAR) {
485 isl_seq_cpy(path_c + off,
486 delta_c[i] + 1 + nparam, d);
487 isl_int_set(path_c[off + d], delta_c[i][0]);
488 } else if (p == PURE_PARAM) {
489 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
490 } else {
491 isl_seq_cpy(path_c + off,
492 delta_c[i] + 1 + nparam, d);
493 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
495 isl_seq_cpy(path_c + off - n_div,
496 delta_c[i] + 1 + nparam + d, n_div);
499 return path;
500 error:
501 isl_basic_map_free(path);
502 return NULL;
505 /* Given a set of offsets "delta", construct a relation of the
506 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
507 * is an overapproximation of the relations that
508 * maps an element x to any element that can be reached
509 * by taking a non-negative number of steps along any of
510 * the elements in "delta".
511 * That is, construct an approximation of
513 * { [x] -> [y] : exists f \in \delta, k \in Z :
514 * y = x + k [f, 1] and k >= 0 }
516 * For any element in this relation, the number of steps taken
517 * is equal to the difference in the final coordinates.
519 * In particular, let delta be defined as
521 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
522 * C x + C'p + c >= 0 and
523 * D x + D'p + d >= 0 }
525 * where the constraints C x + C'p + c >= 0 are such that the parametric
526 * constant term of each constraint j, "C_j x + C'_j p + c_j",
527 * can never attain positive values, then the relation is constructed as
529 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
530 * A f + k a >= 0 and B p + b >= 0 and
531 * C f + C'p + c >= 0 and k >= 1 }
532 * union { [x] -> [x] }
534 * If the zero-length paths happen to correspond exactly to the identity
535 * mapping, then we return
537 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
538 * A f + k a >= 0 and B p + b >= 0 and
539 * C f + C'p + c >= 0 and k >= 0 }
541 * instead.
543 * Existentially quantified variables in \delta are handled by
544 * classifying them as independent of the parameters, purely
545 * parameter dependent and others. Constraints containing
546 * any of the other existentially quantified variables are removed.
547 * This is safe, but leads to an additional overapproximation.
549 * If there are any impure constraints, then we also eliminate
550 * the parameters from \delta, resulting in a set
552 * \delta' = { [x] : E x + e >= 0 }
554 * and add the constraints
556 * E f + k e >= 0
558 * to the constructed relation.
560 static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
561 __isl_take isl_basic_set *delta)
563 isl_basic_map *path = NULL;
564 unsigned d;
565 unsigned n_div;
566 unsigned nparam;
567 unsigned off;
568 int i, k;
569 int is_id;
570 int *div_purity = NULL;
571 int impurity = 0;
573 if (!delta)
574 goto error;
575 n_div = isl_basic_set_dim(delta, isl_dim_div);
576 d = isl_basic_set_dim(delta, isl_dim_set);
577 nparam = isl_basic_set_dim(delta, isl_dim_param);
578 path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
579 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
580 off = 1 + nparam + 2 * (d + 1) + n_div;
582 for (i = 0; i < n_div + d + 1; ++i) {
583 k = isl_basic_map_alloc_div(path);
584 if (k < 0)
585 goto error;
586 isl_int_set_si(path->div[k][0], 0);
589 for (i = 0; i < d + 1; ++i) {
590 k = isl_basic_map_alloc_equality(path);
591 if (k < 0)
592 goto error;
593 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
594 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
595 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
596 isl_int_set_si(path->eq[k][off + i], 1);
599 div_purity = get_div_purity(delta);
600 if (!div_purity)
601 goto error;
603 path = add_delta_constraints(path, delta, off, nparam, d,
604 div_purity, 1, &impurity);
605 path = add_delta_constraints(path, delta, off, nparam, d,
606 div_purity, 0, &impurity);
607 if (impurity) {
608 isl_space *dim = isl_basic_set_get_space(delta);
609 delta = isl_basic_set_project_out(delta,
610 isl_dim_param, 0, nparam);
611 delta = isl_basic_set_add(delta, isl_dim_param, nparam);
612 delta = isl_basic_set_reset_space(delta, dim);
613 if (!delta)
614 goto error;
615 path = isl_basic_map_extend_constraints(path, delta->n_eq,
616 delta->n_ineq + 1);
617 path = add_delta_constraints(path, delta, off, nparam, d,
618 NULL, 1, &impurity);
619 path = add_delta_constraints(path, delta, off, nparam, d,
620 NULL, 0, &impurity);
621 path = isl_basic_map_gauss(path, NULL);
624 is_id = empty_path_is_identity(path, off + d);
625 if (is_id < 0)
626 goto error;
628 k = isl_basic_map_alloc_inequality(path);
629 if (k < 0)
630 goto error;
631 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
632 if (!is_id)
633 isl_int_set_si(path->ineq[k][0], -1);
634 isl_int_set_si(path->ineq[k][off + d], 1);
636 free(div_purity);
637 isl_basic_set_free(delta);
638 path = isl_basic_map_finalize(path);
639 if (is_id) {
640 isl_space_free(dim);
641 return isl_map_from_basic_map(path);
643 return isl_basic_map_union(path, isl_basic_map_identity(dim));
644 error:
645 free(div_purity);
646 isl_space_free(dim);
647 isl_basic_set_free(delta);
648 isl_basic_map_free(path);
649 return NULL;
652 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
653 * construct a map that equates the parameter to the difference
654 * in the final coordinates and imposes that this difference is positive.
655 * That is, construct
657 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
659 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
660 unsigned param)
662 struct isl_basic_map *bmap;
663 unsigned d;
664 unsigned nparam;
665 int k;
667 d = isl_space_dim(dim, isl_dim_in);
668 nparam = isl_space_dim(dim, isl_dim_param);
669 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
670 k = isl_basic_map_alloc_equality(bmap);
671 if (k < 0)
672 goto error;
673 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
674 isl_int_set_si(bmap->eq[k][1 + param], -1);
675 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
676 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
678 k = isl_basic_map_alloc_inequality(bmap);
679 if (k < 0)
680 goto error;
681 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
682 isl_int_set_si(bmap->ineq[k][1 + param], 1);
683 isl_int_set_si(bmap->ineq[k][0], -1);
685 bmap = isl_basic_map_finalize(bmap);
686 return isl_map_from_basic_map(bmap);
687 error:
688 isl_basic_map_free(bmap);
689 return NULL;
692 /* Check whether "path" is acyclic, where the last coordinates of domain
693 * and range of path encode the number of steps taken.
694 * That is, check whether
696 * { d | d = y - x and (x,y) in path }
698 * does not contain any element with positive last coordinate (positive length)
699 * and zero remaining coordinates (cycle).
701 static int is_acyclic(__isl_take isl_map *path)
703 int i;
704 int acyclic;
705 unsigned dim;
706 struct isl_set *delta;
708 delta = isl_map_deltas(path);
709 dim = isl_set_dim(delta, isl_dim_set);
710 for (i = 0; i < dim; ++i) {
711 if (i == dim -1)
712 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
713 else
714 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
717 acyclic = isl_set_is_empty(delta);
718 isl_set_free(delta);
720 return acyclic;
723 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
724 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
725 * construct a map that is an overapproximation of the map
726 * that takes an element from the space D \times Z to another
727 * element from the same space, such that the first n coordinates of the
728 * difference between them is a sum of differences between images
729 * and pre-images in one of the R_i and such that the last coordinate
730 * is equal to the number of steps taken.
731 * That is, let
733 * \Delta_i = { y - x | (x, y) in R_i }
735 * then the constructed map is an overapproximation of
737 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
738 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
740 * The elements of the singleton \Delta_i's are collected as the
741 * rows of the steps matrix. For all these \Delta_i's together,
742 * a single path is constructed.
743 * For each of the other \Delta_i's, we compute an overapproximation
744 * of the paths along elements of \Delta_i.
745 * Since each of these paths performs an addition, composition is
746 * symmetric and we can simply compose all resulting paths in any order.
748 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
749 __isl_keep isl_map *map, int *project)
751 struct isl_mat *steps = NULL;
752 struct isl_map *path = NULL;
753 unsigned d;
754 int i, j, n;
756 d = isl_map_dim(map, isl_dim_in);
758 path = isl_map_identity(isl_space_copy(dim));
760 steps = isl_mat_alloc(map->ctx, map->n, d);
761 if (!steps)
762 goto error;
764 n = 0;
765 for (i = 0; i < map->n; ++i) {
766 struct isl_basic_set *delta;
768 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
770 for (j = 0; j < d; ++j) {
771 int fixed;
773 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
774 &steps->row[n][j]);
775 if (fixed < 0) {
776 isl_basic_set_free(delta);
777 goto error;
779 if (!fixed)
780 break;
784 if (j < d) {
785 path = isl_map_apply_range(path,
786 path_along_delta(isl_space_copy(dim), delta));
787 path = isl_map_coalesce(path);
788 } else {
789 isl_basic_set_free(delta);
790 ++n;
794 if (n > 0) {
795 steps->n_row = n;
796 path = isl_map_apply_range(path,
797 path_along_steps(isl_space_copy(dim), steps));
800 if (project && *project) {
801 *project = is_acyclic(isl_map_copy(path));
802 if (*project < 0)
803 goto error;
806 isl_space_free(dim);
807 isl_mat_free(steps);
808 return path;
809 error:
810 isl_space_free(dim);
811 isl_mat_free(steps);
812 isl_map_free(path);
813 return NULL;
816 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
818 isl_set *i;
819 int no_overlap;
821 if (!isl_space_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
822 return 0;
824 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
825 no_overlap = isl_set_is_empty(i);
826 isl_set_free(i);
828 return no_overlap < 0 ? -1 : !no_overlap;
831 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
832 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
833 * construct a map that is an overapproximation of the map
834 * that takes an element from the dom R \times Z to an
835 * element from ran R \times Z, such that the first n coordinates of the
836 * difference between them is a sum of differences between images
837 * and pre-images in one of the R_i and such that the last coordinate
838 * is equal to the number of steps taken.
839 * That is, let
841 * \Delta_i = { y - x | (x, y) in R_i }
843 * then the constructed map is an overapproximation of
845 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
846 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
847 * x in dom R and x + d in ran R and
848 * \sum_i k_i >= 1 }
850 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
851 __isl_keep isl_map *map, int *exact, int project)
853 struct isl_set *domain = NULL;
854 struct isl_set *range = NULL;
855 struct isl_map *app = NULL;
856 struct isl_map *path = NULL;
858 domain = isl_map_domain(isl_map_copy(map));
859 domain = isl_set_coalesce(domain);
860 range = isl_map_range(isl_map_copy(map));
861 range = isl_set_coalesce(range);
862 if (!isl_set_overlaps(domain, range)) {
863 isl_set_free(domain);
864 isl_set_free(range);
865 isl_space_free(dim);
867 map = isl_map_copy(map);
868 map = isl_map_add_dims(map, isl_dim_in, 1);
869 map = isl_map_add_dims(map, isl_dim_out, 1);
870 map = set_path_length(map, 1, 1);
871 return map;
873 app = isl_map_from_domain_and_range(domain, range);
874 app = isl_map_add_dims(app, isl_dim_in, 1);
875 app = isl_map_add_dims(app, isl_dim_out, 1);
877 path = construct_extended_path(isl_space_copy(dim), map,
878 exact && *exact ? &project : NULL);
879 app = isl_map_intersect(app, path);
881 if (exact && *exact &&
882 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
883 project)) < 0)
884 goto error;
886 isl_space_free(dim);
887 app = set_path_length(app, 0, 1);
888 return app;
889 error:
890 isl_space_free(dim);
891 isl_map_free(app);
892 return NULL;
895 /* Call construct_component and, if "project" is set, project out
896 * the final coordinates.
898 static __isl_give isl_map *construct_projected_component(
899 __isl_take isl_space *dim,
900 __isl_keep isl_map *map, int *exact, int project)
902 isl_map *app;
903 unsigned d;
905 if (!dim)
906 return NULL;
907 d = isl_space_dim(dim, isl_dim_in);
909 app = construct_component(dim, map, exact, project);
910 if (project) {
911 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
912 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
914 return app;
917 /* Compute an extended version, i.e., with path lengths, of
918 * an overapproximation of the transitive closure of "bmap"
919 * with path lengths greater than or equal to zero and with
920 * domain and range equal to "dom".
922 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
923 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
925 int project = 1;
926 isl_map *path;
927 isl_map *map;
928 isl_map *app;
930 dom = isl_set_add_dims(dom, isl_dim_set, 1);
931 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
932 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
933 path = construct_extended_path(dim, map, &project);
934 app = isl_map_intersect(app, path);
936 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
937 goto error;
939 return app;
940 error:
941 isl_map_free(app);
942 return NULL;
945 /* Check whether qc has any elements of length at least one
946 * with domain and/or range outside of dom and ran.
948 static int has_spurious_elements(__isl_keep isl_map *qc,
949 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
951 isl_set *s;
952 int subset;
953 unsigned d;
955 if (!qc || !dom || !ran)
956 return -1;
958 d = isl_map_dim(qc, isl_dim_in);
960 qc = isl_map_copy(qc);
961 qc = set_path_length(qc, 0, 1);
962 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
963 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
965 s = isl_map_domain(isl_map_copy(qc));
966 subset = isl_set_is_subset(s, dom);
967 isl_set_free(s);
968 if (subset < 0)
969 goto error;
970 if (!subset) {
971 isl_map_free(qc);
972 return 1;
975 s = isl_map_range(qc);
976 subset = isl_set_is_subset(s, ran);
977 isl_set_free(s);
979 return subset < 0 ? -1 : !subset;
980 error:
981 isl_map_free(qc);
982 return -1;
985 #define LEFT 2
986 #define RIGHT 1
988 /* For each basic map in "map", except i, check whether it combines
989 * with the transitive closure that is reflexive on C combines
990 * to the left and to the right.
992 * In particular, if
994 * dom map_j \subseteq C
996 * then right[j] is set to 1. Otherwise, if
998 * ran map_i \cap dom map_j = \emptyset
1000 * then right[j] is set to 0. Otherwise, composing to the right
1001 * is impossible.
1003 * Similar, for composing to the left, we have if
1005 * ran map_j \subseteq C
1007 * then left[j] is set to 1. Otherwise, if
1009 * dom map_i \cap ran map_j = \emptyset
1011 * then left[j] is set to 0. Otherwise, composing to the left
1012 * is impossible.
1014 * The return value is or'd with LEFT if composing to the left
1015 * is possible and with RIGHT if composing to the right is possible.
1017 static int composability(__isl_keep isl_set *C, int i,
1018 isl_set **dom, isl_set **ran, int *left, int *right,
1019 __isl_keep isl_map *map)
1021 int j;
1022 int ok;
1024 ok = LEFT | RIGHT;
1025 for (j = 0; j < map->n && ok; ++j) {
1026 int overlaps, subset;
1027 if (j == i)
1028 continue;
1030 if (ok & RIGHT) {
1031 if (!dom[j])
1032 dom[j] = isl_set_from_basic_set(
1033 isl_basic_map_domain(
1034 isl_basic_map_copy(map->p[j])));
1035 if (!dom[j])
1036 return -1;
1037 overlaps = isl_set_overlaps(ran[i], dom[j]);
1038 if (overlaps < 0)
1039 return -1;
1040 if (!overlaps)
1041 right[j] = 0;
1042 else {
1043 subset = isl_set_is_subset(dom[j], C);
1044 if (subset < 0)
1045 return -1;
1046 if (subset)
1047 right[j] = 1;
1048 else
1049 ok &= ~RIGHT;
1053 if (ok & LEFT) {
1054 if (!ran[j])
1055 ran[j] = isl_set_from_basic_set(
1056 isl_basic_map_range(
1057 isl_basic_map_copy(map->p[j])));
1058 if (!ran[j])
1059 return -1;
1060 overlaps = isl_set_overlaps(dom[i], ran[j]);
1061 if (overlaps < 0)
1062 return -1;
1063 if (!overlaps)
1064 left[j] = 0;
1065 else {
1066 subset = isl_set_is_subset(ran[j], C);
1067 if (subset < 0)
1068 return -1;
1069 if (subset)
1070 left[j] = 1;
1071 else
1072 ok &= ~LEFT;
1077 return ok;
1080 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1082 map = isl_map_reset(map, isl_dim_in);
1083 map = isl_map_reset(map, isl_dim_out);
1084 return map;
1087 /* Return a map that is a union of the basic maps in "map", except i,
1088 * composed to left and right with qc based on the entries of "left"
1089 * and "right".
1091 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1092 __isl_take isl_map *qc, int *left, int *right)
1094 int j;
1095 isl_map *comp;
1097 comp = isl_map_empty(isl_map_get_space(map));
1098 for (j = 0; j < map->n; ++j) {
1099 isl_map *map_j;
1101 if (j == i)
1102 continue;
1104 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1105 map_j = anonymize(map_j);
1106 if (left && left[j])
1107 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1108 if (right && right[j])
1109 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1110 comp = isl_map_union(comp, map_j);
1113 comp = isl_map_compute_divs(comp);
1114 comp = isl_map_coalesce(comp);
1116 isl_map_free(qc);
1118 return comp;
1121 /* Compute the transitive closure of "map" incrementally by
1122 * computing
1124 * map_i^+ \cup qc^+
1126 * or
1128 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1130 * or
1132 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1134 * depending on whether left or right are NULL.
1136 static __isl_give isl_map *compute_incremental(
1137 __isl_take isl_space *dim, __isl_keep isl_map *map,
1138 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1140 isl_map *map_i;
1141 isl_map *tc;
1142 isl_map *rtc = NULL;
1144 if (!map)
1145 goto error;
1146 isl_assert(map->ctx, left || right, goto error);
1148 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1149 tc = construct_projected_component(isl_space_copy(dim), map_i,
1150 exact, 1);
1151 isl_map_free(map_i);
1153 if (*exact)
1154 qc = isl_map_transitive_closure(qc, exact);
1156 if (!*exact) {
1157 isl_space_free(dim);
1158 isl_map_free(tc);
1159 isl_map_free(qc);
1160 return isl_map_universe(isl_map_get_space(map));
1163 if (!left || !right)
1164 rtc = isl_map_union(isl_map_copy(tc),
1165 isl_map_identity(isl_map_get_space(tc)));
1166 if (!right)
1167 qc = isl_map_apply_range(rtc, qc);
1168 if (!left)
1169 qc = isl_map_apply_range(qc, rtc);
1170 qc = isl_map_union(tc, qc);
1172 isl_space_free(dim);
1174 return qc;
1175 error:
1176 isl_space_free(dim);
1177 isl_map_free(qc);
1178 return NULL;
1181 /* Given a map "map", try to find a basic map such that
1182 * map^+ can be computed as
1184 * map^+ = map_i^+ \cup
1185 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1187 * with C the simple hull of the domain and range of the input map.
1188 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1189 * and by intersecting domain and range with C.
1190 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1191 * Also, we only use the incremental computation if all the transitive
1192 * closures are exact and if the number of basic maps in the union,
1193 * after computing the integer divisions, is smaller than the number
1194 * of basic maps in the input map.
1196 static int incemental_on_entire_domain(__isl_keep isl_space *dim,
1197 __isl_keep isl_map *map,
1198 isl_set **dom, isl_set **ran, int *left, int *right,
1199 __isl_give isl_map **res)
1201 int i;
1202 isl_set *C;
1203 unsigned d;
1205 *res = NULL;
1207 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1208 isl_map_range(isl_map_copy(map)));
1209 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1210 if (!C)
1211 return -1;
1212 if (C->n != 1) {
1213 isl_set_free(C);
1214 return 0;
1217 d = isl_map_dim(map, isl_dim_in);
1219 for (i = 0; i < map->n; ++i) {
1220 isl_map *qc;
1221 int exact_i, spurious;
1222 int j;
1223 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1224 isl_basic_map_copy(map->p[i])));
1225 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1226 isl_basic_map_copy(map->p[i])));
1227 qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
1228 map->p[i], &exact_i);
1229 if (!qc)
1230 goto error;
1231 if (!exact_i) {
1232 isl_map_free(qc);
1233 continue;
1235 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1236 if (spurious) {
1237 isl_map_free(qc);
1238 if (spurious < 0)
1239 goto error;
1240 continue;
1242 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1243 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1244 qc = isl_map_compute_divs(qc);
1245 for (j = 0; j < map->n; ++j)
1246 left[j] = right[j] = 1;
1247 qc = compose(map, i, qc, left, right);
1248 if (!qc)
1249 goto error;
1250 if (qc->n >= map->n) {
1251 isl_map_free(qc);
1252 continue;
1254 *res = compute_incremental(isl_space_copy(dim), map, i, qc,
1255 left, right, &exact_i);
1256 if (!*res)
1257 goto error;
1258 if (exact_i)
1259 break;
1260 isl_map_free(*res);
1261 *res = NULL;
1264 isl_set_free(C);
1266 return *res != NULL;
1267 error:
1268 isl_set_free(C);
1269 return -1;
1272 /* Try and compute the transitive closure of "map" as
1274 * map^+ = map_i^+ \cup
1275 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1277 * with C either the simple hull of the domain and range of the entire
1278 * map or the simple hull of domain and range of map_i.
1280 static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
1281 __isl_keep isl_map *map, int *exact, int project)
1283 int i;
1284 isl_set **dom = NULL;
1285 isl_set **ran = NULL;
1286 int *left = NULL;
1287 int *right = NULL;
1288 isl_set *C;
1289 unsigned d;
1290 isl_map *res = NULL;
1292 if (!project)
1293 return construct_projected_component(dim, map, exact, project);
1295 if (!map)
1296 goto error;
1297 if (map->n <= 1)
1298 return construct_projected_component(dim, map, exact, project);
1300 d = isl_map_dim(map, isl_dim_in);
1302 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1303 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1304 left = isl_calloc_array(map->ctx, int, map->n);
1305 right = isl_calloc_array(map->ctx, int, map->n);
1306 if (!ran || !dom || !left || !right)
1307 goto error;
1309 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1310 goto error;
1312 for (i = 0; !res && i < map->n; ++i) {
1313 isl_map *qc;
1314 int exact_i, spurious, comp;
1315 if (!dom[i])
1316 dom[i] = isl_set_from_basic_set(
1317 isl_basic_map_domain(
1318 isl_basic_map_copy(map->p[i])));
1319 if (!dom[i])
1320 goto error;
1321 if (!ran[i])
1322 ran[i] = isl_set_from_basic_set(
1323 isl_basic_map_range(
1324 isl_basic_map_copy(map->p[i])));
1325 if (!ran[i])
1326 goto error;
1327 C = isl_set_union(isl_set_copy(dom[i]),
1328 isl_set_copy(ran[i]));
1329 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1330 if (!C)
1331 goto error;
1332 if (C->n != 1) {
1333 isl_set_free(C);
1334 continue;
1336 comp = composability(C, i, dom, ran, left, right, map);
1337 if (!comp || comp < 0) {
1338 isl_set_free(C);
1339 if (comp < 0)
1340 goto error;
1341 continue;
1343 qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
1344 if (!qc)
1345 goto error;
1346 if (!exact_i) {
1347 isl_map_free(qc);
1348 continue;
1350 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1351 if (spurious) {
1352 isl_map_free(qc);
1353 if (spurious < 0)
1354 goto error;
1355 continue;
1357 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1358 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1359 qc = isl_map_compute_divs(qc);
1360 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1361 (comp & RIGHT) ? right : NULL);
1362 if (!qc)
1363 goto error;
1364 if (qc->n >= map->n) {
1365 isl_map_free(qc);
1366 continue;
1368 res = compute_incremental(isl_space_copy(dim), map, i, qc,
1369 (comp & LEFT) ? left : NULL,
1370 (comp & RIGHT) ? right : NULL, &exact_i);
1371 if (!res)
1372 goto error;
1373 if (exact_i)
1374 break;
1375 isl_map_free(res);
1376 res = NULL;
1379 for (i = 0; i < map->n; ++i) {
1380 isl_set_free(dom[i]);
1381 isl_set_free(ran[i]);
1383 free(dom);
1384 free(ran);
1385 free(left);
1386 free(right);
1388 if (res) {
1389 isl_space_free(dim);
1390 return res;
1393 return construct_projected_component(dim, map, exact, project);
1394 error:
1395 if (dom)
1396 for (i = 0; i < map->n; ++i)
1397 isl_set_free(dom[i]);
1398 free(dom);
1399 if (ran)
1400 for (i = 0; i < map->n; ++i)
1401 isl_set_free(ran[i]);
1402 free(ran);
1403 free(left);
1404 free(right);
1405 isl_space_free(dim);
1406 return NULL;
1409 /* Given an array of sets "set", add "dom" at position "pos"
1410 * and search for elements at earlier positions that overlap with "dom".
1411 * If any can be found, then merge all of them, together with "dom", into
1412 * a single set and assign the union to the first in the array,
1413 * which becomes the new group leader for all groups involved in the merge.
1414 * During the search, we only consider group leaders, i.e., those with
1415 * group[i] = i, as the other sets have already been combined
1416 * with one of the group leaders.
1418 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1420 int i;
1422 group[pos] = pos;
1423 set[pos] = isl_set_copy(dom);
1425 for (i = pos - 1; i >= 0; --i) {
1426 int o;
1428 if (group[i] != i)
1429 continue;
1431 o = isl_set_overlaps(set[i], dom);
1432 if (o < 0)
1433 goto error;
1434 if (!o)
1435 continue;
1437 set[i] = isl_set_union(set[i], set[group[pos]]);
1438 set[group[pos]] = NULL;
1439 if (!set[i])
1440 goto error;
1441 group[group[pos]] = i;
1442 group[pos] = i;
1445 isl_set_free(dom);
1446 return 0;
1447 error:
1448 isl_set_free(dom);
1449 return -1;
1452 /* Replace each entry in the n by n grid of maps by the cross product
1453 * with the relation { [i] -> [i + 1] }.
1455 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1457 int i, j, k;
1458 isl_space *dim;
1459 isl_basic_map *bstep;
1460 isl_map *step;
1461 unsigned nparam;
1463 if (!map)
1464 return -1;
1466 dim = isl_map_get_space(map);
1467 nparam = isl_space_dim(dim, isl_dim_param);
1468 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1469 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1470 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1471 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1472 bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
1473 k = isl_basic_map_alloc_equality(bstep);
1474 if (k < 0) {
1475 isl_basic_map_free(bstep);
1476 return -1;
1478 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1479 isl_int_set_si(bstep->eq[k][0], 1);
1480 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1481 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1482 bstep = isl_basic_map_finalize(bstep);
1483 step = isl_map_from_basic_map(bstep);
1485 for (i = 0; i < n; ++i)
1486 for (j = 0; j < n; ++j)
1487 grid[i][j] = isl_map_product(grid[i][j],
1488 isl_map_copy(step));
1490 isl_map_free(step);
1492 return 0;
1495 /* The core of the Floyd-Warshall algorithm.
1496 * Updates the given n x x matrix of relations in place.
1498 * The algorithm iterates over all vertices. In each step, the whole
1499 * matrix is updated to include all paths that go to the current vertex,
1500 * possibly stay there a while (including passing through earlier vertices)
1501 * and then come back. At the start of each iteration, the diagonal
1502 * element corresponding to the current vertex is replaced by its
1503 * transitive closure to account for all indirect paths that stay
1504 * in the current vertex.
1506 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1508 int r, p, q;
1510 for (r = 0; r < n; ++r) {
1511 int r_exact;
1512 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1513 (exact && *exact) ? &r_exact : NULL);
1514 if (exact && *exact && !r_exact)
1515 *exact = 0;
1517 for (p = 0; p < n; ++p)
1518 for (q = 0; q < n; ++q) {
1519 isl_map *loop;
1520 if (p == r && q == r)
1521 continue;
1522 loop = isl_map_apply_range(
1523 isl_map_copy(grid[p][r]),
1524 isl_map_copy(grid[r][q]));
1525 grid[p][q] = isl_map_union(grid[p][q], loop);
1526 loop = isl_map_apply_range(
1527 isl_map_copy(grid[p][r]),
1528 isl_map_apply_range(
1529 isl_map_copy(grid[r][r]),
1530 isl_map_copy(grid[r][q])));
1531 grid[p][q] = isl_map_union(grid[p][q], loop);
1532 grid[p][q] = isl_map_coalesce(grid[p][q]);
1537 /* Given a partition of the domains and ranges of the basic maps in "map",
1538 * apply the Floyd-Warshall algorithm with the elements in the partition
1539 * as vertices.
1541 * In particular, there are "n" elements in the partition and "group" is
1542 * an array of length 2 * map->n with entries in [0,n-1].
1544 * We first construct a matrix of relations based on the partition information,
1545 * apply Floyd-Warshall on this matrix of relations and then take the
1546 * union of all entries in the matrix as the final result.
1548 * If we are actually computing the power instead of the transitive closure,
1549 * i.e., when "project" is not set, then the result should have the
1550 * path lengths encoded as the difference between an extra pair of
1551 * coordinates. We therefore apply the nested transitive closures
1552 * to relations that include these lengths. In particular, we replace
1553 * the input relation by the cross product with the unit length relation
1554 * { [i] -> [i + 1] }.
1556 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
1557 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1559 int i, j, k;
1560 isl_map ***grid = NULL;
1561 isl_map *app;
1563 if (!map)
1564 goto error;
1566 if (n == 1) {
1567 free(group);
1568 return incremental_closure(dim, map, exact, project);
1571 grid = isl_calloc_array(map->ctx, isl_map **, n);
1572 if (!grid)
1573 goto error;
1574 for (i = 0; i < n; ++i) {
1575 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1576 if (!grid[i])
1577 goto error;
1578 for (j = 0; j < n; ++j)
1579 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1582 for (k = 0; k < map->n; ++k) {
1583 i = group[2 * k];
1584 j = group[2 * k + 1];
1585 grid[i][j] = isl_map_union(grid[i][j],
1586 isl_map_from_basic_map(
1587 isl_basic_map_copy(map->p[k])));
1590 if (!project && add_length(map, grid, n) < 0)
1591 goto error;
1593 floyd_warshall_iterate(grid, n, exact);
1595 app = isl_map_empty(isl_map_get_space(map));
1597 for (i = 0; i < n; ++i) {
1598 for (j = 0; j < n; ++j)
1599 app = isl_map_union(app, grid[i][j]);
1600 free(grid[i]);
1602 free(grid);
1604 free(group);
1605 isl_space_free(dim);
1607 return app;
1608 error:
1609 if (grid)
1610 for (i = 0; i < n; ++i) {
1611 if (!grid[i])
1612 continue;
1613 for (j = 0; j < n; ++j)
1614 isl_map_free(grid[i][j]);
1615 free(grid[i]);
1617 free(grid);
1618 free(group);
1619 isl_space_free(dim);
1620 return NULL;
1623 /* Partition the domains and ranges of the n basic relations in list
1624 * into disjoint cells.
1626 * To find the partition, we simply consider all of the domains
1627 * and ranges in turn and combine those that overlap.
1628 * "set" contains the partition elements and "group" indicates
1629 * to which partition element a given domain or range belongs.
1630 * The domain of basic map i corresponds to element 2 * i in these arrays,
1631 * while the domain corresponds to element 2 * i + 1.
1632 * During the construction group[k] is either equal to k,
1633 * in which case set[k] contains the union of all the domains and
1634 * ranges in the corresponding group, or is equal to some l < k,
1635 * with l another domain or range in the same group.
1637 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1638 isl_set ***set, int *n_group)
1640 int i;
1641 int *group = NULL;
1642 int g;
1644 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1645 group = isl_alloc_array(ctx, int, 2 * n);
1647 if (!*set || !group)
1648 goto error;
1650 for (i = 0; i < n; ++i) {
1651 isl_set *dom;
1652 dom = isl_set_from_basic_set(isl_basic_map_domain(
1653 isl_basic_map_copy(list[i])));
1654 if (merge(*set, group, dom, 2 * i) < 0)
1655 goto error;
1656 dom = isl_set_from_basic_set(isl_basic_map_range(
1657 isl_basic_map_copy(list[i])));
1658 if (merge(*set, group, dom, 2 * i + 1) < 0)
1659 goto error;
1662 g = 0;
1663 for (i = 0; i < 2 * n; ++i)
1664 if (group[i] == i) {
1665 if (g != i) {
1666 (*set)[g] = (*set)[i];
1667 (*set)[i] = NULL;
1669 group[i] = g++;
1670 } else
1671 group[i] = group[group[i]];
1673 *n_group = g;
1675 return group;
1676 error:
1677 if (*set) {
1678 for (i = 0; i < 2 * n; ++i)
1679 isl_set_free((*set)[i]);
1680 free(*set);
1681 *set = NULL;
1683 free(group);
1684 return NULL;
1687 /* Check if the domains and ranges of the basic maps in "map" can
1688 * be partitioned, and if so, apply Floyd-Warshall on the elements
1689 * of the partition. Note that we also apply this algorithm
1690 * if we want to compute the power, i.e., when "project" is not set.
1691 * However, the results are unlikely to be exact since the recursive
1692 * calls inside the Floyd-Warshall algorithm typically result in
1693 * non-linear path lengths quite quickly.
1695 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
1696 __isl_keep isl_map *map, int *exact, int project)
1698 int i;
1699 isl_set **set = NULL;
1700 int *group = NULL;
1701 int n;
1703 if (!map)
1704 goto error;
1705 if (map->n <= 1)
1706 return incremental_closure(dim, map, exact, project);
1708 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1709 if (!group)
1710 goto error;
1712 for (i = 0; i < 2 * map->n; ++i)
1713 isl_set_free(set[i]);
1715 free(set);
1717 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1718 error:
1719 isl_space_free(dim);
1720 return NULL;
1723 /* Structure for representing the nodes in the graph being traversed
1724 * using Tarjan's algorithm.
1725 * index represents the order in which nodes are visited.
1726 * min_index is the index of the root of a (sub)component.
1727 * on_stack indicates whether the node is currently on the stack.
1729 struct basic_map_sort_node {
1730 int index;
1731 int min_index;
1732 int on_stack;
1734 /* Structure for representing the graph being traversed
1735 * using Tarjan's algorithm.
1736 * len is the number of nodes
1737 * node is an array of nodes
1738 * stack contains the nodes on the path from the root to the current node
1739 * sp is the stack pointer
1740 * index is the index of the last node visited
1741 * order contains the elements of the components separated by -1
1742 * op represents the current position in order
1744 * check_closed is set if we may have used the fact that
1745 * a pair of basic maps can be interchanged
1747 struct basic_map_sort {
1748 int len;
1749 struct basic_map_sort_node *node;
1750 int *stack;
1751 int sp;
1752 int index;
1753 int *order;
1754 int op;
1755 int check_closed;
1758 static void basic_map_sort_free(struct basic_map_sort *s)
1760 if (!s)
1761 return;
1762 free(s->node);
1763 free(s->stack);
1764 free(s->order);
1765 free(s);
1768 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1770 struct basic_map_sort *s;
1771 int i;
1773 s = isl_calloc_type(ctx, struct basic_map_sort);
1774 if (!s)
1775 return NULL;
1776 s->len = len;
1777 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1778 if (!s->node)
1779 goto error;
1780 for (i = 0; i < len; ++i)
1781 s->node[i].index = -1;
1782 s->stack = isl_alloc_array(ctx, int, len);
1783 if (!s->stack)
1784 goto error;
1785 s->order = isl_alloc_array(ctx, int, 2 * len);
1786 if (!s->order)
1787 goto error;
1789 s->sp = 0;
1790 s->index = 0;
1791 s->op = 0;
1793 s->check_closed = 0;
1795 return s;
1796 error:
1797 basic_map_sort_free(s);
1798 return NULL;
1801 /* Check whether in the computation of the transitive closure
1802 * "bmap1" (R_1) should follow (or be part of the same component as)
1803 * "bmap2" (R_2).
1805 * That is check whether
1807 * R_1 \circ R_2
1809 * is a subset of
1811 * R_2 \circ R_1
1813 * If so, then there is no reason for R_1 to immediately follow R_2
1814 * in any path.
1816 * *check_closed is set if the subset relation holds while
1817 * R_1 \circ R_2 is not empty.
1819 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1820 __isl_keep isl_basic_map *bmap2, int *check_closed)
1822 struct isl_map *map12 = NULL;
1823 struct isl_map *map21 = NULL;
1824 int subset;
1826 if (!isl_space_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out))
1827 return 0;
1829 map21 = isl_map_from_basic_map(
1830 isl_basic_map_apply_range(
1831 isl_basic_map_copy(bmap2),
1832 isl_basic_map_copy(bmap1)));
1833 subset = isl_map_is_empty(map21);
1834 if (subset < 0)
1835 goto error;
1836 if (subset) {
1837 isl_map_free(map21);
1838 return 0;
1841 if (!isl_space_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) ||
1842 !isl_space_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) {
1843 isl_map_free(map21);
1844 return 1;
1847 map12 = isl_map_from_basic_map(
1848 isl_basic_map_apply_range(
1849 isl_basic_map_copy(bmap1),
1850 isl_basic_map_copy(bmap2)));
1852 subset = isl_map_is_subset(map21, map12);
1854 isl_map_free(map12);
1855 isl_map_free(map21);
1857 if (subset)
1858 *check_closed = 1;
1860 return subset < 0 ? -1 : !subset;
1861 error:
1862 isl_map_free(map21);
1863 return -1;
1866 /* Perform Tarjan's algorithm for computing the strongly connected components
1867 * in the graph with the disjuncts of "map" as vertices and with an
1868 * edge between any pair of disjuncts such that the first has
1869 * to be applied after the second.
1871 static int power_components_tarjan(struct basic_map_sort *s,
1872 __isl_keep isl_basic_map **list, int i)
1874 int j;
1876 s->node[i].index = s->index;
1877 s->node[i].min_index = s->index;
1878 s->node[i].on_stack = 1;
1879 s->index++;
1880 s->stack[s->sp++] = i;
1882 for (j = s->len - 1; j >= 0; --j) {
1883 int f;
1885 if (j == i)
1886 continue;
1887 if (s->node[j].index >= 0 &&
1888 (!s->node[j].on_stack ||
1889 s->node[j].index > s->node[i].min_index))
1890 continue;
1892 f = basic_map_follows(list[i], list[j], &s->check_closed);
1893 if (f < 0)
1894 return -1;
1895 if (!f)
1896 continue;
1898 if (s->node[j].index < 0) {
1899 power_components_tarjan(s, list, j);
1900 if (s->node[j].min_index < s->node[i].min_index)
1901 s->node[i].min_index = s->node[j].min_index;
1902 } else if (s->node[j].index < s->node[i].min_index)
1903 s->node[i].min_index = s->node[j].index;
1906 if (s->node[i].index != s->node[i].min_index)
1907 return 0;
1909 do {
1910 j = s->stack[--s->sp];
1911 s->node[j].on_stack = 0;
1912 s->order[s->op++] = j;
1913 } while (j != i);
1914 s->order[s->op++] = -1;
1916 return 0;
1919 /* Decompose the "len" basic relations in "list" into strongly connected
1920 * components.
1922 static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len,
1923 __isl_keep isl_basic_map **list)
1925 int i;
1926 struct basic_map_sort *s = NULL;
1928 s = basic_map_sort_alloc(ctx, len);
1929 if (!s)
1930 return NULL;
1931 for (i = len - 1; i >= 0; --i) {
1932 if (s->node[i].index >= 0)
1933 continue;
1934 if (power_components_tarjan(s, list, i) < 0)
1935 goto error;
1938 return s;
1939 error:
1940 basic_map_sort_free(s);
1941 return NULL;
1944 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1945 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1946 * construct a map that is an overapproximation of the map
1947 * that takes an element from the dom R \times Z to an
1948 * element from ran R \times Z, such that the first n coordinates of the
1949 * difference between them is a sum of differences between images
1950 * and pre-images in one of the R_i and such that the last coordinate
1951 * is equal to the number of steps taken.
1952 * If "project" is set, then these final coordinates are not included,
1953 * i.e., a relation of type Z^n -> Z^n is returned.
1954 * That is, let
1956 * \Delta_i = { y - x | (x, y) in R_i }
1958 * then the constructed map is an overapproximation of
1960 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1961 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1962 * x in dom R and x + d in ran R }
1964 * or
1966 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1967 * d = (\sum_i k_i \delta_i) and
1968 * x in dom R and x + d in ran R }
1970 * if "project" is set.
1972 * We first split the map into strongly connected components, perform
1973 * the above on each component and then join the results in the correct
1974 * order, at each join also taking in the union of both arguments
1975 * to allow for paths that do not go through one of the two arguments.
1977 static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
1978 __isl_keep isl_map *map, int *exact, int project)
1980 int i, n, c;
1981 struct isl_map *path = NULL;
1982 struct basic_map_sort *s = NULL;
1983 int *orig_exact;
1984 int local_exact;
1986 if (!map)
1987 goto error;
1988 if (map->n <= 1)
1989 return floyd_warshall(dim, map, exact, project);
1991 s = basic_map_sort_init(map->ctx, map->n, map->p);
1992 if (!s)
1993 goto error;
1995 orig_exact = exact;
1996 if (s->check_closed && !exact)
1997 exact = &local_exact;
1999 c = 0;
2000 i = 0;
2001 n = map->n;
2002 if (project)
2003 path = isl_map_empty(isl_map_get_space(map));
2004 else
2005 path = isl_map_empty(isl_space_copy(dim));
2006 path = anonymize(path);
2007 while (n) {
2008 struct isl_map *comp;
2009 isl_map *path_comp, *path_comb;
2010 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
2011 while (s->order[i] != -1) {
2012 comp = isl_map_add_basic_map(comp,
2013 isl_basic_map_copy(map->p[s->order[i]]));
2014 --n;
2015 ++i;
2017 path_comp = floyd_warshall(isl_space_copy(dim),
2018 comp, exact, project);
2019 path_comp = anonymize(path_comp);
2020 path_comb = isl_map_apply_range(isl_map_copy(path),
2021 isl_map_copy(path_comp));
2022 path = isl_map_union(path, path_comp);
2023 path = isl_map_union(path, path_comb);
2024 isl_map_free(comp);
2025 ++i;
2026 ++c;
2029 if (c > 1 && s->check_closed && !*exact) {
2030 int closed;
2032 closed = isl_map_is_transitively_closed(path);
2033 if (closed < 0)
2034 goto error;
2035 if (!closed) {
2036 basic_map_sort_free(s);
2037 isl_map_free(path);
2038 return floyd_warshall(dim, map, orig_exact, project);
2042 basic_map_sort_free(s);
2043 isl_space_free(dim);
2045 return path;
2046 error:
2047 basic_map_sort_free(s);
2048 isl_space_free(dim);
2049 isl_map_free(path);
2050 return NULL;
2053 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2054 * construct a map that is an overapproximation of the map
2055 * that takes an element from the space D to another
2056 * element from the same space, such that the difference between
2057 * them is a strictly positive sum of differences between images
2058 * and pre-images in one of the R_i.
2059 * The number of differences in the sum is equated to parameter "param".
2060 * That is, let
2062 * \Delta_i = { y - x | (x, y) in R_i }
2064 * then the constructed map is an overapproximation of
2066 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2067 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2068 * or
2070 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2071 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2073 * if "project" is set.
2075 * If "project" is not set, then
2076 * we construct an extended mapping with an extra coordinate
2077 * that indicates the number of steps taken. In particular,
2078 * the difference in the last coordinate is equal to the number
2079 * of steps taken to move from a domain element to the corresponding
2080 * image element(s).
2082 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
2083 int *exact, int project)
2085 struct isl_map *app = NULL;
2086 isl_space *dim = NULL;
2087 unsigned d;
2089 if (!map)
2090 return NULL;
2092 dim = isl_map_get_space(map);
2094 d = isl_space_dim(dim, isl_dim_in);
2095 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2096 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2098 app = construct_power_components(isl_space_copy(dim), map,
2099 exact, project);
2101 isl_space_free(dim);
2103 return app;
2106 /* Compute the positive powers of "map", or an overapproximation.
2107 * If the result is exact, then *exact is set to 1.
2109 * If project is set, then we are actually interested in the transitive
2110 * closure, so we can use a more relaxed exactness check.
2111 * The lengths of the paths are also projected out instead of being
2112 * encoded as the difference between an extra pair of final coordinates.
2114 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2115 int *exact, int project)
2117 struct isl_map *app = NULL;
2119 if (exact)
2120 *exact = 1;
2122 if (!map)
2123 return NULL;
2125 isl_assert(map->ctx,
2126 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2127 goto error);
2129 app = construct_power(map, exact, project);
2131 isl_map_free(map);
2132 return app;
2133 error:
2134 isl_map_free(map);
2135 isl_map_free(app);
2136 return NULL;
2139 /* Compute the positive powers of "map", or an overapproximation.
2140 * The result maps the exponent to a nested copy of the corresponding power.
2141 * If the result is exact, then *exact is set to 1.
2142 * map_power constructs an extended relation with the path lengths
2143 * encoded as the difference between the final coordinates.
2144 * In the final step, this difference is equated to an extra parameter
2145 * and made positive. The extra coordinates are subsequently projected out
2146 * and the parameter is turned into the domain of the result.
2148 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2150 isl_space *target_dim;
2151 isl_space *dim;
2152 isl_map *diff;
2153 unsigned d;
2154 unsigned param;
2156 if (!map)
2157 return NULL;
2159 d = isl_map_dim(map, isl_dim_in);
2160 param = isl_map_dim(map, isl_dim_param);
2162 map = isl_map_compute_divs(map);
2163 map = isl_map_coalesce(map);
2165 if (isl_map_plain_is_empty(map)) {
2166 map = isl_map_from_range(isl_map_wrap(map));
2167 map = isl_map_add_dims(map, isl_dim_in, 1);
2168 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2169 return map;
2172 target_dim = isl_map_get_space(map);
2173 target_dim = isl_space_from_range(isl_space_wrap(target_dim));
2174 target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
2175 target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
2177 map = map_power(map, exact, 0);
2179 map = isl_map_add_dims(map, isl_dim_param, 1);
2180 dim = isl_map_get_space(map);
2181 diff = equate_parameter_to_length(dim, param);
2182 map = isl_map_intersect(map, diff);
2183 map = isl_map_project_out(map, isl_dim_in, d, 1);
2184 map = isl_map_project_out(map, isl_dim_out, d, 1);
2185 map = isl_map_from_range(isl_map_wrap(map));
2186 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2188 map = isl_map_reset_space(map, target_dim);
2190 return map;
2193 /* Compute a relation that maps each element in the range of the input
2194 * relation to the lengths of all paths composed of edges in the input
2195 * relation that end up in the given range element.
2196 * The result may be an overapproximation, in which case *exact is set to 0.
2197 * The resulting relation is very similar to the power relation.
2198 * The difference are that the domain has been projected out, the
2199 * range has become the domain and the exponent is the range instead
2200 * of a parameter.
2202 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2203 int *exact)
2205 isl_space *dim;
2206 isl_map *diff;
2207 unsigned d;
2208 unsigned param;
2210 if (!map)
2211 return NULL;
2213 d = isl_map_dim(map, isl_dim_in);
2214 param = isl_map_dim(map, isl_dim_param);
2216 map = isl_map_compute_divs(map);
2217 map = isl_map_coalesce(map);
2219 if (isl_map_plain_is_empty(map)) {
2220 if (exact)
2221 *exact = 1;
2222 map = isl_map_project_out(map, isl_dim_out, 0, d);
2223 map = isl_map_add_dims(map, isl_dim_out, 1);
2224 return map;
2227 map = map_power(map, exact, 0);
2229 map = isl_map_add_dims(map, isl_dim_param, 1);
2230 dim = isl_map_get_space(map);
2231 diff = equate_parameter_to_length(dim, param);
2232 map = isl_map_intersect(map, diff);
2233 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2234 map = isl_map_project_out(map, isl_dim_out, d, 1);
2235 map = isl_map_reverse(map);
2236 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2238 return map;
2241 /* Check whether equality i of bset is a pure stride constraint
2242 * on a single dimensions, i.e., of the form
2244 * v = k e
2246 * with k a constant and e an existentially quantified variable.
2248 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2250 unsigned nparam;
2251 unsigned d;
2252 unsigned n_div;
2253 int pos1;
2254 int pos2;
2256 if (!bset)
2257 return -1;
2259 if (!isl_int_is_zero(bset->eq[i][0]))
2260 return 0;
2262 nparam = isl_basic_set_dim(bset, isl_dim_param);
2263 d = isl_basic_set_dim(bset, isl_dim_set);
2264 n_div = isl_basic_set_dim(bset, isl_dim_div);
2266 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2267 return 0;
2268 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2269 if (pos1 == -1)
2270 return 0;
2271 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2272 d - pos1 - 1) != -1)
2273 return 0;
2275 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2276 if (pos2 == -1)
2277 return 0;
2278 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2279 n_div - pos2 - 1) != -1)
2280 return 0;
2281 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2282 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2283 return 0;
2285 return 1;
2288 /* Given a map, compute the smallest superset of this map that is of the form
2290 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2292 * (where p ranges over the (non-parametric) dimensions),
2293 * compute the transitive closure of this map, i.e.,
2295 * { i -> j : exists k > 0:
2296 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2298 * and intersect domain and range of this transitive closure with
2299 * the given domain and range.
2301 * If with_id is set, then try to include as much of the identity mapping
2302 * as possible, by computing
2304 * { i -> j : exists k >= 0:
2305 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2307 * instead (i.e., allow k = 0).
2309 * In practice, we compute the difference set
2311 * delta = { j - i | i -> j in map },
2313 * look for stride constraint on the individual dimensions and compute
2314 * (constant) lower and upper bounds for each individual dimension,
2315 * adding a constraint for each bound not equal to infinity.
2317 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2318 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2320 int i;
2321 int k;
2322 unsigned d;
2323 unsigned nparam;
2324 unsigned total;
2325 isl_space *dim;
2326 isl_set *delta;
2327 isl_map *app = NULL;
2328 isl_basic_set *aff = NULL;
2329 isl_basic_map *bmap = NULL;
2330 isl_vec *obj = NULL;
2331 isl_int opt;
2333 isl_int_init(opt);
2335 delta = isl_map_deltas(isl_map_copy(map));
2337 aff = isl_set_affine_hull(isl_set_copy(delta));
2338 if (!aff)
2339 goto error;
2340 dim = isl_map_get_space(map);
2341 d = isl_space_dim(dim, isl_dim_in);
2342 nparam = isl_space_dim(dim, isl_dim_param);
2343 total = isl_space_dim(dim, isl_dim_all);
2344 bmap = isl_basic_map_alloc_space(dim,
2345 aff->n_div + 1, aff->n_div, 2 * d + 1);
2346 for (i = 0; i < aff->n_div + 1; ++i) {
2347 k = isl_basic_map_alloc_div(bmap);
2348 if (k < 0)
2349 goto error;
2350 isl_int_set_si(bmap->div[k][0], 0);
2352 for (i = 0; i < aff->n_eq; ++i) {
2353 if (!is_eq_stride(aff, i))
2354 continue;
2355 k = isl_basic_map_alloc_equality(bmap);
2356 if (k < 0)
2357 goto error;
2358 isl_seq_clr(bmap->eq[k], 1 + nparam);
2359 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2360 aff->eq[i] + 1 + nparam, d);
2361 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2362 aff->eq[i] + 1 + nparam, d);
2363 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2364 aff->eq[i] + 1 + nparam + d, aff->n_div);
2365 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2367 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2368 if (!obj)
2369 goto error;
2370 isl_seq_clr(obj->el, 1 + nparam + d);
2371 for (i = 0; i < d; ++ i) {
2372 enum isl_lp_result res;
2374 isl_int_set_si(obj->el[1 + nparam + i], 1);
2376 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2377 NULL, NULL);
2378 if (res == isl_lp_error)
2379 goto error;
2380 if (res == isl_lp_ok) {
2381 k = isl_basic_map_alloc_inequality(bmap);
2382 if (k < 0)
2383 goto error;
2384 isl_seq_clr(bmap->ineq[k],
2385 1 + nparam + 2 * d + bmap->n_div);
2386 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2387 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2388 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2391 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2392 NULL, NULL);
2393 if (res == isl_lp_error)
2394 goto error;
2395 if (res == isl_lp_ok) {
2396 k = isl_basic_map_alloc_inequality(bmap);
2397 if (k < 0)
2398 goto error;
2399 isl_seq_clr(bmap->ineq[k],
2400 1 + nparam + 2 * d + bmap->n_div);
2401 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2402 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2403 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2406 isl_int_set_si(obj->el[1 + nparam + i], 0);
2408 k = isl_basic_map_alloc_inequality(bmap);
2409 if (k < 0)
2410 goto error;
2411 isl_seq_clr(bmap->ineq[k],
2412 1 + nparam + 2 * d + bmap->n_div);
2413 if (!with_id)
2414 isl_int_set_si(bmap->ineq[k][0], -1);
2415 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2417 app = isl_map_from_domain_and_range(dom, ran);
2419 isl_vec_free(obj);
2420 isl_basic_set_free(aff);
2421 isl_map_free(map);
2422 bmap = isl_basic_map_finalize(bmap);
2423 isl_set_free(delta);
2424 isl_int_clear(opt);
2426 map = isl_map_from_basic_map(bmap);
2427 map = isl_map_intersect(map, app);
2429 return map;
2430 error:
2431 isl_vec_free(obj);
2432 isl_basic_map_free(bmap);
2433 isl_basic_set_free(aff);
2434 isl_set_free(dom);
2435 isl_set_free(ran);
2436 isl_map_free(map);
2437 isl_set_free(delta);
2438 isl_int_clear(opt);
2439 return NULL;
2442 /* Given a map, compute the smallest superset of this map that is of the form
2444 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2446 * (where p ranges over the (non-parametric) dimensions),
2447 * compute the transitive closure of this map, i.e.,
2449 * { i -> j : exists k > 0:
2450 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2452 * and intersect domain and range of this transitive closure with
2453 * domain and range of the original map.
2455 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2457 isl_set *domain;
2458 isl_set *range;
2460 domain = isl_map_domain(isl_map_copy(map));
2461 domain = isl_set_coalesce(domain);
2462 range = isl_map_range(isl_map_copy(map));
2463 range = isl_set_coalesce(range);
2465 return box_closure_on_domain(map, domain, range, 0);
2468 /* Given a map, compute the smallest superset of this map that is of the form
2470 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2472 * (where p ranges over the (non-parametric) dimensions),
2473 * compute the transitive and partially reflexive closure of this map, i.e.,
2475 * { i -> j : exists k >= 0:
2476 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2478 * and intersect domain and range of this transitive closure with
2479 * the given domain.
2481 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2482 __isl_take isl_set *dom)
2484 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2487 /* Check whether app is the transitive closure of map.
2488 * In particular, check that app is acyclic and, if so,
2489 * check that
2491 * app \subset (map \cup (map \circ app))
2493 static int check_exactness_omega(__isl_keep isl_map *map,
2494 __isl_keep isl_map *app)
2496 isl_set *delta;
2497 int i;
2498 int is_empty, is_exact;
2499 unsigned d;
2500 isl_map *test;
2502 delta = isl_map_deltas(isl_map_copy(app));
2503 d = isl_set_dim(delta, isl_dim_set);
2504 for (i = 0; i < d; ++i)
2505 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2506 is_empty = isl_set_is_empty(delta);
2507 isl_set_free(delta);
2508 if (is_empty < 0)
2509 return -1;
2510 if (!is_empty)
2511 return 0;
2513 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2514 test = isl_map_union(test, isl_map_copy(map));
2515 is_exact = isl_map_is_subset(app, test);
2516 isl_map_free(test);
2518 return is_exact;
2521 /* Check if basic map M_i can be combined with all the other
2522 * basic maps such that
2524 * (\cup_j M_j)^+
2526 * can be computed as
2528 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2530 * In particular, check if we can compute a compact representation
2531 * of
2533 * M_i^* \circ M_j \circ M_i^*
2535 * for each j != i.
2536 * Let M_i^? be an extension of M_i^+ that allows paths
2537 * of length zero, i.e., the result of box_closure(., 1).
2538 * The criterion, as proposed by Kelly et al., is that
2539 * id = M_i^? - M_i^+ can be represented as a basic map
2540 * and that
2542 * id \circ M_j \circ id = M_j
2544 * for each j != i.
2546 * If this function returns 1, then tc and qc are set to
2547 * M_i^+ and M_i^?, respectively.
2549 static int can_be_split_off(__isl_keep isl_map *map, int i,
2550 __isl_give isl_map **tc, __isl_give isl_map **qc)
2552 isl_map *map_i, *id = NULL;
2553 int j = -1;
2554 isl_set *C;
2556 *tc = NULL;
2557 *qc = NULL;
2559 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2560 isl_map_range(isl_map_copy(map)));
2561 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2562 if (!C)
2563 goto error;
2565 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2566 *tc = box_closure(isl_map_copy(map_i));
2567 *qc = box_closure_with_identity(map_i, C);
2568 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2570 if (!id || !*qc)
2571 goto error;
2572 if (id->n != 1 || (*qc)->n != 1)
2573 goto done;
2575 for (j = 0; j < map->n; ++j) {
2576 isl_map *map_j, *test;
2577 int is_ok;
2579 if (i == j)
2580 continue;
2581 map_j = isl_map_from_basic_map(
2582 isl_basic_map_copy(map->p[j]));
2583 test = isl_map_apply_range(isl_map_copy(id),
2584 isl_map_copy(map_j));
2585 test = isl_map_apply_range(test, isl_map_copy(id));
2586 is_ok = isl_map_is_equal(test, map_j);
2587 isl_map_free(map_j);
2588 isl_map_free(test);
2589 if (is_ok < 0)
2590 goto error;
2591 if (!is_ok)
2592 break;
2595 done:
2596 isl_map_free(id);
2597 if (j == map->n)
2598 return 1;
2600 isl_map_free(*qc);
2601 isl_map_free(*tc);
2602 *qc = NULL;
2603 *tc = NULL;
2605 return 0;
2606 error:
2607 isl_map_free(id);
2608 isl_map_free(*qc);
2609 isl_map_free(*tc);
2610 *qc = NULL;
2611 *tc = NULL;
2612 return -1;
2615 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2616 int *exact)
2618 isl_map *app;
2620 app = box_closure(isl_map_copy(map));
2621 if (exact)
2622 *exact = check_exactness_omega(map, app);
2624 isl_map_free(map);
2625 return app;
2628 /* Compute an overapproximation of the transitive closure of "map"
2629 * using a variation of the algorithm from
2630 * "Transitive Closure of Infinite Graphs and its Applications"
2631 * by Kelly et al.
2633 * We first check whether we can can split of any basic map M_i and
2634 * compute
2636 * (\cup_j M_j)^+
2638 * as
2640 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2642 * using a recursive call on the remaining map.
2644 * If not, we simply call box_closure on the whole map.
2646 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2647 int *exact)
2649 int i, j;
2650 int exact_i;
2651 isl_map *app;
2653 if (!map)
2654 return NULL;
2655 if (map->n == 1)
2656 return box_closure_with_check(map, exact);
2658 for (i = 0; i < map->n; ++i) {
2659 int ok;
2660 isl_map *qc, *tc;
2661 ok = can_be_split_off(map, i, &tc, &qc);
2662 if (ok < 0)
2663 goto error;
2664 if (!ok)
2665 continue;
2667 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2669 for (j = 0; j < map->n; ++j) {
2670 if (j == i)
2671 continue;
2672 app = isl_map_add_basic_map(app,
2673 isl_basic_map_copy(map->p[j]));
2676 app = isl_map_apply_range(isl_map_copy(qc), app);
2677 app = isl_map_apply_range(app, qc);
2679 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2680 exact_i = check_exactness_omega(map, app);
2681 if (exact_i == 1) {
2682 if (exact)
2683 *exact = exact_i;
2684 isl_map_free(map);
2685 return app;
2687 isl_map_free(app);
2688 if (exact_i < 0)
2689 goto error;
2692 return box_closure_with_check(map, exact);
2693 error:
2694 isl_map_free(map);
2695 return NULL;
2698 /* Compute the transitive closure of "map", or an overapproximation.
2699 * If the result is exact, then *exact is set to 1.
2700 * Simply use map_power to compute the powers of map, but tell
2701 * it to project out the lengths of the paths instead of equating
2702 * the length to a parameter.
2704 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2705 int *exact)
2707 isl_space *target_dim;
2708 int closed;
2710 if (!map)
2711 goto error;
2713 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2714 return transitive_closure_omega(map, exact);
2716 map = isl_map_compute_divs(map);
2717 map = isl_map_coalesce(map);
2718 closed = isl_map_is_transitively_closed(map);
2719 if (closed < 0)
2720 goto error;
2721 if (closed) {
2722 if (exact)
2723 *exact = 1;
2724 return map;
2727 target_dim = isl_map_get_space(map);
2728 map = map_power(map, exact, 1);
2729 map = isl_map_reset_space(map, target_dim);
2731 return map;
2732 error:
2733 isl_map_free(map);
2734 return NULL;
2737 static int inc_count(__isl_take isl_map *map, void *user)
2739 int *n = user;
2741 *n += map->n;
2743 isl_map_free(map);
2745 return 0;
2748 static int collect_basic_map(__isl_take isl_map *map, void *user)
2750 int i;
2751 isl_basic_map ***next = user;
2753 for (i = 0; i < map->n; ++i) {
2754 **next = isl_basic_map_copy(map->p[i]);
2755 if (!**next)
2756 goto error;
2757 (*next)++;
2760 isl_map_free(map);
2761 return 0;
2762 error:
2763 isl_map_free(map);
2764 return -1;
2767 /* Perform Floyd-Warshall on the given list of basic relations.
2768 * The basic relations may live in different dimensions,
2769 * but basic relations that get assigned to the diagonal of the
2770 * grid have domains and ranges of the same dimension and so
2771 * the standard algorithm can be used because the nested transitive
2772 * closures are only applied to diagonal elements and because all
2773 * compositions are peformed on relations with compatible domains and ranges.
2775 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2776 __isl_keep isl_basic_map **list, int n, int *exact)
2778 int i, j, k;
2779 int n_group;
2780 int *group = NULL;
2781 isl_set **set = NULL;
2782 isl_map ***grid = NULL;
2783 isl_union_map *app;
2785 group = setup_groups(ctx, list, n, &set, &n_group);
2786 if (!group)
2787 goto error;
2789 grid = isl_calloc_array(ctx, isl_map **, n_group);
2790 if (!grid)
2791 goto error;
2792 for (i = 0; i < n_group; ++i) {
2793 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2794 if (!grid[i])
2795 goto error;
2796 for (j = 0; j < n_group; ++j) {
2797 isl_space *dim1, *dim2, *dim;
2798 dim1 = isl_space_reverse(isl_set_get_space(set[i]));
2799 dim2 = isl_set_get_space(set[j]);
2800 dim = isl_space_join(dim1, dim2);
2801 grid[i][j] = isl_map_empty(dim);
2805 for (k = 0; k < n; ++k) {
2806 i = group[2 * k];
2807 j = group[2 * k + 1];
2808 grid[i][j] = isl_map_union(grid[i][j],
2809 isl_map_from_basic_map(
2810 isl_basic_map_copy(list[k])));
2813 floyd_warshall_iterate(grid, n_group, exact);
2815 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2817 for (i = 0; i < n_group; ++i) {
2818 for (j = 0; j < n_group; ++j)
2819 app = isl_union_map_add_map(app, grid[i][j]);
2820 free(grid[i]);
2822 free(grid);
2824 for (i = 0; i < 2 * n; ++i)
2825 isl_set_free(set[i]);
2826 free(set);
2828 free(group);
2829 return app;
2830 error:
2831 if (grid)
2832 for (i = 0; i < n_group; ++i) {
2833 if (!grid[i])
2834 continue;
2835 for (j = 0; j < n_group; ++j)
2836 isl_map_free(grid[i][j]);
2837 free(grid[i]);
2839 free(grid);
2840 if (set) {
2841 for (i = 0; i < 2 * n; ++i)
2842 isl_set_free(set[i]);
2843 free(set);
2845 free(group);
2846 return NULL;
2849 /* Perform Floyd-Warshall on the given union relation.
2850 * The implementation is very similar to that for non-unions.
2851 * The main difference is that it is applied unconditionally.
2852 * We first extract a list of basic maps from the union map
2853 * and then perform the algorithm on this list.
2855 static __isl_give isl_union_map *union_floyd_warshall(
2856 __isl_take isl_union_map *umap, int *exact)
2858 int i, n;
2859 isl_ctx *ctx;
2860 isl_basic_map **list = NULL;
2861 isl_basic_map **next;
2862 isl_union_map *res;
2864 n = 0;
2865 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2866 goto error;
2868 ctx = isl_union_map_get_ctx(umap);
2869 list = isl_calloc_array(ctx, isl_basic_map *, n);
2870 if (!list)
2871 goto error;
2873 next = list;
2874 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2875 goto error;
2877 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2879 if (list) {
2880 for (i = 0; i < n; ++i)
2881 isl_basic_map_free(list[i]);
2882 free(list);
2885 isl_union_map_free(umap);
2886 return res;
2887 error:
2888 if (list) {
2889 for (i = 0; i < n; ++i)
2890 isl_basic_map_free(list[i]);
2891 free(list);
2893 isl_union_map_free(umap);
2894 return NULL;
2897 /* Decompose the give union relation into strongly connected components.
2898 * The implementation is essentially the same as that of
2899 * construct_power_components with the major difference that all
2900 * operations are performed on union maps.
2902 static __isl_give isl_union_map *union_components(
2903 __isl_take isl_union_map *umap, int *exact)
2905 int i;
2906 int n;
2907 isl_ctx *ctx;
2908 isl_basic_map **list;
2909 isl_basic_map **next;
2910 isl_union_map *path = NULL;
2911 struct basic_map_sort *s = NULL;
2912 int c, l;
2913 int recheck = 0;
2915 n = 0;
2916 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2917 goto error;
2919 if (n <= 1)
2920 return union_floyd_warshall(umap, exact);
2922 ctx = isl_union_map_get_ctx(umap);
2923 list = isl_calloc_array(ctx, isl_basic_map *, n);
2924 if (!list)
2925 goto error;
2927 next = list;
2928 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2929 goto error;
2931 s = basic_map_sort_init(ctx, n, list);
2932 if (!s)
2933 goto error;
2935 c = 0;
2936 i = 0;
2937 l = n;
2938 path = isl_union_map_empty(isl_union_map_get_space(umap));
2939 while (l) {
2940 isl_union_map *comp;
2941 isl_union_map *path_comp, *path_comb;
2942 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2943 while (s->order[i] != -1) {
2944 comp = isl_union_map_add_map(comp,
2945 isl_map_from_basic_map(
2946 isl_basic_map_copy(list[s->order[i]])));
2947 --l;
2948 ++i;
2950 path_comp = union_floyd_warshall(comp, exact);
2951 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2952 isl_union_map_copy(path_comp));
2953 path = isl_union_map_union(path, path_comp);
2954 path = isl_union_map_union(path, path_comb);
2955 ++i;
2956 ++c;
2959 if (c > 1 && s->check_closed && !*exact) {
2960 int closed;
2962 closed = isl_union_map_is_transitively_closed(path);
2963 if (closed < 0)
2964 goto error;
2965 recheck = !closed;
2968 basic_map_sort_free(s);
2970 for (i = 0; i < n; ++i)
2971 isl_basic_map_free(list[i]);
2972 free(list);
2974 if (recheck) {
2975 isl_union_map_free(path);
2976 return union_floyd_warshall(umap, exact);
2979 isl_union_map_free(umap);
2981 return path;
2982 error:
2983 basic_map_sort_free(s);
2984 if (list) {
2985 for (i = 0; i < n; ++i)
2986 isl_basic_map_free(list[i]);
2987 free(list);
2989 isl_union_map_free(umap);
2990 isl_union_map_free(path);
2991 return NULL;
2994 /* Compute the transitive closure of "umap", or an overapproximation.
2995 * If the result is exact, then *exact is set to 1.
2997 __isl_give isl_union_map *isl_union_map_transitive_closure(
2998 __isl_take isl_union_map *umap, int *exact)
3000 int closed;
3002 if (!umap)
3003 return NULL;
3005 if (exact)
3006 *exact = 1;
3008 umap = isl_union_map_compute_divs(umap);
3009 umap = isl_union_map_coalesce(umap);
3010 closed = isl_union_map_is_transitively_closed(umap);
3011 if (closed < 0)
3012 goto error;
3013 if (closed)
3014 return umap;
3015 umap = union_components(umap, exact);
3016 return umap;
3017 error:
3018 isl_union_map_free(umap);
3019 return NULL;
3022 struct isl_union_power {
3023 isl_union_map *pow;
3024 int *exact;
3027 static int power(__isl_take isl_map *map, void *user)
3029 struct isl_union_power *up = user;
3031 map = isl_map_power(map, up->exact);
3032 up->pow = isl_union_map_from_map(map);
3034 return -1;
3037 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
3039 static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
3041 int k;
3042 isl_basic_map *bmap;
3044 dim = isl_space_add_dims(dim, isl_dim_in, 1);
3045 dim = isl_space_add_dims(dim, isl_dim_out, 1);
3046 bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
3047 k = isl_basic_map_alloc_equality(bmap);
3048 if (k < 0)
3049 goto error;
3050 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
3051 isl_int_set_si(bmap->eq[k][0], 1);
3052 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
3053 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
3054 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
3055 error:
3056 isl_basic_map_free(bmap);
3057 return NULL;
3060 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
3062 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
3064 isl_basic_map *bmap;
3066 dim = isl_space_add_dims(dim, isl_dim_in, 1);
3067 dim = isl_space_add_dims(dim, isl_dim_out, 1);
3068 bmap = isl_basic_map_universe(dim);
3069 bmap = isl_basic_map_deltas_map(bmap);
3071 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
3074 /* Compute the positive powers of "map", or an overapproximation.
3075 * The result maps the exponent to a nested copy of the corresponding power.
3076 * If the result is exact, then *exact is set to 1.
3078 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
3079 int *exact)
3081 int n;
3082 isl_union_map *inc;
3083 isl_union_map *dm;
3085 if (!umap)
3086 return NULL;
3087 n = isl_union_map_n_map(umap);
3088 if (n == 0)
3089 return umap;
3090 if (n == 1) {
3091 struct isl_union_power up = { NULL, exact };
3092 isl_union_map_foreach_map(umap, &power, &up);
3093 isl_union_map_free(umap);
3094 return up.pow;
3096 inc = increment(isl_union_map_get_space(umap));
3097 umap = isl_union_map_product(inc, umap);
3098 umap = isl_union_map_transitive_closure(umap, exact);
3099 umap = isl_union_map_zip(umap);
3100 dm = deltas_map(isl_union_map_get_space(umap));
3101 umap = isl_union_map_apply_domain(umap, dm);
3103 return umap;
3106 #undef TYPE
3107 #define TYPE isl_map
3108 #include "isl_power_templ.c"
3110 #undef TYPE
3111 #define TYPE isl_union_map
3112 #include "isl_power_templ.c"