2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl_ast_build_expr.h>
15 #include <isl_ast_private.h>
16 #include <isl_ast_build_private.h>
18 /* Compute the "opposite" of the (numerator of the) argument of a div
19 * with denonimator "d".
21 * In particular, compute
25 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
26 __isl_take isl_val
*d
)
28 aff
= isl_aff_neg(aff
);
29 aff
= isl_aff_add_constant_val(aff
, d
);
30 aff
= isl_aff_add_constant_si(aff
, -1);
35 /* Internal data structure used inside isl_ast_expr_add_term.
36 * The domain of "build" is used to simplify the expressions.
37 * "build" needs to be set by the caller of isl_ast_expr_add_term.
38 * "cst" is the constant term of the expression in which the added term
39 * appears. It may be modified by isl_ast_expr_add_term.
41 * "v" is the coefficient of the term that is being constructed and
42 * is set internally by isl_ast_expr_add_term.
44 struct isl_ast_add_term_data
{
50 /* Given the numerator "aff" of the argument of an integer division
51 * with denominator "d", check if it can be made non-negative over
52 * data->build->domain by stealing part of the constant term of
53 * the expression in which the integer division appears.
55 * In particular, the outer expression is of the form
57 * v * floor(aff/d) + cst
59 * We already know that "aff" itself may attain negative values.
60 * Here we check if aff + d*floor(cst/v) is non-negative, such
61 * that we could rewrite the expression to
63 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
65 * Note that aff + d*floor(cst/v) can only possibly be non-negative
66 * if data->cst and data->v have the same sign.
67 * Similarly, if floor(cst/v) is zero, then there is no point in
70 static int is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
71 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
78 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
81 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
82 shift
= isl_val_floor(shift
);
83 is_zero
= isl_val_is_zero(shift
);
84 if (is_zero
< 0 || is_zero
) {
86 return is_zero
< 0 ? -1 : 0;
88 shift
= isl_val_mul(shift
, isl_val_copy(d
));
89 shifted
= isl_aff_copy(aff
);
90 shifted
= isl_aff_add_constant_val(shifted
, shift
);
91 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
92 isl_aff_free(shifted
);
97 /* Given the numerator "aff' of the argument of an integer division
98 * with denominator "d", steal part of the constant term of
99 * the expression in which the integer division appears to make it
100 * non-negative over data->build->domain.
102 * In particular, the outer expression is of the form
104 * v * floor(aff/d) + cst
106 * We know that "aff" itself may attain negative values,
107 * but that aff + d*floor(cst/v) is non-negative.
108 * Find the minimal positive value that we need to add to "aff"
109 * to make it positive and adjust data->cst accordingly.
110 * That is, compute the minimal value "m" of "aff" over
111 * data->build->domain and take
119 * and rewrite the expression to
121 * v * floor((aff + s*d)/d) + (cst - v*s)
123 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
124 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
129 domain
= isl_ast_build_get_domain(data
->build
);
130 shift
= isl_set_min_val(domain
, aff
);
131 isl_set_free(domain
);
133 shift
= isl_val_neg(shift
);
134 shift
= isl_val_div(shift
, isl_val_copy(d
));
135 shift
= isl_val_ceil(shift
);
137 t
= isl_val_copy(shift
);
138 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
139 data
->cst
= isl_val_sub(data
->cst
, t
);
141 shift
= isl_val_mul(shift
, isl_val_copy(d
));
142 return isl_aff_add_constant_val(aff
, shift
);
145 /* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
146 * The result is simplified in terms of data->build->domain.
147 * This function may change (the sign of) data->v.
149 * "ls" is known to be non-NULL.
151 * Let the div be of the form floor(e/d).
152 * If the ast_build_prefer_pdiv option is set then we check if "e"
153 * is non-negative, so that we can generate
155 * (pdiv_q, expr(e), expr(d))
159 * (fdiv_q, expr(e), expr(d))
161 * If the ast_build_prefer_pdiv option is set and
162 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
163 * If so, we can rewrite
165 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
167 * and still use pdiv_q, while changing the sign of data->v.
169 * Otherwise, we check if
173 * is non-negative and if so, replace floor(e/d) by
175 * floor((e + s*d)/d) - s
177 * with s the minimal shift that makes the argument non-negative.
179 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
180 __isl_keep isl_local_space
*ls
, int pos
)
182 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
184 isl_ast_expr
*num
, *den
;
186 enum isl_ast_op_type type
;
188 aff
= isl_local_space_get_div(ls
, pos
);
189 d
= isl_aff_get_denominator_val(aff
);
190 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
191 den
= isl_ast_expr_from_val(isl_val_copy(d
));
193 type
= isl_ast_op_fdiv_q
;
194 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
195 int non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
196 if (non_neg
>= 0 && !non_neg
) {
197 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
199 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
200 if (non_neg
>= 0 && non_neg
) {
201 data
->v
= isl_val_neg(data
->v
);
207 if (non_neg
>= 0 && !non_neg
) {
208 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
209 if (non_neg
>= 0 && non_neg
)
210 aff
= steal_from_cst(aff
, d
, data
);
213 aff
= isl_aff_free(aff
);
215 type
= isl_ast_op_pdiv_q
;
219 num
= isl_ast_expr_from_aff(aff
, data
->build
);
220 return isl_ast_expr_alloc_binary(type
, num
, den
);
223 /* Create an isl_ast_expr evaluating the specified dimension of "ls".
224 * The result is simplified in terms of data->build->domain.
225 * This function may change (the sign of) data->v.
227 * The isl_ast_expr is constructed based on the type of the dimension.
228 * - divs are constructed by var_div
229 * - set variables are constructed from the iterator isl_ids in data->build
230 * - parameters are constructed from the isl_ids in "ls"
232 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
233 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
)
235 isl_ctx
*ctx
= isl_local_space_get_ctx(ls
);
238 if (type
== isl_dim_div
)
239 return var_div(data
, ls
, pos
);
241 if (type
== isl_dim_set
) {
242 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
243 return isl_ast_expr_from_id(id
);
246 if (!isl_local_space_has_dim_id(ls
, type
, pos
))
247 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
249 id
= isl_local_space_get_dim_id(ls
, type
, pos
);
250 return isl_ast_expr_from_id(id
);
253 /* Does "expr" represent the zero integer?
255 static int ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
259 if (expr
->type
!= isl_ast_expr_int
)
261 return isl_val_is_zero(expr
->u
.v
);
264 /* Create an expression representing the sum of "expr1" and "expr2",
265 * provided neither of the two expressions is identically zero.
267 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
268 __isl_take isl_ast_expr
*expr2
)
270 if (!expr1
|| !expr2
)
273 if (ast_expr_is_zero(expr1
)) {
274 isl_ast_expr_free(expr1
);
278 if (ast_expr_is_zero(expr2
)) {
279 isl_ast_expr_free(expr2
);
283 return isl_ast_expr_add(expr1
, expr2
);
285 isl_ast_expr_free(expr1
);
286 isl_ast_expr_free(expr2
);
290 /* Subtract expr2 from expr1.
292 * If expr2 is zero, we simply return expr1.
293 * If expr1 is zero, we return
295 * (isl_ast_op_minus, expr2)
297 * Otherwise, we return
299 * (isl_ast_op_sub, expr1, expr2)
301 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
302 __isl_take isl_ast_expr
*expr2
)
304 if (!expr1
|| !expr2
)
307 if (ast_expr_is_zero(expr2
)) {
308 isl_ast_expr_free(expr2
);
312 if (ast_expr_is_zero(expr1
)) {
313 isl_ast_expr_free(expr1
);
314 return isl_ast_expr_neg(expr2
);
317 return isl_ast_expr_sub(expr1
, expr2
);
319 isl_ast_expr_free(expr1
);
320 isl_ast_expr_free(expr2
);
324 /* Return an isl_ast_expr that represents
328 * v is assumed to be non-negative.
329 * The result is simplified in terms of build->domain.
331 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
332 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
333 __isl_keep isl_ast_build
*build
)
341 expr
= isl_ast_expr_from_aff(isl_aff_copy(aff
), build
);
343 c
= isl_ast_expr_from_val(isl_val_copy(d
));
344 expr
= isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r
, expr
, c
);
346 if (!isl_val_is_one(v
)) {
347 c
= isl_ast_expr_from_val(isl_val_copy(v
));
348 expr
= isl_ast_expr_mul(c
, expr
);
354 /* Create an isl_ast_expr that scales "expr" by "v".
356 * If v is 1, we simply return expr.
357 * If v is -1, we return
359 * (isl_ast_op_minus, expr)
361 * Otherwise, we return
363 * (isl_ast_op_mul, expr(v), expr)
365 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
366 __isl_take isl_val
*v
)
372 if (isl_val_is_one(v
)) {
377 if (isl_val_is_negone(v
)) {
379 expr
= isl_ast_expr_neg(expr
);
381 c
= isl_ast_expr_from_val(v
);
382 expr
= isl_ast_expr_mul(c
, expr
);
388 isl_ast_expr_free(expr
);
392 /* Add an expression for "*v" times the specified dimension of "ls"
394 * If the dimension is an integer division, then this function
395 * may modify data->cst in order to make the numerator non-negative.
396 * The result is simplified in terms of data->build->domain.
398 * Let e be the expression for the specified dimension,
399 * multiplied by the absolute value of "*v".
400 * If "*v" is negative, we create
402 * (isl_ast_op_sub, expr, e)
404 * except when expr is trivially zero, in which case we create
406 * (isl_ast_op_minus, e)
410 * If "*v" is positive, we simply create
412 * (isl_ast_op_add, expr, e)
415 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
416 __isl_take isl_ast_expr
*expr
,
417 __isl_keep isl_local_space
*ls
, enum isl_dim_type type
, int pos
,
418 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
426 term
= var(data
, ls
, type
, pos
);
429 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
431 term
= scale(term
, v
);
432 return ast_expr_sub(expr
, term
);
434 term
= scale(term
, v
);
435 return ast_expr_add(expr
, term
);
439 /* Add an expression for "v" to expr.
441 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
442 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
444 isl_ast_expr
*expr_int
;
449 if (isl_val_is_zero(v
)) {
454 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
456 expr_int
= isl_ast_expr_from_val(v
);
457 return ast_expr_sub(expr
, expr_int
);
459 expr_int
= isl_ast_expr_from_val(v
);
460 return ast_expr_add(expr
, expr_int
);
463 isl_ast_expr_free(expr
);
468 /* Internal data structure used inside extract_modulos.
470 * If any modulo expressions are detected in "aff", then the
471 * expression is removed from "aff" and added to either "pos" or "neg"
472 * depending on the sign of the coefficient of the modulo expression
475 * "add" is an expression that needs to be added to "aff" at the end of
476 * the computation. It is NULL as long as no modulos have been extracted.
478 * "i" is the position in "aff" of the div under investigation
479 * "v" is the coefficient in "aff" of the div
480 * "div" is the argument of the div, with the denominator removed
481 * "d" is the original denominator of the argument of the div
483 * "nonneg" is an affine expression that is non-negative over "build"
484 * and that can be used to extract a modulo expression from "div".
485 * In particular, if "sign" is 1, then the coefficients of "nonneg"
486 * are equal to those of "div" modulo "d". If "sign" is -1, then
487 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
488 * If "sign" is 0, then no such affine expression has been found (yet).
490 struct isl_extract_mod_data
{
491 isl_ast_build
*build
;
508 /* Given that data->v * div_i in data->aff is equal to
510 * f * (term - (arg mod d))
512 * with data->d * f = data->v, add
518 * abs(f) * (arg mod d)
520 * to data->neg or data->pos depending on the sign of -f.
522 static int extract_term_and_mod(struct isl_extract_mod_data
*data
,
523 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
528 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
529 s
= isl_val_sgn(data
->v
);
530 data
->v
= isl_val_abs(data
->v
);
531 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
534 data
->neg
= ast_expr_add(data
->neg
, expr
);
536 data
->pos
= ast_expr_add(data
->pos
, expr
);
537 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
538 isl_dim_div
, data
->i
, 0);
540 data
->v
= isl_val_neg(data
->v
);
541 term
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->v
));
546 data
->add
= isl_aff_add(data
->add
, term
);
553 /* Given that data->v * div_i in data->aff is of the form
555 * f * d * floor(div/d)
557 * with div nonnegative on data->build, rewrite it as
559 * f * (div - (div mod d)) = f * div - f * (div mod d)
567 * abs(f) * (div mod d)
569 * to data->neg or data->pos depending on the sign of -f.
571 static int extract_mod(struct isl_extract_mod_data
*data
)
573 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
574 isl_aff_copy(data
->div
));
577 /* Given that data->v * div_i in data->aff is of the form
579 * f * d * floor(div/d) (1)
581 * check if div is non-negative on data->build and, if so,
582 * extract the corresponding modulo from data->aff.
583 * If not, then check if
587 * is non-negative on data->build. If so, replace (1) by
589 * -f * d * floor((-div + d - 1)/d)
591 * and extract the corresponding modulo from data->aff.
593 * This function may modify data->div.
595 static int extract_nonneg_mod(struct isl_extract_mod_data
*data
)
599 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
603 return extract_mod(data
);
605 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
606 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
610 data
->v
= isl_val_neg(data
->v
);
611 return extract_mod(data
);
616 data
->aff
= isl_aff_free(data
->aff
);
620 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
621 * for use in extracting a modulo expression?
623 * We currently only consider the constant term of the affine expression.
624 * In particular, we prefer the affine expression with the smallest constant
626 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
627 * then we would pick x >= 0
629 * More detailed heuristics could be used if it turns out that there is a need.
631 static int mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
632 __isl_keep isl_constraint
*c
)
640 v1
= isl_val_abs(isl_constraint_get_constant_val(c
));
641 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
642 simpler
= isl_val_lt(v1
, v2
);
649 /* Check if the coefficients of "c" are either equal or opposite to those
650 * of data->div modulo data->d. If so, and if "c" is "simpler" than
651 * data->nonneg, then replace data->nonneg by the affine expression of "c"
652 * and set data->sign accordingly.
654 * Both "c" and data->div are assumed not to involve any integer divisions.
656 * Before we start the actual comparison, we first quickly check if
657 * "c" and data->div have the same non-zero coefficients.
658 * If not, then we assume that "c" is not of the desired form.
659 * Note that while the coefficients of data->div can be reasonably expected
660 * not to involve any coefficients that are multiples of d, "c" may
661 * very well involve such coefficients. This means that we may actually
664 static int check_parallel_or_opposite(__isl_take isl_constraint
*c
, void *user
)
666 struct isl_extract_mod_data
*data
= user
;
667 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
668 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
671 int parallel
= 1, opposite
= 1;
673 for (t
= 0; t
< 2; ++t
) {
674 n
[t
] = isl_constraint_dim(c
, c_type
[t
]);
675 for (i
= 0; i
< n
[t
]; ++i
) {
678 a
= isl_constraint_involves_dims(c
, c_type
[t
], i
, 1);
679 b
= isl_aff_involves_dims(data
->div
, a_type
[t
], i
, 1);
681 parallel
= opposite
= 0;
685 for (t
= 0; t
< 2; ++t
) {
686 for (i
= 0; i
< n
[t
]; ++i
) {
689 if (!parallel
&& !opposite
)
691 v1
= isl_constraint_get_coefficient_val(c
,
693 v2
= isl_aff_get_coefficient_val(data
->div
,
696 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
697 parallel
= isl_val_is_divisible_by(v1
, data
->d
);
698 v1
= isl_val_add(v1
, isl_val_copy(v2
));
701 v1
= isl_val_add(v1
, isl_val_copy(v2
));
702 opposite
= isl_val_is_divisible_by(v1
, data
->d
);
709 if ((parallel
|| opposite
) && mod_constraint_is_simpler(data
, c
)) {
710 isl_aff_free(data
->nonneg
);
711 data
->nonneg
= isl_constraint_get_aff(c
);
712 data
->sign
= parallel
? 1 : -1;
715 isl_constraint_free(c
);
717 if (data
->sign
!= 0 && data
->nonneg
== NULL
)
723 /* Given that data->v * div_i in data->aff is of the form
725 * f * d * floor(div/d) (1)
727 * see if we can find an expression div' that is non-negative over data->build
728 * and that is related to div through
734 * div' = -div + d - 1 + d * e
736 * with e some affine expression.
737 * If so, we write (1) as
739 * f * div + f * (div' mod d)
743 * -f * (-div + d - 1) - f * (div' mod d)
745 * exploiting (in the second case) the fact that
747 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
750 * We first try to find an appropriate expression for div'
751 * from the constraints of data->build->domain (which is therefore
752 * guaranteed to be non-negative on data->build), where we remove
753 * any integer divisions from the constraints and skip this step
754 * if "div" itself involves any integer divisions.
755 * If we cannot find an appropriate expression this way, then
756 * we pass control to extract_nonneg_mod where check
757 * if div or "-div + d -1" themselves happen to be
758 * non-negative on data->build.
760 * While looking for an appropriate constraint in data->build->domain,
761 * we ignore the constant term, so after finding such a constraint,
762 * we still need to fix up the constant term.
763 * In particular, if a is the constant term of "div"
764 * (or d - 1 - the constant term of "div" if data->sign < 0)
765 * and b is the constant term of the constraint, then we need to find
766 * a non-negative constant c such that
768 * b + c \equiv a mod d
774 * and add it to b to obtain the constant term of div'.
775 * If this constant term is "too negative", then we add an appropriate
776 * multiple of d to make it positive.
779 * Note that the above is a only a very simple heuristic for finding an
780 * appropriate expression. We could try a bit harder by also considering
781 * sums of constraints that involve disjoint sets of variables or
782 * we could consider arbitrary linear combinations of constraints,
783 * although that could potentially be much more expensive as it involves
784 * the solution of an LP problem.
786 * In particular, if v_i is a column vector representing constraint i,
787 * w represents div and e_i is the i-th unit vector, then we are looking
788 * for a solution of the constraints
790 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
792 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
793 * If we are not just interested in a non-negative expression, but
794 * also in one with a minimal range, then we don't just want
795 * c = \sum_i lambda_i v_i to be non-negative over the domain,
796 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
797 * that we want to minimize and we now also have to take into account
798 * the constant terms of the constraints.
799 * Alternatively, we could first compute the dual of the domain
800 * and plug in the constraints on the coefficients.
802 static int try_extract_mod(struct isl_extract_mod_data
*data
)
811 n
= isl_aff_dim(data
->div
, isl_dim_div
);
813 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
814 return extract_nonneg_mod(data
);
816 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
817 hull
= isl_basic_set_remove_divs(hull
);
820 r
= isl_basic_set_foreach_constraint(hull
, &check_parallel_or_opposite
,
822 isl_basic_set_free(hull
);
824 if (!data
->sign
|| r
< 0) {
825 isl_aff_free(data
->nonneg
);
828 return extract_nonneg_mod(data
);
831 v1
= isl_aff_get_constant_val(data
->div
);
832 v2
= isl_aff_get_constant_val(data
->nonneg
);
833 if (data
->sign
< 0) {
834 v1
= isl_val_neg(v1
);
835 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
836 v1
= isl_val_sub_ui(v1
, 1);
838 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
839 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
840 v1
= isl_val_add(v1
, v2
);
841 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
842 v2
= isl_val_ceil(v2
);
843 if (isl_val_is_neg(v2
)) {
844 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
845 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
847 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
850 if (data
->sign
< 0) {
851 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
852 data
->v
= isl_val_neg(data
->v
);
855 return extract_term_and_mod(data
,
856 isl_aff_copy(data
->div
), data
->nonneg
);
858 data
->aff
= isl_aff_free(data
->aff
);
862 /* Check if "data->aff" involves any (implicit) modulo computations based
864 * If so, remove them from aff and add expressions corresponding
865 * to those modulo computations to data->pos and/or data->neg.
867 * "aff" is assumed to be an integer affine expression.
869 * In particular, check if (v * div_j) is of the form
871 * f * m * floor(a / m)
873 * and, if so, rewrite it as
875 * f * (a - (a mod m)) = f * a - f * (a mod m)
877 * and extract out -f * (a mod m).
878 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
879 * If f < 0, we add ((-f) * (a mod m)) to *pos.
881 * Note that in order to represent "a mod m" as
883 * (isl_ast_op_pdiv_r, a, m)
885 * we need to make sure that a is non-negative.
886 * If not, we check if "-a + m - 1" is non-negative.
887 * If so, we can rewrite
889 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
891 * and still extract a modulo.
893 static int extract_modulo(struct isl_extract_mod_data
*data
)
895 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
896 data
->d
= isl_aff_get_denominator_val(data
->div
);
897 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
898 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
899 if (try_extract_mod(data
) < 0)
900 data
->aff
= isl_aff_free(data
->aff
);
902 isl_aff_free(data
->div
);
903 isl_val_free(data
->d
);
907 /* Check if "aff" involves any (implicit) modulo computations.
908 * If so, remove them from aff and add expressions corresponding
909 * to those modulo computations to *pos and/or *neg.
910 * We only do this if the option ast_build_prefer_pdiv is set.
912 * "aff" is assumed to be an integer affine expression.
914 * A modulo expression is of the form
916 * a mod m = a - m * floor(a / m)
918 * To detect them in aff, we look for terms of the form
920 * f * m * floor(a / m)
924 * f * (a - (a mod m)) = f * a - f * (a mod m)
926 * and extract out -f * (a mod m).
927 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
928 * If f < 0, we add ((-f) * (a mod m)) to *pos.
930 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
931 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
932 __isl_keep isl_ast_build
*build
)
934 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
941 ctx
= isl_aff_get_ctx(aff
);
942 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
945 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
946 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
947 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
948 isl_dim_div
, data
.i
);
950 return isl_aff_free(aff
);
951 if (isl_val_is_zero(data
.v
) ||
952 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
953 isl_val_free(data
.v
);
956 if (extract_modulo(&data
) < 0)
957 data
.aff
= isl_aff_free(data
.aff
);
958 isl_val_free(data
.v
);
964 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
971 /* Check if aff involves any non-integer coefficients.
972 * If so, split aff into
974 * aff = aff1 + (aff2 / d)
976 * with both aff1 and aff2 having only integer coefficients.
977 * Return aff1 and add (aff2 / d) to *expr.
979 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
980 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
984 isl_local_space
*ls
= NULL
;
985 isl_ast_expr
*rat_expr
;
987 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
988 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
992 d
= isl_aff_get_denominator_val(aff
);
995 if (isl_val_is_one(d
)) {
1000 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
1002 ls
= isl_aff_get_domain_local_space(aff
);
1003 rat
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1005 for (i
= 0; i
< 3; ++i
) {
1006 n
= isl_aff_dim(aff
, t
[i
]);
1007 for (j
= 0; j
< n
; ++j
) {
1010 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1013 if (isl_val_is_divisible_by(v
, d
)) {
1017 rat_j
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1019 rat_j
= isl_aff_scale_val(rat_j
, v
);
1020 rat
= isl_aff_add(rat
, rat_j
);
1024 v
= isl_aff_get_constant_val(aff
);
1025 if (isl_val_is_divisible_by(v
, d
)) {
1030 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(ls
), v
);
1031 rat
= isl_aff_add(rat
, rat_0
);
1034 isl_local_space_free(ls
);
1036 aff
= isl_aff_sub(aff
, isl_aff_copy(rat
));
1037 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(d
));
1039 rat_expr
= isl_ast_expr_from_aff(rat
, build
);
1040 rat_expr
= isl_ast_expr_div(rat_expr
, isl_ast_expr_from_val(d
));
1041 *expr
= ast_expr_add(*expr
, rat_expr
);
1046 isl_local_space_free(ls
);
1052 /* Construct an isl_ast_expr that evaluates the affine expression "aff",
1053 * The result is simplified in terms of build->domain.
1055 * We first extract hidden modulo computations from the affine expression
1056 * and then add terms for each variable with a non-zero coefficient.
1057 * Finally, if the affine expression has a non-trivial denominator,
1058 * we divide the resulting isl_ast_expr by this denominator.
1060 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1061 __isl_keep isl_ast_build
*build
)
1066 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1067 isl_ast_expr
*expr
, *expr_neg
;
1068 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1069 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1070 isl_local_space
*ls
;
1071 struct isl_ast_add_term_data data
;
1076 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1077 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1079 aff
= extract_rational(aff
, &expr
, build
);
1081 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1082 expr
= ast_expr_sub(expr
, expr_neg
);
1084 ls
= isl_aff_get_domain_local_space(aff
);
1087 data
.cst
= isl_aff_get_constant_val(aff
);
1088 for (i
= 0; i
< 3; ++i
) {
1089 n
= isl_aff_dim(aff
, t
[i
]);
1090 for (j
= 0; j
< n
; ++j
) {
1091 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1093 expr
= isl_ast_expr_free(expr
);
1094 if (isl_val_is_zero(v
)) {
1098 expr
= isl_ast_expr_add_term(expr
,
1099 ls
, l
[i
], j
, v
, &data
);
1103 expr
= isl_ast_expr_add_int(expr
, data
.cst
);
1105 isl_local_space_free(ls
);
1110 /* Add terms to "expr" for each variable in "aff" with a coefficient
1111 * with sign equal to "sign".
1112 * The result is simplified in terms of data->build->domain.
1114 static __isl_give isl_ast_expr
*add_signed_terms(__isl_take isl_ast_expr
*expr
,
1115 __isl_keep isl_aff
*aff
, int sign
, struct isl_ast_add_term_data
*data
)
1119 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1120 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1121 isl_local_space
*ls
;
1123 ls
= isl_aff_get_domain_local_space(aff
);
1125 for (i
= 0; i
< 3; ++i
) {
1126 int n
= isl_aff_dim(aff
, t
[i
]);
1127 for (j
= 0; j
< n
; ++j
) {
1128 v
= isl_aff_get_coefficient_val(aff
, t
[i
], j
);
1129 if (sign
* isl_val_sgn(v
) <= 0) {
1134 expr
= isl_ast_expr_add_term(expr
,
1135 ls
, l
[i
], j
, v
, data
);
1139 isl_local_space_free(ls
);
1144 /* Should the constant term "v" be considered positive?
1146 * A positive constant will be added to "pos" by the caller,
1147 * while a negative constant will be added to "neg".
1148 * If either "pos" or "neg" is exactly zero, then we prefer
1149 * to add the constant "v" to that side, irrespective of the sign of "v".
1150 * This results in slightly shorter expressions and may reduce the risk
1153 static int constant_is_considered_positive(__isl_keep isl_val
*v
,
1154 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1156 if (ast_expr_is_zero(pos
))
1158 if (ast_expr_is_zero(neg
))
1160 return isl_val_is_pos(v
);
1163 /* Check if the equality
1167 * represents a stride constraint on the integer division "pos".
1169 * In particular, if the integer division "pos" is equal to
1173 * then check if aff is equal to
1179 * If so, the equality is exactly
1183 * Note that in principle we could also accept
1187 * where e and e' differ by a constant.
1189 static int is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1195 div
= isl_aff_get_div(aff
, pos
);
1196 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1197 d
= isl_aff_get_denominator_val(div
);
1198 eq
= isl_val_abs_eq(c
, d
);
1199 if (eq
>= 0 && eq
) {
1200 aff
= isl_aff_copy(aff
);
1201 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1202 div
= isl_aff_scale_val(div
, d
);
1203 if (isl_val_is_pos(c
))
1204 div
= isl_aff_neg(div
);
1205 eq
= isl_aff_plain_is_equal(div
, aff
);
1215 /* Are all coefficients of "aff" (zero or) negative?
1217 static int all_negative_coefficients(__isl_keep isl_aff
*aff
)
1224 n
= isl_aff_dim(aff
, isl_dim_param
);
1225 for (i
= 0; i
< n
; ++i
)
1226 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1229 n
= isl_aff_dim(aff
, isl_dim_in
);
1230 for (i
= 0; i
< n
; ++i
)
1231 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1237 /* Give an equality of the form
1239 * aff = e - d floor(e/d) = 0
1243 * aff = -e + d floor(e/d) = 0
1245 * with the integer division "pos" equal to floor(e/d),
1246 * construct the AST expression
1248 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1250 * If e only has negative coefficients, then construct
1252 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
1256 static __isl_give isl_ast_expr
*extract_stride_constraint(
1257 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1261 isl_ast_expr
*expr
, *cst
;
1266 ctx
= isl_aff_get_ctx(aff
);
1268 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1269 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1271 if (all_negative_coefficients(aff
))
1272 aff
= isl_aff_neg(aff
);
1274 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1275 expr
= isl_ast_expr_from_aff(aff
, build
);
1277 expr
= isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r
, expr
, cst
);
1278 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1279 expr
= isl_ast_expr_alloc_binary(isl_ast_op_eq
, expr
, cst
);
1284 /* Construct an isl_ast_expr that evaluates the condition "constraint",
1285 * The result is simplified in terms of build->domain.
1287 * We first check if the constraint is an equality of the form
1289 * e - d floor(e/d) = 0
1295 * If so, we convert it to
1297 * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
1299 * Otherwise, let the constraint by either "a >= 0" or "a == 0".
1300 * We first extract hidden modulo computations from "a"
1301 * and then collect all the terms with a positive coefficient in cons_pos
1302 * and the terms with a negative coefficient in cons_neg.
1304 * The result is then of the form
1306 * (isl_ast_op_ge, expr(pos), expr(-neg)))
1310 * (isl_ast_op_eq, expr(pos), expr(-neg)))
1312 * However, if the first expression is an integer constant (and the second
1313 * is not), then we swap the two expressions. This ensures that we construct,
1314 * e.g., "i <= 5" rather than "5 >= i".
1316 * Furthermore, is there are no terms with positive coefficients (or no terms
1317 * with negative coefficients), then the constant term is added to "pos"
1318 * (or "neg"), ignoring the sign of the constant term.
1320 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1321 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1325 isl_ast_expr
*expr_pos
;
1326 isl_ast_expr
*expr_neg
;
1330 enum isl_ast_op_type type
;
1331 struct isl_ast_add_term_data data
;
1336 aff
= isl_constraint_get_aff(constraint
);
1337 eq
= isl_constraint_is_equality(constraint
);
1338 isl_constraint_free(constraint
);
1340 n
= isl_aff_dim(aff
, isl_dim_div
);
1342 for (i
= 0; i
< n
; ++i
) {
1344 is_stride
= is_stride_constraint(aff
, i
);
1348 return extract_stride_constraint(aff
, i
, build
);
1351 ctx
= isl_aff_get_ctx(aff
);
1352 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1353 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1355 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1358 data
.cst
= isl_aff_get_constant_val(aff
);
1359 expr_pos
= add_signed_terms(expr_pos
, aff
, 1, &data
);
1360 data
.cst
= isl_val_neg(data
.cst
);
1361 expr_neg
= add_signed_terms(expr_neg
, aff
, -1, &data
);
1362 data
.cst
= isl_val_neg(data
.cst
);
1364 if (constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
)) {
1365 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1367 data
.cst
= isl_val_neg(data
.cst
);
1368 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1371 if (isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
&&
1372 isl_ast_expr_get_type(expr_neg
) != isl_ast_expr_int
) {
1373 type
= eq
? isl_ast_op_eq
: isl_ast_op_le
;
1374 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1376 type
= eq
? isl_ast_op_eq
: isl_ast_op_ge
;
1377 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1387 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1388 * as a callback to isl_constraint_list_sort.
1389 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1390 * apart, then use isl_constraint_plain_cmp instead.
1392 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1393 __isl_keep isl_constraint
*b
, void *user
)
1397 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1400 return isl_constraint_plain_cmp(a
, b
);
1403 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1404 * The result is simplified in terms of build->domain.
1406 * If "bset" is not bounded by any constraint, then we contruct
1407 * the expression "1", i.e., "true".
1409 * Otherwise, we sort the constraints, putting constraints that involve
1410 * integer divisions after those that do not, and construct an "and"
1411 * of the ast expressions of the individual constraints.
1413 * Each constraint is added to the generated constraints of the build
1414 * after it has been converted to an AST expression so that it can be used
1415 * to simplify the following constraints. This may change the truth value
1416 * of subsequent constraints that do not satisfy the earlier constraints,
1417 * but this does not affect the outcome of the conjunction as it is
1418 * only true if all the conjuncts are true (no matter in what order
1419 * they are evaluated). In particular, the constraints that do not
1420 * involve integer divisions may serve to simplify some constraints
1421 * that do involve integer divisions.
1423 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1424 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1428 isl_constraint_list
*list
;
1432 list
= isl_basic_set_get_constraint_list(bset
);
1433 isl_basic_set_free(bset
);
1434 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
1437 n
= isl_constraint_list_n_constraint(list
);
1439 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
1440 isl_constraint_list_free(list
);
1441 return isl_ast_expr_alloc_int_si(ctx
, 1);
1444 build
= isl_ast_build_copy(build
);
1446 c
= isl_constraint_list_get_constraint(list
, 0);
1447 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1448 set
= isl_set_from_basic_set(bset
);
1449 res
= isl_ast_expr_from_constraint(c
, build
);
1450 build
= isl_ast_build_restrict_generated(build
, set
);
1452 for (i
= 1; i
< n
; ++i
) {
1455 c
= isl_constraint_list_get_constraint(list
, i
);
1456 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
1457 set
= isl_set_from_basic_set(bset
);
1458 expr
= isl_ast_expr_from_constraint(c
, build
);
1459 build
= isl_ast_build_restrict_generated(build
, set
);
1460 res
= isl_ast_expr_and(res
, expr
);
1463 isl_constraint_list_free(list
);
1464 isl_ast_build_free(build
);
1468 struct isl_expr_from_set_data
{
1469 isl_ast_build
*build
;
1474 /* Construct an isl_ast_expr that evaluates the conditions defining "bset"
1475 * and add it to data->res.
1476 * The result is simplified in terms of data->build->domain.
1478 static int expr_from_set(__isl_take isl_basic_set
*bset
, void *user
)
1480 struct isl_expr_from_set_data
*data
= user
;
1483 expr
= isl_ast_build_expr_from_basic_set(data
->build
, bset
);
1487 data
->res
= isl_ast_expr_or(data
->res
, expr
);
1496 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1497 * The result is simplified in terms of build->domain.
1499 * If "set" is an (obviously) empty set, then return the expression "0".
1501 * "set" lives in the internal schedule space.
1503 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
1504 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1506 struct isl_expr_from_set_data data
= { build
, 1, NULL
};
1508 if (isl_set_foreach_basic_set(set
, &expr_from_set
, &data
) < 0)
1509 data
.res
= isl_ast_expr_free(data
.res
);
1510 else if (data
.first
) {
1511 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
1512 data
.res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
1519 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
1520 * The result is simplified in terms of build->domain.
1522 * If "set" is an (obviously) empty set, then return the expression "0".
1524 * "set" lives in the external schedule space.
1526 * The internal AST expression generation assumes that there are
1527 * no unknown divs, so make sure an explicit representation is available.
1528 * Since the set comes from the outside, it may have constraints that
1529 * are redundant with respect to the build domain. Remove them first.
1531 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
1532 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
1534 if (isl_ast_build_need_schedule_map(build
)) {
1536 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1537 set
= isl_set_preimage_multi_aff(set
, ma
);
1540 set
= isl_set_compute_divs(set
);
1541 set
= isl_ast_build_compute_gist(build
, set
);
1542 return isl_ast_build_expr_from_set_internal(build
, set
);
1545 struct isl_from_pw_aff_data
{
1546 isl_ast_build
*build
;
1548 isl_ast_expr
**next
;
1552 /* This function is called during the construction of an isl_ast_expr
1553 * that evaluates an isl_pw_aff.
1554 * Adjust data->next to take into account this piece.
1556 * data->n is the number of pairs of set and aff to go.
1557 * data->dom is the domain of the entire isl_pw_aff.
1559 * If this is the last pair, then data->next is set to evaluate aff
1560 * and the domain is ignored.
1561 * Otherwise, data->next is set to a select operation that selects
1562 * an isl_ast_expr corresponding to "aff" on "set" and to an expression
1563 * that will be filled in by later calls otherwise.
1565 * In both cases, the constraints of "set" are added to the generated
1566 * constraints of the build such that they can be exploited to simplify
1567 * the AST expression constructed from "aff".
1569 static int ast_expr_from_pw_aff(__isl_take isl_set
*set
,
1570 __isl_take isl_aff
*aff
, void *user
)
1572 struct isl_from_pw_aff_data
*data
= user
;
1574 isl_ast_build
*build
;
1576 ctx
= isl_set_get_ctx(set
);
1579 build
= isl_ast_build_copy(data
->build
);
1580 build
= isl_ast_build_restrict_generated(build
, set
);
1581 *data
->next
= isl_ast_expr_from_aff(aff
, build
);
1582 isl_ast_build_free(build
);
1586 isl_ast_expr
*ternary
, *arg
;
1589 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_op_select
, 3);
1590 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
1591 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
1592 ternary
= isl_ast_expr_set_op_arg(ternary
, 0, arg
);
1593 build
= isl_ast_build_copy(data
->build
);
1594 build
= isl_ast_build_restrict_generated(build
, set
);
1595 arg
= isl_ast_expr_from_aff(aff
, build
);
1596 isl_ast_build_free(build
);
1597 ternary
= isl_ast_expr_set_op_arg(ternary
, 1, arg
);
1601 *data
->next
= ternary
;
1602 data
->next
= &ternary
->u
.op
.args
[2];
1608 /* Construct an isl_ast_expr that evaluates "pa".
1609 * The result is simplified in terms of build->domain.
1611 * The domain of "pa" lives in the internal schedule space.
1613 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
1614 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1616 struct isl_from_pw_aff_data data
;
1617 isl_ast_expr
*res
= NULL
;
1619 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
1620 pa
= isl_pw_aff_coalesce(pa
);
1625 data
.n
= isl_pw_aff_n_piece(pa
);
1627 data
.dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1629 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) < 0)
1630 res
= isl_ast_expr_free(res
);
1632 isl_die(isl_pw_aff_get_ctx(pa
), isl_error_invalid
,
1633 "cannot handle void expression", res
= NULL
);
1635 isl_pw_aff_free(pa
);
1636 isl_set_free(data
.dom
);
1640 /* Construct an isl_ast_expr that evaluates "pa".
1641 * The result is simplified in terms of build->domain.
1643 * The domain of "pa" lives in the external schedule space.
1645 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
1646 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
1650 if (isl_ast_build_need_schedule_map(build
)) {
1652 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1653 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
1655 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1659 /* Set the ids of the input dimensions of "mpa" to the iterator ids
1662 * The domain of "mpa" is assumed to live in the internal schedule domain.
1664 static __isl_give isl_multi_pw_aff
*set_iterator_names(
1665 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1669 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
1670 for (i
= 0; i
< n
; ++i
) {
1673 id
= isl_ast_build_get_iterator_id(build
, i
);
1674 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
1680 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
1681 * the remaining arguments derived from "mpa".
1682 * That is, construct a call or access expression that calls/accesses "arg0"
1683 * with arguments/indices specified by "mpa".
1685 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
1686 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1687 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
1693 ctx
= isl_ast_build_get_ctx(build
);
1695 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
1696 expr
= isl_ast_expr_alloc_op(ctx
, type
, 1 + n
);
1697 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
1698 for (i
= 0; i
< n
; ++i
) {
1702 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
1703 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
1704 expr
= isl_ast_expr_set_op_arg(expr
, 1 + i
, arg
);
1707 isl_multi_pw_aff_free(mpa
);
1711 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1712 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1713 __isl_take isl_multi_pw_aff
*mpa
);
1715 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
1716 * The range of "mpa" is assumed to be wrapped relation.
1717 * The domain of this wrapped relation specifies the structure being
1718 * accessed, while the range of this wrapped relation spacifies the
1719 * member of the structure being accessed.
1721 * The domain of "mpa" is assumed to live in the internal schedule domain.
1723 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
1724 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1727 isl_multi_pw_aff
*domain
;
1728 isl_ast_expr
*domain_expr
, *expr
;
1729 enum isl_ast_op_type type
= isl_ast_op_access
;
1731 domain
= isl_multi_pw_aff_copy(mpa
);
1732 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1733 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
1735 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
1736 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1737 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1738 "missing field name", goto error
);
1739 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1740 expr
= isl_ast_expr_from_id(id
);
1741 expr
= isl_ast_expr_alloc_binary(isl_ast_op_member
, domain_expr
, expr
);
1742 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1744 isl_multi_pw_aff_free(mpa
);
1748 /* Construct an isl_ast_expr of type "type" that calls or accesses
1749 * the element specified by "mpa".
1750 * The first argument is obtained from the output tuple name.
1751 * The remaining arguments are given by the piecewise affine expressions.
1753 * If the range of "mpa" is a mapped relation, then we assume it
1754 * represents an access to a member of a structure.
1756 * The domain of "mpa" is assumed to live in the internal schedule domain.
1758 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
1759 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1760 __isl_take isl_multi_pw_aff
*mpa
)
1769 if (type
== isl_ast_op_access
&&
1770 isl_multi_pw_aff_range_is_wrapping(mpa
))
1771 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
1773 mpa
= set_iterator_names(build
, mpa
);
1777 ctx
= isl_ast_build_get_ctx(build
);
1779 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
1780 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
1782 id
= isl_id_alloc(ctx
, "", NULL
);
1784 expr
= isl_ast_expr_from_id(id
);
1785 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
1787 isl_multi_pw_aff_free(mpa
);
1791 /* Construct an isl_ast_expr of type "type" that calls or accesses
1792 * the element specified by "pma".
1793 * The first argument is obtained from the output tuple name.
1794 * The remaining arguments are given by the piecewise affine expressions.
1796 * The domain of "pma" is assumed to live in the internal schedule domain.
1798 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
1799 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1800 __isl_take isl_pw_multi_aff
*pma
)
1802 isl_multi_pw_aff
*mpa
;
1804 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1805 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1808 /* Construct an isl_ast_expr of type "type" that calls or accesses
1809 * the element specified by "mpa".
1810 * The first argument is obtained from the output tuple name.
1811 * The remaining arguments are given by the piecewise affine expressions.
1813 * The domain of "mpa" is assumed to live in the external schedule domain.
1815 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
1816 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1817 __isl_take isl_multi_pw_aff
*mpa
)
1821 isl_space
*space_build
, *space_mpa
;
1823 space_build
= isl_ast_build_get_space(build
, 0);
1824 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
1825 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
1826 space_mpa
, isl_dim_in
);
1827 isl_space_free(space_build
);
1828 isl_space_free(space_mpa
);
1832 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
1833 "spaces don't match", goto error
);
1835 if (isl_ast_build_need_schedule_map(build
)) {
1837 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
1838 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
1841 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
1844 isl_multi_pw_aff_free(mpa
);
1848 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
1849 * The name of the function is obtained from the output tuple name.
1850 * The arguments are given by the piecewise affine expressions.
1852 * The domain of "mpa" is assumed to live in the external schedule domain.
1854 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
1855 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1857 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_call
, mpa
);
1860 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
1861 * The name of the array is obtained from the output tuple name.
1862 * The index expressions are given by the piecewise affine expressions.
1864 * The domain of "mpa" is assumed to live in the external schedule domain.
1866 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
1867 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
1869 return isl_ast_build_from_multi_pw_aff(build
, isl_ast_op_access
, mpa
);
1872 /* Construct an isl_ast_expr of type "type" that calls or accesses
1873 * the element specified by "pma".
1874 * The first argument is obtained from the output tuple name.
1875 * The remaining arguments are given by the piecewise affine expressions.
1877 * The domain of "pma" is assumed to live in the external schedule domain.
1879 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
1880 __isl_keep isl_ast_build
*build
, enum isl_ast_op_type type
,
1881 __isl_take isl_pw_multi_aff
*pma
)
1883 isl_multi_pw_aff
*mpa
;
1885 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
1886 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
1889 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
1890 * The name of the function is obtained from the output tuple name.
1891 * The arguments are given by the piecewise affine expressions.
1893 * The domain of "pma" is assumed to live in the external schedule domain.
1895 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
1896 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1898 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_call
, pma
);
1901 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
1902 * The name of the array is obtained from the output tuple name.
1903 * The index expressions are given by the piecewise affine expressions.
1905 * The domain of "pma" is assumed to live in the external schedule domain.
1907 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
1908 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
1910 return isl_ast_build_from_pw_multi_aff(build
, isl_ast_op_access
, pma
);
1913 /* Construct an isl_ast_expr that calls the domain element
1914 * specified by "executed".
1916 * "executed" is assumed to be single-valued, with a domain that lives
1917 * in the internal schedule space.
1919 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
1920 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
1922 isl_pw_multi_aff
*iteration
;
1925 iteration
= isl_pw_multi_aff_from_map(executed
);
1926 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
1927 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
1928 isl_ast_build_get_domain(build
));
1929 expr
= isl_ast_build_from_pw_multi_aff_internal(build
, isl_ast_op_call
,
1931 return isl_ast_node_alloc_user(expr
);