3 #include "isl_map_private.h"
7 #include "isl_equalities.h"
10 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
);
12 static void swap_ineq(struct isl_basic_map
*bmap
, unsigned i
, unsigned j
)
18 bmap
->ineq
[i
] = bmap
->ineq
[j
];
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map
**bmap
,
29 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
31 enum isl_lp_result res
;
38 total
= isl_basic_map_total_dim(*bmap
);
39 for (i
= 0; i
< total
; ++i
) {
41 if (isl_int_is_zero(c
[1+i
]))
43 sign
= isl_int_sgn(c
[1+i
]);
44 for (j
= 0; j
< (*bmap
)->n_ineq
; ++j
)
45 if (sign
== isl_int_sgn((*bmap
)->ineq
[j
][1+i
]))
47 if (j
== (*bmap
)->n_ineq
)
53 res
= isl_solve_lp(*bmap
, 0, c
, (*bmap
)->ctx
->one
, opt_n
, opt_d
);
54 if (res
== isl_lp_unbounded
)
56 if (res
== isl_lp_error
)
58 if (res
== isl_lp_empty
) {
59 *bmap
= isl_basic_map_set_to_empty(*bmap
);
62 return !isl_int_is_neg(*opt_n
);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set
**bset
,
66 isl_int
*c
, isl_int
*opt_n
, isl_int
*opt_d
)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map
**)bset
, c
, opt_n
, opt_d
);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
80 struct isl_basic_map
*isl_basic_map_convex_hull(struct isl_basic_map
*bmap
)
87 bmap
= isl_basic_map_gauss(bmap
, NULL
);
88 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
90 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
92 if (bmap
->n_ineq
<= 1)
95 tab
= isl_tab_from_basic_map(bmap
);
96 tab
= isl_tab_detect_equalities(bmap
->ctx
, tab
);
97 tab
= isl_tab_detect_redundant(bmap
->ctx
, tab
);
98 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
99 isl_tab_free(bmap
->ctx
, tab
);
100 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
101 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
105 struct isl_basic_set
*isl_basic_set_convex_hull(struct isl_basic_set
*bset
)
107 return (struct isl_basic_set
*)
108 isl_basic_map_convex_hull((struct isl_basic_map
*)bset
);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_ctx
*ctx
, struct isl_set
*set
,
116 isl_int
*c
, unsigned len
)
124 isl_int_init(opt_denom
);
126 for (j
= 0; j
< set
->n
; ++j
) {
127 enum isl_lp_result res
;
129 if (ISL_F_ISSET(set
->p
[j
], ISL_BASIC_SET_EMPTY
))
132 res
= isl_solve_lp((struct isl_basic_map
*)set
->p
[j
],
133 0, c
, ctx
->one
, &opt
, &opt_denom
);
134 if (res
== isl_lp_unbounded
)
136 if (res
== isl_lp_error
)
138 if (res
== isl_lp_empty
) {
139 set
->p
[j
] = isl_basic_set_set_to_empty(set
->p
[j
]);
144 if (!isl_int_is_one(opt_denom
))
145 isl_seq_scale(c
, c
, opt_denom
, len
);
146 if (first
|| isl_int_is_neg(opt
))
147 isl_int_sub(c
[0], c
[0], opt
);
151 isl_int_clear(opt_denom
);
155 isl_int_clear(opt_denom
);
159 /* Check if "c" is a direction that is independent of the previously found "n"
161 * If so, add it to the list, with the negative of the lower bound
162 * in the constant position, i.e., such that c corresponds to a bounding
163 * hyperplane (but not necessarily a facet).
164 * Assumes set "set" is bounded.
166 static int is_independent_bound(struct isl_ctx
*ctx
,
167 struct isl_set
*set
, isl_int
*c
,
168 struct isl_mat
*dirs
, int n
)
173 isl_seq_cpy(dirs
->row
[n
]+1, c
+1, dirs
->n_col
-1);
175 int pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
178 for (i
= 0; i
< n
; ++i
) {
180 pos_i
= isl_seq_first_non_zero(dirs
->row
[i
]+1, dirs
->n_col
-1);
185 isl_seq_elim(dirs
->row
[n
]+1, dirs
->row
[i
]+1, pos
,
186 dirs
->n_col
-1, NULL
);
187 pos
= isl_seq_first_non_zero(dirs
->row
[n
]+1, dirs
->n_col
-1);
193 is_bound
= uset_is_bound(ctx
, set
, dirs
->row
[n
], dirs
->n_col
);
198 isl_int
*t
= dirs
->row
[n
];
199 for (k
= n
; k
> i
; --k
)
200 dirs
->row
[k
] = dirs
->row
[k
-1];
206 /* Compute and return a maximal set of linearly independent bounds
207 * on the set "set", based on the constraints of the basic sets
210 static struct isl_mat
*independent_bounds(struct isl_ctx
*ctx
,
214 struct isl_mat
*dirs
= NULL
;
215 unsigned dim
= isl_set_n_dim(set
);
217 dirs
= isl_mat_alloc(ctx
, dim
, 1+dim
);
222 for (i
= 0; n
< dim
&& i
< set
->n
; ++i
) {
224 struct isl_basic_set
*bset
= set
->p
[i
];
226 for (j
= 0; n
< dim
&& j
< bset
->n_eq
; ++j
) {
227 f
= is_independent_bound(ctx
, set
, bset
->eq
[j
],
234 for (j
= 0; n
< dim
&& j
< bset
->n_ineq
; ++j
) {
235 f
= is_independent_bound(ctx
, set
, bset
->ineq
[j
],
246 isl_mat_free(ctx
, dirs
);
250 static struct isl_basic_set
*isl_basic_set_set_rational(
251 struct isl_basic_set
*bset
)
256 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
259 bset
= isl_basic_set_cow(bset
);
263 ISL_F_SET(bset
, ISL_BASIC_MAP_RATIONAL
);
265 return isl_basic_set_finalize(bset
);
268 static struct isl_set
*isl_set_set_rational(struct isl_set
*set
)
272 set
= isl_set_cow(set
);
275 for (i
= 0; i
< set
->n
; ++i
) {
276 set
->p
[i
] = isl_basic_set_set_rational(set
->p
[i
]);
286 static struct isl_basic_set
*isl_basic_set_add_equality(struct isl_ctx
*ctx
,
287 struct isl_basic_set
*bset
, isl_int
*c
)
293 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
296 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
297 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
298 dim
= isl_basic_set_n_dim(bset
);
299 bset
= isl_basic_set_cow(bset
);
300 bset
= isl_basic_set_extend(bset
, 0, dim
, 0, 1, 0);
301 i
= isl_basic_set_alloc_equality(bset
);
304 isl_seq_cpy(bset
->eq
[i
], c
, 1 + dim
);
307 isl_basic_set_free(bset
);
311 static struct isl_set
*isl_set_add_equality(struct isl_ctx
*ctx
,
312 struct isl_set
*set
, isl_int
*c
)
316 set
= isl_set_cow(set
);
319 for (i
= 0; i
< set
->n
; ++i
) {
320 set
->p
[i
] = isl_basic_set_add_equality(ctx
, set
->p
[i
], c
);
330 /* Given a union of basic sets, construct the constraints for wrapping
331 * a facet around one of its ridges.
332 * In particular, if each of n the d-dimensional basic sets i in "set"
333 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
334 * and is defined by the constraints
338 * then the resulting set is of dimension n*(1+d) and has as constraints
347 static struct isl_basic_set
*wrap_constraints(struct isl_set
*set
)
349 struct isl_basic_set
*lp
;
353 unsigned dim
, lp_dim
;
358 dim
= 1 + isl_set_n_dim(set
);
361 for (i
= 0; i
< set
->n
; ++i
) {
362 n_eq
+= set
->p
[i
]->n_eq
;
363 n_ineq
+= set
->p
[i
]->n_ineq
;
365 lp
= isl_basic_set_alloc(set
->ctx
, 0, dim
* set
->n
, 0, n_eq
, n_ineq
);
368 lp_dim
= isl_basic_set_n_dim(lp
);
369 k
= isl_basic_set_alloc_equality(lp
);
370 isl_int_set_si(lp
->eq
[k
][0], -1);
371 for (i
= 0; i
< set
->n
; ++i
) {
372 isl_int_set_si(lp
->eq
[k
][1+dim
*i
], 0);
373 isl_int_set_si(lp
->eq
[k
][1+dim
*i
+1], 1);
374 isl_seq_clr(lp
->eq
[k
]+1+dim
*i
+2, dim
-2);
376 for (i
= 0; i
< set
->n
; ++i
) {
377 k
= isl_basic_set_alloc_inequality(lp
);
378 isl_seq_clr(lp
->ineq
[k
], 1+lp_dim
);
379 isl_int_set_si(lp
->ineq
[k
][1+dim
*i
], 1);
381 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
382 k
= isl_basic_set_alloc_equality(lp
);
383 isl_seq_clr(lp
->eq
[k
], 1+dim
*i
);
384 isl_seq_cpy(lp
->eq
[k
]+1+dim
*i
, set
->p
[i
]->eq
[j
], dim
);
385 isl_seq_clr(lp
->eq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
388 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
) {
389 k
= isl_basic_set_alloc_inequality(lp
);
390 isl_seq_clr(lp
->ineq
[k
], 1+dim
*i
);
391 isl_seq_cpy(lp
->ineq
[k
]+1+dim
*i
, set
->p
[i
]->ineq
[j
], dim
);
392 isl_seq_clr(lp
->ineq
[k
]+1+dim
*(i
+1), dim
*(set
->n
-i
-1));
398 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
399 * of that facet, compute the other facet of the convex hull that contains
402 * We first transform the set such that the facet constraint becomes
406 * I.e., the facet lies in
410 * and on that facet, the constraint that defines the ridge is
414 * (This transformation is not strictly needed, all that is needed is
415 * that the ridge contains the origin.)
417 * Since the ridge contains the origin, the cone of the convex hull
418 * will be of the form
423 * with this second constraint defining the new facet.
424 * The constant a is obtained by settting x_1 in the cone of the
425 * convex hull to 1 and minimizing x_2.
426 * Now, each element in the cone of the convex hull is the sum
427 * of elements in the cones of the basic sets.
428 * If a_i is the dilation factor of basic set i, then the problem
429 * we need to solve is
442 * the constraints of each (transformed) basic set.
443 * If a = n/d, then the constraint defining the new facet (in the transformed
446 * -n x_1 + d x_2 >= 0
448 * In the original space, we need to take the same combination of the
449 * corresponding constraints "facet" and "ridge".
451 * Note that a is always finite, since we only apply the wrapping
452 * technique to a union of polytopes.
454 static isl_int
*wrap_facet(struct isl_set
*set
, isl_int
*facet
, isl_int
*ridge
)
457 struct isl_mat
*T
= NULL
;
458 struct isl_basic_set
*lp
= NULL
;
460 enum isl_lp_result res
;
464 set
= isl_set_copy(set
);
466 dim
= 1 + isl_set_n_dim(set
);
467 T
= isl_mat_alloc(set
->ctx
, 3, dim
);
470 isl_int_set_si(T
->row
[0][0], 1);
471 isl_seq_clr(T
->row
[0]+1, dim
- 1);
472 isl_seq_cpy(T
->row
[1], facet
, dim
);
473 isl_seq_cpy(T
->row
[2], ridge
, dim
);
474 T
= isl_mat_right_inverse(set
->ctx
, T
);
475 set
= isl_set_preimage(set
, T
);
479 lp
= wrap_constraints(set
);
480 obj
= isl_vec_alloc(set
->ctx
, 1 + dim
*set
->n
);
483 isl_int_set_si(obj
->block
.data
[0], 0);
484 for (i
= 0; i
< set
->n
; ++i
) {
485 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
, 2);
486 isl_int_set_si(obj
->block
.data
[1 + dim
*i
+2], 1);
487 isl_seq_clr(obj
->block
.data
+ 1 + dim
*i
+3, dim
-3);
491 res
= isl_solve_lp((struct isl_basic_map
*)lp
, 0,
492 obj
->block
.data
, set
->ctx
->one
, &num
, &den
);
493 if (res
== isl_lp_ok
) {
494 isl_int_neg(num
, num
);
495 isl_seq_combine(facet
, num
, facet
, den
, ridge
, dim
);
500 isl_basic_set_free(lp
);
502 isl_assert(set
->ctx
, res
== isl_lp_ok
, return NULL
);
505 isl_basic_set_free(lp
);
506 isl_mat_free(set
->ctx
, T
);
511 /* Given a set of d linearly independent bounding constraints of the
512 * convex hull of "set", compute the constraint of a facet of "set".
514 * We first compute the intersection with the first bounding hyperplane
515 * and remove the component corresponding to this hyperplane from
516 * other bounds (in homogeneous space).
517 * We then wrap around one of the remaining bounding constraints
518 * and continue the process until all bounding constraints have been
519 * taken into account.
520 * The resulting linear combination of the bounding constraints will
521 * correspond to a facet of the convex hull.
523 static struct isl_mat
*initial_facet_constraint(struct isl_ctx
*ctx
,
524 struct isl_set
*set
, struct isl_mat
*bounds
)
526 struct isl_set
*slice
= NULL
;
527 struct isl_basic_set
*face
= NULL
;
528 struct isl_mat
*m
, *U
, *Q
;
530 unsigned dim
= isl_set_n_dim(set
);
532 isl_assert(ctx
, set
->n
> 0, goto error
);
533 isl_assert(ctx
, bounds
->n_row
== dim
, goto error
);
535 while (bounds
->n_row
> 1) {
536 slice
= isl_set_copy(set
);
537 slice
= isl_set_add_equality(ctx
, slice
, bounds
->row
[0]);
538 face
= isl_set_affine_hull(slice
);
541 if (face
->n_eq
== 1) {
542 isl_basic_set_free(face
);
545 m
= isl_mat_alloc(ctx
, 1 + face
->n_eq
, 1 + dim
);
548 isl_int_set_si(m
->row
[0][0], 1);
549 isl_seq_clr(m
->row
[0]+1, dim
);
550 for (i
= 0; i
< face
->n_eq
; ++i
)
551 isl_seq_cpy(m
->row
[1 + i
], face
->eq
[i
], 1 + dim
);
552 U
= isl_mat_right_inverse(ctx
, m
);
553 Q
= isl_mat_right_inverse(ctx
, isl_mat_copy(ctx
, U
));
554 U
= isl_mat_drop_cols(ctx
, U
, 1 + face
->n_eq
,
556 Q
= isl_mat_drop_rows(ctx
, Q
, 1 + face
->n_eq
,
558 U
= isl_mat_drop_cols(ctx
, U
, 0, 1);
559 Q
= isl_mat_drop_rows(ctx
, Q
, 0, 1);
560 bounds
= isl_mat_product(ctx
, bounds
, U
);
561 bounds
= isl_mat_product(ctx
, bounds
, Q
);
562 while (isl_seq_first_non_zero(bounds
->row
[bounds
->n_row
-1],
563 bounds
->n_col
) == -1) {
565 isl_assert(ctx
, bounds
->n_row
> 1, goto error
);
567 if (!wrap_facet(set
, bounds
->row
[0],
568 bounds
->row
[bounds
->n_row
-1]))
570 isl_basic_set_free(face
);
575 isl_basic_set_free(face
);
576 isl_mat_free(ctx
, bounds
);
580 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
581 * compute a hyperplane description of the facet, i.e., compute the facets
584 * We compute an affine transformation that transforms the constraint
593 * by computing the right inverse U of a matrix that starts with the rows
606 * Since z_1 is zero, we can drop this variable as well as the corresponding
607 * column of U to obtain
615 * with Q' equal to Q, but without the corresponding row.
616 * After computing the facets of the facet in the z' space,
617 * we convert them back to the x space through Q.
619 static struct isl_basic_set
*compute_facet(struct isl_set
*set
, isl_int
*c
)
621 struct isl_mat
*m
, *U
, *Q
;
622 struct isl_basic_set
*facet
= NULL
;
627 set
= isl_set_copy(set
);
628 dim
= isl_set_n_dim(set
);
629 m
= isl_mat_alloc(set
->ctx
, 2, 1 + dim
);
632 isl_int_set_si(m
->row
[0][0], 1);
633 isl_seq_clr(m
->row
[0]+1, dim
);
634 isl_seq_cpy(m
->row
[1], c
, 1+dim
);
635 U
= isl_mat_right_inverse(set
->ctx
, m
);
636 Q
= isl_mat_right_inverse(set
->ctx
, isl_mat_copy(set
->ctx
, U
));
637 U
= isl_mat_drop_cols(set
->ctx
, U
, 1, 1);
638 Q
= isl_mat_drop_rows(set
->ctx
, Q
, 1, 1);
639 set
= isl_set_preimage(set
, U
);
640 facet
= uset_convex_hull_wrap_bounded(set
);
641 facet
= isl_basic_set_preimage(facet
, Q
);
642 isl_assert(ctx
, facet
->n_eq
== 0, goto error
);
645 isl_basic_set_free(facet
);
650 /* Given an initial facet constraint, compute the remaining facets.
651 * We do this by running through all facets found so far and computing
652 * the adjacent facets through wrapping, adding those facets that we
653 * hadn't already found before.
655 * For each facet we have found so far, we first compute its facets
656 * in the resulting convex hull. That is, we compute the ridges
657 * of the resulting convex hull contained in the facet.
658 * We also compute the corresponding facet in the current approximation
659 * of the convex hull. There is no need to wrap around the ridges
660 * in this facet since that would result in a facet that is already
661 * present in the current approximation.
663 * This function can still be significantly optimized by checking which of
664 * the facets of the basic sets are also facets of the convex hull and
665 * using all the facets so far to help in constructing the facets of the
668 * using the technique in section "3.1 Ridge Generation" of
669 * "Extended Convex Hull" by Fukuda et al.
671 static struct isl_basic_set
*extend(struct isl_basic_set
*hull
,
676 struct isl_basic_set
*facet
= NULL
;
677 struct isl_basic_set
*hull_facet
= NULL
;
681 isl_assert(set
->ctx
, set
->n
> 0, goto error
);
683 dim
= isl_set_n_dim(set
);
685 for (i
= 0; i
< hull
->n_ineq
; ++i
) {
686 facet
= compute_facet(set
, hull
->ineq
[i
]);
687 facet
= isl_basic_set_add_equality(facet
->ctx
, facet
, hull
->ineq
[i
]);
688 facet
= isl_basic_set_gauss(facet
, NULL
);
689 facet
= isl_basic_set_normalize_constraints(facet
);
690 hull_facet
= isl_basic_set_copy(hull
);
691 hull_facet
= isl_basic_set_add_equality(hull_facet
->ctx
, hull_facet
, hull
->ineq
[i
]);
692 hull_facet
= isl_basic_set_gauss(hull_facet
, NULL
);
693 hull_facet
= isl_basic_set_normalize_constraints(hull_facet
);
696 hull
= isl_basic_set_cow(hull
);
697 hull
= isl_basic_set_extend_dim(hull
,
698 isl_dim_copy(hull
->dim
), 0, 0, facet
->n_ineq
);
699 for (j
= 0; j
< facet
->n_ineq
; ++j
) {
700 for (f
= 0; f
< hull_facet
->n_ineq
; ++f
)
701 if (isl_seq_eq(facet
->ineq
[j
],
702 hull_facet
->ineq
[f
], 1 + dim
))
704 if (f
< hull_facet
->n_ineq
)
706 k
= isl_basic_set_alloc_inequality(hull
);
709 isl_seq_cpy(hull
->ineq
[k
], hull
->ineq
[i
], 1+dim
);
710 if (!wrap_facet(set
, hull
->ineq
[k
], facet
->ineq
[j
]))
713 isl_basic_set_free(hull_facet
);
714 isl_basic_set_free(facet
);
716 hull
= isl_basic_set_simplify(hull
);
717 hull
= isl_basic_set_finalize(hull
);
720 isl_basic_set_free(hull_facet
);
721 isl_basic_set_free(facet
);
722 isl_basic_set_free(hull
);
726 /* Special case for computing the convex hull of a one dimensional set.
727 * We simply collect the lower and upper bounds of each basic set
728 * and the biggest of those.
730 static struct isl_basic_set
*convex_hull_1d(struct isl_ctx
*ctx
,
733 struct isl_mat
*c
= NULL
;
734 isl_int
*lower
= NULL
;
735 isl_int
*upper
= NULL
;
738 struct isl_basic_set
*hull
;
740 for (i
= 0; i
< set
->n
; ++i
) {
741 set
->p
[i
] = isl_basic_set_simplify(set
->p
[i
]);
745 set
= isl_set_remove_empty_parts(set
);
748 isl_assert(ctx
, set
->n
> 0, goto error
);
749 c
= isl_mat_alloc(ctx
, 2, 2);
753 if (set
->p
[0]->n_eq
> 0) {
754 isl_assert(ctx
, set
->p
[0]->n_eq
== 1, goto error
);
757 if (isl_int_is_pos(set
->p
[0]->eq
[0][1])) {
758 isl_seq_cpy(lower
, set
->p
[0]->eq
[0], 2);
759 isl_seq_neg(upper
, set
->p
[0]->eq
[0], 2);
761 isl_seq_neg(lower
, set
->p
[0]->eq
[0], 2);
762 isl_seq_cpy(upper
, set
->p
[0]->eq
[0], 2);
765 for (j
= 0; j
< set
->p
[0]->n_ineq
; ++j
) {
766 if (isl_int_is_pos(set
->p
[0]->ineq
[j
][1])) {
768 isl_seq_cpy(lower
, set
->p
[0]->ineq
[j
], 2);
771 isl_seq_cpy(upper
, set
->p
[0]->ineq
[j
], 2);
778 for (i
= 0; i
< set
->n
; ++i
) {
779 struct isl_basic_set
*bset
= set
->p
[i
];
783 for (j
= 0; j
< bset
->n_eq
; ++j
) {
787 isl_int_mul(a
, lower
[0], bset
->eq
[j
][1]);
788 isl_int_mul(b
, lower
[1], bset
->eq
[j
][0]);
789 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
790 isl_seq_cpy(lower
, bset
->eq
[j
], 2);
791 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
792 isl_seq_neg(lower
, bset
->eq
[j
], 2);
795 isl_int_mul(a
, upper
[0], bset
->eq
[j
][1]);
796 isl_int_mul(b
, upper
[1], bset
->eq
[j
][0]);
797 if (isl_int_lt(a
, b
) && isl_int_is_pos(bset
->eq
[j
][1]))
798 isl_seq_neg(upper
, bset
->eq
[j
], 2);
799 if (isl_int_gt(a
, b
) && isl_int_is_neg(bset
->eq
[j
][1]))
800 isl_seq_cpy(upper
, bset
->eq
[j
], 2);
803 for (j
= 0; j
< bset
->n_ineq
; ++j
) {
804 if (isl_int_is_pos(bset
->ineq
[j
][1]))
806 if (isl_int_is_neg(bset
->ineq
[j
][1]))
808 if (lower
&& isl_int_is_pos(bset
->ineq
[j
][1])) {
809 isl_int_mul(a
, lower
[0], bset
->ineq
[j
][1]);
810 isl_int_mul(b
, lower
[1], bset
->ineq
[j
][0]);
811 if (isl_int_lt(a
, b
))
812 isl_seq_cpy(lower
, bset
->ineq
[j
], 2);
814 if (upper
&& isl_int_is_neg(bset
->ineq
[j
][1])) {
815 isl_int_mul(a
, upper
[0], bset
->ineq
[j
][1]);
816 isl_int_mul(b
, upper
[1], bset
->ineq
[j
][0]);
817 if (isl_int_gt(a
, b
))
818 isl_seq_cpy(upper
, bset
->ineq
[j
], 2);
829 hull
= isl_basic_set_alloc(ctx
, 0, 1, 0, 0, 2);
830 hull
= isl_basic_set_set_rational(hull
);
834 k
= isl_basic_set_alloc_inequality(hull
);
835 isl_seq_cpy(hull
->ineq
[k
], lower
, 2);
838 k
= isl_basic_set_alloc_inequality(hull
);
839 isl_seq_cpy(hull
->ineq
[k
], upper
, 2);
841 hull
= isl_basic_set_finalize(hull
);
843 isl_mat_free(ctx
, c
);
847 isl_mat_free(ctx
, c
);
851 /* Project out final n dimensions using Fourier-Motzkin */
852 static struct isl_set
*set_project_out(struct isl_ctx
*ctx
,
853 struct isl_set
*set
, unsigned n
)
855 return isl_set_remove_dims(set
, isl_set_n_dim(set
) - n
, n
);
858 static struct isl_basic_set
*convex_hull_0d(struct isl_set
*set
)
860 struct isl_basic_set
*convex_hull
;
865 if (isl_set_is_empty(set
))
866 convex_hull
= isl_basic_set_empty(isl_dim_copy(set
->dim
));
868 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
873 /* Compute the convex hull of a pair of basic sets without any parameters or
874 * integer divisions using Fourier-Motzkin elimination.
875 * The convex hull is the set of all points that can be written as
876 * the sum of points from both basic sets (in homogeneous coordinates).
877 * We set up the constraints in a space with dimensions for each of
878 * the three sets and then project out the dimensions corresponding
879 * to the two original basic sets, retaining only those corresponding
880 * to the convex hull.
882 static struct isl_basic_set
*convex_hull_pair_elim(struct isl_basic_set
*bset1
,
883 struct isl_basic_set
*bset2
)
886 struct isl_basic_set
*bset
[2];
887 struct isl_basic_set
*hull
= NULL
;
890 if (!bset1
|| !bset2
)
893 dim
= isl_basic_set_n_dim(bset1
);
894 hull
= isl_basic_set_alloc(bset1
->ctx
, 0, 2 + 3 * dim
, 0,
895 1 + dim
+ bset1
->n_eq
+ bset2
->n_eq
,
896 2 + bset1
->n_ineq
+ bset2
->n_ineq
);
899 for (i
= 0; i
< 2; ++i
) {
900 for (j
= 0; j
< bset
[i
]->n_eq
; ++j
) {
901 k
= isl_basic_set_alloc_equality(hull
);
904 isl_seq_clr(hull
->eq
[k
], (i
+1) * (1+dim
));
905 isl_seq_clr(hull
->eq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
906 isl_seq_cpy(hull
->eq
[k
]+(i
+1)*(1+dim
), bset
[i
]->eq
[j
],
909 for (j
= 0; j
< bset
[i
]->n_ineq
; ++j
) {
910 k
= isl_basic_set_alloc_inequality(hull
);
913 isl_seq_clr(hull
->ineq
[k
], (i
+1) * (1+dim
));
914 isl_seq_clr(hull
->ineq
[k
]+(i
+2)*(1+dim
), (1-i
)*(1+dim
));
915 isl_seq_cpy(hull
->ineq
[k
]+(i
+1)*(1+dim
),
916 bset
[i
]->ineq
[j
], 1+dim
);
918 k
= isl_basic_set_alloc_inequality(hull
);
921 isl_seq_clr(hull
->ineq
[k
], 1+2+3*dim
);
922 isl_int_set_si(hull
->ineq
[k
][(i
+1)*(1+dim
)], 1);
924 for (j
= 0; j
< 1+dim
; ++j
) {
925 k
= isl_basic_set_alloc_equality(hull
);
928 isl_seq_clr(hull
->eq
[k
], 1+2+3*dim
);
929 isl_int_set_si(hull
->eq
[k
][j
], -1);
930 isl_int_set_si(hull
->eq
[k
][1+dim
+j
], 1);
931 isl_int_set_si(hull
->eq
[k
][2*(1+dim
)+j
], 1);
933 hull
= isl_basic_set_set_rational(hull
);
934 hull
= isl_basic_set_remove_dims(hull
, dim
, 2*(1+dim
));
935 hull
= isl_basic_set_convex_hull(hull
);
936 isl_basic_set_free(bset1
);
937 isl_basic_set_free(bset2
);
940 isl_basic_set_free(bset1
);
941 isl_basic_set_free(bset2
);
942 isl_basic_set_free(hull
);
946 static int isl_basic_set_is_bounded(struct isl_basic_set
*bset
)
951 tab
= isl_tab_from_recession_cone((struct isl_basic_map
*)bset
);
952 bounded
= isl_tab_cone_is_bounded(bset
->ctx
, tab
);
953 isl_tab_free(bset
->ctx
, tab
);
957 static int isl_set_is_bounded(struct isl_set
*set
)
961 for (i
= 0; i
< set
->n
; ++i
) {
962 int bounded
= isl_basic_set_is_bounded(set
->p
[i
]);
963 if (!bounded
|| bounded
< 0)
969 /* Compute the lineality space of the convex hull of bset1 and bset2.
971 * We first compute the intersection of the recession cone of bset1
972 * with the negative of the recession cone of bset2 and then compute
973 * the linear hull of the resulting cone.
975 static struct isl_basic_set
*induced_lineality_space(
976 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
979 struct isl_basic_set
*lin
= NULL
;
982 if (!bset1
|| !bset2
)
985 dim
= isl_basic_set_total_dim(bset1
);
986 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1
), 0,
987 bset1
->n_eq
+ bset2
->n_eq
,
988 bset1
->n_ineq
+ bset2
->n_ineq
);
989 lin
= isl_basic_set_set_rational(lin
);
992 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
993 k
= isl_basic_set_alloc_equality(lin
);
996 isl_int_set_si(lin
->eq
[k
][0], 0);
997 isl_seq_cpy(lin
->eq
[k
] + 1, bset1
->eq
[i
] + 1, dim
);
999 for (i
= 0; i
< bset1
->n_ineq
; ++i
) {
1000 k
= isl_basic_set_alloc_inequality(lin
);
1003 isl_int_set_si(lin
->ineq
[k
][0], 0);
1004 isl_seq_cpy(lin
->ineq
[k
] + 1, bset1
->ineq
[i
] + 1, dim
);
1006 for (i
= 0; i
< bset2
->n_eq
; ++i
) {
1007 k
= isl_basic_set_alloc_equality(lin
);
1010 isl_int_set_si(lin
->eq
[k
][0], 0);
1011 isl_seq_neg(lin
->eq
[k
] + 1, bset2
->eq
[i
] + 1, dim
);
1013 for (i
= 0; i
< bset2
->n_ineq
; ++i
) {
1014 k
= isl_basic_set_alloc_inequality(lin
);
1017 isl_int_set_si(lin
->ineq
[k
][0], 0);
1018 isl_seq_neg(lin
->ineq
[k
] + 1, bset2
->ineq
[i
] + 1, dim
);
1021 isl_basic_set_free(bset1
);
1022 isl_basic_set_free(bset2
);
1023 return isl_basic_set_affine_hull(lin
);
1025 isl_basic_set_free(lin
);
1026 isl_basic_set_free(bset1
);
1027 isl_basic_set_free(bset2
);
1031 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
);
1033 /* Given a set and a linear space "lin" of dimension n > 0,
1034 * project the linear space from the set, compute the convex hull
1035 * and then map the set back to the original space.
1041 * describe the linear space. We first compute the Hermite normal
1042 * form H = M U of M = H Q, to obtain
1046 * The last n rows of H will be zero, so the last n variables of x' = Q x
1047 * are the one we want to project out. We do this by transforming each
1048 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1049 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1050 * we transform the hull back to the original space as A' Q_1 x >= b',
1051 * with Q_1 all but the last n rows of Q.
1053 static struct isl_basic_set
*modulo_lineality(struct isl_set
*set
,
1054 struct isl_basic_set
*lin
)
1056 unsigned total
= isl_basic_set_total_dim(lin
);
1058 struct isl_basic_set
*hull
;
1059 struct isl_mat
*M
, *U
, *Q
;
1063 lin_dim
= total
- lin
->n_eq
;
1064 M
= isl_mat_sub_alloc(set
->ctx
, lin
->eq
, 0, lin
->n_eq
, 1, total
);
1065 M
= isl_mat_left_hermite(set
->ctx
, M
, 0, &U
, &Q
);
1068 isl_mat_free(set
->ctx
, M
);
1069 isl_basic_set_free(lin
);
1071 Q
= isl_mat_drop_rows(set
->ctx
, Q
, Q
->n_row
- lin_dim
, lin_dim
);
1073 U
= isl_mat_lin_to_aff(set
->ctx
, U
);
1074 Q
= isl_mat_lin_to_aff(set
->ctx
, Q
);
1076 set
= isl_set_preimage(set
, U
);
1077 set
= isl_set_remove_dims(set
, total
- lin_dim
, lin_dim
);
1078 hull
= uset_convex_hull(set
);
1079 hull
= isl_basic_set_preimage(hull
, Q
);
1083 isl_basic_set_free(lin
);
1088 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1089 * set up an LP for solving
1091 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1093 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1094 * The next \alpha{ij} correspond to the equalities and come in pairs.
1095 * The final \alpha{ij} correspond to the inequalities.
1097 static struct isl_basic_set
*valid_direction_lp(
1098 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1100 struct isl_dim
*dim
;
1101 struct isl_basic_set
*lp
;
1106 if (!bset1
|| !bset2
)
1108 d
= 1 + isl_basic_set_total_dim(bset1
);
1110 2 * bset1
->n_eq
+ bset1
->n_ineq
+ 2 * bset2
->n_eq
+ bset2
->n_ineq
;
1111 dim
= isl_dim_set_alloc(bset1
->ctx
, 0, n
);
1112 lp
= isl_basic_set_alloc_dim(dim
, 0, d
, n
);
1115 for (i
= 0; i
< n
; ++i
) {
1116 k
= isl_basic_set_alloc_inequality(lp
);
1119 isl_seq_clr(lp
->ineq
[k
] + 1, n
);
1120 isl_int_set_si(lp
->ineq
[k
][0], -1);
1121 isl_int_set_si(lp
->ineq
[k
][1 + i
], 1);
1123 for (i
= 0; i
< d
; ++i
) {
1124 k
= isl_basic_set_alloc_equality(lp
);
1128 isl_int_set_si(lp
->eq
[k
][n
++], 0);
1129 /* positivity constraint 1 >= 0 */
1130 isl_int_set_si(lp
->eq
[k
][n
++], i
== 0);
1131 for (j
= 0; j
< bset1
->n_eq
; ++j
) {
1132 isl_int_set(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1133 isl_int_neg(lp
->eq
[k
][n
++], bset1
->eq
[j
][i
]);
1135 for (j
= 0; j
< bset1
->n_ineq
; ++j
)
1136 isl_int_set(lp
->eq
[k
][n
++], bset1
->ineq
[j
][i
]);
1137 /* positivity constraint 1 >= 0 */
1138 isl_int_set_si(lp
->eq
[k
][n
++], -(i
== 0));
1139 for (j
= 0; j
< bset2
->n_eq
; ++j
) {
1140 isl_int_neg(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1141 isl_int_set(lp
->eq
[k
][n
++], bset2
->eq
[j
][i
]);
1143 for (j
= 0; j
< bset2
->n_ineq
; ++j
)
1144 isl_int_neg(lp
->eq
[k
][n
++], bset2
->ineq
[j
][i
]);
1146 lp
= isl_basic_set_gauss(lp
, NULL
);
1147 isl_basic_set_free(bset1
);
1148 isl_basic_set_free(bset2
);
1151 isl_basic_set_free(bset1
);
1152 isl_basic_set_free(bset2
);
1156 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1157 * for all rays in the homogeneous space of the two cones that correspond
1158 * to the input polyhedra bset1 and bset2.
1160 * We compute s as a vector that satisfies
1162 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1164 * with h_{ij} the normals of the facets of polyhedron i
1165 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1166 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1167 * We first set up an LP with as variables the \alpha{ij}.
1168 * In this formulateion, for each polyhedron i,
1169 * the first constraint is the positivity constraint, followed by pairs
1170 * of variables for the equalities, followed by variables for the inequalities.
1171 * We then simply pick a feasible solution and compute s using (*).
1173 * Note that we simply pick any valid direction and make no attempt
1174 * to pick a "good" or even the "best" valid direction.
1176 static struct isl_vec
*valid_direction(
1177 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1179 struct isl_ctx
*ctx
= NULL
;
1180 struct isl_basic_set
*lp
;
1181 struct isl_tab
*tab
;
1182 struct isl_vec
*sample
= NULL
;
1183 struct isl_vec
*dir
;
1188 if (!bset1
|| !bset2
)
1191 lp
= valid_direction_lp(isl_basic_set_copy(bset1
),
1192 isl_basic_set_copy(bset2
));
1193 tab
= isl_tab_from_basic_set(lp
);
1194 sample
= isl_tab_get_sample_value(ctx
, tab
);
1195 isl_tab_free(ctx
, tab
);
1196 isl_basic_set_free(lp
);
1199 d
= isl_basic_set_total_dim(bset1
);
1200 dir
= isl_vec_alloc(ctx
, 1 + d
);
1203 isl_seq_clr(dir
->block
.data
+ 1, dir
->size
- 1);
1205 /* positivity constraint 1 >= 0 */
1206 isl_int_set(dir
->block
.data
[0], sample
->block
.data
[n
++]);
1207 for (i
= 0; i
< bset1
->n_eq
; ++i
) {
1208 isl_int_sub(sample
->block
.data
[n
],
1209 sample
->block
.data
[n
], sample
->block
.data
[n
+1]);
1210 isl_seq_combine(dir
->block
.data
,
1211 bset1
->ctx
->one
, dir
->block
.data
,
1212 sample
->block
.data
[n
], bset1
->eq
[i
], 1 + d
);
1216 for (i
= 0; i
< bset1
->n_ineq
; ++i
)
1217 isl_seq_combine(dir
->block
.data
,
1218 bset1
->ctx
->one
, dir
->block
.data
,
1219 sample
->block
.data
[n
++], bset1
->ineq
[i
], 1 + d
);
1220 isl_vec_free(sample
);
1221 isl_basic_set_free(bset1
);
1222 isl_basic_set_free(bset2
);
1223 isl_seq_normalize(dir
->block
.data
+ 1, dir
->size
- 1);
1226 isl_vec_free(sample
);
1227 isl_basic_set_free(bset1
);
1228 isl_basic_set_free(bset2
);
1232 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1233 * compute b_i' + A_i' x' >= 0, with
1235 * [ b_i A_i ] [ y' ] [ y' ]
1236 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1238 * In particular, add the "positivity constraint" and then perform
1241 static struct isl_basic_set
*homogeneous_map(struct isl_basic_set
*bset
,
1244 struct isl_ctx
*ctx
= NULL
;
1250 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
1251 k
= isl_basic_set_alloc_inequality(bset
);
1254 isl_seq_clr(bset
->ineq
[k
] + 1, isl_basic_set_total_dim(bset
));
1255 isl_int_set_si(bset
->ineq
[k
][0], 1);
1256 bset
= isl_basic_set_preimage(bset
, T
);
1259 isl_mat_free(ctx
, T
);
1260 isl_basic_set_free(bset
);
1264 /* Compute the convex hull of a pair of basic sets without any parameters or
1265 * integer divisions, where the convex hull is known to be pointed,
1266 * but the basic sets may be unbounded.
1268 * We turn this problem into the computation of a convex hull of a pair
1269 * _bounded_ polyhedra by "changing the direction of the homogeneous
1270 * dimension". This idea is due to Matthias Koeppe.
1272 * Consider the cones in homogeneous space that correspond to the
1273 * input polyhedra. The rays of these cones are also rays of the
1274 * polyhedra if the coordinate that corresponds to the homogeneous
1275 * dimension is zero. That is, if the inner product of the rays
1276 * with the homogeneous direction is zero.
1277 * The cones in the homogeneous space can also be considered to
1278 * correspond to other pairs of polyhedra by chosing a different
1279 * homogeneous direction. To ensure that both of these polyhedra
1280 * are bounded, we need to make sure that all rays of the cones
1281 * correspond to vertices and not to rays.
1282 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1283 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1284 * The vector s is computed in valid_direction.
1286 * Note that we need to consider _all_ rays of the cones and not just
1287 * the rays that correspond to rays in the polyhedra. If we were to
1288 * only consider those rays and turn them into vertices, then we
1289 * may inadvertently turn some vertices into rays.
1291 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1292 * We therefore transform the two polyhedra such that the selected
1293 * direction is mapped onto this standard direction and then proceed
1294 * with the normal computation.
1295 * Let S be a non-singular square matrix with s as its first row,
1296 * then we want to map the polyhedra to the space
1298 * [ y' ] [ y ] [ y ] [ y' ]
1299 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1301 * We take S to be the unimodular completion of s to limit the growth
1302 * of the coefficients in the following computations.
1304 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1305 * We first move to the homogeneous dimension
1307 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1308 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1310 * Then we change directoin
1312 * [ b_i A_i ] [ y' ] [ y' ]
1313 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1315 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1316 * resulting in b' + A' x' >= 0, which we then convert back
1319 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1321 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1323 static struct isl_basic_set
*convex_hull_pair_pointed(
1324 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
1326 struct isl_ctx
*ctx
= NULL
;
1327 struct isl_vec
*dir
= NULL
;
1328 struct isl_mat
*T
= NULL
;
1329 struct isl_mat
*T2
= NULL
;
1330 struct isl_basic_set
*hull
;
1331 struct isl_set
*set
;
1333 if (!bset1
|| !bset2
)
1336 dir
= valid_direction(isl_basic_set_copy(bset1
),
1337 isl_basic_set_copy(bset2
));
1340 T
= isl_mat_alloc(bset1
->ctx
, dir
->size
, dir
->size
);
1343 isl_seq_cpy(T
->row
[0], dir
->block
.data
, dir
->size
);
1344 T
= isl_mat_unimodular_complete(ctx
, T
, 1);
1345 T2
= isl_mat_right_inverse(ctx
, isl_mat_copy(ctx
, T
));
1347 bset1
= homogeneous_map(bset1
, isl_mat_copy(ctx
, T2
));
1348 bset2
= homogeneous_map(bset2
, T2
);
1349 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1350 set
= isl_set_add(set
, bset1
);
1351 set
= isl_set_add(set
, bset2
);
1352 hull
= uset_convex_hull(set
);
1353 hull
= isl_basic_set_preimage(hull
, T
);
1360 isl_basic_set_free(bset1
);
1361 isl_basic_set_free(bset2
);
1365 /* Compute the convex hull of a pair of basic sets without any parameters or
1366 * integer divisions.
1368 * If the convex hull of the two basic sets would have a non-trivial
1369 * lineality space, we first project out this lineality space.
1371 static struct isl_basic_set
*convex_hull_pair(struct isl_basic_set
*bset1
,
1372 struct isl_basic_set
*bset2
)
1374 struct isl_basic_set
*lin
;
1376 if (isl_basic_set_is_bounded(bset1
) || isl_basic_set_is_bounded(bset2
))
1377 return convex_hull_pair_pointed(bset1
, bset2
);
1379 lin
= induced_lineality_space(isl_basic_set_copy(bset1
),
1380 isl_basic_set_copy(bset2
));
1383 if (isl_basic_set_is_universe(lin
)) {
1384 isl_basic_set_free(bset1
);
1385 isl_basic_set_free(bset2
);
1388 if (lin
->n_eq
< isl_basic_set_total_dim(lin
)) {
1389 struct isl_set
*set
;
1390 set
= isl_set_alloc_dim(isl_basic_set_get_dim(bset1
), 2, 0);
1391 set
= isl_set_add(set
, bset1
);
1392 set
= isl_set_add(set
, bset2
);
1393 return modulo_lineality(set
, lin
);
1395 isl_basic_set_free(lin
);
1397 return convex_hull_pair_pointed(bset1
, bset2
);
1399 isl_basic_set_free(bset1
);
1400 isl_basic_set_free(bset2
);
1404 /* Compute the lineality space of a basic set.
1405 * We currently do not allow the basic set to have any divs.
1406 * We basically just drop the constants and turn every inequality
1409 struct isl_basic_set
*isl_basic_set_lineality_space(struct isl_basic_set
*bset
)
1412 struct isl_basic_set
*lin
= NULL
;
1417 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
1418 dim
= isl_basic_set_total_dim(bset
);
1420 lin
= isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset
), 0, dim
, 0);
1423 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1424 k
= isl_basic_set_alloc_equality(lin
);
1427 isl_int_set_si(lin
->eq
[k
][0], 0);
1428 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->eq
[i
] + 1, dim
);
1430 lin
= isl_basic_set_gauss(lin
, NULL
);
1433 for (i
= 0; i
< bset
->n_ineq
&& lin
->n_eq
< dim
; ++i
) {
1434 k
= isl_basic_set_alloc_equality(lin
);
1437 isl_int_set_si(lin
->eq
[k
][0], 0);
1438 isl_seq_cpy(lin
->eq
[k
] + 1, bset
->ineq
[i
] + 1, dim
);
1439 lin
= isl_basic_set_gauss(lin
, NULL
);
1443 isl_basic_set_free(bset
);
1446 isl_basic_set_free(lin
);
1447 isl_basic_set_free(bset
);
1451 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1452 * "underlying" set "set".
1454 static struct isl_basic_set
*uset_combined_lineality_space(struct isl_set
*set
)
1457 struct isl_set
*lin
= NULL
;
1462 struct isl_dim
*dim
= isl_set_get_dim(set
);
1464 return isl_basic_set_empty(dim
);
1467 lin
= isl_set_alloc_dim(isl_set_get_dim(set
), set
->n
, 0);
1468 for (i
= 0; i
< set
->n
; ++i
)
1469 lin
= isl_set_add(lin
,
1470 isl_basic_set_lineality_space(isl_basic_set_copy(set
->p
[i
])));
1472 return isl_set_affine_hull(lin
);
1475 /* Compute the convex hull of a set without any parameters or
1476 * integer divisions.
1477 * In each step, we combined two basic sets until only one
1478 * basic set is left.
1479 * The input basic sets are assumed not to have a non-trivial
1480 * lineality space. If any of the intermediate results has
1481 * a non-trivial lineality space, it is projected out.
1483 static struct isl_basic_set
*uset_convex_hull_unbounded(struct isl_set
*set
)
1485 struct isl_basic_set
*convex_hull
= NULL
;
1487 convex_hull
= isl_set_copy_basic_set(set
);
1488 set
= isl_set_drop_basic_set(set
, convex_hull
);
1491 while (set
->n
> 0) {
1492 struct isl_basic_set
*t
;
1493 t
= isl_set_copy_basic_set(set
);
1496 set
= isl_set_drop_basic_set(set
, t
);
1499 convex_hull
= convex_hull_pair(convex_hull
, t
);
1502 t
= isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull
));
1505 if (isl_basic_set_is_universe(t
)) {
1506 isl_basic_set_free(convex_hull
);
1510 if (t
->n_eq
< isl_basic_set_total_dim(t
)) {
1511 set
= isl_set_add(set
, convex_hull
);
1512 return modulo_lineality(set
, t
);
1514 isl_basic_set_free(t
);
1520 isl_basic_set_free(convex_hull
);
1524 /* Compute an initial hull for wrapping containing a single initial
1525 * facet by first computing bounds on the set and then using these
1526 * bounds to construct an initial facet.
1527 * This function is a remnant of an older implementation where the
1528 * bounds were also used to check whether the set was bounded.
1529 * Since this function will now only be called when we know the
1530 * set to be bounded, the initial facet should probably be constructed
1531 * by simply using the coordinate directions instead.
1533 static struct isl_basic_set
*initial_hull(struct isl_basic_set
*hull
,
1534 struct isl_set
*set
)
1536 struct isl_mat
*bounds
= NULL
;
1542 bounds
= independent_bounds(set
->ctx
, set
);
1545 isl_assert(set
->ctx
, bounds
->n_row
== isl_set_n_dim(set
), goto error
);
1546 bounds
= initial_facet_constraint(set
->ctx
, set
, bounds
);
1549 k
= isl_basic_set_alloc_inequality(hull
);
1552 dim
= isl_set_n_dim(set
);
1553 isl_assert(set
->ctx
, 1 + dim
== bounds
->n_col
, goto error
);
1554 isl_seq_cpy(hull
->ineq
[k
], bounds
->row
[0], bounds
->n_col
);
1555 isl_mat_free(set
->ctx
, bounds
);
1559 isl_basic_set_free(hull
);
1560 isl_mat_free(set
->ctx
, bounds
);
1564 struct max_constraint
{
1570 static int max_constraint_equal(const void *entry
, const void *val
)
1572 struct max_constraint
*a
= (struct max_constraint
*)entry
;
1573 isl_int
*b
= (isl_int
*)val
;
1575 return isl_seq_eq(a
->c
->row
[0] + 1, b
, a
->c
->n_col
- 1);
1578 static void update_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1579 isl_int
*con
, unsigned len
, int n
, int ineq
)
1581 struct isl_hash_table_entry
*entry
;
1582 struct max_constraint
*c
;
1585 c_hash
= isl_seq_hash(con
+ 1, len
, isl_hash_init());
1586 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1592 isl_hash_table_remove(ctx
, table
, entry
);
1596 if (isl_int_gt(c
->c
->row
[0][0], con
[0]))
1598 if (isl_int_eq(c
->c
->row
[0][0], con
[0])) {
1603 c
->c
= isl_mat_cow(ctx
, c
->c
);
1604 isl_int_set(c
->c
->row
[0][0], con
[0]);
1608 /* Check whether the constraint hash table "table" constains the constraint
1611 static int has_constraint(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
1612 isl_int
*con
, unsigned len
, int n
)
1614 struct isl_hash_table_entry
*entry
;
1615 struct max_constraint
*c
;
1618 c_hash
= isl_seq_hash(con
+ 1, len
, isl_hash_init());
1619 entry
= isl_hash_table_find(ctx
, table
, c_hash
, max_constraint_equal
,
1626 return isl_int_eq(c
->c
->row
[0][0], con
[0]);
1629 /* Check for inequality constraints of a basic set without equalities
1630 * such that the same or more stringent copies of the constraint appear
1631 * in all of the basic sets. Such constraints are necessarily facet
1632 * constraints of the convex hull.
1634 * If the resulting basic set is by chance identical to one of
1635 * the basic sets in "set", then we know that this basic set contains
1636 * all other basic sets and is therefore the convex hull of set.
1637 * In this case we set *is_hull to 1.
1639 static struct isl_basic_set
*common_constraints(struct isl_basic_set
*hull
,
1640 struct isl_set
*set
, int *is_hull
)
1643 int min_constraints
;
1645 struct max_constraint
*constraints
= NULL
;
1646 struct isl_hash_table
*table
= NULL
;
1651 for (i
= 0; i
< set
->n
; ++i
)
1652 if (set
->p
[i
]->n_eq
== 0)
1656 min_constraints
= set
->p
[i
]->n_ineq
;
1658 for (i
= best
+ 1; i
< set
->n
; ++i
) {
1659 if (set
->p
[i
]->n_eq
!= 0)
1661 if (set
->p
[i
]->n_ineq
>= min_constraints
)
1663 min_constraints
= set
->p
[i
]->n_ineq
;
1666 constraints
= isl_calloc_array(hull
->ctx
, struct max_constraint
,
1670 table
= isl_alloc_type(hull
->ctx
, struct isl_hash_table
);
1671 if (isl_hash_table_init(hull
->ctx
, table
, min_constraints
))
1674 total
= isl_dim_total(set
->dim
);
1675 for (i
= 0; i
< set
->p
[best
]->n_ineq
; ++i
) {
1676 constraints
[i
].c
= isl_mat_sub_alloc(hull
->ctx
,
1677 set
->p
[best
]->ineq
+ i
, 0, 1, 0, 1 + total
);
1678 if (!constraints
[i
].c
)
1680 constraints
[i
].ineq
= 1;
1682 for (i
= 0; i
< min_constraints
; ++i
) {
1683 struct isl_hash_table_entry
*entry
;
1685 c_hash
= isl_seq_hash(constraints
[i
].c
->row
[0] + 1, total
,
1687 entry
= isl_hash_table_find(hull
->ctx
, table
, c_hash
,
1688 max_constraint_equal
, constraints
[i
].c
->row
[0] + 1, 1);
1691 isl_assert(hull
->ctx
, !entry
->data
, goto error
);
1692 entry
->data
= &constraints
[i
];
1696 for (s
= 0; s
< set
->n
; ++s
) {
1700 for (i
= 0; i
< set
->p
[s
]->n_eq
; ++i
) {
1701 isl_int
*eq
= set
->p
[s
]->eq
[i
];
1702 for (j
= 0; j
< 2; ++j
) {
1703 isl_seq_neg(eq
, eq
, 1 + total
);
1704 update_constraint(hull
->ctx
, table
,
1708 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1709 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1710 update_constraint(hull
->ctx
, table
, ineq
, total
, n
,
1711 set
->p
[s
]->n_eq
== 0);
1716 for (i
= 0; i
< min_constraints
; ++i
) {
1717 if (constraints
[i
].count
< n
)
1719 if (!constraints
[i
].ineq
)
1721 j
= isl_basic_set_alloc_inequality(hull
);
1724 isl_seq_cpy(hull
->ineq
[j
], constraints
[i
].c
->row
[0], 1 + total
);
1727 for (s
= 0; s
< set
->n
; ++s
) {
1728 if (set
->p
[s
]->n_eq
)
1730 if (set
->p
[s
]->n_ineq
!= hull
->n_ineq
)
1732 for (i
= 0; i
< set
->p
[s
]->n_ineq
; ++i
) {
1733 isl_int
*ineq
= set
->p
[s
]->ineq
[i
];
1734 if (!has_constraint(hull
->ctx
, table
, ineq
, total
, n
))
1737 if (i
== set
->p
[s
]->n_ineq
)
1741 isl_hash_table_clear(table
);
1742 for (i
= 0; i
< min_constraints
; ++i
)
1743 isl_mat_free(hull
->ctx
, constraints
[i
].c
);
1748 isl_hash_table_clear(table
);
1751 for (i
= 0; i
< min_constraints
; ++i
)
1752 isl_mat_free(hull
->ctx
, constraints
[i
].c
);
1757 /* Create a template for the convex hull of "set" and fill it up
1758 * obvious facet constraints, if any. If the result happens to
1759 * be the convex hull of "set" then *is_hull is set to 1.
1761 static struct isl_basic_set
*proto_hull(struct isl_set
*set
, int *is_hull
)
1763 struct isl_basic_set
*hull
;
1768 for (i
= 0; i
< set
->n
; ++i
) {
1769 n_ineq
+= set
->p
[i
]->n_eq
;
1770 n_ineq
+= set
->p
[i
]->n_ineq
;
1772 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
1773 hull
= isl_basic_set_set_rational(hull
);
1776 return common_constraints(hull
, set
, is_hull
);
1779 static struct isl_basic_set
*uset_convex_hull_wrap(struct isl_set
*set
)
1781 struct isl_basic_set
*hull
;
1784 hull
= proto_hull(set
, &is_hull
);
1785 if (hull
&& !is_hull
) {
1786 if (hull
->n_ineq
== 0)
1787 hull
= initial_hull(hull
, set
);
1788 hull
= extend(hull
, set
);
1795 /* Compute the convex hull of a set without any parameters or
1796 * integer divisions. Depending on whether the set is bounded,
1797 * we pass control to the wrapping based convex hull or
1798 * the Fourier-Motzkin elimination based convex hull.
1799 * We also handle a few special cases before checking the boundedness.
1801 static struct isl_basic_set
*uset_convex_hull(struct isl_set
*set
)
1804 struct isl_basic_set
*convex_hull
= NULL
;
1805 struct isl_basic_set
*lin
;
1807 if (isl_set_n_dim(set
) == 0)
1808 return convex_hull_0d(set
);
1810 set
= isl_set_coalesce(set
);
1811 set
= isl_set_set_rational(set
);
1818 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1822 if (isl_set_n_dim(set
) == 1)
1823 return convex_hull_1d(set
->ctx
, set
);
1825 if (isl_set_is_bounded(set
))
1826 return uset_convex_hull_wrap(set
);
1828 lin
= uset_combined_lineality_space(isl_set_copy(set
));
1831 if (isl_basic_set_is_universe(lin
)) {
1835 if (lin
->n_eq
< isl_basic_set_total_dim(lin
))
1836 return modulo_lineality(set
, lin
);
1837 isl_basic_set_free(lin
);
1839 return uset_convex_hull_unbounded(set
);
1842 isl_basic_set_free(convex_hull
);
1846 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1847 * without parameters or divs and where the convex hull of set is
1848 * known to be full-dimensional.
1850 static struct isl_basic_set
*uset_convex_hull_wrap_bounded(struct isl_set
*set
)
1853 struct isl_basic_set
*convex_hull
= NULL
;
1855 if (isl_set_n_dim(set
) == 0) {
1856 convex_hull
= isl_basic_set_universe(isl_dim_copy(set
->dim
));
1858 convex_hull
= isl_basic_set_set_rational(convex_hull
);
1862 set
= isl_set_set_rational(set
);
1866 set
= isl_set_normalize(set
);
1870 convex_hull
= isl_basic_set_copy(set
->p
[0]);
1874 if (isl_set_n_dim(set
) == 1)
1875 return convex_hull_1d(set
->ctx
, set
);
1877 return uset_convex_hull_wrap(set
);
1883 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1884 * We first remove the equalities (transforming the set), compute the
1885 * convex hull of the transformed set and then add the equalities back
1886 * (after performing the inverse transformation.
1888 static struct isl_basic_set
*modulo_affine_hull(struct isl_ctx
*ctx
,
1889 struct isl_set
*set
, struct isl_basic_set
*affine_hull
)
1893 struct isl_basic_set
*dummy
;
1894 struct isl_basic_set
*convex_hull
;
1896 dummy
= isl_basic_set_remove_equalities(
1897 isl_basic_set_copy(affine_hull
), &T
, &T2
);
1900 isl_basic_set_free(dummy
);
1901 set
= isl_set_preimage(set
, T
);
1902 convex_hull
= uset_convex_hull(set
);
1903 convex_hull
= isl_basic_set_preimage(convex_hull
, T2
);
1904 convex_hull
= isl_basic_set_intersect(convex_hull
, affine_hull
);
1907 isl_basic_set_free(affine_hull
);
1912 /* Compute the convex hull of a map.
1914 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1915 * specifically, the wrapping of facets to obtain new facets.
1917 struct isl_basic_map
*isl_map_convex_hull(struct isl_map
*map
)
1919 struct isl_basic_set
*bset
;
1920 struct isl_basic_map
*model
= NULL
;
1921 struct isl_basic_set
*affine_hull
= NULL
;
1922 struct isl_basic_map
*convex_hull
= NULL
;
1923 struct isl_set
*set
= NULL
;
1924 struct isl_ctx
*ctx
;
1931 convex_hull
= isl_basic_map_empty_like_map(map
);
1936 map
= isl_map_detect_equalities(map
);
1937 map
= isl_map_align_divs(map
);
1938 model
= isl_basic_map_copy(map
->p
[0]);
1939 set
= isl_map_underlying_set(map
);
1943 affine_hull
= isl_set_affine_hull(isl_set_copy(set
));
1946 if (affine_hull
->n_eq
!= 0)
1947 bset
= modulo_affine_hull(ctx
, set
, affine_hull
);
1949 isl_basic_set_free(affine_hull
);
1950 bset
= uset_convex_hull(set
);
1953 convex_hull
= isl_basic_map_overlying_set(bset
, model
);
1955 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
1956 ISL_F_SET(convex_hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
1957 ISL_F_CLR(convex_hull
, ISL_BASIC_MAP_RATIONAL
);
1961 isl_basic_map_free(model
);
1965 struct isl_basic_set
*isl_set_convex_hull(struct isl_set
*set
)
1967 return (struct isl_basic_set
*)
1968 isl_map_convex_hull((struct isl_map
*)set
);
1971 struct sh_data_entry
{
1972 struct isl_hash_table
*table
;
1973 struct isl_tab
*tab
;
1976 /* Holds the data needed during the simple hull computation.
1978 * n the number of basic sets in the original set
1979 * hull_table a hash table of already computed constraints
1980 * in the simple hull
1981 * p for each basic set,
1982 * table a hash table of the constraints
1983 * tab the tableau corresponding to the basic set
1986 struct isl_ctx
*ctx
;
1988 struct isl_hash_table
*hull_table
;
1989 struct sh_data_entry p
[0];
1992 static void sh_data_free(struct sh_data
*data
)
1998 isl_hash_table_free(data
->ctx
, data
->hull_table
);
1999 for (i
= 0; i
< data
->n
; ++i
) {
2000 isl_hash_table_free(data
->ctx
, data
->p
[i
].table
);
2001 isl_tab_free(data
->ctx
, data
->p
[i
].tab
);
2006 struct ineq_cmp_data
{
2011 static int has_ineq(const void *entry
, const void *val
)
2013 isl_int
*row
= (isl_int
*)entry
;
2014 struct ineq_cmp_data
*v
= (struct ineq_cmp_data
*)val
;
2016 return isl_seq_eq(row
+ 1, v
->p
+ 1, v
->len
) ||
2017 isl_seq_is_neg(row
+ 1, v
->p
+ 1, v
->len
);
2020 static int hash_ineq(struct isl_ctx
*ctx
, struct isl_hash_table
*table
,
2021 isl_int
*ineq
, unsigned len
)
2024 struct ineq_cmp_data v
;
2025 struct isl_hash_table_entry
*entry
;
2029 c_hash
= isl_seq_hash(ineq
+ 1, len
, isl_hash_init());
2030 entry
= isl_hash_table_find(ctx
, table
, c_hash
, has_ineq
, &v
, 1);
2037 /* Fill hash table "table" with the constraints of "bset".
2038 * Equalities are added as two inequalities.
2039 * The value in the hash table is a pointer to the (in)equality of "bset".
2041 static int hash_basic_set(struct isl_hash_table
*table
,
2042 struct isl_basic_set
*bset
)
2045 unsigned dim
= isl_basic_set_total_dim(bset
);
2047 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2048 for (j
= 0; j
< 2; ++j
) {
2049 isl_seq_neg(bset
->eq
[i
], bset
->eq
[i
], 1 + dim
);
2050 if (hash_ineq(bset
->ctx
, table
, bset
->eq
[i
], dim
) < 0)
2054 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2055 if (hash_ineq(bset
->ctx
, table
, bset
->ineq
[i
], dim
) < 0)
2061 static struct sh_data
*sh_data_alloc(struct isl_set
*set
, unsigned n_ineq
)
2063 struct sh_data
*data
;
2066 data
= isl_calloc(set
->ctx
, struct sh_data
,
2067 sizeof(struct sh_data
) + set
->n
* sizeof(struct sh_data_entry
));
2070 data
->ctx
= set
->ctx
;
2072 data
->hull_table
= isl_hash_table_alloc(set
->ctx
, n_ineq
);
2073 if (!data
->hull_table
)
2075 for (i
= 0; i
< set
->n
; ++i
) {
2076 data
->p
[i
].table
= isl_hash_table_alloc(set
->ctx
,
2077 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
);
2078 if (!data
->p
[i
].table
)
2080 if (hash_basic_set(data
->p
[i
].table
, set
->p
[i
]) < 0)
2089 /* Check if inequality "ineq" is a bound for basic set "j" or if
2090 * it can be relaxed (by increasing the constant term) to become
2091 * a bound for that basic set. In the latter case, the constant
2093 * Return 1 if "ineq" is a bound
2094 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2095 * -1 if some error occurred
2097 static int is_bound(struct sh_data
*data
, struct isl_set
*set
, int j
,
2100 enum isl_lp_result res
;
2103 if (!data
->p
[j
].tab
) {
2104 data
->p
[j
].tab
= isl_tab_from_basic_set(set
->p
[j
]);
2105 if (!data
->p
[j
].tab
)
2111 res
= isl_tab_min(data
->ctx
, data
->p
[j
].tab
, ineq
, data
->ctx
->one
,
2113 if (res
== isl_lp_ok
&& isl_int_is_neg(opt
))
2114 isl_int_sub(ineq
[0], ineq
[0], opt
);
2118 return res
== isl_lp_ok
? 1 :
2119 res
== isl_lp_unbounded
? 0 : -1;
2122 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2123 * become a bound on the whole set. If so, add the (relaxed) inequality
2126 * We first check if "hull" already contains a translate of the inequality.
2127 * If so, we are done.
2128 * Then, we check if any of the previous basic sets contains a translate
2129 * of the inequality. If so, then we have already considered this
2130 * inequality and we are done.
2131 * Otherwise, for each basic set other than "i", we check if the inequality
2132 * is a bound on the basic set.
2133 * For previous basic sets, we know that they do not contain a translate
2134 * of the inequality, so we directly call is_bound.
2135 * For following basic sets, we first check if a translate of the
2136 * inequality appears in its description and if so directly update
2137 * the inequality accordingly.
2139 static struct isl_basic_set
*add_bound(struct isl_basic_set
*hull
,
2140 struct sh_data
*data
, struct isl_set
*set
, int i
, isl_int
*ineq
)
2143 struct ineq_cmp_data v
;
2144 struct isl_hash_table_entry
*entry
;
2150 v
.len
= isl_basic_set_total_dim(hull
);
2152 c_hash
= isl_seq_hash(ineq
+ 1, v
.len
, isl_hash_init());
2154 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2159 for (j
= 0; j
< i
; ++j
) {
2160 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2161 c_hash
, has_ineq
, &v
, 0);
2168 k
= isl_basic_set_alloc_inequality(hull
);
2169 isl_seq_cpy(hull
->ineq
[k
], ineq
, 1 + v
.len
);
2173 for (j
= 0; j
< i
; ++j
) {
2175 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2182 isl_basic_set_free_inequality(hull
, 1);
2186 for (j
= i
+ 1; j
< set
->n
; ++j
) {
2189 entry
= isl_hash_table_find(hull
->ctx
, data
->p
[j
].table
,
2190 c_hash
, has_ineq
, &v
, 0);
2192 ineq_j
= entry
->data
;
2193 neg
= isl_seq_is_neg(ineq_j
+ 1,
2194 hull
->ineq
[k
] + 1, v
.len
);
2196 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2197 if (isl_int_gt(ineq_j
[0], hull
->ineq
[k
][0]))
2198 isl_int_set(hull
->ineq
[k
][0], ineq_j
[0]);
2200 isl_int_neg(ineq_j
[0], ineq_j
[0]);
2203 bound
= is_bound(data
, set
, j
, hull
->ineq
[k
]);
2210 isl_basic_set_free_inequality(hull
, 1);
2214 entry
= isl_hash_table_find(hull
->ctx
, data
->hull_table
, c_hash
,
2218 entry
->data
= hull
->ineq
[k
];
2222 isl_basic_set_free(hull
);
2226 /* Check if any inequality from basic set "i" can be relaxed to
2227 * become a bound on the whole set. If so, add the (relaxed) inequality
2230 static struct isl_basic_set
*add_bounds(struct isl_basic_set
*bset
,
2231 struct sh_data
*data
, struct isl_set
*set
, int i
)
2234 unsigned dim
= isl_basic_set_total_dim(bset
);
2236 for (j
= 0; j
< set
->p
[i
]->n_eq
; ++j
) {
2237 for (k
= 0; k
< 2; ++k
) {
2238 isl_seq_neg(set
->p
[i
]->eq
[j
], set
->p
[i
]->eq
[j
], 1+dim
);
2239 add_bound(bset
, data
, set
, i
, set
->p
[i
]->eq
[j
]);
2242 for (j
= 0; j
< set
->p
[i
]->n_ineq
; ++j
)
2243 add_bound(bset
, data
, set
, i
, set
->p
[i
]->ineq
[j
]);
2247 /* Compute a superset of the convex hull of set that is described
2248 * by only translates of the constraints in the constituents of set.
2250 static struct isl_basic_set
*uset_simple_hull(struct isl_set
*set
)
2252 struct sh_data
*data
= NULL
;
2253 struct isl_basic_set
*hull
= NULL
;
2261 for (i
= 0; i
< set
->n
; ++i
) {
2264 n_ineq
+= 2 * set
->p
[i
]->n_eq
+ set
->p
[i
]->n_ineq
;
2267 hull
= isl_basic_set_alloc_dim(isl_dim_copy(set
->dim
), 0, 0, n_ineq
);
2271 data
= sh_data_alloc(set
, n_ineq
);
2275 for (i
= 0; i
< set
->n
; ++i
)
2276 hull
= add_bounds(hull
, data
, set
, i
);
2284 isl_basic_set_free(hull
);
2289 /* Compute a superset of the convex hull of map that is described
2290 * by only translates of the constraints in the constituents of map.
2292 struct isl_basic_map
*isl_map_simple_hull(struct isl_map
*map
)
2294 struct isl_set
*set
= NULL
;
2295 struct isl_basic_map
*model
= NULL
;
2296 struct isl_basic_map
*hull
;
2297 struct isl_basic_map
*affine_hull
;
2298 struct isl_basic_set
*bset
= NULL
;
2303 hull
= isl_basic_map_empty_like_map(map
);
2308 hull
= isl_basic_map_copy(map
->p
[0]);
2313 map
= isl_map_detect_equalities(map
);
2314 affine_hull
= isl_map_affine_hull(isl_map_copy(map
));
2315 map
= isl_map_align_divs(map
);
2316 model
= isl_basic_map_copy(map
->p
[0]);
2318 set
= isl_map_underlying_set(map
);
2320 bset
= uset_simple_hull(set
);
2322 hull
= isl_basic_map_overlying_set(bset
, model
);
2324 hull
= isl_basic_map_intersect(hull
, affine_hull
);
2325 hull
= isl_basic_map_convex_hull(hull
);
2326 ISL_F_SET(hull
, ISL_BASIC_MAP_NO_IMPLICIT
);
2327 ISL_F_SET(hull
, ISL_BASIC_MAP_ALL_EQUALITIES
);
2332 struct isl_basic_set
*isl_set_simple_hull(struct isl_set
*set
)
2334 return (struct isl_basic_set
*)
2335 isl_map_simple_hull((struct isl_map
*)set
);
2338 /* Given a set "set", return parametric bounds on the dimension "dim".
2340 static struct isl_basic_set
*set_bounds(struct isl_set
*set
, int dim
)
2342 unsigned set_dim
= isl_set_dim(set
, isl_dim_set
);
2343 set
= isl_set_copy(set
);
2344 set
= isl_set_eliminate_dims(set
, dim
+ 1, set_dim
- (dim
+ 1));
2345 set
= isl_set_eliminate_dims(set
, 0, dim
);
2346 return isl_set_convex_hull(set
);
2349 /* Computes a "simple hull" and then check if each dimension in the
2350 * resulting hull is bounded by a symbolic constant. If not, the
2351 * hull is intersected with the corresponding bounds on the whole set.
2353 struct isl_basic_set
*isl_set_bounded_simple_hull(struct isl_set
*set
)
2356 struct isl_basic_set
*hull
;
2357 unsigned nparam
, left
;
2358 int removed_divs
= 0;
2360 hull
= isl_set_simple_hull(isl_set_copy(set
));
2364 nparam
= isl_basic_set_dim(hull
, isl_dim_param
);
2365 for (i
= 0; i
< isl_basic_set_dim(hull
, isl_dim_set
); ++i
) {
2366 int lower
= 0, upper
= 0;
2367 struct isl_basic_set
*bounds
;
2369 left
= isl_basic_set_total_dim(hull
) - nparam
- i
- 1;
2370 for (j
= 0; j
< hull
->n_eq
; ++j
) {
2371 if (isl_int_is_zero(hull
->eq
[j
][1 + nparam
+ i
]))
2373 if (isl_seq_first_non_zero(hull
->eq
[j
]+1+nparam
+i
+1,
2380 for (j
= 0; j
< hull
->n_ineq
; ++j
) {
2381 if (isl_int_is_zero(hull
->ineq
[j
][1 + nparam
+ i
]))
2383 if (isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
+i
+1,
2385 isl_seq_first_non_zero(hull
->ineq
[j
]+1+nparam
,
2388 if (isl_int_is_pos(hull
->ineq
[j
][1 + nparam
+ i
]))
2399 if (!removed_divs
) {
2400 set
= isl_set_remove_divs(set
);
2405 bounds
= set_bounds(set
, i
);
2406 hull
= isl_basic_set_intersect(hull
, bounds
);