isl_union_pw_*_free: return NULL
[isl.git] / isl_map_simplify.c
blob145428e4a829c73991f60cc4691fc441d6d73d8b
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <strings.h>
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include "isl_equalities.h"
14 #include <isl/map.h>
15 #include <isl/seq.h>
16 #include "isl_tab.h"
17 #include <isl_space_private.h>
18 #include <isl_mat_private.h>
20 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
22 isl_int *t = bmap->eq[a];
23 bmap->eq[a] = bmap->eq[b];
24 bmap->eq[b] = t;
27 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
29 if (a != b) {
30 isl_int *t = bmap->ineq[a];
31 bmap->ineq[a] = bmap->ineq[b];
32 bmap->ineq[b] = t;
36 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
38 isl_seq_cpy(c, c + n, rem);
39 isl_seq_clr(c + rem, n);
42 /* Drop n dimensions starting at first.
44 * In principle, this frees up some extra variables as the number
45 * of columns remains constant, but we would have to extend
46 * the div array too as the number of rows in this array is assumed
47 * to be equal to extra.
49 struct isl_basic_set *isl_basic_set_drop_dims(
50 struct isl_basic_set *bset, unsigned first, unsigned n)
52 int i;
54 if (!bset)
55 goto error;
57 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
59 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
60 return bset;
62 bset = isl_basic_set_cow(bset);
63 if (!bset)
64 return NULL;
66 for (i = 0; i < bset->n_eq; ++i)
67 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
68 (bset->dim->n_out-first-n)+bset->extra);
70 for (i = 0; i < bset->n_ineq; ++i)
71 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
72 (bset->dim->n_out-first-n)+bset->extra);
74 for (i = 0; i < bset->n_div; ++i)
75 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
76 (bset->dim->n_out-first-n)+bset->extra);
78 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
79 if (!bset->dim)
80 goto error;
82 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
83 bset = isl_basic_set_simplify(bset);
84 return isl_basic_set_finalize(bset);
85 error:
86 isl_basic_set_free(bset);
87 return NULL;
90 struct isl_set *isl_set_drop_dims(
91 struct isl_set *set, unsigned first, unsigned n)
93 int i;
95 if (!set)
96 goto error;
98 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
100 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
101 return set;
102 set = isl_set_cow(set);
103 if (!set)
104 goto error;
105 set->dim = isl_space_drop_outputs(set->dim, first, n);
106 if (!set->dim)
107 goto error;
109 for (i = 0; i < set->n; ++i) {
110 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
111 if (!set->p[i])
112 goto error;
115 ISL_F_CLR(set, ISL_SET_NORMALIZED);
116 return set;
117 error:
118 isl_set_free(set);
119 return NULL;
122 /* Move "n" divs starting at "first" to the end of the list of divs.
124 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
125 unsigned first, unsigned n)
127 isl_int **div;
128 int i;
130 if (first + n == bmap->n_div)
131 return bmap;
133 div = isl_alloc_array(bmap->ctx, isl_int *, n);
134 if (!div)
135 goto error;
136 for (i = 0; i < n; ++i)
137 div[i] = bmap->div[first + i];
138 for (i = 0; i < bmap->n_div - first - n; ++i)
139 bmap->div[first + i] = bmap->div[first + n + i];
140 for (i = 0; i < n; ++i)
141 bmap->div[bmap->n_div - n + i] = div[i];
142 free(div);
143 return bmap;
144 error:
145 isl_basic_map_free(bmap);
146 return NULL;
149 /* Drop "n" dimensions of type "type" starting at "first".
151 * In principle, this frees up some extra variables as the number
152 * of columns remains constant, but we would have to extend
153 * the div array too as the number of rows in this array is assumed
154 * to be equal to extra.
156 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
157 enum isl_dim_type type, unsigned first, unsigned n)
159 int i;
160 unsigned dim;
161 unsigned offset;
162 unsigned left;
164 if (!bmap)
165 goto error;
167 dim = isl_basic_map_dim(bmap, type);
168 isl_assert(bmap->ctx, first + n <= dim, goto error);
170 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
171 return bmap;
173 bmap = isl_basic_map_cow(bmap);
174 if (!bmap)
175 return NULL;
177 offset = isl_basic_map_offset(bmap, type) + first;
178 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
179 for (i = 0; i < bmap->n_eq; ++i)
180 constraint_drop_vars(bmap->eq[i]+offset, n, left);
182 for (i = 0; i < bmap->n_ineq; ++i)
183 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
185 for (i = 0; i < bmap->n_div; ++i)
186 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
188 if (type == isl_dim_div) {
189 bmap = move_divs_last(bmap, first, n);
190 if (!bmap)
191 goto error;
192 isl_basic_map_free_div(bmap, n);
193 } else
194 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
195 if (!bmap->dim)
196 goto error;
198 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
199 bmap = isl_basic_map_simplify(bmap);
200 return isl_basic_map_finalize(bmap);
201 error:
202 isl_basic_map_free(bmap);
203 return NULL;
206 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
207 enum isl_dim_type type, unsigned first, unsigned n)
209 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
210 type, first, n);
213 struct isl_basic_map *isl_basic_map_drop_inputs(
214 struct isl_basic_map *bmap, unsigned first, unsigned n)
216 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
219 struct isl_map *isl_map_drop(struct isl_map *map,
220 enum isl_dim_type type, unsigned first, unsigned n)
222 int i;
224 if (!map)
225 goto error;
227 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
229 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
230 return map;
231 map = isl_map_cow(map);
232 if (!map)
233 goto error;
234 map->dim = isl_space_drop_dims(map->dim, type, first, n);
235 if (!map->dim)
236 goto error;
238 for (i = 0; i < map->n; ++i) {
239 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
240 if (!map->p[i])
241 goto error;
243 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
245 return map;
246 error:
247 isl_map_free(map);
248 return NULL;
251 struct isl_set *isl_set_drop(struct isl_set *set,
252 enum isl_dim_type type, unsigned first, unsigned n)
254 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
257 struct isl_map *isl_map_drop_inputs(
258 struct isl_map *map, unsigned first, unsigned n)
260 return isl_map_drop(map, isl_dim_in, first, n);
264 * We don't cow, as the div is assumed to be redundant.
266 static struct isl_basic_map *isl_basic_map_drop_div(
267 struct isl_basic_map *bmap, unsigned div)
269 int i;
270 unsigned pos;
272 if (!bmap)
273 goto error;
275 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
277 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
279 for (i = 0; i < bmap->n_eq; ++i)
280 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
282 for (i = 0; i < bmap->n_ineq; ++i) {
283 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
284 isl_basic_map_drop_inequality(bmap, i);
285 --i;
286 continue;
288 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
291 for (i = 0; i < bmap->n_div; ++i)
292 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
294 if (div != bmap->n_div - 1) {
295 int j;
296 isl_int *t = bmap->div[div];
298 for (j = div; j < bmap->n_div - 1; ++j)
299 bmap->div[j] = bmap->div[j+1];
301 bmap->div[bmap->n_div - 1] = t;
303 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
304 isl_basic_map_free_div(bmap, 1);
306 return bmap;
307 error:
308 isl_basic_map_free(bmap);
309 return NULL;
312 struct isl_basic_map *isl_basic_map_normalize_constraints(
313 struct isl_basic_map *bmap)
315 int i;
316 isl_int gcd;
317 unsigned total = isl_basic_map_total_dim(bmap);
319 if (!bmap)
320 return NULL;
322 isl_int_init(gcd);
323 for (i = bmap->n_eq - 1; i >= 0; --i) {
324 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
325 if (isl_int_is_zero(gcd)) {
326 if (!isl_int_is_zero(bmap->eq[i][0])) {
327 bmap = isl_basic_map_set_to_empty(bmap);
328 break;
330 isl_basic_map_drop_equality(bmap, i);
331 continue;
333 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
334 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
335 if (isl_int_is_one(gcd))
336 continue;
337 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
338 bmap = isl_basic_map_set_to_empty(bmap);
339 break;
341 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
344 for (i = bmap->n_ineq - 1; i >= 0; --i) {
345 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
346 if (isl_int_is_zero(gcd)) {
347 if (isl_int_is_neg(bmap->ineq[i][0])) {
348 bmap = isl_basic_map_set_to_empty(bmap);
349 break;
351 isl_basic_map_drop_inequality(bmap, i);
352 continue;
354 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
355 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
356 if (isl_int_is_one(gcd))
357 continue;
358 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
359 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
361 isl_int_clear(gcd);
363 return bmap;
366 struct isl_basic_set *isl_basic_set_normalize_constraints(
367 struct isl_basic_set *bset)
369 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
370 (struct isl_basic_map *)bset);
373 /* Assumes divs have been ordered if keep_divs is set.
375 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
376 unsigned pos, isl_int *eq, int keep_divs, int *progress)
378 unsigned total;
379 unsigned space_total;
380 int k;
381 int last_div;
383 total = isl_basic_map_total_dim(bmap);
384 space_total = isl_space_dim(bmap->dim, isl_dim_all);
385 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
386 for (k = 0; k < bmap->n_eq; ++k) {
387 if (bmap->eq[k] == eq)
388 continue;
389 if (isl_int_is_zero(bmap->eq[k][1+pos]))
390 continue;
391 if (progress)
392 *progress = 1;
393 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
394 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
397 for (k = 0; k < bmap->n_ineq; ++k) {
398 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
399 continue;
400 if (progress)
401 *progress = 1;
402 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
403 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
404 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
407 for (k = 0; k < bmap->n_div; ++k) {
408 if (isl_int_is_zero(bmap->div[k][0]))
409 continue;
410 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
411 continue;
412 if (progress)
413 *progress = 1;
414 /* We need to be careful about circular definitions,
415 * so for now we just remove the definition of div k
416 * if the equality contains any divs.
417 * If keep_divs is set, then the divs have been ordered
418 * and we can keep the definition as long as the result
419 * is still ordered.
421 if (last_div == -1 || (keep_divs && last_div < k))
422 isl_seq_elim(bmap->div[k]+1, eq,
423 1+pos, 1+total, &bmap->div[k][0]);
424 else
425 isl_seq_clr(bmap->div[k], 1 + total);
426 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
430 /* Assumes divs have been ordered if keep_divs is set.
432 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
433 unsigned div, int keep_divs)
435 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
437 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
439 isl_basic_map_drop_div(bmap, div);
442 /* Check if elimination of div "div" using equality "eq" would not
443 * result in a div depending on a later div.
445 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
446 unsigned div)
448 int k;
449 int last_div;
450 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
451 unsigned pos = space_total + div;
453 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
454 if (last_div < 0 || last_div <= div)
455 return 1;
457 for (k = 0; k <= last_div; ++k) {
458 if (isl_int_is_zero(bmap->div[k][0]))
459 return 1;
460 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
461 return 0;
464 return 1;
467 /* Elimininate divs based on equalities
469 static struct isl_basic_map *eliminate_divs_eq(
470 struct isl_basic_map *bmap, int *progress)
472 int d;
473 int i;
474 int modified = 0;
475 unsigned off;
477 bmap = isl_basic_map_order_divs(bmap);
479 if (!bmap)
480 return NULL;
482 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
484 for (d = bmap->n_div - 1; d >= 0 ; --d) {
485 for (i = 0; i < bmap->n_eq; ++i) {
486 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
487 !isl_int_is_negone(bmap->eq[i][off + d]))
488 continue;
489 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
490 continue;
491 modified = 1;
492 *progress = 1;
493 eliminate_div(bmap, bmap->eq[i], d, 1);
494 isl_basic_map_drop_equality(bmap, i);
495 break;
498 if (modified)
499 return eliminate_divs_eq(bmap, progress);
500 return bmap;
503 /* Elimininate divs based on inequalities
505 static struct isl_basic_map *eliminate_divs_ineq(
506 struct isl_basic_map *bmap, int *progress)
508 int d;
509 int i;
510 unsigned off;
511 struct isl_ctx *ctx;
513 if (!bmap)
514 return NULL;
516 ctx = bmap->ctx;
517 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
519 for (d = bmap->n_div - 1; d >= 0 ; --d) {
520 for (i = 0; i < bmap->n_eq; ++i)
521 if (!isl_int_is_zero(bmap->eq[i][off + d]))
522 break;
523 if (i < bmap->n_eq)
524 continue;
525 for (i = 0; i < bmap->n_ineq; ++i)
526 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
527 break;
528 if (i < bmap->n_ineq)
529 continue;
530 *progress = 1;
531 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
532 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
533 break;
534 bmap = isl_basic_map_drop_div(bmap, d);
535 if (!bmap)
536 break;
538 return bmap;
541 struct isl_basic_map *isl_basic_map_gauss(
542 struct isl_basic_map *bmap, int *progress)
544 int k;
545 int done;
546 int last_var;
547 unsigned total_var;
548 unsigned total;
550 bmap = isl_basic_map_order_divs(bmap);
552 if (!bmap)
553 return NULL;
555 total = isl_basic_map_total_dim(bmap);
556 total_var = total - bmap->n_div;
558 last_var = total - 1;
559 for (done = 0; done < bmap->n_eq; ++done) {
560 for (; last_var >= 0; --last_var) {
561 for (k = done; k < bmap->n_eq; ++k)
562 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
563 break;
564 if (k < bmap->n_eq)
565 break;
567 if (last_var < 0)
568 break;
569 if (k != done)
570 swap_equality(bmap, k, done);
571 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
572 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
574 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
575 progress);
577 if (last_var >= total_var &&
578 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
579 unsigned div = last_var - total_var;
580 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
581 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
582 isl_int_set(bmap->div[div][0],
583 bmap->eq[done][1+last_var]);
584 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
587 if (done == bmap->n_eq)
588 return bmap;
589 for (k = done; k < bmap->n_eq; ++k) {
590 if (isl_int_is_zero(bmap->eq[k][0]))
591 continue;
592 return isl_basic_map_set_to_empty(bmap);
594 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
595 return bmap;
598 struct isl_basic_set *isl_basic_set_gauss(
599 struct isl_basic_set *bset, int *progress)
601 return (struct isl_basic_set*)isl_basic_map_gauss(
602 (struct isl_basic_map *)bset, progress);
606 static unsigned int round_up(unsigned int v)
608 int old_v = v;
610 while (v) {
611 old_v = v;
612 v ^= v & -v;
614 return old_v << 1;
617 static int hash_index(isl_int ***index, unsigned int size, int bits,
618 struct isl_basic_map *bmap, int k)
620 int h;
621 unsigned total = isl_basic_map_total_dim(bmap);
622 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
623 for (h = hash; index[h]; h = (h+1) % size)
624 if (&bmap->ineq[k] != index[h] &&
625 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
626 break;
627 return h;
630 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
631 struct isl_basic_set *bset, int k)
633 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
636 /* If we can eliminate more than one div, then we need to make
637 * sure we do it from last div to first div, in order not to
638 * change the position of the other divs that still need to
639 * be removed.
641 static struct isl_basic_map *remove_duplicate_divs(
642 struct isl_basic_map *bmap, int *progress)
644 unsigned int size;
645 int *index;
646 int *elim_for;
647 int k, l, h;
648 int bits;
649 struct isl_blk eq;
650 unsigned total_var;
651 unsigned total;
652 struct isl_ctx *ctx;
654 if (!bmap || bmap->n_div <= 1)
655 return bmap;
657 total_var = isl_space_dim(bmap->dim, isl_dim_all);
658 total = total_var + bmap->n_div;
660 ctx = bmap->ctx;
661 for (k = bmap->n_div - 1; k >= 0; --k)
662 if (!isl_int_is_zero(bmap->div[k][0]))
663 break;
664 if (k <= 0)
665 return bmap;
667 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
668 size = round_up(4 * bmap->n_div / 3 - 1);
669 bits = ffs(size) - 1;
670 index = isl_calloc_array(ctx, int, size);
671 if (!index)
672 return bmap;
673 eq = isl_blk_alloc(ctx, 1+total);
674 if (isl_blk_is_error(eq))
675 goto out;
677 isl_seq_clr(eq.data, 1+total);
678 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
679 for (--k; k >= 0; --k) {
680 uint32_t hash;
682 if (isl_int_is_zero(bmap->div[k][0]))
683 continue;
685 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
686 for (h = hash; index[h]; h = (h+1) % size)
687 if (isl_seq_eq(bmap->div[k],
688 bmap->div[index[h]-1], 2+total))
689 break;
690 if (index[h]) {
691 *progress = 1;
692 l = index[h] - 1;
693 elim_for[l] = k + 1;
695 index[h] = k+1;
697 for (l = bmap->n_div - 1; l >= 0; --l) {
698 if (!elim_for[l])
699 continue;
700 k = elim_for[l] - 1;
701 isl_int_set_si(eq.data[1+total_var+k], -1);
702 isl_int_set_si(eq.data[1+total_var+l], 1);
703 eliminate_div(bmap, eq.data, l, 0);
704 isl_int_set_si(eq.data[1+total_var+k], 0);
705 isl_int_set_si(eq.data[1+total_var+l], 0);
708 isl_blk_free(ctx, eq);
709 out:
710 free(index);
711 free(elim_for);
712 return bmap;
715 static int n_pure_div_eq(struct isl_basic_map *bmap)
717 int i, j;
718 unsigned total;
720 total = isl_space_dim(bmap->dim, isl_dim_all);
721 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
722 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
723 --j;
724 if (j < 0)
725 break;
726 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
727 return 0;
729 return i;
732 /* Normalize divs that appear in equalities.
734 * In particular, we assume that bmap contains some equalities
735 * of the form
737 * a x = m * e_i
739 * and we want to replace the set of e_i by a minimal set and
740 * such that the new e_i have a canonical representation in terms
741 * of the vector x.
742 * If any of the equalities involves more than one divs, then
743 * we currently simply bail out.
745 * Let us first additionally assume that all equalities involve
746 * a div. The equalities then express modulo constraints on the
747 * remaining variables and we can use "parameter compression"
748 * to find a minimal set of constraints. The result is a transformation
750 * x = T(x') = x_0 + G x'
752 * with G a lower-triangular matrix with all elements below the diagonal
753 * non-negative and smaller than the diagonal element on the same row.
754 * We first normalize x_0 by making the same property hold in the affine
755 * T matrix.
756 * The rows i of G with a 1 on the diagonal do not impose any modulo
757 * constraint and simply express x_i = x'_i.
758 * For each of the remaining rows i, we introduce a div and a corresponding
759 * equality. In particular
761 * g_ii e_j = x_i - g_i(x')
763 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
764 * corresponding div (if g_kk != 1).
766 * If there are any equalities not involving any div, then we
767 * first apply a variable compression on the variables x:
769 * x = C x'' x'' = C_2 x
771 * and perform the above parameter compression on A C instead of on A.
772 * The resulting compression is then of the form
774 * x'' = T(x') = x_0 + G x'
776 * and in constructing the new divs and the corresponding equalities,
777 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
778 * by the corresponding row from C_2.
780 static struct isl_basic_map *normalize_divs(
781 struct isl_basic_map *bmap, int *progress)
783 int i, j, k;
784 int total;
785 int div_eq;
786 struct isl_mat *B;
787 struct isl_vec *d;
788 struct isl_mat *T = NULL;
789 struct isl_mat *C = NULL;
790 struct isl_mat *C2 = NULL;
791 isl_int v;
792 int *pos;
793 int dropped, needed;
795 if (!bmap)
796 return NULL;
798 if (bmap->n_div == 0)
799 return bmap;
801 if (bmap->n_eq == 0)
802 return bmap;
804 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
805 return bmap;
807 total = isl_space_dim(bmap->dim, isl_dim_all);
808 div_eq = n_pure_div_eq(bmap);
809 if (div_eq == 0)
810 return bmap;
812 if (div_eq < bmap->n_eq) {
813 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
814 bmap->n_eq - div_eq, 0, 1 + total);
815 C = isl_mat_variable_compression(B, &C2);
816 if (!C || !C2)
817 goto error;
818 if (C->n_col == 0) {
819 bmap = isl_basic_map_set_to_empty(bmap);
820 isl_mat_free(C);
821 isl_mat_free(C2);
822 goto done;
826 d = isl_vec_alloc(bmap->ctx, div_eq);
827 if (!d)
828 goto error;
829 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
830 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
831 --j;
832 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
834 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
836 if (C) {
837 B = isl_mat_product(B, C);
838 C = NULL;
841 T = isl_mat_parameter_compression(B, d);
842 if (!T)
843 goto error;
844 if (T->n_col == 0) {
845 bmap = isl_basic_map_set_to_empty(bmap);
846 isl_mat_free(C2);
847 isl_mat_free(T);
848 goto done;
850 isl_int_init(v);
851 for (i = 0; i < T->n_row - 1; ++i) {
852 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
853 if (isl_int_is_zero(v))
854 continue;
855 isl_mat_col_submul(T, 0, v, 1 + i);
857 isl_int_clear(v);
858 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
859 if (!pos)
860 goto error;
861 /* We have to be careful because dropping equalities may reorder them */
862 dropped = 0;
863 for (j = bmap->n_div - 1; j >= 0; --j) {
864 for (i = 0; i < bmap->n_eq; ++i)
865 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
866 break;
867 if (i < bmap->n_eq) {
868 bmap = isl_basic_map_drop_div(bmap, j);
869 isl_basic_map_drop_equality(bmap, i);
870 ++dropped;
873 pos[0] = 0;
874 needed = 0;
875 for (i = 1; i < T->n_row; ++i) {
876 if (isl_int_is_one(T->row[i][i]))
877 pos[i] = i;
878 else
879 needed++;
881 if (needed > dropped) {
882 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
883 needed, needed, 0);
884 if (!bmap)
885 goto error;
887 for (i = 1; i < T->n_row; ++i) {
888 if (isl_int_is_one(T->row[i][i]))
889 continue;
890 k = isl_basic_map_alloc_div(bmap);
891 pos[i] = 1 + total + k;
892 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
893 isl_int_set(bmap->div[k][0], T->row[i][i]);
894 if (C2)
895 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
896 else
897 isl_int_set_si(bmap->div[k][1 + i], 1);
898 for (j = 0; j < i; ++j) {
899 if (isl_int_is_zero(T->row[i][j]))
900 continue;
901 if (pos[j] < T->n_row && C2)
902 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
903 C2->row[pos[j]], 1 + total);
904 else
905 isl_int_neg(bmap->div[k][1 + pos[j]],
906 T->row[i][j]);
908 j = isl_basic_map_alloc_equality(bmap);
909 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
910 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
912 free(pos);
913 isl_mat_free(C2);
914 isl_mat_free(T);
916 if (progress)
917 *progress = 1;
918 done:
919 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
921 return bmap;
922 error:
923 isl_mat_free(C);
924 isl_mat_free(C2);
925 isl_mat_free(T);
926 return bmap;
929 static struct isl_basic_map *set_div_from_lower_bound(
930 struct isl_basic_map *bmap, int div, int ineq)
932 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
934 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
935 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
936 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
937 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
938 isl_int_set_si(bmap->div[div][1 + total + div], 0);
940 return bmap;
943 /* Check whether it is ok to define a div based on an inequality.
944 * To avoid the introduction of circular definitions of divs, we
945 * do not allow such a definition if the resulting expression would refer to
946 * any other undefined divs or if any known div is defined in
947 * terms of the unknown div.
949 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
950 int div, int ineq)
952 int j;
953 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
955 /* Not defined in terms of unknown divs */
956 for (j = 0; j < bmap->n_div; ++j) {
957 if (div == j)
958 continue;
959 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
960 continue;
961 if (isl_int_is_zero(bmap->div[j][0]))
962 return 0;
965 /* No other div defined in terms of this one => avoid loops */
966 for (j = 0; j < bmap->n_div; ++j) {
967 if (div == j)
968 continue;
969 if (isl_int_is_zero(bmap->div[j][0]))
970 continue;
971 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
972 return 0;
975 return 1;
978 /* Given two constraints "k" and "l" that are opposite to each other,
979 * except for the constant term, check if we can use them
980 * to obtain an expression for one of the hitherto unknown divs.
981 * "sum" is the sum of the constant terms of the constraints.
982 * If this sum is strictly smaller than the coefficient of one
983 * of the divs, then this pair can be used define the div.
984 * To avoid the introduction of circular definitions of divs, we
985 * do not use the pair if the resulting expression would refer to
986 * any other undefined divs or if any known div is defined in
987 * terms of the unknown div.
989 static struct isl_basic_map *check_for_div_constraints(
990 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
992 int i;
993 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
995 for (i = 0; i < bmap->n_div; ++i) {
996 if (!isl_int_is_zero(bmap->div[i][0]))
997 continue;
998 if (isl_int_is_zero(bmap->ineq[k][total + i]))
999 continue;
1000 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1001 continue;
1002 if (!ok_to_set_div_from_bound(bmap, i, k))
1003 break;
1004 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1005 bmap = set_div_from_lower_bound(bmap, i, k);
1006 else
1007 bmap = set_div_from_lower_bound(bmap, i, l);
1008 if (progress)
1009 *progress = 1;
1010 break;
1012 return bmap;
1015 static struct isl_basic_map *remove_duplicate_constraints(
1016 struct isl_basic_map *bmap, int *progress, int detect_divs)
1018 unsigned int size;
1019 isl_int ***index;
1020 int k, l, h;
1021 int bits;
1022 unsigned total = isl_basic_map_total_dim(bmap);
1023 isl_int sum;
1024 isl_ctx *ctx;
1026 if (!bmap || bmap->n_ineq <= 1)
1027 return bmap;
1029 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1030 bits = ffs(size) - 1;
1031 ctx = isl_basic_map_get_ctx(bmap);
1032 index = isl_calloc_array(ctx, isl_int **, size);
1033 if (!index)
1034 return bmap;
1036 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1037 for (k = 1; k < bmap->n_ineq; ++k) {
1038 h = hash_index(index, size, bits, bmap, k);
1039 if (!index[h]) {
1040 index[h] = &bmap->ineq[k];
1041 continue;
1043 if (progress)
1044 *progress = 1;
1045 l = index[h] - &bmap->ineq[0];
1046 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1047 swap_inequality(bmap, k, l);
1048 isl_basic_map_drop_inequality(bmap, k);
1049 --k;
1051 isl_int_init(sum);
1052 for (k = 0; k < bmap->n_ineq-1; ++k) {
1053 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1054 h = hash_index(index, size, bits, bmap, k);
1055 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1056 if (!index[h])
1057 continue;
1058 l = index[h] - &bmap->ineq[0];
1059 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1060 if (isl_int_is_pos(sum)) {
1061 if (detect_divs)
1062 bmap = check_for_div_constraints(bmap, k, l,
1063 sum, progress);
1064 continue;
1066 if (isl_int_is_zero(sum)) {
1067 /* We need to break out of the loop after these
1068 * changes since the contents of the hash
1069 * will no longer be valid.
1070 * Plus, we probably we want to regauss first.
1072 if (progress)
1073 *progress = 1;
1074 isl_basic_map_drop_inequality(bmap, l);
1075 isl_basic_map_inequality_to_equality(bmap, k);
1076 } else
1077 bmap = isl_basic_map_set_to_empty(bmap);
1078 break;
1080 isl_int_clear(sum);
1082 free(index);
1083 return bmap;
1087 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1089 int progress = 1;
1090 if (!bmap)
1091 return NULL;
1092 while (progress) {
1093 progress = 0;
1094 bmap = isl_basic_map_normalize_constraints(bmap);
1095 bmap = remove_duplicate_divs(bmap, &progress);
1096 bmap = eliminate_divs_eq(bmap, &progress);
1097 bmap = eliminate_divs_ineq(bmap, &progress);
1098 bmap = isl_basic_map_gauss(bmap, &progress);
1099 /* requires equalities in normal form */
1100 bmap = normalize_divs(bmap, &progress);
1101 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1103 return bmap;
1106 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1108 return (struct isl_basic_set *)
1109 isl_basic_map_simplify((struct isl_basic_map *)bset);
1113 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1114 isl_int *constraint, unsigned div)
1116 unsigned pos;
1118 if (!bmap)
1119 return -1;
1121 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1123 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1124 int neg;
1125 isl_int_sub(bmap->div[div][1],
1126 bmap->div[div][1], bmap->div[div][0]);
1127 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1128 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1129 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1130 isl_int_add(bmap->div[div][1],
1131 bmap->div[div][1], bmap->div[div][0]);
1132 if (!neg)
1133 return 0;
1134 if (isl_seq_first_non_zero(constraint+pos+1,
1135 bmap->n_div-div-1) != -1)
1136 return 0;
1137 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1138 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1139 return 0;
1140 if (isl_seq_first_non_zero(constraint+pos+1,
1141 bmap->n_div-div-1) != -1)
1142 return 0;
1143 } else
1144 return 0;
1146 return 1;
1149 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1150 isl_int *constraint, unsigned div)
1152 return isl_basic_map_is_div_constraint(bset, constraint, div);
1156 /* If the only constraints a div d=floor(f/m)
1157 * appears in are its two defining constraints
1159 * f - m d >=0
1160 * -(f - (m - 1)) + m d >= 0
1162 * then it can safely be removed.
1164 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1166 int i;
1167 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1169 for (i = 0; i < bmap->n_eq; ++i)
1170 if (!isl_int_is_zero(bmap->eq[i][pos]))
1171 return 0;
1173 for (i = 0; i < bmap->n_ineq; ++i) {
1174 if (isl_int_is_zero(bmap->ineq[i][pos]))
1175 continue;
1176 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1177 return 0;
1180 for (i = 0; i < bmap->n_div; ++i)
1181 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1182 return 0;
1184 return 1;
1188 * Remove divs that don't occur in any of the constraints or other divs.
1189 * These can arise when dropping some of the variables in a quast
1190 * returned by piplib.
1192 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1194 int i;
1196 if (!bmap)
1197 return NULL;
1199 for (i = bmap->n_div-1; i >= 0; --i) {
1200 if (!div_is_redundant(bmap, i))
1201 continue;
1202 bmap = isl_basic_map_drop_div(bmap, i);
1204 return bmap;
1207 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1209 bmap = remove_redundant_divs(bmap);
1210 if (!bmap)
1211 return NULL;
1212 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1213 return bmap;
1216 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1218 return (struct isl_basic_set *)
1219 isl_basic_map_finalize((struct isl_basic_map *)bset);
1222 struct isl_set *isl_set_finalize(struct isl_set *set)
1224 int i;
1226 if (!set)
1227 return NULL;
1228 for (i = 0; i < set->n; ++i) {
1229 set->p[i] = isl_basic_set_finalize(set->p[i]);
1230 if (!set->p[i])
1231 goto error;
1233 return set;
1234 error:
1235 isl_set_free(set);
1236 return NULL;
1239 struct isl_map *isl_map_finalize(struct isl_map *map)
1241 int i;
1243 if (!map)
1244 return NULL;
1245 for (i = 0; i < map->n; ++i) {
1246 map->p[i] = isl_basic_map_finalize(map->p[i]);
1247 if (!map->p[i])
1248 goto error;
1250 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1251 return map;
1252 error:
1253 isl_map_free(map);
1254 return NULL;
1258 /* Remove definition of any div that is defined in terms of the given variable.
1259 * The div itself is not removed. Functions such as
1260 * eliminate_divs_ineq depend on the other divs remaining in place.
1262 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1263 int pos)
1265 int i;
1267 for (i = 0; i < bmap->n_div; ++i) {
1268 if (isl_int_is_zero(bmap->div[i][0]))
1269 continue;
1270 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1271 continue;
1272 isl_int_set_si(bmap->div[i][0], 0);
1274 return bmap;
1277 /* Eliminate the specified variables from the constraints using
1278 * Fourier-Motzkin. The variables themselves are not removed.
1280 struct isl_basic_map *isl_basic_map_eliminate_vars(
1281 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1283 int d;
1284 int i, j, k;
1285 unsigned total;
1286 int need_gauss = 0;
1288 if (n == 0)
1289 return bmap;
1290 if (!bmap)
1291 return NULL;
1292 total = isl_basic_map_total_dim(bmap);
1294 bmap = isl_basic_map_cow(bmap);
1295 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1296 bmap = remove_dependent_vars(bmap, d);
1298 for (d = pos + n - 1;
1299 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1300 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1301 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1302 int n_lower, n_upper;
1303 if (!bmap)
1304 return NULL;
1305 for (i = 0; i < bmap->n_eq; ++i) {
1306 if (isl_int_is_zero(bmap->eq[i][1+d]))
1307 continue;
1308 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1309 isl_basic_map_drop_equality(bmap, i);
1310 need_gauss = 1;
1311 break;
1313 if (i < bmap->n_eq)
1314 continue;
1315 n_lower = 0;
1316 n_upper = 0;
1317 for (i = 0; i < bmap->n_ineq; ++i) {
1318 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1319 n_lower++;
1320 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1321 n_upper++;
1323 bmap = isl_basic_map_extend_constraints(bmap,
1324 0, n_lower * n_upper);
1325 if (!bmap)
1326 goto error;
1327 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1328 int last;
1329 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1330 continue;
1331 last = -1;
1332 for (j = 0; j < i; ++j) {
1333 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1334 continue;
1335 last = j;
1336 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1337 isl_int_sgn(bmap->ineq[j][1+d]))
1338 continue;
1339 k = isl_basic_map_alloc_inequality(bmap);
1340 if (k < 0)
1341 goto error;
1342 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1343 1+total);
1344 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1345 1+d, 1+total, NULL);
1347 isl_basic_map_drop_inequality(bmap, i);
1348 i = last + 1;
1350 if (n_lower > 0 && n_upper > 0) {
1351 bmap = isl_basic_map_normalize_constraints(bmap);
1352 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1353 bmap = isl_basic_map_gauss(bmap, NULL);
1354 bmap = isl_basic_map_remove_redundancies(bmap);
1355 need_gauss = 0;
1356 if (!bmap)
1357 goto error;
1358 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1359 break;
1362 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1363 if (need_gauss)
1364 bmap = isl_basic_map_gauss(bmap, NULL);
1365 return bmap;
1366 error:
1367 isl_basic_map_free(bmap);
1368 return NULL;
1371 struct isl_basic_set *isl_basic_set_eliminate_vars(
1372 struct isl_basic_set *bset, unsigned pos, unsigned n)
1374 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1375 (struct isl_basic_map *)bset, pos, n);
1378 /* Eliminate the specified n dimensions starting at first from the
1379 * constraints using Fourier-Motzkin. The dimensions themselves
1380 * are not removed.
1382 __isl_give isl_basic_map *isl_basic_map_eliminate(
1383 __isl_take isl_basic_map *bmap,
1384 enum isl_dim_type type, unsigned first, unsigned n)
1386 if (!bmap)
1387 return NULL;
1388 if (n == 0)
1389 return bmap;
1391 if (first + n > isl_basic_map_dim(bmap, type))
1392 isl_die(bmap->ctx, isl_error_invalid,
1393 "index out of bounds", goto error);
1395 first += isl_basic_map_offset(bmap, type) - 1;
1396 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1397 return isl_basic_map_finalize(bmap);
1398 error:
1399 isl_basic_map_free(bmap);
1400 return NULL;
1403 /* Don't assume equalities are in order, because align_divs
1404 * may have changed the order of the divs.
1406 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1408 int d, i;
1409 unsigned total;
1411 total = isl_space_dim(bmap->dim, isl_dim_all);
1412 for (d = 0; d < total; ++d)
1413 elim[d] = -1;
1414 for (i = 0; i < bmap->n_eq; ++i) {
1415 for (d = total - 1; d >= 0; --d) {
1416 if (isl_int_is_zero(bmap->eq[i][1+d]))
1417 continue;
1418 elim[d] = i;
1419 break;
1424 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1426 compute_elimination_index((struct isl_basic_map *)bset, elim);
1429 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1430 struct isl_basic_map *bmap, int *elim)
1432 int d;
1433 int copied = 0;
1434 unsigned total;
1436 total = isl_space_dim(bmap->dim, isl_dim_all);
1437 for (d = total - 1; d >= 0; --d) {
1438 if (isl_int_is_zero(src[1+d]))
1439 continue;
1440 if (elim[d] == -1)
1441 continue;
1442 if (!copied) {
1443 isl_seq_cpy(dst, src, 1 + total);
1444 copied = 1;
1446 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1448 return copied;
1451 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1452 struct isl_basic_set *bset, int *elim)
1454 return reduced_using_equalities(dst, src,
1455 (struct isl_basic_map *)bset, elim);
1458 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1459 struct isl_basic_set *bset, struct isl_basic_set *context)
1461 int i;
1462 int *elim;
1464 if (!bset || !context)
1465 goto error;
1467 if (context->n_eq == 0) {
1468 isl_basic_set_free(context);
1469 return bset;
1472 bset = isl_basic_set_cow(bset);
1473 if (!bset)
1474 goto error;
1476 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1477 if (!elim)
1478 goto error;
1479 set_compute_elimination_index(context, elim);
1480 for (i = 0; i < bset->n_eq; ++i)
1481 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1482 context, elim);
1483 for (i = 0; i < bset->n_ineq; ++i)
1484 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1485 context, elim);
1486 isl_basic_set_free(context);
1487 free(elim);
1488 bset = isl_basic_set_simplify(bset);
1489 bset = isl_basic_set_finalize(bset);
1490 return bset;
1491 error:
1492 isl_basic_set_free(bset);
1493 isl_basic_set_free(context);
1494 return NULL;
1497 static struct isl_basic_set *remove_shifted_constraints(
1498 struct isl_basic_set *bset, struct isl_basic_set *context)
1500 unsigned int size;
1501 isl_int ***index;
1502 int bits;
1503 int k, h, l;
1504 isl_ctx *ctx;
1506 if (!bset)
1507 return NULL;
1509 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1510 bits = ffs(size) - 1;
1511 ctx = isl_basic_set_get_ctx(bset);
1512 index = isl_calloc_array(ctx, isl_int **, size);
1513 if (!index)
1514 return bset;
1516 for (k = 0; k < context->n_ineq; ++k) {
1517 h = set_hash_index(index, size, bits, context, k);
1518 index[h] = &context->ineq[k];
1520 for (k = 0; k < bset->n_ineq; ++k) {
1521 h = set_hash_index(index, size, bits, bset, k);
1522 if (!index[h])
1523 continue;
1524 l = index[h] - &context->ineq[0];
1525 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1526 continue;
1527 bset = isl_basic_set_cow(bset);
1528 if (!bset)
1529 goto error;
1530 isl_basic_set_drop_inequality(bset, k);
1531 --k;
1533 free(index);
1534 return bset;
1535 error:
1536 free(index);
1537 return bset;
1540 /* Remove all information from bset that is redundant in the context
1541 * of context. Both bset and context are assumed to be full-dimensional.
1543 * We first * remove the inequalities from "bset"
1544 * that are obviously redundant with respect to some inequality in "context".
1546 * If there are any inequalities left, we construct a tableau for
1547 * the context and then add the inequalities of "bset".
1548 * Before adding these inequalities, we freeze all constraints such that
1549 * they won't be considered redundant in terms of the constraints of "bset".
1550 * Then we detect all redundant constraints (among the
1551 * constraints that weren't frozen), first by checking for redundancy in the
1552 * the tableau and then by checking if replacing a constraint by its negation
1553 * would lead to an empty set. This last step is fairly expensive
1554 * and could be optimized by more reuse of the tableau.
1555 * Finally, we update bset according to the results.
1557 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1558 __isl_take isl_basic_set *context)
1560 int i, k;
1561 isl_basic_set *combined = NULL;
1562 struct isl_tab *tab = NULL;
1563 unsigned context_ineq;
1564 unsigned total;
1566 if (!bset || !context)
1567 goto error;
1569 if (isl_basic_set_is_universe(bset)) {
1570 isl_basic_set_free(context);
1571 return bset;
1574 if (isl_basic_set_is_universe(context)) {
1575 isl_basic_set_free(context);
1576 return bset;
1579 bset = remove_shifted_constraints(bset, context);
1580 if (!bset)
1581 goto error;
1582 if (bset->n_ineq == 0)
1583 goto done;
1585 context_ineq = context->n_ineq;
1586 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1587 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1588 tab = isl_tab_from_basic_set(combined, 0);
1589 for (i = 0; i < context_ineq; ++i)
1590 if (isl_tab_freeze_constraint(tab, i) < 0)
1591 goto error;
1592 tab = isl_tab_extend(tab, bset->n_ineq);
1593 for (i = 0; i < bset->n_ineq; ++i)
1594 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1595 goto error;
1596 bset = isl_basic_set_add_constraints(combined, bset, 0);
1597 combined = NULL;
1598 if (!bset)
1599 goto error;
1600 if (isl_tab_detect_redundant(tab) < 0)
1601 goto error;
1602 total = isl_basic_set_total_dim(bset);
1603 for (i = context_ineq; i < bset->n_ineq; ++i) {
1604 int is_empty;
1605 if (tab->con[i].is_redundant)
1606 continue;
1607 tab->con[i].is_redundant = 1;
1608 combined = isl_basic_set_dup(bset);
1609 combined = isl_basic_set_update_from_tab(combined, tab);
1610 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1611 k = isl_basic_set_alloc_inequality(combined);
1612 if (k < 0)
1613 goto error;
1614 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1615 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1616 is_empty = isl_basic_set_is_empty(combined);
1617 if (is_empty < 0)
1618 goto error;
1619 isl_basic_set_free(combined);
1620 combined = NULL;
1621 if (!is_empty)
1622 tab->con[i].is_redundant = 0;
1624 for (i = 0; i < context_ineq; ++i)
1625 tab->con[i].is_redundant = 1;
1626 bset = isl_basic_set_update_from_tab(bset, tab);
1627 if (bset) {
1628 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1629 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1632 isl_tab_free(tab);
1633 done:
1634 bset = isl_basic_set_simplify(bset);
1635 bset = isl_basic_set_finalize(bset);
1636 isl_basic_set_free(context);
1637 return bset;
1638 error:
1639 isl_tab_free(tab);
1640 isl_basic_set_free(combined);
1641 isl_basic_set_free(context);
1642 isl_basic_set_free(bset);
1643 return NULL;
1646 /* Remove all information from bset that is redundant in the context
1647 * of context. In particular, equalities that are linear combinations
1648 * of those in context are removed. Then the inequalities that are
1649 * redundant in the context of the equalities and inequalities of
1650 * context are removed.
1652 * We first compute the integer affine hull of the intersection,
1653 * compute the gist inside this affine hull and then add back
1654 * those equalities that are not implied by the context.
1656 * If two constraints are mutually redundant, then uset_gist_full
1657 * will remove the second of those constraints. We therefore first
1658 * sort the constraints so that constraints not involving existentially
1659 * quantified variables are given precedence over those that do.
1660 * We have to perform this sorting before the variable compression,
1661 * because that may effect the order of the variables.
1663 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
1664 __isl_take isl_basic_set *context)
1666 isl_mat *eq;
1667 isl_mat *T, *T2;
1668 isl_basic_set *aff;
1669 isl_basic_set *aff_context;
1670 unsigned total;
1672 if (!bset || !context)
1673 goto error;
1675 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
1676 if (isl_basic_set_plain_is_empty(bset)) {
1677 isl_basic_set_free(context);
1678 return bset;
1680 bset = isl_basic_set_sort_constraints(bset);
1681 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
1682 if (!aff)
1683 goto error;
1684 if (isl_basic_set_plain_is_empty(aff)) {
1685 isl_basic_set_free(aff);
1686 isl_basic_set_free(context);
1687 return bset;
1689 if (aff->n_eq == 0) {
1690 isl_basic_set_free(aff);
1691 return uset_gist_full(bset, context);
1693 total = isl_basic_set_total_dim(bset);
1694 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
1695 eq = isl_mat_cow(eq);
1696 T = isl_mat_variable_compression(eq, &T2);
1697 if (T && T->n_col == 0) {
1698 isl_mat_free(T);
1699 isl_mat_free(T2);
1700 isl_basic_set_free(context);
1701 isl_basic_set_free(aff);
1702 return isl_basic_set_set_to_empty(bset);
1705 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
1707 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
1708 context = isl_basic_set_preimage(context, T);
1710 bset = uset_gist_full(bset, context);
1711 bset = isl_basic_set_preimage(bset, T2);
1712 bset = isl_basic_set_intersect(bset, aff);
1713 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
1715 if (bset) {
1716 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1717 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1720 return bset;
1721 error:
1722 isl_basic_set_free(bset);
1723 isl_basic_set_free(context);
1724 return NULL;
1727 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1728 * We simply add the equalities in context to bmap and then do a regular
1729 * div normalizations. Better results can be obtained by normalizing
1730 * only the divs in bmap than do not also appear in context.
1731 * We need to be careful to reduce the divs using the equalities
1732 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1733 * spurious constraints.
1735 static struct isl_basic_map *normalize_divs_in_context(
1736 struct isl_basic_map *bmap, struct isl_basic_map *context)
1738 int i;
1739 unsigned total_context;
1740 int div_eq;
1742 div_eq = n_pure_div_eq(bmap);
1743 if (div_eq == 0)
1744 return bmap;
1746 if (context->n_div > 0)
1747 bmap = isl_basic_map_align_divs(bmap, context);
1749 total_context = isl_basic_map_total_dim(context);
1750 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1751 for (i = 0; i < context->n_eq; ++i) {
1752 int k;
1753 k = isl_basic_map_alloc_equality(bmap);
1754 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1755 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1756 isl_basic_map_total_dim(bmap) - total_context);
1758 bmap = isl_basic_map_gauss(bmap, NULL);
1759 bmap = normalize_divs(bmap, NULL);
1760 bmap = isl_basic_map_gauss(bmap, NULL);
1761 return bmap;
1764 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1765 struct isl_basic_map *context)
1767 struct isl_basic_set *bset;
1769 if (!bmap || !context)
1770 goto error;
1772 if (isl_basic_map_is_universe(bmap)) {
1773 isl_basic_map_free(context);
1774 return bmap;
1776 if (isl_basic_map_plain_is_empty(context)) {
1777 isl_basic_map_free(bmap);
1778 return context;
1780 if (isl_basic_map_plain_is_empty(bmap)) {
1781 isl_basic_map_free(context);
1782 return bmap;
1785 bmap = isl_basic_map_remove_redundancies(bmap);
1786 context = isl_basic_map_remove_redundancies(context);
1788 if (context->n_eq)
1789 bmap = normalize_divs_in_context(bmap, context);
1791 context = isl_basic_map_align_divs(context, bmap);
1792 bmap = isl_basic_map_align_divs(bmap, context);
1794 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1795 isl_basic_map_underlying_set(context));
1797 return isl_basic_map_overlying_set(bset, bmap);
1798 error:
1799 isl_basic_map_free(bmap);
1800 isl_basic_map_free(context);
1801 return NULL;
1805 * Assumes context has no implicit divs.
1807 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
1808 __isl_take isl_basic_map *context)
1810 int i;
1812 if (!map || !context)
1813 goto error;;
1815 if (isl_basic_map_plain_is_empty(context)) {
1816 isl_map_free(map);
1817 return isl_map_from_basic_map(context);
1820 context = isl_basic_map_remove_redundancies(context);
1821 map = isl_map_cow(map);
1822 if (!map || !context)
1823 goto error;;
1824 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
1825 map = isl_map_compute_divs(map);
1826 for (i = 0; i < map->n; ++i)
1827 context = isl_basic_map_align_divs(context, map->p[i]);
1828 for (i = map->n - 1; i >= 0; --i) {
1829 map->p[i] = isl_basic_map_gist(map->p[i],
1830 isl_basic_map_copy(context));
1831 if (!map->p[i])
1832 goto error;
1833 if (isl_basic_map_plain_is_empty(map->p[i])) {
1834 isl_basic_map_free(map->p[i]);
1835 if (i != map->n - 1)
1836 map->p[i] = map->p[map->n - 1];
1837 map->n--;
1840 isl_basic_map_free(context);
1841 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1842 return map;
1843 error:
1844 isl_map_free(map);
1845 isl_basic_map_free(context);
1846 return NULL;
1849 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
1850 __isl_take isl_map *context)
1852 context = isl_map_compute_divs(context);
1853 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
1856 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1857 __isl_take isl_map *context)
1859 return isl_map_align_params_map_map_and(map, context, &map_gist);
1862 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1863 struct isl_basic_set *context)
1865 return (struct isl_basic_set *)isl_basic_map_gist(
1866 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1869 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
1870 __isl_take isl_basic_set *context)
1872 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
1873 (struct isl_basic_map *)context);
1876 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
1877 __isl_take isl_basic_set *context)
1879 isl_space *space = isl_set_get_space(set);
1880 isl_basic_set *dom_context = isl_basic_set_universe(space);
1881 dom_context = isl_basic_set_intersect_params(dom_context, context);
1882 return isl_set_gist_basic_set(set, dom_context);
1885 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1886 __isl_take isl_set *context)
1888 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1889 (struct isl_map *)context);
1892 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
1893 __isl_take isl_set *context)
1895 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
1896 map_context = isl_map_intersect_domain(map_context, context);
1897 return isl_map_gist(map, map_context);
1900 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
1901 __isl_take isl_set *context)
1903 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
1904 map_context = isl_map_intersect_range(map_context, context);
1905 return isl_map_gist(map, map_context);
1908 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
1909 __isl_take isl_set *context)
1911 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
1912 map_context = isl_map_intersect_params(map_context, context);
1913 return isl_map_gist(map, map_context);
1916 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
1917 __isl_take isl_set *context)
1919 return isl_map_gist_params(set, context);
1922 /* Quick check to see if two basic maps are disjoint.
1923 * In particular, we reduce the equalities and inequalities of
1924 * one basic map in the context of the equalities of the other
1925 * basic map and check if we get a contradiction.
1927 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
1928 __isl_keep isl_basic_map *bmap2)
1930 struct isl_vec *v = NULL;
1931 int *elim = NULL;
1932 unsigned total;
1933 int i;
1935 if (!bmap1 || !bmap2)
1936 return -1;
1937 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
1938 return -1);
1939 if (bmap1->n_div || bmap2->n_div)
1940 return 0;
1941 if (!bmap1->n_eq && !bmap2->n_eq)
1942 return 0;
1944 total = isl_space_dim(bmap1->dim, isl_dim_all);
1945 if (total == 0)
1946 return 0;
1947 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1948 if (!v)
1949 goto error;
1950 elim = isl_alloc_array(bmap1->ctx, int, total);
1951 if (!elim)
1952 goto error;
1953 compute_elimination_index(bmap1, elim);
1954 for (i = 0; i < bmap2->n_eq; ++i) {
1955 int reduced;
1956 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1957 bmap1, elim);
1958 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1959 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1960 goto disjoint;
1962 for (i = 0; i < bmap2->n_ineq; ++i) {
1963 int reduced;
1964 reduced = reduced_using_equalities(v->block.data,
1965 bmap2->ineq[i], bmap1, elim);
1966 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1967 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1968 goto disjoint;
1970 compute_elimination_index(bmap2, elim);
1971 for (i = 0; i < bmap1->n_ineq; ++i) {
1972 int reduced;
1973 reduced = reduced_using_equalities(v->block.data,
1974 bmap1->ineq[i], bmap2, elim);
1975 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1976 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1977 goto disjoint;
1979 isl_vec_free(v);
1980 free(elim);
1981 return 0;
1982 disjoint:
1983 isl_vec_free(v);
1984 free(elim);
1985 return 1;
1986 error:
1987 isl_vec_free(v);
1988 free(elim);
1989 return -1;
1992 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
1993 __isl_keep isl_basic_set *bset2)
1995 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
1996 (struct isl_basic_map *)bset2);
1999 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2000 __isl_keep isl_map *map2)
2002 int i, j;
2004 if (!map1 || !map2)
2005 return -1;
2007 if (isl_map_plain_is_equal(map1, map2))
2008 return 0;
2010 for (i = 0; i < map1->n; ++i) {
2011 for (j = 0; j < map2->n; ++j) {
2012 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2013 map2->p[j]);
2014 if (d != 1)
2015 return d;
2018 return 1;
2021 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2022 __isl_keep isl_set *set2)
2024 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2025 (struct isl_map *)set2);
2028 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2030 return isl_set_plain_is_disjoint(set1, set2);
2033 /* Check if we can combine a given div with lower bound l and upper
2034 * bound u with some other div and if so return that other div.
2035 * Otherwise return -1.
2037 * We first check that
2038 * - the bounds are opposites of each other (except for the constant
2039 * term)
2040 * - the bounds do not reference any other div
2041 * - no div is defined in terms of this div
2043 * Let m be the size of the range allowed on the div by the bounds.
2044 * That is, the bounds are of the form
2046 * e <= a <= e + m - 1
2048 * with e some expression in the other variables.
2049 * We look for another div b such that no third div is defined in terms
2050 * of this second div b and such that in any constraint that contains
2051 * a (except for the given lower and upper bound), also contains b
2052 * with a coefficient that is m times that of b.
2053 * That is, all constraints (execpt for the lower and upper bound)
2054 * are of the form
2056 * e + f (a + m b) >= 0
2058 * If so, we return b so that "a + m b" can be replaced by
2059 * a single div "c = a + m b".
2061 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2062 unsigned div, unsigned l, unsigned u)
2064 int i, j;
2065 unsigned dim;
2066 int coalesce = -1;
2068 if (bmap->n_div <= 1)
2069 return -1;
2070 dim = isl_space_dim(bmap->dim, isl_dim_all);
2071 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2072 return -1;
2073 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2074 bmap->n_div - div - 1) != -1)
2075 return -1;
2076 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2077 dim + bmap->n_div))
2078 return -1;
2080 for (i = 0; i < bmap->n_div; ++i) {
2081 if (isl_int_is_zero(bmap->div[i][0]))
2082 continue;
2083 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2084 return -1;
2087 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2088 if (isl_int_is_neg(bmap->ineq[l][0])) {
2089 isl_int_sub(bmap->ineq[l][0],
2090 bmap->ineq[l][0], bmap->ineq[u][0]);
2091 bmap = isl_basic_map_copy(bmap);
2092 bmap = isl_basic_map_set_to_empty(bmap);
2093 isl_basic_map_free(bmap);
2094 return -1;
2096 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2097 for (i = 0; i < bmap->n_div; ++i) {
2098 if (i == div)
2099 continue;
2100 if (!pairs[i])
2101 continue;
2102 for (j = 0; j < bmap->n_div; ++j) {
2103 if (isl_int_is_zero(bmap->div[j][0]))
2104 continue;
2105 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2106 break;
2108 if (j < bmap->n_div)
2109 continue;
2110 for (j = 0; j < bmap->n_ineq; ++j) {
2111 int valid;
2112 if (j == l || j == u)
2113 continue;
2114 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2115 continue;
2116 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2117 break;
2118 isl_int_mul(bmap->ineq[j][1 + dim + div],
2119 bmap->ineq[j][1 + dim + div],
2120 bmap->ineq[l][0]);
2121 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2122 bmap->ineq[j][1 + dim + i]);
2123 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2124 bmap->ineq[j][1 + dim + div],
2125 bmap->ineq[l][0]);
2126 if (!valid)
2127 break;
2129 if (j < bmap->n_ineq)
2130 continue;
2131 coalesce = i;
2132 break;
2134 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2135 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2136 return coalesce;
2139 /* Given a lower and an upper bound on div i, construct an inequality
2140 * that when nonnegative ensures that this pair of bounds always allows
2141 * for an integer value of the given div.
2142 * The lower bound is inequality l, while the upper bound is inequality u.
2143 * The constructed inequality is stored in ineq.
2144 * g, fl, fu are temporary scalars.
2146 * Let the upper bound be
2148 * -n_u a + e_u >= 0
2150 * and the lower bound
2152 * n_l a + e_l >= 0
2154 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2155 * We have
2157 * - f_u e_l <= f_u f_l g a <= f_l e_u
2159 * Since all variables are integer valued, this is equivalent to
2161 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2163 * If this interval is at least f_u f_l g, then it contains at least
2164 * one integer value for a.
2165 * That is, the test constraint is
2167 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2169 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2170 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2172 unsigned dim;
2173 dim = isl_space_dim(bmap->dim, isl_dim_all);
2175 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2176 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2177 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2178 isl_int_neg(fu, fu);
2179 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2180 1 + dim + bmap->n_div);
2181 isl_int_add(ineq[0], ineq[0], fl);
2182 isl_int_add(ineq[0], ineq[0], fu);
2183 isl_int_sub_ui(ineq[0], ineq[0], 1);
2184 isl_int_mul(g, g, fl);
2185 isl_int_mul(g, g, fu);
2186 isl_int_sub(ineq[0], ineq[0], g);
2189 /* Remove more kinds of divs that are not strictly needed.
2190 * In particular, if all pairs of lower and upper bounds on a div
2191 * are such that they allow at least one integer value of the div,
2192 * the we can eliminate the div using Fourier-Motzkin without
2193 * introducing any spurious solutions.
2195 static struct isl_basic_map *drop_more_redundant_divs(
2196 struct isl_basic_map *bmap, int *pairs, int n)
2198 struct isl_tab *tab = NULL;
2199 struct isl_vec *vec = NULL;
2200 unsigned dim;
2201 int remove = -1;
2202 isl_int g, fl, fu;
2204 isl_int_init(g);
2205 isl_int_init(fl);
2206 isl_int_init(fu);
2208 if (!bmap)
2209 goto error;
2211 dim = isl_space_dim(bmap->dim, isl_dim_all);
2212 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2213 if (!vec)
2214 goto error;
2216 tab = isl_tab_from_basic_map(bmap, 0);
2218 while (n > 0) {
2219 int i, l, u;
2220 int best = -1;
2221 enum isl_lp_result res;
2223 for (i = 0; i < bmap->n_div; ++i) {
2224 if (!pairs[i])
2225 continue;
2226 if (best >= 0 && pairs[best] <= pairs[i])
2227 continue;
2228 best = i;
2231 i = best;
2232 for (l = 0; l < bmap->n_ineq; ++l) {
2233 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2234 continue;
2235 for (u = 0; u < bmap->n_ineq; ++u) {
2236 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2237 continue;
2238 construct_test_ineq(bmap, i, l, u,
2239 vec->el, g, fl, fu);
2240 res = isl_tab_min(tab, vec->el,
2241 bmap->ctx->one, &g, NULL, 0);
2242 if (res == isl_lp_error)
2243 goto error;
2244 if (res == isl_lp_empty) {
2245 bmap = isl_basic_map_set_to_empty(bmap);
2246 break;
2248 if (res != isl_lp_ok || isl_int_is_neg(g))
2249 break;
2251 if (u < bmap->n_ineq)
2252 break;
2254 if (l == bmap->n_ineq) {
2255 remove = i;
2256 break;
2258 pairs[i] = 0;
2259 --n;
2262 isl_tab_free(tab);
2263 isl_vec_free(vec);
2265 isl_int_clear(g);
2266 isl_int_clear(fl);
2267 isl_int_clear(fu);
2269 free(pairs);
2271 if (remove < 0)
2272 return bmap;
2274 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2275 return isl_basic_map_drop_redundant_divs(bmap);
2276 error:
2277 free(pairs);
2278 isl_basic_map_free(bmap);
2279 isl_tab_free(tab);
2280 isl_vec_free(vec);
2281 isl_int_clear(g);
2282 isl_int_clear(fl);
2283 isl_int_clear(fu);
2284 return NULL;
2287 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2288 * and the upper bound u, div1 always occurs together with div2 in the form
2289 * (div1 + m div2), where m is the constant range on the variable div1
2290 * allowed by l and u, replace the pair div1 and div2 by a single
2291 * div that is equal to div1 + m div2.
2293 * The new div will appear in the location that contains div2.
2294 * We need to modify all constraints that contain
2295 * div2 = (div - div1) / m
2296 * (If a constraint does not contain div2, it will also not contain div1.)
2297 * If the constraint also contains div1, then we know they appear
2298 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2299 * i.e., the coefficient of div is f.
2301 * Otherwise, we first need to introduce div1 into the constraint.
2302 * Let the l be
2304 * div1 + f >=0
2306 * and u
2308 * -div1 + f' >= 0
2310 * A lower bound on div2
2312 * n div2 + t >= 0
2314 * can be replaced by
2316 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2318 * with g = gcd(m,n).
2319 * An upper bound
2321 * -n div2 + t >= 0
2323 * can be replaced by
2325 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2327 * These constraint are those that we would obtain from eliminating
2328 * div1 using Fourier-Motzkin.
2330 * After all constraints have been modified, we drop the lower and upper
2331 * bound and then drop div1.
2333 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2334 unsigned div1, unsigned div2, unsigned l, unsigned u)
2336 isl_int a;
2337 isl_int b;
2338 isl_int m;
2339 unsigned dim, total;
2340 int i;
2342 dim = isl_space_dim(bmap->dim, isl_dim_all);
2343 total = 1 + dim + bmap->n_div;
2345 isl_int_init(a);
2346 isl_int_init(b);
2347 isl_int_init(m);
2348 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2349 isl_int_add_ui(m, m, 1);
2351 for (i = 0; i < bmap->n_ineq; ++i) {
2352 if (i == l || i == u)
2353 continue;
2354 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2355 continue;
2356 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2357 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2358 isl_int_divexact(a, m, b);
2359 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2360 if (isl_int_is_pos(b)) {
2361 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2362 b, bmap->ineq[l], total);
2363 } else {
2364 isl_int_neg(b, b);
2365 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2366 b, bmap->ineq[u], total);
2369 isl_int_set(bmap->ineq[i][1 + dim + div2],
2370 bmap->ineq[i][1 + dim + div1]);
2371 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2374 isl_int_clear(a);
2375 isl_int_clear(b);
2376 isl_int_clear(m);
2377 if (l > u) {
2378 isl_basic_map_drop_inequality(bmap, l);
2379 isl_basic_map_drop_inequality(bmap, u);
2380 } else {
2381 isl_basic_map_drop_inequality(bmap, u);
2382 isl_basic_map_drop_inequality(bmap, l);
2384 bmap = isl_basic_map_drop_div(bmap, div1);
2385 return bmap;
2388 /* First check if we can coalesce any pair of divs and
2389 * then continue with dropping more redundant divs.
2391 * We loop over all pairs of lower and upper bounds on a div
2392 * with coefficient 1 and -1, respectively, check if there
2393 * is any other div "c" with which we can coalesce the div
2394 * and if so, perform the coalescing.
2396 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2397 struct isl_basic_map *bmap, int *pairs, int n)
2399 int i, l, u;
2400 unsigned dim;
2402 dim = isl_space_dim(bmap->dim, isl_dim_all);
2404 for (i = 0; i < bmap->n_div; ++i) {
2405 if (!pairs[i])
2406 continue;
2407 for (l = 0; l < bmap->n_ineq; ++l) {
2408 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2409 continue;
2410 for (u = 0; u < bmap->n_ineq; ++u) {
2411 int c;
2413 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2414 continue;
2415 c = div_find_coalesce(bmap, pairs, i, l, u);
2416 if (c < 0)
2417 continue;
2418 free(pairs);
2419 bmap = coalesce_divs(bmap, i, c, l, u);
2420 return isl_basic_map_drop_redundant_divs(bmap);
2425 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2426 return bmap;
2428 return drop_more_redundant_divs(bmap, pairs, n);
2431 /* Remove divs that are not strictly needed.
2432 * In particular, if a div only occurs positively (or negatively)
2433 * in constraints, then it can simply be dropped.
2434 * Also, if a div occurs only occurs in two constraints and if moreover
2435 * those two constraints are opposite to each other, except for the constant
2436 * term and if the sum of the constant terms is such that for any value
2437 * of the other values, there is always at least one integer value of the
2438 * div, i.e., if one plus this sum is greater than or equal to
2439 * the (absolute value) of the coefficent of the div in the constraints,
2440 * then we can also simply drop the div.
2442 * If any divs are left after these simple checks then we move on
2443 * to more complicated cases in drop_more_redundant_divs.
2445 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2446 struct isl_basic_map *bmap)
2448 int i, j;
2449 unsigned off;
2450 int *pairs = NULL;
2451 int n = 0;
2453 if (!bmap)
2454 goto error;
2456 off = isl_space_dim(bmap->dim, isl_dim_all);
2457 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2458 if (!pairs)
2459 goto error;
2461 for (i = 0; i < bmap->n_div; ++i) {
2462 int pos, neg;
2463 int last_pos, last_neg;
2464 int redundant;
2465 int defined;
2467 defined = !isl_int_is_zero(bmap->div[i][0]);
2468 for (j = 0; j < bmap->n_eq; ++j)
2469 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2470 break;
2471 if (j < bmap->n_eq)
2472 continue;
2473 ++n;
2474 pos = neg = 0;
2475 for (j = 0; j < bmap->n_ineq; ++j) {
2476 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2477 last_pos = j;
2478 ++pos;
2480 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2481 last_neg = j;
2482 ++neg;
2485 pairs[i] = pos * neg;
2486 if (pairs[i] == 0) {
2487 for (j = bmap->n_ineq - 1; j >= 0; --j)
2488 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2489 isl_basic_map_drop_inequality(bmap, j);
2490 bmap = isl_basic_map_drop_div(bmap, i);
2491 free(pairs);
2492 return isl_basic_map_drop_redundant_divs(bmap);
2494 if (pairs[i] != 1)
2495 continue;
2496 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2497 bmap->ineq[last_neg] + 1,
2498 off + bmap->n_div))
2499 continue;
2501 isl_int_add(bmap->ineq[last_pos][0],
2502 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2503 isl_int_add_ui(bmap->ineq[last_pos][0],
2504 bmap->ineq[last_pos][0], 1);
2505 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2506 bmap->ineq[last_pos][1+off+i]);
2507 isl_int_sub_ui(bmap->ineq[last_pos][0],
2508 bmap->ineq[last_pos][0], 1);
2509 isl_int_sub(bmap->ineq[last_pos][0],
2510 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2511 if (!redundant) {
2512 if (defined ||
2513 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2514 pairs[i] = 0;
2515 --n;
2516 continue;
2518 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2519 bmap = isl_basic_map_simplify(bmap);
2520 free(pairs);
2521 return isl_basic_map_drop_redundant_divs(bmap);
2523 if (last_pos > last_neg) {
2524 isl_basic_map_drop_inequality(bmap, last_pos);
2525 isl_basic_map_drop_inequality(bmap, last_neg);
2526 } else {
2527 isl_basic_map_drop_inequality(bmap, last_neg);
2528 isl_basic_map_drop_inequality(bmap, last_pos);
2530 bmap = isl_basic_map_drop_div(bmap, i);
2531 free(pairs);
2532 return isl_basic_map_drop_redundant_divs(bmap);
2535 if (n > 0)
2536 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2538 free(pairs);
2539 return bmap;
2540 error:
2541 free(pairs);
2542 isl_basic_map_free(bmap);
2543 return NULL;
2546 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2547 struct isl_basic_set *bset)
2549 return (struct isl_basic_set *)
2550 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2553 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2555 int i;
2557 if (!map)
2558 return NULL;
2559 for (i = 0; i < map->n; ++i) {
2560 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2561 if (!map->p[i])
2562 goto error;
2564 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2565 return map;
2566 error:
2567 isl_map_free(map);
2568 return NULL;
2571 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2573 return (struct isl_set *)
2574 isl_map_drop_redundant_divs((struct isl_map *)set);