split ISL_BASIC_MAP_NORMALIZED into *_NO_REDUNDANT and *_SORTED
[isl.git] / isl_map_simplify.c
blob931c25f85231e4194cd86f7619f714624af59cef
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
33 isl_int *t = bmap->eq[a];
34 bmap->eq[a] = bmap->eq[b];
35 bmap->eq[b] = t;
38 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
40 if (a != b) {
41 isl_int *t = bmap->ineq[a];
42 bmap->ineq[a] = bmap->ineq[b];
43 bmap->ineq[b] = t;
47 __isl_give isl_basic_map *isl_basic_map_normalize_constraints(
48 __isl_take isl_basic_map *bmap)
50 int i;
51 isl_int gcd;
52 unsigned total = isl_basic_map_total_dim(bmap);
54 if (!bmap)
55 return NULL;
57 isl_int_init(gcd);
58 for (i = bmap->n_eq - 1; i >= 0; --i) {
59 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
60 if (isl_int_is_zero(gcd)) {
61 if (!isl_int_is_zero(bmap->eq[i][0])) {
62 bmap = isl_basic_map_set_to_empty(bmap);
63 break;
65 isl_basic_map_drop_equality(bmap, i);
66 continue;
68 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
69 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
70 if (isl_int_is_one(gcd))
71 continue;
72 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
73 bmap = isl_basic_map_set_to_empty(bmap);
74 break;
76 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
79 for (i = bmap->n_ineq - 1; i >= 0; --i) {
80 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
81 if (isl_int_is_zero(gcd)) {
82 if (isl_int_is_neg(bmap->ineq[i][0])) {
83 bmap = isl_basic_map_set_to_empty(bmap);
84 break;
86 isl_basic_map_drop_inequality(bmap, i);
87 continue;
89 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
90 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
91 if (isl_int_is_one(gcd))
92 continue;
93 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
94 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
96 isl_int_clear(gcd);
98 return bmap;
101 __isl_give isl_basic_set *isl_basic_set_normalize_constraints(
102 __isl_take isl_basic_set *bset)
104 isl_basic_map *bmap = bset_to_bmap(bset);
105 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
108 /* Reduce the coefficient of the variable at position "pos"
109 * in integer division "div", such that it lies in the half-open
110 * interval (1/2,1/2], extracting any excess value from this integer division.
111 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
112 * corresponds to the constant term.
114 * That is, the integer division is of the form
116 * floor((... + (c * d + r) * x_pos + ...)/d)
118 * with -d < 2 * r <= d.
119 * Replace it by
121 * floor((... + r * x_pos + ...)/d) + c * x_pos
123 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
124 * Otherwise, c = floor((c * d + r)/d) + 1.
126 * This is the same normalization that is performed by isl_aff_floor.
128 static __isl_give isl_basic_map *reduce_coefficient_in_div(
129 __isl_take isl_basic_map *bmap, int div, int pos)
131 isl_int shift;
132 int add_one;
134 isl_int_init(shift);
135 isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
136 isl_int_mul_ui(shift, shift, 2);
137 add_one = isl_int_gt(shift, bmap->div[div][0]);
138 isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
139 if (add_one)
140 isl_int_add_ui(shift, shift, 1);
141 isl_int_neg(shift, shift);
142 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
143 isl_int_clear(shift);
145 return bmap;
148 /* Does the coefficient of the variable at position "pos"
149 * in integer division "div" need to be reduced?
150 * That is, does it lie outside the half-open interval (1/2,1/2]?
151 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
152 * 2 * c != d.
154 static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
155 int pos)
157 isl_bool r;
159 if (isl_int_is_zero(bmap->div[div][1 + pos]))
160 return isl_bool_false;
162 isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
163 r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
164 !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
165 isl_int_divexact_ui(bmap->div[div][1 + pos],
166 bmap->div[div][1 + pos], 2);
168 return r;
171 /* Reduce the coefficients (including the constant term) of
172 * integer division "div", if needed.
173 * In particular, make sure all coefficients lie in
174 * the half-open interval (1/2,1/2].
176 static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
177 __isl_take isl_basic_map *bmap, int div)
179 int i;
180 unsigned total = 1 + isl_basic_map_total_dim(bmap);
182 for (i = 0; i < total; ++i) {
183 isl_bool reduce;
185 reduce = needs_reduction(bmap, div, i);
186 if (reduce < 0)
187 return isl_basic_map_free(bmap);
188 if (!reduce)
189 continue;
190 bmap = reduce_coefficient_in_div(bmap, div, i);
191 if (!bmap)
192 break;
195 return bmap;
198 /* Reduce the coefficients (including the constant term) of
199 * the known integer divisions, if needed
200 * In particular, make sure all coefficients lie in
201 * the half-open interval (1/2,1/2].
203 static __isl_give isl_basic_map *reduce_div_coefficients(
204 __isl_take isl_basic_map *bmap)
206 int i;
208 if (!bmap)
209 return NULL;
210 if (bmap->n_div == 0)
211 return bmap;
213 for (i = 0; i < bmap->n_div; ++i) {
214 if (isl_int_is_zero(bmap->div[i][0]))
215 continue;
216 bmap = reduce_div_coefficients_of_div(bmap, i);
217 if (!bmap)
218 break;
221 return bmap;
224 /* Remove any common factor in numerator and denominator of the div expression,
225 * not taking into account the constant term.
226 * That is, if the div is of the form
228 * floor((a + m f(x))/(m d))
230 * then replace it by
232 * floor((floor(a/m) + f(x))/d)
234 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
235 * and can therefore not influence the result of the floor.
237 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
239 unsigned total = isl_basic_map_total_dim(bmap);
240 isl_ctx *ctx = bmap->ctx;
242 if (isl_int_is_zero(bmap->div[div][0]))
243 return;
244 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
245 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
246 if (isl_int_is_one(ctx->normalize_gcd))
247 return;
248 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
249 ctx->normalize_gcd);
250 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
251 ctx->normalize_gcd);
252 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
253 ctx->normalize_gcd, total);
256 /* Remove any common factor in numerator and denominator of a div expression,
257 * not taking into account the constant term.
258 * That is, look for any div of the form
260 * floor((a + m f(x))/(m d))
262 * and replace it by
264 * floor((floor(a/m) + f(x))/d)
266 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
267 * and can therefore not influence the result of the floor.
269 static __isl_give isl_basic_map *normalize_div_expressions(
270 __isl_take isl_basic_map *bmap)
272 int i;
274 if (!bmap)
275 return NULL;
276 if (bmap->n_div == 0)
277 return bmap;
279 for (i = 0; i < bmap->n_div; ++i)
280 normalize_div_expression(bmap, i);
282 return bmap;
285 /* Assumes divs have been ordered if keep_divs is set.
287 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
288 unsigned pos, isl_int *eq, int keep_divs, int *progress)
290 unsigned total;
291 unsigned space_total;
292 int k;
293 int last_div;
295 total = isl_basic_map_total_dim(bmap);
296 space_total = isl_space_dim(bmap->dim, isl_dim_all);
297 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
298 for (k = 0; k < bmap->n_eq; ++k) {
299 if (bmap->eq[k] == eq)
300 continue;
301 if (isl_int_is_zero(bmap->eq[k][1+pos]))
302 continue;
303 if (progress)
304 *progress = 1;
305 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
306 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
309 for (k = 0; k < bmap->n_ineq; ++k) {
310 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
311 continue;
312 if (progress)
313 *progress = 1;
314 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
315 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
316 ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
317 ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
320 for (k = 0; k < bmap->n_div; ++k) {
321 if (isl_int_is_zero(bmap->div[k][0]))
322 continue;
323 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
324 continue;
325 if (progress)
326 *progress = 1;
327 /* We need to be careful about circular definitions,
328 * so for now we just remove the definition of div k
329 * if the equality contains any divs.
330 * If keep_divs is set, then the divs have been ordered
331 * and we can keep the definition as long as the result
332 * is still ordered.
334 if (last_div == -1 || (keep_divs && last_div < k)) {
335 isl_seq_elim(bmap->div[k]+1, eq,
336 1+pos, 1+total, &bmap->div[k][0]);
337 normalize_div_expression(bmap, k);
338 } else
339 isl_seq_clr(bmap->div[k], 1 + total);
343 /* Assumes divs have been ordered if keep_divs is set.
345 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
346 isl_int *eq, unsigned div, int keep_divs)
348 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
350 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
352 bmap = isl_basic_map_drop_div(bmap, div);
354 return bmap;
357 /* Check if elimination of div "div" using equality "eq" would not
358 * result in a div depending on a later div.
360 static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
361 unsigned div)
363 int k;
364 int last_div;
365 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
366 unsigned pos = space_total + div;
368 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
369 if (last_div < 0 || last_div <= div)
370 return isl_bool_true;
372 for (k = 0; k <= last_div; ++k) {
373 if (isl_int_is_zero(bmap->div[k][0]))
374 continue;
375 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
376 return isl_bool_false;
379 return isl_bool_true;
382 /* Eliminate divs based on equalities
384 static __isl_give isl_basic_map *eliminate_divs_eq(
385 __isl_take isl_basic_map *bmap, int *progress)
387 int d;
388 int i;
389 int modified = 0;
390 unsigned off;
392 bmap = isl_basic_map_order_divs(bmap);
394 if (!bmap)
395 return NULL;
397 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
399 for (d = bmap->n_div - 1; d >= 0 ; --d) {
400 for (i = 0; i < bmap->n_eq; ++i) {
401 isl_bool ok;
403 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
404 !isl_int_is_negone(bmap->eq[i][off + d]))
405 continue;
406 ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
407 if (ok < 0)
408 return isl_basic_map_free(bmap);
409 if (!ok)
410 continue;
411 modified = 1;
412 *progress = 1;
413 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
414 if (isl_basic_map_drop_equality(bmap, i) < 0)
415 return isl_basic_map_free(bmap);
416 break;
419 if (modified)
420 return eliminate_divs_eq(bmap, progress);
421 return bmap;
424 /* Eliminate divs based on inequalities
426 static __isl_give isl_basic_map *eliminate_divs_ineq(
427 __isl_take isl_basic_map *bmap, int *progress)
429 int d;
430 int i;
431 unsigned off;
432 struct isl_ctx *ctx;
434 if (!bmap)
435 return NULL;
437 ctx = bmap->ctx;
438 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
440 for (d = bmap->n_div - 1; d >= 0 ; --d) {
441 for (i = 0; i < bmap->n_eq; ++i)
442 if (!isl_int_is_zero(bmap->eq[i][off + d]))
443 break;
444 if (i < bmap->n_eq)
445 continue;
446 for (i = 0; i < bmap->n_ineq; ++i)
447 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
448 break;
449 if (i < bmap->n_ineq)
450 continue;
451 *progress = 1;
452 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
453 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
454 break;
455 bmap = isl_basic_map_drop_div(bmap, d);
456 if (!bmap)
457 break;
459 return bmap;
462 /* Does the equality constraint at position "eq" in "bmap" involve
463 * any local variables in the range [first, first + n)
464 * that are not marked as having an explicit representation?
466 static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
467 int eq, unsigned first, unsigned n)
469 unsigned o_div;
470 int i;
472 if (!bmap)
473 return isl_bool_error;
475 o_div = isl_basic_map_offset(bmap, isl_dim_div);
476 for (i = 0; i < n; ++i) {
477 isl_bool unknown;
479 if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
480 continue;
481 unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
482 if (unknown < 0)
483 return isl_bool_error;
484 if (unknown)
485 return isl_bool_true;
488 return isl_bool_false;
491 /* The last local variable involved in the equality constraint
492 * at position "eq" in "bmap" is the local variable at position "div".
493 * It can therefore be used to extract an explicit representation
494 * for that variable.
495 * Do so unless the local variable already has an explicit representation or
496 * the explicit representation would involve any other local variables
497 * that in turn do not have an explicit representation.
498 * An equality constraint involving local variables without an explicit
499 * representation can be used in isl_basic_map_drop_redundant_divs
500 * to separate out an independent local variable. Introducing
501 * an explicit representation here would block this transformation,
502 * while the partial explicit representation in itself is not very useful.
503 * Set *progress if anything is changed.
505 * The equality constraint is of the form
507 * f(x) + n e >= 0
509 * with n a positive number. The explicit representation derived from
510 * this constraint is
512 * floor((-f(x))/n)
514 static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
515 int div, int eq, int *progress)
517 unsigned total, o_div;
518 isl_bool involves;
520 if (!bmap)
521 return NULL;
523 if (!isl_int_is_zero(bmap->div[div][0]))
524 return bmap;
526 involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
527 if (involves < 0)
528 return isl_basic_map_free(bmap);
529 if (involves)
530 return bmap;
532 total = isl_basic_map_dim(bmap, isl_dim_all);
533 o_div = isl_basic_map_offset(bmap, isl_dim_div);
534 isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
535 isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
536 isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
537 if (progress)
538 *progress = 1;
540 return bmap;
543 __isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
544 int *progress)
546 int k;
547 int done;
548 int last_var;
549 unsigned total_var;
550 unsigned total;
552 bmap = isl_basic_map_order_divs(bmap);
554 if (!bmap)
555 return NULL;
557 total = isl_basic_map_total_dim(bmap);
558 total_var = total - bmap->n_div;
560 last_var = total - 1;
561 for (done = 0; done < bmap->n_eq; ++done) {
562 for (; last_var >= 0; --last_var) {
563 for (k = done; k < bmap->n_eq; ++k)
564 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
565 break;
566 if (k < bmap->n_eq)
567 break;
569 if (last_var < 0)
570 break;
571 if (k != done)
572 swap_equality(bmap, k, done);
573 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
574 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
576 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
577 progress);
579 if (last_var >= total_var)
580 bmap = set_div_from_eq(bmap, last_var - total_var,
581 done, progress);
582 if (!bmap)
583 return NULL;
585 if (done == bmap->n_eq)
586 return bmap;
587 for (k = done; k < bmap->n_eq; ++k) {
588 if (isl_int_is_zero(bmap->eq[k][0]))
589 continue;
590 return isl_basic_map_set_to_empty(bmap);
592 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
593 return bmap;
596 __isl_give isl_basic_set *isl_basic_set_gauss(
597 __isl_take isl_basic_set *bset, int *progress)
599 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
600 progress));
604 static unsigned int round_up(unsigned int v)
606 int old_v = v;
608 while (v) {
609 old_v = v;
610 v ^= v & -v;
612 return old_v << 1;
615 /* Hash table of inequalities in a basic map.
616 * "index" is an array of addresses of inequalities in the basic map, some
617 * of which are NULL. The inequalities are hashed on the coefficients
618 * except the constant term.
619 * "size" is the number of elements in the array and is always a power of two
620 * "bits" is the number of bits need to represent an index into the array.
621 * "total" is the total dimension of the basic map.
623 struct isl_constraint_index {
624 unsigned int size;
625 int bits;
626 isl_int ***index;
627 unsigned total;
630 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
632 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
633 __isl_keep isl_basic_map *bmap)
635 isl_ctx *ctx;
637 ci->index = NULL;
638 if (!bmap)
639 return isl_stat_error;
640 ci->total = isl_basic_set_total_dim(bmap);
641 if (bmap->n_ineq == 0)
642 return isl_stat_ok;
643 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
644 ci->bits = ffs(ci->size) - 1;
645 ctx = isl_basic_map_get_ctx(bmap);
646 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
647 if (!ci->index)
648 return isl_stat_error;
650 return isl_stat_ok;
653 /* Free the memory allocated by create_constraint_index.
655 static void constraint_index_free(struct isl_constraint_index *ci)
657 free(ci->index);
660 /* Return the position in ci->index that contains the address of
661 * an inequality that is equal to *ineq up to the constant term,
662 * provided this address is not identical to "ineq".
663 * If there is no such inequality, then return the position where
664 * such an inequality should be inserted.
666 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
668 int h;
669 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
670 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
671 if (ineq != ci->index[h] &&
672 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
673 break;
674 return h;
677 /* Return the position in ci->index that contains the address of
678 * an inequality that is equal to the k'th inequality of "bmap"
679 * up to the constant term, provided it does not point to the very
680 * same inequality.
681 * If there is no such inequality, then return the position where
682 * such an inequality should be inserted.
684 static int hash_index(struct isl_constraint_index *ci,
685 __isl_keep isl_basic_map *bmap, int k)
687 return hash_index_ineq(ci, &bmap->ineq[k]);
690 static int set_hash_index(struct isl_constraint_index *ci,
691 __isl_keep isl_basic_set *bset, int k)
693 return hash_index(ci, bset, k);
696 /* Fill in the "ci" data structure with the inequalities of "bset".
698 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
699 __isl_keep isl_basic_set *bset)
701 int k, h;
703 if (create_constraint_index(ci, bset) < 0)
704 return isl_stat_error;
706 for (k = 0; k < bset->n_ineq; ++k) {
707 h = set_hash_index(ci, bset, k);
708 ci->index[h] = &bset->ineq[k];
711 return isl_stat_ok;
714 /* Is the inequality ineq (obviously) redundant with respect
715 * to the constraints in "ci"?
717 * Look for an inequality in "ci" with the same coefficients and then
718 * check if the contant term of "ineq" is greater than or equal
719 * to the constant term of that inequality. If so, "ineq" is clearly
720 * redundant.
722 * Note that hash_index_ineq ignores a stored constraint if it has
723 * the same address as the passed inequality. It is ok to pass
724 * the address of a local variable here since it will never be
725 * the same as the address of a constraint in "ci".
727 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
728 isl_int *ineq)
730 int h;
732 h = hash_index_ineq(ci, &ineq);
733 if (!ci->index[h])
734 return isl_bool_false;
735 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
738 /* If we can eliminate more than one div, then we need to make
739 * sure we do it from last div to first div, in order not to
740 * change the position of the other divs that still need to
741 * be removed.
743 static __isl_give isl_basic_map *remove_duplicate_divs(
744 __isl_take isl_basic_map *bmap, int *progress)
746 unsigned int size;
747 int *index;
748 int *elim_for;
749 int k, l, h;
750 int bits;
751 struct isl_blk eq;
752 unsigned total_var;
753 unsigned total;
754 struct isl_ctx *ctx;
756 bmap = isl_basic_map_order_divs(bmap);
757 if (!bmap || bmap->n_div <= 1)
758 return bmap;
760 total_var = isl_space_dim(bmap->dim, isl_dim_all);
761 total = total_var + bmap->n_div;
763 ctx = bmap->ctx;
764 for (k = bmap->n_div - 1; k >= 0; --k)
765 if (!isl_int_is_zero(bmap->div[k][0]))
766 break;
767 if (k <= 0)
768 return bmap;
770 size = round_up(4 * bmap->n_div / 3 - 1);
771 if (size == 0)
772 return bmap;
773 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
774 bits = ffs(size) - 1;
775 index = isl_calloc_array(ctx, int, size);
776 if (!elim_for || !index)
777 goto out;
778 eq = isl_blk_alloc(ctx, 1+total);
779 if (isl_blk_is_error(eq))
780 goto out;
782 isl_seq_clr(eq.data, 1+total);
783 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
784 for (--k; k >= 0; --k) {
785 uint32_t hash;
787 if (isl_int_is_zero(bmap->div[k][0]))
788 continue;
790 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
791 for (h = hash; index[h]; h = (h+1) % size)
792 if (isl_seq_eq(bmap->div[k],
793 bmap->div[index[h]-1], 2+total))
794 break;
795 if (index[h]) {
796 *progress = 1;
797 l = index[h] - 1;
798 elim_for[l] = k + 1;
800 index[h] = k+1;
802 for (l = bmap->n_div - 1; l >= 0; --l) {
803 if (!elim_for[l])
804 continue;
805 k = elim_for[l] - 1;
806 isl_int_set_si(eq.data[1+total_var+k], -1);
807 isl_int_set_si(eq.data[1+total_var+l], 1);
808 bmap = eliminate_div(bmap, eq.data, l, 1);
809 if (!bmap)
810 break;
811 isl_int_set_si(eq.data[1+total_var+k], 0);
812 isl_int_set_si(eq.data[1+total_var+l], 0);
815 isl_blk_free(ctx, eq);
816 out:
817 free(index);
818 free(elim_for);
819 return bmap;
822 static int n_pure_div_eq(struct isl_basic_map *bmap)
824 int i, j;
825 unsigned total;
827 total = isl_space_dim(bmap->dim, isl_dim_all);
828 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
829 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
830 --j;
831 if (j < 0)
832 break;
833 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
834 return 0;
836 return i;
839 /* Normalize divs that appear in equalities.
841 * In particular, we assume that bmap contains some equalities
842 * of the form
844 * a x = m * e_i
846 * and we want to replace the set of e_i by a minimal set and
847 * such that the new e_i have a canonical representation in terms
848 * of the vector x.
849 * If any of the equalities involves more than one divs, then
850 * we currently simply bail out.
852 * Let us first additionally assume that all equalities involve
853 * a div. The equalities then express modulo constraints on the
854 * remaining variables and we can use "parameter compression"
855 * to find a minimal set of constraints. The result is a transformation
857 * x = T(x') = x_0 + G x'
859 * with G a lower-triangular matrix with all elements below the diagonal
860 * non-negative and smaller than the diagonal element on the same row.
861 * We first normalize x_0 by making the same property hold in the affine
862 * T matrix.
863 * The rows i of G with a 1 on the diagonal do not impose any modulo
864 * constraint and simply express x_i = x'_i.
865 * For each of the remaining rows i, we introduce a div and a corresponding
866 * equality. In particular
868 * g_ii e_j = x_i - g_i(x')
870 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
871 * corresponding div (if g_kk != 1).
873 * If there are any equalities not involving any div, then we
874 * first apply a variable compression on the variables x:
876 * x = C x'' x'' = C_2 x
878 * and perform the above parameter compression on A C instead of on A.
879 * The resulting compression is then of the form
881 * x'' = T(x') = x_0 + G x'
883 * and in constructing the new divs and the corresponding equalities,
884 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
885 * by the corresponding row from C_2.
887 static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
888 int *progress)
890 int i, j, k;
891 int total;
892 int div_eq;
893 struct isl_mat *B;
894 struct isl_vec *d;
895 struct isl_mat *T = NULL;
896 struct isl_mat *C = NULL;
897 struct isl_mat *C2 = NULL;
898 isl_int v;
899 int *pos = NULL;
900 int dropped, needed;
902 if (!bmap)
903 return NULL;
905 if (bmap->n_div == 0)
906 return bmap;
908 if (bmap->n_eq == 0)
909 return bmap;
911 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
912 return bmap;
914 total = isl_space_dim(bmap->dim, isl_dim_all);
915 div_eq = n_pure_div_eq(bmap);
916 if (div_eq == 0)
917 return bmap;
919 if (div_eq < bmap->n_eq) {
920 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
921 bmap->n_eq - div_eq, 0, 1 + total);
922 C = isl_mat_variable_compression(B, &C2);
923 if (!C || !C2)
924 goto error;
925 if (C->n_col == 0) {
926 bmap = isl_basic_map_set_to_empty(bmap);
927 isl_mat_free(C);
928 isl_mat_free(C2);
929 goto done;
933 d = isl_vec_alloc(bmap->ctx, div_eq);
934 if (!d)
935 goto error;
936 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
937 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
938 --j;
939 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
941 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
943 if (C) {
944 B = isl_mat_product(B, C);
945 C = NULL;
948 T = isl_mat_parameter_compression(B, d);
949 if (!T)
950 goto error;
951 if (T->n_col == 0) {
952 bmap = isl_basic_map_set_to_empty(bmap);
953 isl_mat_free(C2);
954 isl_mat_free(T);
955 goto done;
957 isl_int_init(v);
958 for (i = 0; i < T->n_row - 1; ++i) {
959 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
960 if (isl_int_is_zero(v))
961 continue;
962 isl_mat_col_submul(T, 0, v, 1 + i);
964 isl_int_clear(v);
965 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
966 if (!pos)
967 goto error;
968 /* We have to be careful because dropping equalities may reorder them */
969 dropped = 0;
970 for (j = bmap->n_div - 1; j >= 0; --j) {
971 for (i = 0; i < bmap->n_eq; ++i)
972 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
973 break;
974 if (i < bmap->n_eq) {
975 bmap = isl_basic_map_drop_div(bmap, j);
976 isl_basic_map_drop_equality(bmap, i);
977 ++dropped;
980 pos[0] = 0;
981 needed = 0;
982 for (i = 1; i < T->n_row; ++i) {
983 if (isl_int_is_one(T->row[i][i]))
984 pos[i] = i;
985 else
986 needed++;
988 if (needed > dropped) {
989 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
990 needed, needed, 0);
991 if (!bmap)
992 goto error;
994 for (i = 1; i < T->n_row; ++i) {
995 if (isl_int_is_one(T->row[i][i]))
996 continue;
997 k = isl_basic_map_alloc_div(bmap);
998 pos[i] = 1 + total + k;
999 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
1000 isl_int_set(bmap->div[k][0], T->row[i][i]);
1001 if (C2)
1002 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
1003 else
1004 isl_int_set_si(bmap->div[k][1 + i], 1);
1005 for (j = 0; j < i; ++j) {
1006 if (isl_int_is_zero(T->row[i][j]))
1007 continue;
1008 if (pos[j] < T->n_row && C2)
1009 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1010 C2->row[pos[j]], 1 + total);
1011 else
1012 isl_int_neg(bmap->div[k][1 + pos[j]],
1013 T->row[i][j]);
1015 j = isl_basic_map_alloc_equality(bmap);
1016 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
1017 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1019 free(pos);
1020 isl_mat_free(C2);
1021 isl_mat_free(T);
1023 if (progress)
1024 *progress = 1;
1025 done:
1026 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1028 return bmap;
1029 error:
1030 free(pos);
1031 isl_mat_free(C);
1032 isl_mat_free(C2);
1033 isl_mat_free(T);
1034 return bmap;
1037 static __isl_give isl_basic_map *set_div_from_lower_bound(
1038 __isl_take isl_basic_map *bmap, int div, int ineq)
1040 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1042 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1043 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1044 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1045 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1046 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1048 return bmap;
1051 /* Check whether it is ok to define a div based on an inequality.
1052 * To avoid the introduction of circular definitions of divs, we
1053 * do not allow such a definition if the resulting expression would refer to
1054 * any other undefined divs or if any known div is defined in
1055 * terms of the unknown div.
1057 static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
1058 int div, int ineq)
1060 int j;
1061 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1063 /* Not defined in terms of unknown divs */
1064 for (j = 0; j < bmap->n_div; ++j) {
1065 if (div == j)
1066 continue;
1067 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1068 continue;
1069 if (isl_int_is_zero(bmap->div[j][0]))
1070 return isl_bool_false;
1073 /* No other div defined in terms of this one => avoid loops */
1074 for (j = 0; j < bmap->n_div; ++j) {
1075 if (div == j)
1076 continue;
1077 if (isl_int_is_zero(bmap->div[j][0]))
1078 continue;
1079 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1080 return isl_bool_false;
1083 return isl_bool_true;
1086 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1087 * be a better expression than the current one?
1089 * If we do not have any expression yet, then any expression would be better.
1090 * Otherwise we check if the last variable involved in the inequality
1091 * (disregarding the div that it would define) is in an earlier position
1092 * than the last variable involved in the current div expression.
1094 static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1095 int div, int ineq)
1097 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1098 int last_div;
1099 int last_ineq;
1101 if (isl_int_is_zero(bmap->div[div][0]))
1102 return isl_bool_true;
1104 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1105 bmap->n_div - (div + 1)) >= 0)
1106 return isl_bool_false;
1108 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1109 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1110 total + bmap->n_div);
1112 return last_ineq < last_div;
1115 /* Given two constraints "k" and "l" that are opposite to each other,
1116 * except for the constant term, check if we can use them
1117 * to obtain an expression for one of the hitherto unknown divs or
1118 * a "better" expression for a div for which we already have an expression.
1119 * "sum" is the sum of the constant terms of the constraints.
1120 * If this sum is strictly smaller than the coefficient of one
1121 * of the divs, then this pair can be used define the div.
1122 * To avoid the introduction of circular definitions of divs, we
1123 * do not use the pair if the resulting expression would refer to
1124 * any other undefined divs or if any known div is defined in
1125 * terms of the unknown div.
1127 static __isl_give isl_basic_map *check_for_div_constraints(
1128 __isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
1129 int *progress)
1131 int i;
1132 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1134 for (i = 0; i < bmap->n_div; ++i) {
1135 isl_bool set_div;
1137 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1138 continue;
1139 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1140 continue;
1141 set_div = better_div_constraint(bmap, i, k);
1142 if (set_div >= 0 && set_div)
1143 set_div = ok_to_set_div_from_bound(bmap, i, k);
1144 if (set_div < 0)
1145 return isl_basic_map_free(bmap);
1146 if (!set_div)
1147 break;
1148 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1149 bmap = set_div_from_lower_bound(bmap, i, k);
1150 else
1151 bmap = set_div_from_lower_bound(bmap, i, l);
1152 if (progress)
1153 *progress = 1;
1154 break;
1156 return bmap;
1159 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1160 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1162 struct isl_constraint_index ci;
1163 int k, l, h;
1164 unsigned total = isl_basic_map_total_dim(bmap);
1165 isl_int sum;
1167 if (!bmap || bmap->n_ineq <= 1)
1168 return bmap;
1170 if (create_constraint_index(&ci, bmap) < 0)
1171 return bmap;
1173 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1174 ci.index[h] = &bmap->ineq[0];
1175 for (k = 1; k < bmap->n_ineq; ++k) {
1176 h = hash_index(&ci, bmap, k);
1177 if (!ci.index[h]) {
1178 ci.index[h] = &bmap->ineq[k];
1179 continue;
1181 if (progress)
1182 *progress = 1;
1183 l = ci.index[h] - &bmap->ineq[0];
1184 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1185 swap_inequality(bmap, k, l);
1186 isl_basic_map_drop_inequality(bmap, k);
1187 --k;
1189 isl_int_init(sum);
1190 for (k = 0; k < bmap->n_ineq-1; ++k) {
1191 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1192 h = hash_index(&ci, bmap, k);
1193 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1194 if (!ci.index[h])
1195 continue;
1196 l = ci.index[h] - &bmap->ineq[0];
1197 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1198 if (isl_int_is_pos(sum)) {
1199 if (detect_divs)
1200 bmap = check_for_div_constraints(bmap, k, l,
1201 sum, progress);
1202 continue;
1204 if (isl_int_is_zero(sum)) {
1205 /* We need to break out of the loop after these
1206 * changes since the contents of the hash
1207 * will no longer be valid.
1208 * Plus, we probably we want to regauss first.
1210 if (progress)
1211 *progress = 1;
1212 isl_basic_map_drop_inequality(bmap, l);
1213 isl_basic_map_inequality_to_equality(bmap, k);
1214 } else
1215 bmap = isl_basic_map_set_to_empty(bmap);
1216 break;
1218 isl_int_clear(sum);
1220 constraint_index_free(&ci);
1221 return bmap;
1224 /* Detect all pairs of inequalities that form an equality.
1226 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1227 * Call it repeatedly while it is making progress.
1229 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1230 __isl_take isl_basic_map *bmap, int *progress)
1232 int duplicate;
1234 do {
1235 duplicate = 0;
1236 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1237 &duplicate, 0);
1238 if (progress && duplicate)
1239 *progress = 1;
1240 } while (duplicate);
1242 return bmap;
1245 /* Eliminate knowns divs from constraints where they appear with
1246 * a (positive or negative) unit coefficient.
1248 * That is, replace
1250 * floor(e/m) + f >= 0
1252 * by
1254 * e + m f >= 0
1256 * and
1258 * -floor(e/m) + f >= 0
1260 * by
1262 * -e + m f + m - 1 >= 0
1264 * The first conversion is valid because floor(e/m) >= -f is equivalent
1265 * to e/m >= -f because -f is an integral expression.
1266 * The second conversion follows from the fact that
1268 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1271 * Note that one of the div constraints may have been eliminated
1272 * due to being redundant with respect to the constraint that is
1273 * being modified by this function. The modified constraint may
1274 * no longer imply this div constraint, so we add it back to make
1275 * sure we do not lose any information.
1277 * We skip integral divs, i.e., those with denominator 1, as we would
1278 * risk eliminating the div from the div constraints. We do not need
1279 * to handle those divs here anyway since the div constraints will turn
1280 * out to form an equality and this equality can then be used to eliminate
1281 * the div from all constraints.
1283 static __isl_give isl_basic_map *eliminate_unit_divs(
1284 __isl_take isl_basic_map *bmap, int *progress)
1286 int i, j;
1287 isl_ctx *ctx;
1288 unsigned total;
1290 if (!bmap)
1291 return NULL;
1293 ctx = isl_basic_map_get_ctx(bmap);
1294 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1296 for (i = 0; i < bmap->n_div; ++i) {
1297 if (isl_int_is_zero(bmap->div[i][0]))
1298 continue;
1299 if (isl_int_is_one(bmap->div[i][0]))
1300 continue;
1301 for (j = 0; j < bmap->n_ineq; ++j) {
1302 int s;
1304 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1305 !isl_int_is_negone(bmap->ineq[j][total + i]))
1306 continue;
1308 *progress = 1;
1310 s = isl_int_sgn(bmap->ineq[j][total + i]);
1311 isl_int_set_si(bmap->ineq[j][total + i], 0);
1312 if (s < 0)
1313 isl_seq_combine(bmap->ineq[j],
1314 ctx->negone, bmap->div[i] + 1,
1315 bmap->div[i][0], bmap->ineq[j],
1316 total + bmap->n_div);
1317 else
1318 isl_seq_combine(bmap->ineq[j],
1319 ctx->one, bmap->div[i] + 1,
1320 bmap->div[i][0], bmap->ineq[j],
1321 total + bmap->n_div);
1322 if (s < 0) {
1323 isl_int_add(bmap->ineq[j][0],
1324 bmap->ineq[j][0], bmap->div[i][0]);
1325 isl_int_sub_ui(bmap->ineq[j][0],
1326 bmap->ineq[j][0], 1);
1329 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1330 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1331 return isl_basic_map_free(bmap);
1335 return bmap;
1338 __isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
1340 int progress = 1;
1341 if (!bmap)
1342 return NULL;
1343 while (progress) {
1344 isl_bool empty;
1346 progress = 0;
1347 empty = isl_basic_map_plain_is_empty(bmap);
1348 if (empty < 0)
1349 return isl_basic_map_free(bmap);
1350 if (empty)
1351 break;
1352 bmap = isl_basic_map_normalize_constraints(bmap);
1353 bmap = reduce_div_coefficients(bmap);
1354 bmap = normalize_div_expressions(bmap);
1355 bmap = remove_duplicate_divs(bmap, &progress);
1356 bmap = eliminate_unit_divs(bmap, &progress);
1357 bmap = eliminate_divs_eq(bmap, &progress);
1358 bmap = eliminate_divs_ineq(bmap, &progress);
1359 bmap = isl_basic_map_gauss(bmap, &progress);
1360 /* requires equalities in normal form */
1361 bmap = normalize_divs(bmap, &progress);
1362 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1363 &progress, 1);
1364 if (bmap && progress)
1365 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1367 return bmap;
1370 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1372 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1376 isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1377 isl_int *constraint, unsigned div)
1379 unsigned pos;
1381 if (!bmap)
1382 return isl_bool_error;
1384 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1386 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1387 int neg;
1388 isl_int_sub(bmap->div[div][1],
1389 bmap->div[div][1], bmap->div[div][0]);
1390 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1391 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1392 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1393 isl_int_add(bmap->div[div][1],
1394 bmap->div[div][1], bmap->div[div][0]);
1395 if (!neg)
1396 return isl_bool_false;
1397 if (isl_seq_first_non_zero(constraint+pos+1,
1398 bmap->n_div-div-1) != -1)
1399 return isl_bool_false;
1400 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1401 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1402 return isl_bool_false;
1403 if (isl_seq_first_non_zero(constraint+pos+1,
1404 bmap->n_div-div-1) != -1)
1405 return isl_bool_false;
1406 } else
1407 return isl_bool_false;
1409 return isl_bool_true;
1412 isl_bool isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1413 isl_int *constraint, unsigned div)
1415 return isl_basic_map_is_div_constraint(bset, constraint, div);
1419 /* If the only constraints a div d=floor(f/m)
1420 * appears in are its two defining constraints
1422 * f - m d >=0
1423 * -(f - (m - 1)) + m d >= 0
1425 * then it can safely be removed.
1427 static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
1429 int i;
1430 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1432 for (i = 0; i < bmap->n_eq; ++i)
1433 if (!isl_int_is_zero(bmap->eq[i][pos]))
1434 return isl_bool_false;
1436 for (i = 0; i < bmap->n_ineq; ++i) {
1437 isl_bool red;
1439 if (isl_int_is_zero(bmap->ineq[i][pos]))
1440 continue;
1441 red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1442 if (red < 0 || !red)
1443 return red;
1446 for (i = 0; i < bmap->n_div; ++i) {
1447 if (isl_int_is_zero(bmap->div[i][0]))
1448 continue;
1449 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1450 return isl_bool_false;
1453 return isl_bool_true;
1457 * Remove divs that don't occur in any of the constraints or other divs.
1458 * These can arise when dropping constraints from a basic map or
1459 * when the divs of a basic map have been temporarily aligned
1460 * with the divs of another basic map.
1462 static __isl_give isl_basic_map *remove_redundant_divs(
1463 __isl_take isl_basic_map *bmap)
1465 int i;
1467 if (!bmap)
1468 return NULL;
1470 for (i = bmap->n_div-1; i >= 0; --i) {
1471 isl_bool redundant;
1473 redundant = div_is_redundant(bmap, i);
1474 if (redundant < 0)
1475 return isl_basic_map_free(bmap);
1476 if (!redundant)
1477 continue;
1478 bmap = isl_basic_map_drop_div(bmap, i);
1480 return bmap;
1483 /* Mark "bmap" as final, without checking for obviously redundant
1484 * integer divisions. This function should be used when "bmap"
1485 * is known not to involve any such integer divisions.
1487 __isl_give isl_basic_map *isl_basic_map_mark_final(
1488 __isl_take isl_basic_map *bmap)
1490 if (!bmap)
1491 return NULL;
1492 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1493 return bmap;
1496 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1498 __isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
1500 bmap = remove_redundant_divs(bmap);
1501 bmap = isl_basic_map_mark_final(bmap);
1502 return bmap;
1505 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1507 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1510 /* Remove definition of any div that is defined in terms of the given variable.
1511 * The div itself is not removed. Functions such as
1512 * eliminate_divs_ineq depend on the other divs remaining in place.
1514 static __isl_give isl_basic_map *remove_dependent_vars(
1515 __isl_take isl_basic_map *bmap, int pos)
1517 int i;
1519 if (!bmap)
1520 return NULL;
1522 for (i = 0; i < bmap->n_div; ++i) {
1523 if (isl_int_is_zero(bmap->div[i][0]))
1524 continue;
1525 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1526 continue;
1527 bmap = isl_basic_map_mark_div_unknown(bmap, i);
1528 if (!bmap)
1529 return NULL;
1531 return bmap;
1534 /* Eliminate the specified variables from the constraints using
1535 * Fourier-Motzkin. The variables themselves are not removed.
1537 __isl_give isl_basic_map *isl_basic_map_eliminate_vars(
1538 __isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
1540 int d;
1541 int i, j, k;
1542 unsigned total;
1543 int need_gauss = 0;
1545 if (n == 0)
1546 return bmap;
1547 if (!bmap)
1548 return NULL;
1549 total = isl_basic_map_total_dim(bmap);
1551 bmap = isl_basic_map_cow(bmap);
1552 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1553 bmap = remove_dependent_vars(bmap, d);
1554 if (!bmap)
1555 return NULL;
1557 for (d = pos + n - 1;
1558 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1559 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1560 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1561 int n_lower, n_upper;
1562 if (!bmap)
1563 return NULL;
1564 for (i = 0; i < bmap->n_eq; ++i) {
1565 if (isl_int_is_zero(bmap->eq[i][1+d]))
1566 continue;
1567 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1568 isl_basic_map_drop_equality(bmap, i);
1569 need_gauss = 1;
1570 break;
1572 if (i < bmap->n_eq)
1573 continue;
1574 n_lower = 0;
1575 n_upper = 0;
1576 for (i = 0; i < bmap->n_ineq; ++i) {
1577 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1578 n_lower++;
1579 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1580 n_upper++;
1582 bmap = isl_basic_map_extend_constraints(bmap,
1583 0, n_lower * n_upper);
1584 if (!bmap)
1585 goto error;
1586 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1587 int last;
1588 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1589 continue;
1590 last = -1;
1591 for (j = 0; j < i; ++j) {
1592 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1593 continue;
1594 last = j;
1595 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1596 isl_int_sgn(bmap->ineq[j][1+d]))
1597 continue;
1598 k = isl_basic_map_alloc_inequality(bmap);
1599 if (k < 0)
1600 goto error;
1601 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1602 1+total);
1603 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1604 1+d, 1+total, NULL);
1606 isl_basic_map_drop_inequality(bmap, i);
1607 i = last + 1;
1609 if (n_lower > 0 && n_upper > 0) {
1610 bmap = isl_basic_map_normalize_constraints(bmap);
1611 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1612 NULL, 0);
1613 bmap = isl_basic_map_gauss(bmap, NULL);
1614 bmap = isl_basic_map_remove_redundancies(bmap);
1615 need_gauss = 0;
1616 if (!bmap)
1617 goto error;
1618 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1619 break;
1622 if (need_gauss)
1623 bmap = isl_basic_map_gauss(bmap, NULL);
1624 return bmap;
1625 error:
1626 isl_basic_map_free(bmap);
1627 return NULL;
1630 struct isl_basic_set *isl_basic_set_eliminate_vars(
1631 struct isl_basic_set *bset, unsigned pos, unsigned n)
1633 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1634 pos, n));
1637 /* Eliminate the specified n dimensions starting at first from the
1638 * constraints, without removing the dimensions from the space.
1639 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1640 * Otherwise, they are projected out and the original space is restored.
1642 __isl_give isl_basic_map *isl_basic_map_eliminate(
1643 __isl_take isl_basic_map *bmap,
1644 enum isl_dim_type type, unsigned first, unsigned n)
1646 isl_space *space;
1648 if (!bmap)
1649 return NULL;
1650 if (n == 0)
1651 return bmap;
1653 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1654 isl_die(bmap->ctx, isl_error_invalid,
1655 "index out of bounds", goto error);
1657 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1658 first += isl_basic_map_offset(bmap, type) - 1;
1659 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1660 return isl_basic_map_finalize(bmap);
1663 space = isl_basic_map_get_space(bmap);
1664 bmap = isl_basic_map_project_out(bmap, type, first, n);
1665 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1666 bmap = isl_basic_map_reset_space(bmap, space);
1667 return bmap;
1668 error:
1669 isl_basic_map_free(bmap);
1670 return NULL;
1673 __isl_give isl_basic_set *isl_basic_set_eliminate(
1674 __isl_take isl_basic_set *bset,
1675 enum isl_dim_type type, unsigned first, unsigned n)
1677 return isl_basic_map_eliminate(bset, type, first, n);
1680 /* Remove all constraints from "bmap" that reference any unknown local
1681 * variables (directly or indirectly).
1683 * Dropping all constraints on a local variable will make it redundant,
1684 * so it will get removed implicitly by
1685 * isl_basic_map_drop_constraints_involving_dims. Some other local
1686 * variables may also end up becoming redundant if they only appear
1687 * in constraints together with the unknown local variable.
1688 * Therefore, start over after calling
1689 * isl_basic_map_drop_constraints_involving_dims.
1691 __isl_give isl_basic_map *isl_basic_map_drop_constraint_involving_unknown_divs(
1692 __isl_take isl_basic_map *bmap)
1694 isl_bool known;
1695 int i, n_div, o_div;
1697 known = isl_basic_map_divs_known(bmap);
1698 if (known < 0)
1699 return isl_basic_map_free(bmap);
1700 if (known)
1701 return bmap;
1703 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1704 o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
1706 for (i = 0; i < n_div; ++i) {
1707 known = isl_basic_map_div_is_known(bmap, i);
1708 if (known < 0)
1709 return isl_basic_map_free(bmap);
1710 if (known)
1711 continue;
1712 bmap = remove_dependent_vars(bmap, o_div + i);
1713 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
1714 isl_dim_div, i, 1);
1715 if (!bmap)
1716 return NULL;
1717 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1718 i = -1;
1721 return bmap;
1724 /* Remove all constraints from "map" that reference any unknown local
1725 * variables (directly or indirectly).
1727 * Since constraints may get dropped from the basic maps,
1728 * they may no longer be disjoint from each other.
1730 __isl_give isl_map *isl_map_drop_constraint_involving_unknown_divs(
1731 __isl_take isl_map *map)
1733 int i;
1734 isl_bool known;
1736 known = isl_map_divs_known(map);
1737 if (known < 0)
1738 return isl_map_free(map);
1739 if (known)
1740 return map;
1742 map = isl_map_cow(map);
1743 if (!map)
1744 return NULL;
1746 for (i = 0; i < map->n; ++i) {
1747 map->p[i] =
1748 isl_basic_map_drop_constraint_involving_unknown_divs(
1749 map->p[i]);
1750 if (!map->p[i])
1751 return isl_map_free(map);
1754 if (map->n > 1)
1755 ISL_F_CLR(map, ISL_MAP_DISJOINT);
1757 return map;
1760 /* Don't assume equalities are in order, because align_divs
1761 * may have changed the order of the divs.
1763 static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim)
1765 int d, i;
1766 unsigned total;
1768 total = isl_space_dim(bmap->dim, isl_dim_all);
1769 for (d = 0; d < total; ++d)
1770 elim[d] = -1;
1771 for (i = 0; i < bmap->n_eq; ++i) {
1772 for (d = total - 1; d >= 0; --d) {
1773 if (isl_int_is_zero(bmap->eq[i][1+d]))
1774 continue;
1775 elim[d] = i;
1776 break;
1781 static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
1782 int *elim)
1784 compute_elimination_index(bset_to_bmap(bset), elim);
1787 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1788 __isl_keep isl_basic_map *bmap, int *elim)
1790 int d;
1791 int copied = 0;
1792 unsigned total;
1794 total = isl_space_dim(bmap->dim, isl_dim_all);
1795 for (d = total - 1; d >= 0; --d) {
1796 if (isl_int_is_zero(src[1+d]))
1797 continue;
1798 if (elim[d] == -1)
1799 continue;
1800 if (!copied) {
1801 isl_seq_cpy(dst, src, 1 + total);
1802 copied = 1;
1804 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1806 return copied;
1809 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1810 __isl_keep isl_basic_set *bset, int *elim)
1812 return reduced_using_equalities(dst, src,
1813 bset_to_bmap(bset), elim);
1816 static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
1817 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
1819 int i;
1820 int *elim;
1822 if (!bset || !context)
1823 goto error;
1825 if (context->n_eq == 0) {
1826 isl_basic_set_free(context);
1827 return bset;
1830 bset = isl_basic_set_cow(bset);
1831 if (!bset)
1832 goto error;
1834 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1835 if (!elim)
1836 goto error;
1837 set_compute_elimination_index(context, elim);
1838 for (i = 0; i < bset->n_eq; ++i)
1839 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1840 context, elim);
1841 for (i = 0; i < bset->n_ineq; ++i)
1842 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1843 context, elim);
1844 isl_basic_set_free(context);
1845 free(elim);
1846 bset = isl_basic_set_simplify(bset);
1847 bset = isl_basic_set_finalize(bset);
1848 return bset;
1849 error:
1850 isl_basic_set_free(bset);
1851 isl_basic_set_free(context);
1852 return NULL;
1855 /* For each inequality in "ineq" that is a shifted (more relaxed)
1856 * copy of an inequality in "context", mark the corresponding entry
1857 * in "row" with -1.
1858 * If an inequality only has a non-negative constant term, then
1859 * mark it as well.
1861 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
1862 __isl_keep isl_basic_set *context, int *row)
1864 struct isl_constraint_index ci;
1865 int n_ineq;
1866 unsigned total;
1867 int k;
1869 if (!ineq || !context)
1870 return isl_stat_error;
1871 if (context->n_ineq == 0)
1872 return isl_stat_ok;
1873 if (setup_constraint_index(&ci, context) < 0)
1874 return isl_stat_error;
1876 n_ineq = isl_mat_rows(ineq);
1877 total = isl_mat_cols(ineq) - 1;
1878 for (k = 0; k < n_ineq; ++k) {
1879 int l;
1880 isl_bool redundant;
1882 l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
1883 if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
1884 row[k] = -1;
1885 continue;
1887 redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
1888 if (redundant < 0)
1889 goto error;
1890 if (!redundant)
1891 continue;
1892 row[k] = -1;
1894 constraint_index_free(&ci);
1895 return isl_stat_ok;
1896 error:
1897 constraint_index_free(&ci);
1898 return isl_stat_error;
1901 static __isl_give isl_basic_set *remove_shifted_constraints(
1902 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
1904 struct isl_constraint_index ci;
1905 int k;
1907 if (!bset || !context)
1908 return bset;
1910 if (context->n_ineq == 0)
1911 return bset;
1912 if (setup_constraint_index(&ci, context) < 0)
1913 return bset;
1915 for (k = 0; k < bset->n_ineq; ++k) {
1916 isl_bool redundant;
1918 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
1919 if (redundant < 0)
1920 goto error;
1921 if (!redundant)
1922 continue;
1923 bset = isl_basic_set_cow(bset);
1924 if (!bset)
1925 goto error;
1926 isl_basic_set_drop_inequality(bset, k);
1927 --k;
1929 constraint_index_free(&ci);
1930 return bset;
1931 error:
1932 constraint_index_free(&ci);
1933 return bset;
1936 /* Remove constraints from "bmap" that are identical to constraints
1937 * in "context" or that are more relaxed (greater constant term).
1939 * We perform the test for shifted copies on the pure constraints
1940 * in remove_shifted_constraints.
1942 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1943 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1945 isl_basic_set *bset, *bset_context;
1947 if (!bmap || !context)
1948 goto error;
1950 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1951 isl_basic_map_free(context);
1952 return bmap;
1955 context = isl_basic_map_align_divs(context, bmap);
1956 bmap = isl_basic_map_align_divs(bmap, context);
1958 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1959 bset_context = isl_basic_map_underlying_set(context);
1960 bset = remove_shifted_constraints(bset, bset_context);
1961 isl_basic_set_free(bset_context);
1963 bmap = isl_basic_map_overlying_set(bset, bmap);
1965 return bmap;
1966 error:
1967 isl_basic_map_free(bmap);
1968 isl_basic_map_free(context);
1969 return NULL;
1972 /* Does the (linear part of a) constraint "c" involve any of the "len"
1973 * "relevant" dimensions?
1975 static int is_related(isl_int *c, int len, int *relevant)
1977 int i;
1979 for (i = 0; i < len; ++i) {
1980 if (!relevant[i])
1981 continue;
1982 if (!isl_int_is_zero(c[i]))
1983 return 1;
1986 return 0;
1989 /* Drop constraints from "bmap" that do not involve any of
1990 * the dimensions marked "relevant".
1992 static __isl_give isl_basic_map *drop_unrelated_constraints(
1993 __isl_take isl_basic_map *bmap, int *relevant)
1995 int i, dim;
1997 dim = isl_basic_map_dim(bmap, isl_dim_all);
1998 for (i = 0; i < dim; ++i)
1999 if (!relevant[i])
2000 break;
2001 if (i >= dim)
2002 return bmap;
2004 for (i = bmap->n_eq - 1; i >= 0; --i)
2005 if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2006 bmap = isl_basic_map_cow(bmap);
2007 if (isl_basic_map_drop_equality(bmap, i) < 0)
2008 return isl_basic_map_free(bmap);
2011 for (i = bmap->n_ineq - 1; i >= 0; --i)
2012 if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2013 bmap = isl_basic_map_cow(bmap);
2014 if (isl_basic_map_drop_inequality(bmap, i) < 0)
2015 return isl_basic_map_free(bmap);
2018 return bmap;
2021 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2023 * In particular, for any variable involved in the constraint,
2024 * find the actual group id from before and replace the group
2025 * of the corresponding variable by the minimal group of all
2026 * the variables involved in the constraint considered so far
2027 * (if this minimum is smaller) or replace the minimum by this group
2028 * (if the minimum is larger).
2030 * At the end, all the variables in "c" will (indirectly) point
2031 * to the minimal of the groups that they referred to originally.
2033 static void update_groups(int dim, int *group, isl_int *c)
2035 int j;
2036 int min = dim;
2038 for (j = 0; j < dim; ++j) {
2039 if (isl_int_is_zero(c[j]))
2040 continue;
2041 while (group[j] >= 0 && group[group[j]] != group[j])
2042 group[j] = group[group[j]];
2043 if (group[j] == min)
2044 continue;
2045 if (group[j] < min) {
2046 if (min >= 0 && min < dim)
2047 group[min] = group[j];
2048 min = group[j];
2049 } else
2050 group[group[j]] = min;
2054 /* Allocate an array of groups of variables, one for each variable
2055 * in "context", initialized to zero.
2057 static int *alloc_groups(__isl_keep isl_basic_set *context)
2059 isl_ctx *ctx;
2060 int dim;
2062 dim = isl_basic_set_dim(context, isl_dim_set);
2063 ctx = isl_basic_set_get_ctx(context);
2064 return isl_calloc_array(ctx, int, dim);
2067 /* Drop constraints from "bmap" that only involve variables that are
2068 * not related to any of the variables marked with a "-1" in "group".
2070 * We construct groups of variables that collect variables that
2071 * (indirectly) appear in some common constraint of "bmap".
2072 * Each group is identified by the first variable in the group,
2073 * except for the special group of variables that was already identified
2074 * in the input as -1 (or are related to those variables).
2075 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2076 * otherwise the group of i is the group of group[i].
2078 * We first initialize groups for the remaining variables.
2079 * Then we iterate over the constraints of "bmap" and update the
2080 * group of the variables in the constraint by the smallest group.
2081 * Finally, we resolve indirect references to groups by running over
2082 * the variables.
2084 * After computing the groups, we drop constraints that do not involve
2085 * any variables in the -1 group.
2087 __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2088 __isl_take isl_basic_map *bmap, __isl_take int *group)
2090 int dim;
2091 int i;
2092 int last;
2094 if (!bmap)
2095 return NULL;
2097 dim = isl_basic_map_dim(bmap, isl_dim_all);
2099 last = -1;
2100 for (i = 0; i < dim; ++i)
2101 if (group[i] >= 0)
2102 last = group[i] = i;
2103 if (last < 0) {
2104 free(group);
2105 return bmap;
2108 for (i = 0; i < bmap->n_eq; ++i)
2109 update_groups(dim, group, bmap->eq[i] + 1);
2110 for (i = 0; i < bmap->n_ineq; ++i)
2111 update_groups(dim, group, bmap->ineq[i] + 1);
2113 for (i = 0; i < dim; ++i)
2114 if (group[i] >= 0)
2115 group[i] = group[group[i]];
2117 for (i = 0; i < dim; ++i)
2118 group[i] = group[i] == -1;
2120 bmap = drop_unrelated_constraints(bmap, group);
2122 free(group);
2123 return bmap;
2126 /* Drop constraints from "context" that are irrelevant for computing
2127 * the gist of "bset".
2129 * In particular, drop constraints in variables that are not related
2130 * to any of the variables involved in the constraints of "bset"
2131 * in the sense that there is no sequence of constraints that connects them.
2133 * We first mark all variables that appear in "bset" as belonging
2134 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2136 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2137 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2139 int *group;
2140 int dim;
2141 int i, j;
2143 if (!context || !bset)
2144 return isl_basic_set_free(context);
2146 group = alloc_groups(context);
2148 if (!group)
2149 return isl_basic_set_free(context);
2151 dim = isl_basic_set_dim(bset, isl_dim_set);
2152 for (i = 0; i < dim; ++i) {
2153 for (j = 0; j < bset->n_eq; ++j)
2154 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2155 break;
2156 if (j < bset->n_eq) {
2157 group[i] = -1;
2158 continue;
2160 for (j = 0; j < bset->n_ineq; ++j)
2161 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2162 break;
2163 if (j < bset->n_ineq)
2164 group[i] = -1;
2167 return isl_basic_map_drop_unrelated_constraints(context, group);
2170 /* Drop constraints from "context" that are irrelevant for computing
2171 * the gist of the inequalities "ineq".
2172 * Inequalities in "ineq" for which the corresponding element of row
2173 * is set to -1 have already been marked for removal and should be ignored.
2175 * In particular, drop constraints in variables that are not related
2176 * to any of the variables involved in "ineq"
2177 * in the sense that there is no sequence of constraints that connects them.
2179 * We first mark all variables that appear in "bset" as belonging
2180 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2182 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2183 __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2185 int *group;
2186 int dim;
2187 int i, j, n;
2189 if (!context || !ineq)
2190 return isl_basic_set_free(context);
2192 group = alloc_groups(context);
2194 if (!group)
2195 return isl_basic_set_free(context);
2197 dim = isl_basic_set_dim(context, isl_dim_set);
2198 n = isl_mat_rows(ineq);
2199 for (i = 0; i < dim; ++i) {
2200 for (j = 0; j < n; ++j) {
2201 if (row[j] < 0)
2202 continue;
2203 if (!isl_int_is_zero(ineq->row[j][1 + i]))
2204 break;
2206 if (j < n)
2207 group[i] = -1;
2210 return isl_basic_map_drop_unrelated_constraints(context, group);
2213 /* Do all "n" entries of "row" contain a negative value?
2215 static int all_neg(int *row, int n)
2217 int i;
2219 for (i = 0; i < n; ++i)
2220 if (row[i] >= 0)
2221 return 0;
2223 return 1;
2226 /* Update the inequalities in "bset" based on the information in "row"
2227 * and "tab".
2229 * In particular, the array "row" contains either -1, meaning that
2230 * the corresponding inequality of "bset" is redundant, or the index
2231 * of an inequality in "tab".
2233 * If the row entry is -1, then drop the inequality.
2234 * Otherwise, if the constraint is marked redundant in the tableau,
2235 * then drop the inequality. Similarly, if it is marked as an equality
2236 * in the tableau, then turn the inequality into an equality and
2237 * perform Gaussian elimination.
2239 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2240 __isl_keep int *row, struct isl_tab *tab)
2242 int i;
2243 unsigned n_ineq;
2244 unsigned n_eq;
2245 int found_equality = 0;
2247 if (!bset)
2248 return NULL;
2249 if (tab && tab->empty)
2250 return isl_basic_set_set_to_empty(bset);
2252 n_ineq = bset->n_ineq;
2253 for (i = n_ineq - 1; i >= 0; --i) {
2254 if (row[i] < 0) {
2255 if (isl_basic_set_drop_inequality(bset, i) < 0)
2256 return isl_basic_set_free(bset);
2257 continue;
2259 if (!tab)
2260 continue;
2261 n_eq = tab->n_eq;
2262 if (isl_tab_is_equality(tab, n_eq + row[i])) {
2263 isl_basic_map_inequality_to_equality(bset, i);
2264 found_equality = 1;
2265 } else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2266 if (isl_basic_set_drop_inequality(bset, i) < 0)
2267 return isl_basic_set_free(bset);
2271 if (found_equality)
2272 bset = isl_basic_set_gauss(bset, NULL);
2273 bset = isl_basic_set_finalize(bset);
2274 return bset;
2277 /* Update the inequalities in "bset" based on the information in "row"
2278 * and "tab" and free all arguments (other than "bset").
2280 static __isl_give isl_basic_set *update_ineq_free(
2281 __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2282 __isl_take isl_basic_set *context, __isl_take int *row,
2283 struct isl_tab *tab)
2285 isl_mat_free(ineq);
2286 isl_basic_set_free(context);
2288 bset = update_ineq(bset, row, tab);
2290 free(row);
2291 isl_tab_free(tab);
2292 return bset;
2295 /* Remove all information from bset that is redundant in the context
2296 * of context.
2297 * "ineq" contains the (possibly transformed) inequalities of "bset",
2298 * in the same order.
2299 * The (explicit) equalities of "bset" are assumed to have been taken
2300 * into account by the transformation such that only the inequalities
2301 * are relevant.
2302 * "context" is assumed not to be empty.
2304 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2305 * A value of -1 means that the inequality is obviously redundant and may
2306 * not even appear in "tab".
2308 * We first mark the inequalities of "bset"
2309 * that are obviously redundant with respect to some inequality in "context".
2310 * Then we remove those constraints from "context" that have become
2311 * irrelevant for computing the gist of "bset".
2312 * Note that this removal of constraints cannot be replaced by
2313 * a factorization because factors in "bset" may still be connected
2314 * to each other through constraints in "context".
2316 * If there are any inequalities left, we construct a tableau for
2317 * the context and then add the inequalities of "bset".
2318 * Before adding these inequalities, we freeze all constraints such that
2319 * they won't be considered redundant in terms of the constraints of "bset".
2320 * Then we detect all redundant constraints (among the
2321 * constraints that weren't frozen), first by checking for redundancy in the
2322 * the tableau and then by checking if replacing a constraint by its negation
2323 * would lead to an empty set. This last step is fairly expensive
2324 * and could be optimized by more reuse of the tableau.
2325 * Finally, we update bset according to the results.
2327 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2328 __isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2330 int i, r;
2331 int *row = NULL;
2332 isl_ctx *ctx;
2333 isl_basic_set *combined = NULL;
2334 struct isl_tab *tab = NULL;
2335 unsigned n_eq, context_ineq;
2337 if (!bset || !ineq || !context)
2338 goto error;
2340 if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2341 isl_basic_set_free(context);
2342 isl_mat_free(ineq);
2343 return bset;
2346 ctx = isl_basic_set_get_ctx(context);
2347 row = isl_calloc_array(ctx, int, bset->n_ineq);
2348 if (!row)
2349 goto error;
2351 if (mark_shifted_constraints(ineq, context, row) < 0)
2352 goto error;
2353 if (all_neg(row, bset->n_ineq))
2354 return update_ineq_free(bset, ineq, context, row, NULL);
2356 context = drop_irrelevant_constraints_marked(context, ineq, row);
2357 if (!context)
2358 goto error;
2359 if (isl_basic_set_plain_is_universe(context))
2360 return update_ineq_free(bset, ineq, context, row, NULL);
2362 n_eq = context->n_eq;
2363 context_ineq = context->n_ineq;
2364 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2365 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2366 tab = isl_tab_from_basic_set(combined, 0);
2367 for (i = 0; i < context_ineq; ++i)
2368 if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2369 goto error;
2370 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2371 goto error;
2372 r = context_ineq;
2373 for (i = 0; i < bset->n_ineq; ++i) {
2374 if (row[i] < 0)
2375 continue;
2376 combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2377 if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2378 goto error;
2379 row[i] = r++;
2381 if (isl_tab_detect_implicit_equalities(tab) < 0)
2382 goto error;
2383 if (isl_tab_detect_redundant(tab) < 0)
2384 goto error;
2385 for (i = bset->n_ineq - 1; i >= 0; --i) {
2386 isl_basic_set *test;
2387 int is_empty;
2389 if (row[i] < 0)
2390 continue;
2391 r = row[i];
2392 if (tab->con[n_eq + r].is_redundant)
2393 continue;
2394 test = isl_basic_set_dup(combined);
2395 if (isl_inequality_negate(test, r) < 0)
2396 test = isl_basic_set_free(test);
2397 test = isl_basic_set_update_from_tab(test, tab);
2398 is_empty = isl_basic_set_is_empty(test);
2399 isl_basic_set_free(test);
2400 if (is_empty < 0)
2401 goto error;
2402 if (is_empty)
2403 tab->con[n_eq + r].is_redundant = 1;
2405 bset = update_ineq_free(bset, ineq, context, row, tab);
2406 if (bset) {
2407 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2408 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2411 isl_basic_set_free(combined);
2412 return bset;
2413 error:
2414 free(row);
2415 isl_mat_free(ineq);
2416 isl_tab_free(tab);
2417 isl_basic_set_free(combined);
2418 isl_basic_set_free(context);
2419 isl_basic_set_free(bset);
2420 return NULL;
2423 /* Extract the inequalities of "bset" as an isl_mat.
2425 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2427 unsigned total;
2428 isl_ctx *ctx;
2429 isl_mat *ineq;
2431 if (!bset)
2432 return NULL;
2434 ctx = isl_basic_set_get_ctx(bset);
2435 total = isl_basic_set_total_dim(bset);
2436 ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2437 0, 1 + total);
2439 return ineq;
2442 /* Remove all information from "bset" that is redundant in the context
2443 * of "context", for the case where both "bset" and "context" are
2444 * full-dimensional.
2446 static __isl_give isl_basic_set *uset_gist_uncompressed(
2447 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2449 isl_mat *ineq;
2451 ineq = extract_ineq(bset);
2452 return uset_gist_full(bset, ineq, context);
2455 /* Remove all information from "bset" that is redundant in the context
2456 * of "context", for the case where the combined equalities of
2457 * "bset" and "context" allow for a compression that can be obtained
2458 * by preapplication of "T".
2460 * "bset" itself is not transformed by "T". Instead, the inequalities
2461 * are extracted from "bset" and those are transformed by "T".
2462 * uset_gist_full then determines which of the transformed inequalities
2463 * are redundant with respect to the transformed "context" and removes
2464 * the corresponding inequalities from "bset".
2466 * After preapplying "T" to the inequalities, any common factor is
2467 * removed from the coefficients. If this results in a tightening
2468 * of the constant term, then the same tightening is applied to
2469 * the corresponding untransformed inequality in "bset".
2470 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2472 * g f'(x) + r >= 0
2474 * with 0 <= r < g, then it is equivalent to
2476 * f'(x) >= 0
2478 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2479 * subspace compressed by T since the latter would be transformed to
2481 * g f'(x) >= 0
2483 static __isl_give isl_basic_set *uset_gist_compressed(
2484 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2485 __isl_take isl_mat *T)
2487 isl_ctx *ctx;
2488 isl_mat *ineq;
2489 int i, n_row, n_col;
2490 isl_int rem;
2492 ineq = extract_ineq(bset);
2493 ineq = isl_mat_product(ineq, isl_mat_copy(T));
2494 context = isl_basic_set_preimage(context, T);
2496 if (!ineq || !context)
2497 goto error;
2498 if (isl_basic_set_plain_is_empty(context)) {
2499 isl_mat_free(ineq);
2500 isl_basic_set_free(context);
2501 return isl_basic_set_set_to_empty(bset);
2504 ctx = isl_mat_get_ctx(ineq);
2505 n_row = isl_mat_rows(ineq);
2506 n_col = isl_mat_cols(ineq);
2507 isl_int_init(rem);
2508 for (i = 0; i < n_row; ++i) {
2509 isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2510 if (isl_int_is_zero(ctx->normalize_gcd))
2511 continue;
2512 if (isl_int_is_one(ctx->normalize_gcd))
2513 continue;
2514 isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2515 ctx->normalize_gcd, n_col - 1);
2516 isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2517 isl_int_fdiv_q(ineq->row[i][0],
2518 ineq->row[i][0], ctx->normalize_gcd);
2519 if (isl_int_is_zero(rem))
2520 continue;
2521 bset = isl_basic_set_cow(bset);
2522 if (!bset)
2523 break;
2524 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2526 isl_int_clear(rem);
2528 return uset_gist_full(bset, ineq, context);
2529 error:
2530 isl_mat_free(ineq);
2531 isl_basic_set_free(context);
2532 isl_basic_set_free(bset);
2533 return NULL;
2536 /* Project "bset" onto the variables that are involved in "template".
2538 static __isl_give isl_basic_set *project_onto_involved(
2539 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2541 int i, n;
2543 if (!bset || !template)
2544 return isl_basic_set_free(bset);
2546 n = isl_basic_set_dim(template, isl_dim_set);
2548 for (i = 0; i < n; ++i) {
2549 isl_bool involved;
2551 involved = isl_basic_set_involves_dims(template,
2552 isl_dim_set, i, 1);
2553 if (involved < 0)
2554 return isl_basic_set_free(bset);
2555 if (involved)
2556 continue;
2557 bset = isl_basic_set_eliminate_vars(bset, i, 1);
2560 return bset;
2563 /* Remove all information from bset that is redundant in the context
2564 * of context. In particular, equalities that are linear combinations
2565 * of those in context are removed. Then the inequalities that are
2566 * redundant in the context of the equalities and inequalities of
2567 * context are removed.
2569 * First of all, we drop those constraints from "context"
2570 * that are irrelevant for computing the gist of "bset".
2571 * Alternatively, we could factorize the intersection of "context" and "bset".
2573 * We first compute the intersection of the integer affine hulls
2574 * of "bset" and "context",
2575 * compute the gist inside this intersection and then reduce
2576 * the constraints with respect to the equalities of the context
2577 * that only involve variables already involved in the input.
2579 * If two constraints are mutually redundant, then uset_gist_full
2580 * will remove the second of those constraints. We therefore first
2581 * sort the constraints so that constraints not involving existentially
2582 * quantified variables are given precedence over those that do.
2583 * We have to perform this sorting before the variable compression,
2584 * because that may effect the order of the variables.
2586 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2587 __isl_take isl_basic_set *context)
2589 isl_mat *eq;
2590 isl_mat *T;
2591 isl_basic_set *aff;
2592 isl_basic_set *aff_context;
2593 unsigned total;
2595 if (!bset || !context)
2596 goto error;
2598 context = drop_irrelevant_constraints(context, bset);
2600 bset = isl_basic_set_detect_equalities(bset);
2601 aff = isl_basic_set_copy(bset);
2602 aff = isl_basic_set_plain_affine_hull(aff);
2603 context = isl_basic_set_detect_equalities(context);
2604 aff_context = isl_basic_set_copy(context);
2605 aff_context = isl_basic_set_plain_affine_hull(aff_context);
2606 aff = isl_basic_set_intersect(aff, aff_context);
2607 if (!aff)
2608 goto error;
2609 if (isl_basic_set_plain_is_empty(aff)) {
2610 isl_basic_set_free(bset);
2611 isl_basic_set_free(context);
2612 return aff;
2614 bset = isl_basic_set_sort_constraints(bset);
2615 if (aff->n_eq == 0) {
2616 isl_basic_set_free(aff);
2617 return uset_gist_uncompressed(bset, context);
2619 total = isl_basic_set_total_dim(bset);
2620 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2621 eq = isl_mat_cow(eq);
2622 T = isl_mat_variable_compression(eq, NULL);
2623 isl_basic_set_free(aff);
2624 if (T && T->n_col == 0) {
2625 isl_mat_free(T);
2626 isl_basic_set_free(context);
2627 return isl_basic_set_set_to_empty(bset);
2630 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2631 aff_context = project_onto_involved(aff_context, bset);
2633 bset = uset_gist_compressed(bset, context, T);
2634 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2636 if (bset) {
2637 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2638 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2641 return bset;
2642 error:
2643 isl_basic_set_free(bset);
2644 isl_basic_set_free(context);
2645 return NULL;
2648 /* Return the number of equality constraints in "bmap" that involve
2649 * local variables. This function assumes that Gaussian elimination
2650 * has been applied to the equality constraints.
2652 static int n_div_eq(__isl_keep isl_basic_map *bmap)
2654 int i;
2655 int total, n_div;
2657 if (!bmap)
2658 return -1;
2660 if (bmap->n_eq == 0)
2661 return 0;
2663 total = isl_basic_map_dim(bmap, isl_dim_all);
2664 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2665 total -= n_div;
2667 for (i = 0; i < bmap->n_eq; ++i)
2668 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
2669 n_div) == -1)
2670 return i;
2672 return bmap->n_eq;
2675 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2676 * The constraints are assumed not to involve any local variables.
2678 static __isl_give isl_basic_map *basic_map_from_equalities(
2679 __isl_take isl_space *space, __isl_take isl_mat *eq)
2681 int i, k;
2682 isl_basic_map *bmap = NULL;
2684 if (!space || !eq)
2685 goto error;
2687 if (1 + isl_space_dim(space, isl_dim_all) != eq->n_col)
2688 isl_die(isl_space_get_ctx(space), isl_error_internal,
2689 "unexpected number of columns", goto error);
2691 bmap = isl_basic_map_alloc_space(isl_space_copy(space),
2692 0, eq->n_row, 0);
2693 for (i = 0; i < eq->n_row; ++i) {
2694 k = isl_basic_map_alloc_equality(bmap);
2695 if (k < 0)
2696 goto error;
2697 isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
2700 isl_space_free(space);
2701 isl_mat_free(eq);
2702 return bmap;
2703 error:
2704 isl_space_free(space);
2705 isl_mat_free(eq);
2706 isl_basic_map_free(bmap);
2707 return NULL;
2710 /* Construct and return a variable compression based on the equality
2711 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2712 * "n1" is the number of (initial) equality constraints in "bmap1"
2713 * that do involve local variables.
2714 * "n2" is the number of (initial) equality constraints in "bmap2"
2715 * that do involve local variables.
2716 * "total" is the total number of other variables.
2717 * This function assumes that Gaussian elimination
2718 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2719 * such that the equality constraints not involving local variables
2720 * are those that start at "n1" or "n2".
2722 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2723 * then simply compute the compression based on the equality constraints
2724 * in the other basic map.
2725 * Otherwise, combine the equality constraints from both into a new
2726 * basic map such that Gaussian elimination can be applied to this combination
2727 * and then construct a variable compression from the resulting
2728 * equality constraints.
2730 static __isl_give isl_mat *combined_variable_compression(
2731 __isl_keep isl_basic_map *bmap1, int n1,
2732 __isl_keep isl_basic_map *bmap2, int n2, int total)
2734 isl_ctx *ctx;
2735 isl_mat *E1, *E2, *V;
2736 isl_basic_map *bmap;
2738 ctx = isl_basic_map_get_ctx(bmap1);
2739 if (bmap1->n_eq == n1) {
2740 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2741 n2, bmap2->n_eq - n2, 0, 1 + total);
2742 return isl_mat_variable_compression(E2, NULL);
2744 if (bmap2->n_eq == n2) {
2745 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2746 n1, bmap1->n_eq - n1, 0, 1 + total);
2747 return isl_mat_variable_compression(E1, NULL);
2749 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2750 n1, bmap1->n_eq - n1, 0, 1 + total);
2751 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2752 n2, bmap2->n_eq - n2, 0, 1 + total);
2753 E1 = isl_mat_concat(E1, E2);
2754 bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
2755 bmap = isl_basic_map_gauss(bmap, NULL);
2756 if (!bmap)
2757 return NULL;
2758 E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
2759 V = isl_mat_variable_compression(E1, NULL);
2760 isl_basic_map_free(bmap);
2762 return V;
2765 /* Extract the stride constraints from "bmap", compressed
2766 * with respect to both the stride constraints in "context" and
2767 * the remaining equality constraints in both "bmap" and "context".
2768 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2769 * "context_n_eq" is the number of (initial) stride constraints in "context".
2771 * Let x be all variables in "bmap" (and "context") other than the local
2772 * variables. First compute a variable compression
2774 * x = V x'
2776 * based on the non-stride equality constraints in "bmap" and "context".
2777 * Consider the stride constraints of "context",
2779 * A(x) + B(y) = 0
2781 * with y the local variables and plug in the variable compression,
2782 * resulting in
2784 * A(V x') + B(y) = 0
2786 * Use these constraints to compute a parameter compression on x'
2788 * x' = T x''
2790 * Now consider the stride constraints of "bmap"
2792 * C(x) + D(y) = 0
2794 * and plug in x = V*T x''.
2795 * That is, return A = [C*V*T D].
2797 static __isl_give isl_mat *extract_compressed_stride_constraints(
2798 __isl_keep isl_basic_map *bmap, int bmap_n_eq,
2799 __isl_keep isl_basic_map *context, int context_n_eq)
2801 int total, n_div;
2802 isl_ctx *ctx;
2803 isl_mat *A, *B, *T, *V;
2805 total = isl_basic_map_dim(context, isl_dim_all);
2806 n_div = isl_basic_map_dim(context, isl_dim_div);
2807 total -= n_div;
2809 ctx = isl_basic_map_get_ctx(bmap);
2811 V = combined_variable_compression(bmap, bmap_n_eq,
2812 context, context_n_eq, total);
2814 A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
2815 B = isl_mat_sub_alloc6(ctx, context->eq,
2816 0, context_n_eq, 1 + total, n_div);
2817 A = isl_mat_product(A, isl_mat_copy(V));
2818 T = isl_mat_parameter_compression_ext(A, B);
2819 T = isl_mat_product(V, T);
2821 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2822 T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
2824 A = isl_mat_sub_alloc6(ctx, bmap->eq,
2825 0, bmap_n_eq, 0, 1 + total + n_div);
2826 A = isl_mat_product(A, T);
2828 return A;
2831 /* Remove the prime factors from *g that have an exponent that
2832 * is strictly smaller than the exponent in "c".
2833 * All exponents in *g are known to be smaller than or equal
2834 * to those in "c".
2836 * That is, if *g is equal to
2838 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
2840 * and "c" is equal to
2842 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
2844 * then update *g to
2846 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
2847 * p_n^{e_n * (e_n = f_n)}
2849 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
2850 * neither does the gcd of *g and c / *g.
2851 * If e_i < f_i, then the gcd of *g and c / *g has a positive
2852 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
2853 * Dividing *g by this gcd therefore strictly reduces the exponent
2854 * of the prime factors that need to be removed, while leaving the
2855 * other prime factors untouched.
2856 * Repeating this process until gcd(*g, c / *g) = 1 therefore
2857 * removes all undesired factors, without removing any others.
2859 static void remove_incomplete_powers(isl_int *g, isl_int c)
2861 isl_int t;
2863 isl_int_init(t);
2864 for (;;) {
2865 isl_int_divexact(t, c, *g);
2866 isl_int_gcd(t, t, *g);
2867 if (isl_int_is_one(t))
2868 break;
2869 isl_int_divexact(*g, *g, t);
2871 isl_int_clear(t);
2874 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
2875 * of the same stride constraints in a compressed space that exploits
2876 * all equalities in the context and the other equalities in "bmap".
2878 * If the stride constraints of "bmap" are of the form
2880 * C(x) + D(y) = 0
2882 * then A is of the form
2884 * B(x') + D(y) = 0
2886 * If any of these constraints involves only a single local variable y,
2887 * then the constraint appears as
2889 * f(x) + m y_i = 0
2891 * in "bmap" and as
2893 * h(x') + m y_i = 0
2895 * in "A".
2897 * Let g be the gcd of m and the coefficients of h.
2898 * Then, in particular, g is a divisor of the coefficients of h and
2900 * f(x) = h(x')
2902 * is known to be a multiple of g.
2903 * If some prime factor in m appears with the same exponent in g,
2904 * then it can be removed from m because f(x) is already known
2905 * to be a multiple of g and therefore in particular of this power
2906 * of the prime factors.
2907 * Prime factors that appear with a smaller exponent in g cannot
2908 * be removed from m.
2909 * Let g' be the divisor of g containing all prime factors that
2910 * appear with the same exponent in m and g, then
2912 * f(x) + m y_i = 0
2914 * can be replaced by
2916 * f(x) + m/g' y_i' = 0
2918 * Note that (if g' != 1) this changes the explicit representation
2919 * of y_i to that of y_i', so the integer division at position i
2920 * is marked unknown and later recomputed by a call to
2921 * isl_basic_map_gauss.
2923 static __isl_give isl_basic_map *reduce_stride_constraints(
2924 __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
2926 int i;
2927 int total, n_div;
2928 int any = 0;
2929 isl_int gcd;
2931 if (!bmap || !A)
2932 return isl_basic_map_free(bmap);
2934 total = isl_basic_map_dim(bmap, isl_dim_all);
2935 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2936 total -= n_div;
2938 isl_int_init(gcd);
2939 for (i = 0; i < n; ++i) {
2940 int div;
2942 div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
2943 if (div < 0)
2944 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
2945 "equality constraints modified unexpectedly",
2946 goto error);
2947 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
2948 n_div - div - 1) != -1)
2949 continue;
2950 if (isl_mat_row_gcd(A, i, &gcd) < 0)
2951 goto error;
2952 if (isl_int_is_one(gcd))
2953 continue;
2954 remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
2955 if (isl_int_is_one(gcd))
2956 continue;
2957 isl_int_divexact(bmap->eq[i][1 + total + div],
2958 bmap->eq[i][1 + total + div], gcd);
2959 bmap = isl_basic_map_mark_div_unknown(bmap, div);
2960 if (!bmap)
2961 goto error;
2962 any = 1;
2964 isl_int_clear(gcd);
2966 if (any)
2967 bmap = isl_basic_map_gauss(bmap, NULL);
2969 return bmap;
2970 error:
2971 isl_int_clear(gcd);
2972 isl_basic_map_free(bmap);
2973 return NULL;
2976 /* Simplify the stride constraints in "bmap" based on
2977 * the remaining equality constraints in "bmap" and all equality
2978 * constraints in "context".
2979 * Only do this if both "bmap" and "context" have stride constraints.
2981 * First extract a copy of the stride constraints in "bmap" in a compressed
2982 * space exploiting all the other equality constraints and then
2983 * use this compressed copy to simplify the original stride constraints.
2985 static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
2986 __isl_keep isl_basic_map *context)
2988 int bmap_n_eq, context_n_eq;
2989 isl_mat *A;
2991 if (!bmap || !context)
2992 return isl_basic_map_free(bmap);
2994 bmap_n_eq = n_div_eq(bmap);
2995 context_n_eq = n_div_eq(context);
2997 if (bmap_n_eq < 0 || context_n_eq < 0)
2998 return isl_basic_map_free(bmap);
2999 if (bmap_n_eq == 0 || context_n_eq == 0)
3000 return bmap;
3002 A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3003 context, context_n_eq);
3004 bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3006 isl_mat_free(A);
3008 return bmap;
3011 /* Return a basic map that has the same intersection with "context" as "bmap"
3012 * and that is as "simple" as possible.
3014 * The core computation is performed on the pure constraints.
3015 * When we add back the meaning of the integer divisions, we need
3016 * to (re)introduce the div constraints. If we happen to have
3017 * discovered that some of these integer divisions are equal to
3018 * some affine combination of other variables, then these div
3019 * constraints may end up getting simplified in terms of the equalities,
3020 * resulting in extra inequalities on the other variables that
3021 * may have been removed already or that may not even have been
3022 * part of the input. We try and remove those constraints of
3023 * this form that are most obviously redundant with respect to
3024 * the context. We also remove those div constraints that are
3025 * redundant with respect to the other constraints in the result.
3027 * The stride constraints among the equality constraints in "bmap" are
3028 * also simplified with respecting to the other equality constraints
3029 * in "bmap" and with respect to all equality constraints in "context".
3031 __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
3032 __isl_take isl_basic_map *context)
3034 isl_basic_set *bset, *eq;
3035 isl_basic_map *eq_bmap;
3036 unsigned total, n_div, extra, n_eq, n_ineq;
3038 if (!bmap || !context)
3039 goto error;
3041 if (isl_basic_map_plain_is_universe(bmap)) {
3042 isl_basic_map_free(context);
3043 return bmap;
3045 if (isl_basic_map_plain_is_empty(context)) {
3046 isl_space *space = isl_basic_map_get_space(bmap);
3047 isl_basic_map_free(bmap);
3048 isl_basic_map_free(context);
3049 return isl_basic_map_universe(space);
3051 if (isl_basic_map_plain_is_empty(bmap)) {
3052 isl_basic_map_free(context);
3053 return bmap;
3056 bmap = isl_basic_map_remove_redundancies(bmap);
3057 context = isl_basic_map_remove_redundancies(context);
3058 context = isl_basic_map_align_divs(context, bmap);
3059 if (!context)
3060 goto error;
3062 n_div = isl_basic_map_dim(context, isl_dim_div);
3063 total = isl_basic_map_dim(bmap, isl_dim_all);
3064 extra = n_div - isl_basic_map_dim(bmap, isl_dim_div);
3066 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3067 bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3068 bset = uset_gist(bset,
3069 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3070 bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3072 if (!bset || bset->n_eq == 0 || n_div == 0 ||
3073 isl_basic_set_plain_is_empty(bset)) {
3074 isl_basic_map_free(context);
3075 return isl_basic_map_overlying_set(bset, bmap);
3078 n_eq = bset->n_eq;
3079 n_ineq = bset->n_ineq;
3080 eq = isl_basic_set_copy(bset);
3081 eq = isl_basic_set_cow(eq);
3082 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
3083 eq = isl_basic_set_free(eq);
3084 if (isl_basic_set_free_equality(bset, n_eq) < 0)
3085 bset = isl_basic_set_free(bset);
3087 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3088 eq_bmap = gist_strides(eq_bmap, context);
3089 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3090 bmap = isl_basic_map_overlying_set(bset, bmap);
3091 bmap = isl_basic_map_intersect(bmap, eq_bmap);
3092 bmap = isl_basic_map_remove_redundancies(bmap);
3094 return bmap;
3095 error:
3096 isl_basic_map_free(bmap);
3097 isl_basic_map_free(context);
3098 return NULL;
3102 * Assumes context has no implicit divs.
3104 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3105 __isl_take isl_basic_map *context)
3107 int i;
3109 if (!map || !context)
3110 goto error;
3112 if (isl_basic_map_plain_is_empty(context)) {
3113 isl_space *space = isl_map_get_space(map);
3114 isl_map_free(map);
3115 isl_basic_map_free(context);
3116 return isl_map_universe(space);
3119 context = isl_basic_map_remove_redundancies(context);
3120 map = isl_map_cow(map);
3121 if (!map || !context)
3122 goto error;
3123 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
3124 map = isl_map_compute_divs(map);
3125 if (!map)
3126 goto error;
3127 for (i = map->n - 1; i >= 0; --i) {
3128 map->p[i] = isl_basic_map_gist(map->p[i],
3129 isl_basic_map_copy(context));
3130 if (!map->p[i])
3131 goto error;
3132 if (isl_basic_map_plain_is_empty(map->p[i])) {
3133 isl_basic_map_free(map->p[i]);
3134 if (i != map->n - 1)
3135 map->p[i] = map->p[map->n - 1];
3136 map->n--;
3139 isl_basic_map_free(context);
3140 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3141 return map;
3142 error:
3143 isl_map_free(map);
3144 isl_basic_map_free(context);
3145 return NULL;
3148 /* Drop all inequalities from "bmap" that also appear in "context".
3149 * "context" is assumed to have only known local variables and
3150 * the initial local variables of "bmap" are assumed to be the same
3151 * as those of "context".
3152 * The constraints of both "bmap" and "context" are assumed
3153 * to have been sorted using isl_basic_map_sort_constraints.
3155 * Run through the inequality constraints of "bmap" and "context"
3156 * in sorted order.
3157 * If a constraint of "bmap" involves variables not in "context",
3158 * then it cannot appear in "context".
3159 * If a matching constraint is found, it is removed from "bmap".
3161 static __isl_give isl_basic_map *drop_inequalities(
3162 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3164 int i1, i2;
3165 unsigned total, extra;
3167 if (!bmap || !context)
3168 return isl_basic_map_free(bmap);
3170 total = isl_basic_map_total_dim(context);
3171 extra = isl_basic_map_total_dim(bmap) - total;
3173 i1 = bmap->n_ineq - 1;
3174 i2 = context->n_ineq - 1;
3175 while (bmap && i1 >= 0 && i2 >= 0) {
3176 int cmp;
3178 if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3179 extra) != -1) {
3180 --i1;
3181 continue;
3183 cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3184 context->ineq[i2]);
3185 if (cmp < 0) {
3186 --i2;
3187 continue;
3189 if (cmp > 0) {
3190 --i1;
3191 continue;
3193 if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3194 bmap = isl_basic_map_cow(bmap);
3195 if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3196 bmap = isl_basic_map_free(bmap);
3198 --i1;
3199 --i2;
3202 return bmap;
3205 /* Drop all equalities from "bmap" that also appear in "context".
3206 * "context" is assumed to have only known local variables and
3207 * the initial local variables of "bmap" are assumed to be the same
3208 * as those of "context".
3210 * Run through the equality constraints of "bmap" and "context"
3211 * in sorted order.
3212 * If a constraint of "bmap" involves variables not in "context",
3213 * then it cannot appear in "context".
3214 * If a matching constraint is found, it is removed from "bmap".
3216 static __isl_give isl_basic_map *drop_equalities(
3217 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3219 int i1, i2;
3220 unsigned total, extra;
3222 if (!bmap || !context)
3223 return isl_basic_map_free(bmap);
3225 total = isl_basic_map_total_dim(context);
3226 extra = isl_basic_map_total_dim(bmap) - total;
3228 i1 = bmap->n_eq - 1;
3229 i2 = context->n_eq - 1;
3231 while (bmap && i1 >= 0 && i2 >= 0) {
3232 int last1, last2;
3234 if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3235 extra) != -1)
3236 break;
3237 last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3238 last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3239 if (last1 > last2) {
3240 --i2;
3241 continue;
3243 if (last1 < last2) {
3244 --i1;
3245 continue;
3247 if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3248 bmap = isl_basic_map_cow(bmap);
3249 if (isl_basic_map_drop_equality(bmap, i1) < 0)
3250 bmap = isl_basic_map_free(bmap);
3252 --i1;
3253 --i2;
3256 return bmap;
3259 /* Remove the constraints in "context" from "bmap".
3260 * "context" is assumed to have explicit representations
3261 * for all local variables.
3263 * First align the divs of "bmap" to those of "context" and
3264 * sort the constraints. Then drop all constraints from "bmap"
3265 * that appear in "context".
3267 __isl_give isl_basic_map *isl_basic_map_plain_gist(
3268 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3270 isl_bool done, known;
3272 done = isl_basic_map_plain_is_universe(context);
3273 if (done == isl_bool_false)
3274 done = isl_basic_map_plain_is_universe(bmap);
3275 if (done == isl_bool_false)
3276 done = isl_basic_map_plain_is_empty(context);
3277 if (done == isl_bool_false)
3278 done = isl_basic_map_plain_is_empty(bmap);
3279 if (done < 0)
3280 goto error;
3281 if (done) {
3282 isl_basic_map_free(context);
3283 return bmap;
3285 known = isl_basic_map_divs_known(context);
3286 if (known < 0)
3287 goto error;
3288 if (!known)
3289 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3290 "context has unknown divs", goto error);
3292 bmap = isl_basic_map_align_divs(bmap, context);
3293 bmap = isl_basic_map_gauss(bmap, NULL);
3294 bmap = isl_basic_map_sort_constraints(bmap);
3295 context = isl_basic_map_sort_constraints(context);
3297 bmap = drop_inequalities(bmap, context);
3298 bmap = drop_equalities(bmap, context);
3300 isl_basic_map_free(context);
3301 bmap = isl_basic_map_finalize(bmap);
3302 return bmap;
3303 error:
3304 isl_basic_map_free(bmap);
3305 isl_basic_map_free(context);
3306 return NULL;
3309 /* Replace "map" by the disjunct at position "pos" and free "context".
3311 static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3312 int pos, __isl_take isl_basic_map *context)
3314 isl_basic_map *bmap;
3316 bmap = isl_basic_map_copy(map->p[pos]);
3317 isl_map_free(map);
3318 isl_basic_map_free(context);
3319 return isl_map_from_basic_map(bmap);
3322 /* Remove the constraints in "context" from "map".
3323 * If any of the disjuncts in the result turns out to be the universe,
3324 * then return this universe.
3325 * "context" is assumed to have explicit representations
3326 * for all local variables.
3328 __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3329 __isl_take isl_basic_map *context)
3331 int i;
3332 isl_bool univ, known;
3334 univ = isl_basic_map_plain_is_universe(context);
3335 if (univ < 0)
3336 goto error;
3337 if (univ) {
3338 isl_basic_map_free(context);
3339 return map;
3341 known = isl_basic_map_divs_known(context);
3342 if (known < 0)
3343 goto error;
3344 if (!known)
3345 isl_die(isl_map_get_ctx(map), isl_error_invalid,
3346 "context has unknown divs", goto error);
3348 map = isl_map_cow(map);
3349 if (!map)
3350 goto error;
3351 for (i = 0; i < map->n; ++i) {
3352 map->p[i] = isl_basic_map_plain_gist(map->p[i],
3353 isl_basic_map_copy(context));
3354 univ = isl_basic_map_plain_is_universe(map->p[i]);
3355 if (univ < 0)
3356 goto error;
3357 if (univ && map->n > 1)
3358 return replace_by_disjunct(map, i, context);
3361 isl_basic_map_free(context);
3362 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3363 if (map->n > 1)
3364 ISL_F_CLR(map, ISL_MAP_DISJOINT);
3365 return map;
3366 error:
3367 isl_map_free(map);
3368 isl_basic_map_free(context);
3369 return NULL;
3372 /* Remove the constraints in "context" from "set".
3373 * If any of the disjuncts in the result turns out to be the universe,
3374 * then return this universe.
3375 * "context" is assumed to have explicit representations
3376 * for all local variables.
3378 __isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
3379 __isl_take isl_basic_set *context)
3381 return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
3382 bset_to_bmap(context)));
3385 /* Remove the constraints in "context" from "map".
3386 * If any of the disjuncts in the result turns out to be the universe,
3387 * then return this universe.
3388 * "context" is assumed to consist of a single disjunct and
3389 * to have explicit representations for all local variables.
3391 __isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
3392 __isl_take isl_map *context)
3394 isl_basic_map *hull;
3396 hull = isl_map_unshifted_simple_hull(context);
3397 return isl_map_plain_gist_basic_map(map, hull);
3400 /* Replace "map" by a universe map in the same space and free "drop".
3402 static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3403 __isl_take isl_map *drop)
3405 isl_map *res;
3407 res = isl_map_universe(isl_map_get_space(map));
3408 isl_map_free(map);
3409 isl_map_free(drop);
3410 return res;
3413 /* Return a map that has the same intersection with "context" as "map"
3414 * and that is as "simple" as possible.
3416 * If "map" is already the universe, then we cannot make it any simpler.
3417 * Similarly, if "context" is the universe, then we cannot exploit it
3418 * to simplify "map"
3419 * If "map" and "context" are identical to each other, then we can
3420 * return the corresponding universe.
3422 * If either "map" or "context" consists of multiple disjuncts,
3423 * then check if "context" happens to be a subset of "map",
3424 * in which case all constraints can be removed.
3425 * In case of multiple disjuncts, the standard procedure
3426 * may not be able to detect that all constraints can be removed.
3428 * If none of these cases apply, we have to work a bit harder.
3429 * During this computation, we make use of a single disjunct context,
3430 * so if the original context consists of more than one disjunct
3431 * then we need to approximate the context by a single disjunct set.
3432 * Simply taking the simple hull may drop constraints that are
3433 * only implicitly available in each disjunct. We therefore also
3434 * look for constraints among those defining "map" that are valid
3435 * for the context. These can then be used to simplify away
3436 * the corresponding constraints in "map".
3438 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
3439 __isl_take isl_map *context)
3441 int equal;
3442 int is_universe;
3443 int single_disjunct_map, single_disjunct_context;
3444 isl_bool subset;
3445 isl_basic_map *hull;
3447 is_universe = isl_map_plain_is_universe(map);
3448 if (is_universe >= 0 && !is_universe)
3449 is_universe = isl_map_plain_is_universe(context);
3450 if (is_universe < 0)
3451 goto error;
3452 if (is_universe) {
3453 isl_map_free(context);
3454 return map;
3457 equal = isl_map_plain_is_equal(map, context);
3458 if (equal < 0)
3459 goto error;
3460 if (equal)
3461 return replace_by_universe(map, context);
3463 single_disjunct_map = isl_map_n_basic_map(map) == 1;
3464 single_disjunct_context = isl_map_n_basic_map(context) == 1;
3465 if (!single_disjunct_map || !single_disjunct_context) {
3466 subset = isl_map_is_subset(context, map);
3467 if (subset < 0)
3468 goto error;
3469 if (subset)
3470 return replace_by_universe(map, context);
3473 context = isl_map_compute_divs(context);
3474 if (!context)
3475 goto error;
3476 if (single_disjunct_context) {
3477 hull = isl_map_simple_hull(context);
3478 } else {
3479 isl_ctx *ctx;
3480 isl_map_list *list;
3482 ctx = isl_map_get_ctx(map);
3483 list = isl_map_list_alloc(ctx, 2);
3484 list = isl_map_list_add(list, isl_map_copy(context));
3485 list = isl_map_list_add(list, isl_map_copy(map));
3486 hull = isl_map_unshifted_simple_hull_from_map_list(context,
3487 list);
3489 return isl_map_gist_basic_map(map, hull);
3490 error:
3491 isl_map_free(map);
3492 isl_map_free(context);
3493 return NULL;
3496 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3497 __isl_take isl_map *context)
3499 return isl_map_align_params_map_map_and(map, context, &map_gist);
3502 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
3503 struct isl_basic_set *context)
3505 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3506 bset_to_bmap(context)));
3509 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3510 __isl_take isl_basic_set *context)
3512 return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3513 bset_to_bmap(context)));
3516 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3517 __isl_take isl_basic_set *context)
3519 isl_space *space = isl_set_get_space(set);
3520 isl_basic_set *dom_context = isl_basic_set_universe(space);
3521 dom_context = isl_basic_set_intersect_params(dom_context, context);
3522 return isl_set_gist_basic_set(set, dom_context);
3525 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3526 __isl_take isl_set *context)
3528 return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3531 /* Compute the gist of "bmap" with respect to the constraints "context"
3532 * on the domain.
3534 __isl_give isl_basic_map *isl_basic_map_gist_domain(
3535 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3537 isl_space *space = isl_basic_map_get_space(bmap);
3538 isl_basic_map *bmap_context = isl_basic_map_universe(space);
3540 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3541 return isl_basic_map_gist(bmap, bmap_context);
3544 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3545 __isl_take isl_set *context)
3547 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3548 map_context = isl_map_intersect_domain(map_context, context);
3549 return isl_map_gist(map, map_context);
3552 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3553 __isl_take isl_set *context)
3555 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3556 map_context = isl_map_intersect_range(map_context, context);
3557 return isl_map_gist(map, map_context);
3560 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3561 __isl_take isl_set *context)
3563 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3564 map_context = isl_map_intersect_params(map_context, context);
3565 return isl_map_gist(map, map_context);
3568 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3569 __isl_take isl_set *context)
3571 return isl_map_gist_params(set, context);
3574 /* Quick check to see if two basic maps are disjoint.
3575 * In particular, we reduce the equalities and inequalities of
3576 * one basic map in the context of the equalities of the other
3577 * basic map and check if we get a contradiction.
3579 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3580 __isl_keep isl_basic_map *bmap2)
3582 struct isl_vec *v = NULL;
3583 int *elim = NULL;
3584 unsigned total;
3585 int i;
3587 if (!bmap1 || !bmap2)
3588 return isl_bool_error;
3589 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
3590 return isl_bool_error);
3591 if (bmap1->n_div || bmap2->n_div)
3592 return isl_bool_false;
3593 if (!bmap1->n_eq && !bmap2->n_eq)
3594 return isl_bool_false;
3596 total = isl_space_dim(bmap1->dim, isl_dim_all);
3597 if (total == 0)
3598 return isl_bool_false;
3599 v = isl_vec_alloc(bmap1->ctx, 1 + total);
3600 if (!v)
3601 goto error;
3602 elim = isl_alloc_array(bmap1->ctx, int, total);
3603 if (!elim)
3604 goto error;
3605 compute_elimination_index(bmap1, elim);
3606 for (i = 0; i < bmap2->n_eq; ++i) {
3607 int reduced;
3608 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3609 bmap1, elim);
3610 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3611 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3612 goto disjoint;
3614 for (i = 0; i < bmap2->n_ineq; ++i) {
3615 int reduced;
3616 reduced = reduced_using_equalities(v->block.data,
3617 bmap2->ineq[i], bmap1, elim);
3618 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3619 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3620 goto disjoint;
3622 compute_elimination_index(bmap2, elim);
3623 for (i = 0; i < bmap1->n_ineq; ++i) {
3624 int reduced;
3625 reduced = reduced_using_equalities(v->block.data,
3626 bmap1->ineq[i], bmap2, elim);
3627 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3628 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3629 goto disjoint;
3631 isl_vec_free(v);
3632 free(elim);
3633 return isl_bool_false;
3634 disjoint:
3635 isl_vec_free(v);
3636 free(elim);
3637 return isl_bool_true;
3638 error:
3639 isl_vec_free(v);
3640 free(elim);
3641 return isl_bool_error;
3644 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3645 __isl_keep isl_basic_set *bset2)
3647 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
3648 bset_to_bmap(bset2));
3651 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3653 static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
3654 isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
3655 __isl_keep isl_basic_map *bmap2))
3657 int i, j;
3659 if (!map1 || !map2)
3660 return isl_bool_error;
3662 for (i = 0; i < map1->n; ++i) {
3663 for (j = 0; j < map2->n; ++j) {
3664 isl_bool d = test(map1->p[i], map2->p[j]);
3665 if (d != isl_bool_true)
3666 return d;
3670 return isl_bool_true;
3673 /* Are "map1" and "map2" obviously disjoint, based on information
3674 * that can be derived without looking at the individual basic maps?
3676 * In particular, if one of them is empty or if they live in different spaces
3677 * (ignoring parameters), then they are clearly disjoint.
3679 static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
3680 __isl_keep isl_map *map2)
3682 isl_bool disjoint;
3683 isl_bool match;
3685 if (!map1 || !map2)
3686 return isl_bool_error;
3688 disjoint = isl_map_plain_is_empty(map1);
3689 if (disjoint < 0 || disjoint)
3690 return disjoint;
3692 disjoint = isl_map_plain_is_empty(map2);
3693 if (disjoint < 0 || disjoint)
3694 return disjoint;
3696 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
3697 map2->dim, isl_dim_in);
3698 if (match < 0 || !match)
3699 return match < 0 ? isl_bool_error : isl_bool_true;
3701 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
3702 map2->dim, isl_dim_out);
3703 if (match < 0 || !match)
3704 return match < 0 ? isl_bool_error : isl_bool_true;
3706 return isl_bool_false;
3709 /* Are "map1" and "map2" obviously disjoint?
3711 * If one of them is empty or if they live in different spaces (ignoring
3712 * parameters), then they are clearly disjoint.
3713 * This is checked by isl_map_plain_is_disjoint_global.
3715 * If they have different parameters, then we skip any further tests.
3717 * If they are obviously equal, but not obviously empty, then we will
3718 * not be able to detect if they are disjoint.
3720 * Otherwise we check if each basic map in "map1" is obviously disjoint
3721 * from each basic map in "map2".
3723 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3724 __isl_keep isl_map *map2)
3726 isl_bool disjoint;
3727 isl_bool intersect;
3728 isl_bool match;
3730 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3731 if (disjoint < 0 || disjoint)
3732 return disjoint;
3734 match = isl_map_has_equal_params(map1, map2);
3735 if (match < 0 || !match)
3736 return match < 0 ? isl_bool_error : isl_bool_false;
3738 intersect = isl_map_plain_is_equal(map1, map2);
3739 if (intersect < 0 || intersect)
3740 return intersect < 0 ? isl_bool_error : isl_bool_false;
3742 return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
3745 /* Are "map1" and "map2" disjoint?
3746 * The parameters are assumed to have been aligned.
3748 * In particular, check whether all pairs of basic maps are disjoint.
3750 static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
3751 __isl_keep isl_map *map2)
3753 return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
3756 /* Are "map1" and "map2" disjoint?
3758 * They are disjoint if they are "obviously disjoint" or if one of them
3759 * is empty. Otherwise, they are not disjoint if one of them is universal.
3760 * If the two inputs are (obviously) equal and not empty, then they are
3761 * not disjoint.
3762 * If none of these cases apply, then check if all pairs of basic maps
3763 * are disjoint after aligning the parameters.
3765 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3767 isl_bool disjoint;
3768 isl_bool intersect;
3770 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3771 if (disjoint < 0 || disjoint)
3772 return disjoint;
3774 disjoint = isl_map_is_empty(map1);
3775 if (disjoint < 0 || disjoint)
3776 return disjoint;
3778 disjoint = isl_map_is_empty(map2);
3779 if (disjoint < 0 || disjoint)
3780 return disjoint;
3782 intersect = isl_map_plain_is_universe(map1);
3783 if (intersect < 0 || intersect)
3784 return intersect < 0 ? isl_bool_error : isl_bool_false;
3786 intersect = isl_map_plain_is_universe(map2);
3787 if (intersect < 0 || intersect)
3788 return intersect < 0 ? isl_bool_error : isl_bool_false;
3790 intersect = isl_map_plain_is_equal(map1, map2);
3791 if (intersect < 0 || intersect)
3792 return isl_bool_not(intersect);
3794 return isl_map_align_params_map_map_and_test(map1, map2,
3795 &isl_map_is_disjoint_aligned);
3798 /* Are "bmap1" and "bmap2" disjoint?
3800 * They are disjoint if they are "obviously disjoint" or if one of them
3801 * is empty. Otherwise, they are not disjoint if one of them is universal.
3802 * If none of these cases apply, we compute the intersection and see if
3803 * the result is empty.
3805 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
3806 __isl_keep isl_basic_map *bmap2)
3808 isl_bool disjoint;
3809 isl_bool intersect;
3810 isl_basic_map *test;
3812 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
3813 if (disjoint < 0 || disjoint)
3814 return disjoint;
3816 disjoint = isl_basic_map_is_empty(bmap1);
3817 if (disjoint < 0 || disjoint)
3818 return disjoint;
3820 disjoint = isl_basic_map_is_empty(bmap2);
3821 if (disjoint < 0 || disjoint)
3822 return disjoint;
3824 intersect = isl_basic_map_plain_is_universe(bmap1);
3825 if (intersect < 0 || intersect)
3826 return intersect < 0 ? isl_bool_error : isl_bool_false;
3828 intersect = isl_basic_map_plain_is_universe(bmap2);
3829 if (intersect < 0 || intersect)
3830 return intersect < 0 ? isl_bool_error : isl_bool_false;
3832 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
3833 isl_basic_map_copy(bmap2));
3834 disjoint = isl_basic_map_is_empty(test);
3835 isl_basic_map_free(test);
3837 return disjoint;
3840 /* Are "bset1" and "bset2" disjoint?
3842 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
3843 __isl_keep isl_basic_set *bset2)
3845 return isl_basic_map_is_disjoint(bset1, bset2);
3848 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
3849 __isl_keep isl_set *set2)
3851 return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
3854 /* Are "set1" and "set2" disjoint?
3856 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
3858 return isl_map_is_disjoint(set1, set2);
3861 /* Is "v" equal to 0, 1 or -1?
3863 static int is_zero_or_one(isl_int v)
3865 return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
3868 /* Check if we can combine a given div with lower bound l and upper
3869 * bound u with some other div and if so return that other div.
3870 * Otherwise return -1.
3872 * We first check that
3873 * - the bounds are opposites of each other (except for the constant
3874 * term)
3875 * - the bounds do not reference any other div
3876 * - no div is defined in terms of this div
3878 * Let m be the size of the range allowed on the div by the bounds.
3879 * That is, the bounds are of the form
3881 * e <= a <= e + m - 1
3883 * with e some expression in the other variables.
3884 * We look for another div b such that no third div is defined in terms
3885 * of this second div b and such that in any constraint that contains
3886 * a (except for the given lower and upper bound), also contains b
3887 * with a coefficient that is m times that of b.
3888 * That is, all constraints (except for the lower and upper bound)
3889 * are of the form
3891 * e + f (a + m b) >= 0
3893 * Furthermore, in the constraints that only contain b, the coefficient
3894 * of b should be equal to 1 or -1.
3895 * If so, we return b so that "a + m b" can be replaced by
3896 * a single div "c = a + m b".
3898 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
3899 unsigned div, unsigned l, unsigned u)
3901 int i, j;
3902 unsigned dim;
3903 int coalesce = -1;
3905 if (bmap->n_div <= 1)
3906 return -1;
3907 dim = isl_space_dim(bmap->dim, isl_dim_all);
3908 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
3909 return -1;
3910 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
3911 bmap->n_div - div - 1) != -1)
3912 return -1;
3913 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
3914 dim + bmap->n_div))
3915 return -1;
3917 for (i = 0; i < bmap->n_div; ++i) {
3918 if (isl_int_is_zero(bmap->div[i][0]))
3919 continue;
3920 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
3921 return -1;
3924 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
3925 if (isl_int_is_neg(bmap->ineq[l][0])) {
3926 isl_int_sub(bmap->ineq[l][0],
3927 bmap->ineq[l][0], bmap->ineq[u][0]);
3928 bmap = isl_basic_map_copy(bmap);
3929 bmap = isl_basic_map_set_to_empty(bmap);
3930 isl_basic_map_free(bmap);
3931 return -1;
3933 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
3934 for (i = 0; i < bmap->n_div; ++i) {
3935 if (i == div)
3936 continue;
3937 if (!pairs[i])
3938 continue;
3939 for (j = 0; j < bmap->n_div; ++j) {
3940 if (isl_int_is_zero(bmap->div[j][0]))
3941 continue;
3942 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
3943 break;
3945 if (j < bmap->n_div)
3946 continue;
3947 for (j = 0; j < bmap->n_ineq; ++j) {
3948 int valid;
3949 if (j == l || j == u)
3950 continue;
3951 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div])) {
3952 if (is_zero_or_one(bmap->ineq[j][1 + dim + i]))
3953 continue;
3954 break;
3956 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
3957 break;
3958 isl_int_mul(bmap->ineq[j][1 + dim + div],
3959 bmap->ineq[j][1 + dim + div],
3960 bmap->ineq[l][0]);
3961 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
3962 bmap->ineq[j][1 + dim + i]);
3963 isl_int_divexact(bmap->ineq[j][1 + dim + div],
3964 bmap->ineq[j][1 + dim + div],
3965 bmap->ineq[l][0]);
3966 if (!valid)
3967 break;
3969 if (j < bmap->n_ineq)
3970 continue;
3971 coalesce = i;
3972 break;
3974 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
3975 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
3976 return coalesce;
3979 /* Internal data structure used during the construction and/or evaluation of
3980 * an inequality that ensures that a pair of bounds always allows
3981 * for an integer value.
3983 * "tab" is the tableau in which the inequality is evaluated. It may
3984 * be NULL until it is actually needed.
3985 * "v" contains the inequality coefficients.
3986 * "g", "fl" and "fu" are temporary scalars used during the construction and
3987 * evaluation.
3989 struct test_ineq_data {
3990 struct isl_tab *tab;
3991 isl_vec *v;
3992 isl_int g;
3993 isl_int fl;
3994 isl_int fu;
3997 /* Free all the memory allocated by the fields of "data".
3999 static void test_ineq_data_clear(struct test_ineq_data *data)
4001 isl_tab_free(data->tab);
4002 isl_vec_free(data->v);
4003 isl_int_clear(data->g);
4004 isl_int_clear(data->fl);
4005 isl_int_clear(data->fu);
4008 /* Is the inequality stored in data->v satisfied by "bmap"?
4009 * That is, does it only attain non-negative values?
4010 * data->tab is a tableau corresponding to "bmap".
4012 static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4013 struct test_ineq_data *data)
4015 isl_ctx *ctx;
4016 enum isl_lp_result res;
4018 ctx = isl_basic_map_get_ctx(bmap);
4019 if (!data->tab)
4020 data->tab = isl_tab_from_basic_map(bmap, 0);
4021 res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4022 if (res == isl_lp_error)
4023 return isl_bool_error;
4024 return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4027 /* Given a lower and an upper bound on div i, do they always allow
4028 * for an integer value of the given div?
4029 * Determine this property by constructing an inequality
4030 * such that the property is guaranteed when the inequality is nonnegative.
4031 * The lower bound is inequality l, while the upper bound is inequality u.
4032 * The constructed inequality is stored in data->v.
4034 * Let the upper bound be
4036 * -n_u a + e_u >= 0
4038 * and the lower bound
4040 * n_l a + e_l >= 0
4042 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4043 * We have
4045 * - f_u e_l <= f_u f_l g a <= f_l e_u
4047 * Since all variables are integer valued, this is equivalent to
4049 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4051 * If this interval is at least f_u f_l g, then it contains at least
4052 * one integer value for a.
4053 * That is, the test constraint is
4055 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4057 * or
4059 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4061 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4062 * then the constraint can be scaled down by a factor g',
4063 * with the constant term replaced by
4064 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4065 * Note that the result of applying Fourier-Motzkin to this pair
4066 * of constraints is
4068 * f_l e_u + f_u e_l >= 0
4070 * If the constant term of the scaled down version of this constraint,
4071 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4072 * term of the scaled down test constraint, then the test constraint
4073 * is known to hold and no explicit evaluation is required.
4074 * This is essentially the Omega test.
4076 * If the test constraint consists of only a constant term, then
4077 * it is sufficient to look at the sign of this constant term.
4079 static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4080 int l, int u, struct test_ineq_data *data)
4082 unsigned offset, n_div;
4083 offset = isl_basic_map_offset(bmap, isl_dim_div);
4084 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4086 isl_int_gcd(data->g,
4087 bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4088 isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4089 isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4090 isl_int_neg(data->fu, data->fu);
4091 isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4092 data->fu, bmap->ineq[l], offset + n_div);
4093 isl_int_mul(data->g, data->g, data->fl);
4094 isl_int_mul(data->g, data->g, data->fu);
4095 isl_int_sub(data->g, data->g, data->fl);
4096 isl_int_sub(data->g, data->g, data->fu);
4097 isl_int_add_ui(data->g, data->g, 1);
4098 isl_int_sub(data->fl, data->v->el[0], data->g);
4100 isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4101 if (isl_int_is_zero(data->g))
4102 return isl_int_is_nonneg(data->fl);
4103 if (isl_int_is_one(data->g)) {
4104 isl_int_set(data->v->el[0], data->fl);
4105 return test_ineq_is_satisfied(bmap, data);
4107 isl_int_fdiv_q(data->fl, data->fl, data->g);
4108 isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4109 if (isl_int_eq(data->fl, data->v->el[0]))
4110 return isl_bool_true;
4111 isl_int_set(data->v->el[0], data->fl);
4112 isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4113 offset - 1 + n_div);
4115 return test_ineq_is_satisfied(bmap, data);
4118 /* Remove more kinds of divs that are not strictly needed.
4119 * In particular, if all pairs of lower and upper bounds on a div
4120 * are such that they allow at least one integer value of the div,
4121 * then we can eliminate the div using Fourier-Motzkin without
4122 * introducing any spurious solutions.
4124 * If at least one of the two constraints has a unit coefficient for the div,
4125 * then the presence of such a value is guaranteed so there is no need to check.
4126 * In particular, the value attained by the bound with unit coefficient
4127 * can serve as this intermediate value.
4129 static __isl_give isl_basic_map *drop_more_redundant_divs(
4130 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
4132 isl_ctx *ctx;
4133 struct test_ineq_data data = { NULL, NULL };
4134 unsigned off, n_div;
4135 int remove = -1;
4137 isl_int_init(data.g);
4138 isl_int_init(data.fl);
4139 isl_int_init(data.fu);
4141 if (!bmap)
4142 goto error;
4144 ctx = isl_basic_map_get_ctx(bmap);
4145 off = isl_basic_map_offset(bmap, isl_dim_div);
4146 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4147 data.v = isl_vec_alloc(ctx, off + n_div);
4148 if (!data.v)
4149 goto error;
4151 while (n > 0) {
4152 int i, l, u;
4153 int best = -1;
4154 isl_bool has_int;
4156 for (i = 0; i < n_div; ++i) {
4157 if (!pairs[i])
4158 continue;
4159 if (best >= 0 && pairs[best] <= pairs[i])
4160 continue;
4161 best = i;
4164 i = best;
4165 for (l = 0; l < bmap->n_ineq; ++l) {
4166 if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4167 continue;
4168 if (isl_int_is_one(bmap->ineq[l][off + i]))
4169 continue;
4170 for (u = 0; u < bmap->n_ineq; ++u) {
4171 if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4172 continue;
4173 if (isl_int_is_negone(bmap->ineq[u][off + i]))
4174 continue;
4175 has_int = int_between_bounds(bmap, i, l, u,
4176 &data);
4177 if (has_int < 0)
4178 goto error;
4179 if (data.tab && data.tab->empty)
4180 break;
4181 if (!has_int)
4182 break;
4184 if (u < bmap->n_ineq)
4185 break;
4187 if (data.tab && data.tab->empty) {
4188 bmap = isl_basic_map_set_to_empty(bmap);
4189 break;
4191 if (l == bmap->n_ineq) {
4192 remove = i;
4193 break;
4195 pairs[i] = 0;
4196 --n;
4199 test_ineq_data_clear(&data);
4201 free(pairs);
4203 if (remove < 0)
4204 return bmap;
4206 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4207 return isl_basic_map_drop_redundant_divs(bmap);
4208 error:
4209 free(pairs);
4210 isl_basic_map_free(bmap);
4211 test_ineq_data_clear(&data);
4212 return NULL;
4215 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4216 * and the upper bound u, div1 always occurs together with div2 in the form
4217 * (div1 + m div2), where m is the constant range on the variable div1
4218 * allowed by l and u, replace the pair div1 and div2 by a single
4219 * div that is equal to div1 + m div2.
4221 * The new div will appear in the location that contains div2.
4222 * We need to modify all constraints that contain
4223 * div2 = (div - div1) / m
4224 * The coefficient of div2 is known to be equal to 1 or -1.
4225 * (If a constraint does not contain div2, it will also not contain div1.)
4226 * If the constraint also contains div1, then we know they appear
4227 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4228 * i.e., the coefficient of div is f.
4230 * Otherwise, we first need to introduce div1 into the constraint.
4231 * Let l be
4233 * div1 + f >=0
4235 * and u
4237 * -div1 + f' >= 0
4239 * A lower bound on div2
4241 * div2 + t >= 0
4243 * can be replaced by
4245 * m div2 + div1 + m t + f >= 0
4247 * An upper bound
4249 * -div2 + t >= 0
4251 * can be replaced by
4253 * -(m div2 + div1) + m t + f' >= 0
4255 * These constraint are those that we would obtain from eliminating
4256 * div1 using Fourier-Motzkin.
4258 * After all constraints have been modified, we drop the lower and upper
4259 * bound and then drop div1.
4260 * Since the new div is only placed in the same location that used
4261 * to store div2, but otherwise has a different meaning, any possible
4262 * explicit representation of the original div2 is removed.
4264 static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
4265 unsigned div1, unsigned div2, unsigned l, unsigned u)
4267 isl_ctx *ctx;
4268 isl_int m;
4269 unsigned dim, total;
4270 int i;
4272 ctx = isl_basic_map_get_ctx(bmap);
4274 dim = isl_space_dim(bmap->dim, isl_dim_all);
4275 total = 1 + dim + bmap->n_div;
4277 isl_int_init(m);
4278 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4279 isl_int_add_ui(m, m, 1);
4281 for (i = 0; i < bmap->n_ineq; ++i) {
4282 if (i == l || i == u)
4283 continue;
4284 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
4285 continue;
4286 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
4287 if (isl_int_is_pos(bmap->ineq[i][1 + dim + div2]))
4288 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4289 ctx->one, bmap->ineq[l], total);
4290 else
4291 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4292 ctx->one, bmap->ineq[u], total);
4294 isl_int_set(bmap->ineq[i][1 + dim + div2],
4295 bmap->ineq[i][1 + dim + div1]);
4296 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
4299 isl_int_clear(m);
4300 if (l > u) {
4301 isl_basic_map_drop_inequality(bmap, l);
4302 isl_basic_map_drop_inequality(bmap, u);
4303 } else {
4304 isl_basic_map_drop_inequality(bmap, u);
4305 isl_basic_map_drop_inequality(bmap, l);
4307 bmap = isl_basic_map_mark_div_unknown(bmap, div2);
4308 bmap = isl_basic_map_drop_div(bmap, div1);
4309 return bmap;
4312 /* First check if we can coalesce any pair of divs and
4313 * then continue with dropping more redundant divs.
4315 * We loop over all pairs of lower and upper bounds on a div
4316 * with coefficient 1 and -1, respectively, check if there
4317 * is any other div "c" with which we can coalesce the div
4318 * and if so, perform the coalescing.
4320 static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
4321 __isl_take isl_basic_map *bmap, int *pairs, int n)
4323 int i, l, u;
4324 unsigned dim;
4326 dim = isl_space_dim(bmap->dim, isl_dim_all);
4328 for (i = 0; i < bmap->n_div; ++i) {
4329 if (!pairs[i])
4330 continue;
4331 for (l = 0; l < bmap->n_ineq; ++l) {
4332 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
4333 continue;
4334 for (u = 0; u < bmap->n_ineq; ++u) {
4335 int c;
4337 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
4338 continue;
4339 c = div_find_coalesce(bmap, pairs, i, l, u);
4340 if (c < 0)
4341 continue;
4342 free(pairs);
4343 bmap = coalesce_divs(bmap, i, c, l, u);
4344 return isl_basic_map_drop_redundant_divs(bmap);
4349 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4350 free(pairs);
4351 return bmap;
4354 return drop_more_redundant_divs(bmap, pairs, n);
4357 /* Are the "n" coefficients starting at "first" of inequality constraints
4358 * "i" and "j" of "bmap" equal to each other?
4360 static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4361 int first, int n)
4363 return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4366 /* Are the "n" coefficients starting at "first" of inequality constraints
4367 * "i" and "j" of "bmap" opposite to each other?
4369 static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4370 int first, int n)
4372 return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4375 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4376 * apart from the constant term?
4378 static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4380 unsigned total;
4382 total = isl_basic_map_dim(bmap, isl_dim_all);
4383 return is_opposite_part(bmap, i, j, 1, total);
4386 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4387 * apart from the constant term and the coefficient at position "pos"?
4389 static int is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4390 int pos)
4392 unsigned total;
4394 total = isl_basic_map_dim(bmap, isl_dim_all);
4395 return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4396 is_parallel_part(bmap, i, j, pos + 1, total - pos);
4399 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4400 * apart from the constant term and the coefficient at position "pos"?
4402 static int is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4403 int pos)
4405 unsigned total;
4407 total = isl_basic_map_dim(bmap, isl_dim_all);
4408 return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4409 is_opposite_part(bmap, i, j, pos + 1, total - pos);
4412 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4413 * been modified, simplying it if "simplify" is set.
4414 * Free the temporary data structure "pairs" that was associated
4415 * to the old version of "bmap".
4417 static __isl_give isl_basic_map *drop_redundant_divs_again(
4418 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4420 if (simplify)
4421 bmap = isl_basic_map_simplify(bmap);
4422 free(pairs);
4423 return isl_basic_map_drop_redundant_divs(bmap);
4426 /* Is "div" the single unknown existentially quantified variable
4427 * in inequality constraint "ineq" of "bmap"?
4428 * "div" is known to have a non-zero coefficient in "ineq".
4430 static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4431 int div)
4433 int i;
4434 unsigned n_div, o_div;
4435 isl_bool known;
4437 known = isl_basic_map_div_is_known(bmap, div);
4438 if (known < 0 || known)
4439 return isl_bool_not(known);
4440 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4441 if (n_div == 1)
4442 return isl_bool_true;
4443 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4444 for (i = 0; i < n_div; ++i) {
4445 isl_bool known;
4447 if (i == div)
4448 continue;
4449 if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4450 continue;
4451 known = isl_basic_map_div_is_known(bmap, i);
4452 if (known < 0 || !known)
4453 return known;
4456 return isl_bool_true;
4459 /* Does integer division "div" have coefficient 1 in inequality constraint
4460 * "ineq" of "map"?
4462 static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4464 unsigned o_div;
4466 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4467 if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4468 return isl_bool_true;
4470 return isl_bool_false;
4473 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4474 * then try and drop redundant divs again,
4475 * freeing the temporary data structure "pairs" that was associated
4476 * to the old version of "bmap".
4478 static __isl_give isl_basic_map *set_eq_and_try_again(
4479 __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4481 bmap = isl_basic_map_cow(bmap);
4482 isl_basic_map_inequality_to_equality(bmap, ineq);
4483 return drop_redundant_divs_again(bmap, pairs, 1);
4486 /* Drop the integer division at position "div", along with the two
4487 * inequality constraints "ineq1" and "ineq2" in which it appears
4488 * from "bmap" and then try and drop redundant divs again,
4489 * freeing the temporary data structure "pairs" that was associated
4490 * to the old version of "bmap".
4492 static __isl_give isl_basic_map *drop_div_and_try_again(
4493 __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4494 __isl_take int *pairs)
4496 if (ineq1 > ineq2) {
4497 isl_basic_map_drop_inequality(bmap, ineq1);
4498 isl_basic_map_drop_inequality(bmap, ineq2);
4499 } else {
4500 isl_basic_map_drop_inequality(bmap, ineq2);
4501 isl_basic_map_drop_inequality(bmap, ineq1);
4503 bmap = isl_basic_map_drop_div(bmap, div);
4504 return drop_redundant_divs_again(bmap, pairs, 0);
4507 /* Given two inequality constraints
4509 * f(x) + n d + c >= 0, (ineq)
4511 * with d the variable at position "pos", and
4513 * f(x) + c0 >= 0, (lower)
4515 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4516 * determined by the first constraint.
4517 * That is, store
4519 * ceil((c0 - c)/n)
4521 * in *l.
4523 static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4524 int ineq, int lower, int pos, isl_int *l)
4526 isl_int_neg(*l, bmap->ineq[ineq][0]);
4527 isl_int_add(*l, *l, bmap->ineq[lower][0]);
4528 isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4531 /* Given two inequality constraints
4533 * f(x) + n d + c >= 0, (ineq)
4535 * with d the variable at position "pos", and
4537 * -f(x) - c0 >= 0, (upper)
4539 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4540 * determined by the first constraint.
4541 * That is, store
4543 * ceil((-c1 - c)/n)
4545 * in *u.
4547 static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4548 int ineq, int upper, int pos, isl_int *u)
4550 isl_int_neg(*u, bmap->ineq[ineq][0]);
4551 isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4552 isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4555 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4556 * does the corresponding lower bound have a fixed value in "bmap"?
4558 * In particular, "ineq" is of the form
4560 * f(x) + n d + c >= 0
4562 * with n > 0, c the constant term and
4563 * d the existentially quantified variable "div".
4564 * That is, the lower bound is
4566 * ceil((-f(x) - c)/n)
4568 * Look for a pair of constraints
4570 * f(x) + c0 >= 0
4571 * -f(x) + c1 >= 0
4573 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4574 * That is, check that
4576 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4578 * If so, return the index of inequality f(x) + c0 >= 0.
4579 * Otherwise, return -1.
4581 static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4583 int i;
4584 int lower = -1, upper = -1;
4585 unsigned o_div;
4586 isl_int l, u;
4587 int equal;
4589 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4590 for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
4591 if (i == ineq)
4592 continue;
4593 if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
4594 continue;
4595 if (lower < 0 &&
4596 is_parallel_except(bmap, ineq, i, o_div + div)) {
4597 lower = i;
4598 continue;
4600 if (upper < 0 &&
4601 is_opposite_except(bmap, ineq, i, o_div + div)) {
4602 upper = i;
4606 if (lower < 0 || upper < 0)
4607 return -1;
4609 isl_int_init(l);
4610 isl_int_init(u);
4612 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
4613 lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
4615 equal = isl_int_eq(l, u);
4617 isl_int_clear(l);
4618 isl_int_clear(u);
4620 return equal ? lower : -1;
4623 /* Given a lower bound constraint "ineq" on the existentially quantified
4624 * variable "div", such that the corresponding lower bound has
4625 * a fixed value in "bmap", assign this fixed value to the variable and
4626 * then try and drop redundant divs again,
4627 * freeing the temporary data structure "pairs" that was associated
4628 * to the old version of "bmap".
4629 * "lower" determines the constant value for the lower bound.
4631 * In particular, "ineq" is of the form
4633 * f(x) + n d + c >= 0,
4635 * while "lower" is of the form
4637 * f(x) + c0 >= 0
4639 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4640 * is ceil((c0 - c)/n).
4642 static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
4643 int div, int ineq, int lower, int *pairs)
4645 isl_int c;
4646 unsigned o_div;
4648 isl_int_init(c);
4650 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4651 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
4652 bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
4653 free(pairs);
4655 isl_int_clear(c);
4657 return isl_basic_map_drop_redundant_divs(bmap);
4660 /* Remove divs that are not strictly needed based on the inequality
4661 * constraints.
4662 * In particular, if a div only occurs positively (or negatively)
4663 * in constraints, then it can simply be dropped.
4664 * Also, if a div occurs in only two constraints and if moreover
4665 * those two constraints are opposite to each other, except for the constant
4666 * term and if the sum of the constant terms is such that for any value
4667 * of the other values, there is always at least one integer value of the
4668 * div, i.e., if one plus this sum is greater than or equal to
4669 * the (absolute value) of the coefficient of the div in the constraints,
4670 * then we can also simply drop the div.
4672 * If an existentially quantified variable does not have an explicit
4673 * representation, appears in only a single lower bound that does not
4674 * involve any other such existentially quantified variables and appears
4675 * in this lower bound with coefficient 1,
4676 * then fix the variable to the value of the lower bound. That is,
4677 * turn the inequality into an equality.
4678 * If for any value of the other variables, there is any value
4679 * for the existentially quantified variable satisfying the constraints,
4680 * then this lower bound also satisfies the constraints.
4681 * It is therefore safe to pick this lower bound.
4683 * The same reasoning holds even if the coefficient is not one.
4684 * However, fixing the variable to the value of the lower bound may
4685 * in general introduce an extra integer division, in which case
4686 * it may be better to pick another value.
4687 * If this integer division has a known constant value, then plugging
4688 * in this constant value removes the existentially quantified variable
4689 * completely. In particular, if the lower bound is of the form
4690 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4691 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4692 * then the existentially quantified variable can be assigned this
4693 * shared value.
4695 * We skip divs that appear in equalities or in the definition of other divs.
4696 * Divs that appear in the definition of other divs usually occur in at least
4697 * 4 constraints, but the constraints may have been simplified.
4699 * If any divs are left after these simple checks then we move on
4700 * to more complicated cases in drop_more_redundant_divs.
4702 static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
4703 __isl_take isl_basic_map *bmap)
4705 int i, j;
4706 unsigned off;
4707 int *pairs = NULL;
4708 int n = 0;
4710 if (!bmap)
4711 goto error;
4712 if (bmap->n_div == 0)
4713 return bmap;
4715 off = isl_space_dim(bmap->dim, isl_dim_all);
4716 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
4717 if (!pairs)
4718 goto error;
4720 for (i = 0; i < bmap->n_div; ++i) {
4721 int pos, neg;
4722 int last_pos, last_neg;
4723 int redundant;
4724 int defined;
4725 isl_bool opp, set_div;
4727 defined = !isl_int_is_zero(bmap->div[i][0]);
4728 for (j = i; j < bmap->n_div; ++j)
4729 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
4730 break;
4731 if (j < bmap->n_div)
4732 continue;
4733 for (j = 0; j < bmap->n_eq; ++j)
4734 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
4735 break;
4736 if (j < bmap->n_eq)
4737 continue;
4738 ++n;
4739 pos = neg = 0;
4740 for (j = 0; j < bmap->n_ineq; ++j) {
4741 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
4742 last_pos = j;
4743 ++pos;
4745 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
4746 last_neg = j;
4747 ++neg;
4750 pairs[i] = pos * neg;
4751 if (pairs[i] == 0) {
4752 for (j = bmap->n_ineq - 1; j >= 0; --j)
4753 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
4754 isl_basic_map_drop_inequality(bmap, j);
4755 bmap = isl_basic_map_drop_div(bmap, i);
4756 return drop_redundant_divs_again(bmap, pairs, 0);
4758 if (pairs[i] != 1)
4759 opp = isl_bool_false;
4760 else
4761 opp = is_opposite(bmap, last_pos, last_neg);
4762 if (opp < 0)
4763 goto error;
4764 if (!opp) {
4765 int lower;
4766 isl_bool single, one;
4768 if (pos != 1)
4769 continue;
4770 single = single_unknown(bmap, last_pos, i);
4771 if (single < 0)
4772 goto error;
4773 if (!single)
4774 continue;
4775 one = has_coef_one(bmap, i, last_pos);
4776 if (one < 0)
4777 goto error;
4778 if (one)
4779 return set_eq_and_try_again(bmap, last_pos,
4780 pairs);
4781 lower = lower_bound_is_cst(bmap, i, last_pos);
4782 if (lower >= 0)
4783 return fix_cst_lower(bmap, i, last_pos, lower,
4784 pairs);
4785 continue;
4788 isl_int_add(bmap->ineq[last_pos][0],
4789 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
4790 isl_int_add_ui(bmap->ineq[last_pos][0],
4791 bmap->ineq[last_pos][0], 1);
4792 redundant = isl_int_ge(bmap->ineq[last_pos][0],
4793 bmap->ineq[last_pos][1+off+i]);
4794 isl_int_sub_ui(bmap->ineq[last_pos][0],
4795 bmap->ineq[last_pos][0], 1);
4796 isl_int_sub(bmap->ineq[last_pos][0],
4797 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
4798 if (redundant)
4799 return drop_div_and_try_again(bmap, i,
4800 last_pos, last_neg, pairs);
4801 if (defined)
4802 set_div = isl_bool_false;
4803 else
4804 set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
4805 if (set_div < 0)
4806 return isl_basic_map_free(bmap);
4807 if (set_div) {
4808 bmap = set_div_from_lower_bound(bmap, i, last_pos);
4809 return drop_redundant_divs_again(bmap, pairs, 1);
4811 pairs[i] = 0;
4812 --n;
4815 if (n > 0)
4816 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
4818 free(pairs);
4819 return bmap;
4820 error:
4821 free(pairs);
4822 isl_basic_map_free(bmap);
4823 return NULL;
4826 /* Consider the coefficients at "c" as a row vector and replace
4827 * them with their product with "T". "T" is assumed to be a square matrix.
4829 static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
4831 int n;
4832 isl_ctx *ctx;
4833 isl_vec *v;
4835 if (!T)
4836 return isl_stat_error;
4837 n = isl_mat_rows(T);
4838 if (isl_seq_first_non_zero(c, n) == -1)
4839 return isl_stat_ok;
4840 ctx = isl_mat_get_ctx(T);
4841 v = isl_vec_alloc(ctx, n);
4842 if (!v)
4843 return isl_stat_error;
4844 isl_seq_swp_or_cpy(v->el, c, n);
4845 v = isl_vec_mat_product(v, isl_mat_copy(T));
4846 if (!v)
4847 return isl_stat_error;
4848 isl_seq_swp_or_cpy(c, v->el, n);
4849 isl_vec_free(v);
4851 return isl_stat_ok;
4854 /* Plug in T for the variables in "bmap" starting at "pos".
4855 * T is a linear unimodular matrix, i.e., without constant term.
4857 static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
4858 __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
4860 int i;
4861 unsigned n, total;
4863 bmap = isl_basic_map_cow(bmap);
4864 if (!bmap || !T)
4865 goto error;
4867 n = isl_mat_cols(T);
4868 if (n != isl_mat_rows(T))
4869 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
4870 "expecting square matrix", goto error);
4872 total = isl_basic_map_dim(bmap, isl_dim_all);
4873 if (pos + n > total || pos + n < pos)
4874 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
4875 "invalid range", goto error);
4877 for (i = 0; i < bmap->n_eq; ++i)
4878 if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
4879 goto error;
4880 for (i = 0; i < bmap->n_ineq; ++i)
4881 if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
4882 goto error;
4883 for (i = 0; i < bmap->n_div; ++i) {
4884 if (isl_basic_map_div_is_marked_unknown(bmap, i))
4885 continue;
4886 if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
4887 goto error;
4890 isl_mat_free(T);
4891 return bmap;
4892 error:
4893 isl_basic_map_free(bmap);
4894 isl_mat_free(T);
4895 return NULL;
4898 /* Remove divs that are not strictly needed.
4900 * First look for an equality constraint involving two or more
4901 * existentially quantified variables without an explicit
4902 * representation. Replace the combination that appears
4903 * in the equality constraint by a single existentially quantified
4904 * variable such that the equality can be used to derive
4905 * an explicit representation for the variable.
4906 * If there are no more such equality constraints, then continue
4907 * with isl_basic_map_drop_redundant_divs_ineq.
4909 * In particular, if the equality constraint is of the form
4911 * f(x) + \sum_i c_i a_i = 0
4913 * with a_i existentially quantified variable without explicit
4914 * representation, then apply a transformation on the existentially
4915 * quantified variables to turn the constraint into
4917 * f(x) + g a_1' = 0
4919 * with g the gcd of the c_i.
4920 * In order to easily identify which existentially quantified variables
4921 * have a complete explicit representation, i.e., without being defined
4922 * in terms of other existentially quantified variables without
4923 * an explicit representation, the existentially quantified variables
4924 * are first sorted.
4926 * The variable transformation is computed by extending the row
4927 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
4929 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
4930 * [a_2'] [ a_2 ]
4931 * ... = U ....
4932 * [a_n'] [ a_n ]
4934 * with [c_1/g ... c_n/g] representing the first row of U.
4935 * The inverse of U is then plugged into the original constraints.
4936 * The call to isl_basic_map_simplify makes sure the explicit
4937 * representation for a_1' is extracted from the equality constraint.
4939 __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
4940 __isl_take isl_basic_map *bmap)
4942 int first;
4943 int i;
4944 unsigned o_div, n_div;
4945 int l;
4946 isl_ctx *ctx;
4947 isl_mat *T;
4949 if (!bmap)
4950 return NULL;
4951 if (isl_basic_map_divs_known(bmap))
4952 return isl_basic_map_drop_redundant_divs_ineq(bmap);
4953 if (bmap->n_eq == 0)
4954 return isl_basic_map_drop_redundant_divs_ineq(bmap);
4955 bmap = isl_basic_map_sort_divs(bmap);
4956 if (!bmap)
4957 return NULL;
4959 first = isl_basic_map_first_unknown_div(bmap);
4960 if (first < 0)
4961 return isl_basic_map_free(bmap);
4963 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4964 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4966 for (i = 0; i < bmap->n_eq; ++i) {
4967 l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
4968 n_div - (first));
4969 if (l < 0)
4970 continue;
4971 l += first;
4972 if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
4973 n_div - (l + 1)) == -1)
4974 continue;
4975 break;
4977 if (i >= bmap->n_eq)
4978 return isl_basic_map_drop_redundant_divs_ineq(bmap);
4980 ctx = isl_basic_map_get_ctx(bmap);
4981 T = isl_mat_alloc(ctx, n_div - l, n_div - l);
4982 if (!T)
4983 return isl_basic_map_free(bmap);
4984 isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
4985 T = isl_mat_normalize_row(T, 0);
4986 T = isl_mat_unimodular_complete(T, 1);
4987 T = isl_mat_right_inverse(T);
4989 for (i = l; i < n_div; ++i)
4990 bmap = isl_basic_map_mark_div_unknown(bmap, i);
4991 bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
4992 bmap = isl_basic_map_simplify(bmap);
4994 return isl_basic_map_drop_redundant_divs(bmap);
4997 /* Does "bmap" satisfy any equality that involves more than 2 variables
4998 * and/or has coefficients different from -1 and 1?
5000 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5002 int i;
5003 unsigned total;
5005 total = isl_basic_map_dim(bmap, isl_dim_all);
5007 for (i = 0; i < bmap->n_eq; ++i) {
5008 int j, k;
5010 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5011 if (j < 0)
5012 continue;
5013 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5014 !isl_int_is_negone(bmap->eq[i][1 + j]))
5015 return 1;
5017 j += 1;
5018 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5019 if (k < 0)
5020 continue;
5021 j += k;
5022 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5023 !isl_int_is_negone(bmap->eq[i][1 + j]))
5024 return 1;
5026 j += 1;
5027 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5028 if (k >= 0)
5029 return 1;
5032 return 0;
5035 /* Remove any common factor g from the constraint coefficients in "v".
5036 * The constant term is stored in the first position and is replaced
5037 * by floor(c/g). If any common factor is removed and if this results
5038 * in a tightening of the constraint, then set *tightened.
5040 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5041 int *tightened)
5043 isl_ctx *ctx;
5045 if (!v)
5046 return NULL;
5047 ctx = isl_vec_get_ctx(v);
5048 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5049 if (isl_int_is_zero(ctx->normalize_gcd))
5050 return v;
5051 if (isl_int_is_one(ctx->normalize_gcd))
5052 return v;
5053 v = isl_vec_cow(v);
5054 if (!v)
5055 return NULL;
5056 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5057 *tightened = 1;
5058 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5059 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5060 v->size - 1);
5061 return v;
5064 /* If "bmap" is an integer set that satisfies any equality involving
5065 * more than 2 variables and/or has coefficients different from -1 and 1,
5066 * then use variable compression to reduce the coefficients by removing
5067 * any (hidden) common factor.
5068 * In particular, apply the variable compression to each constraint,
5069 * factor out any common factor in the non-constant coefficients and
5070 * then apply the inverse of the compression.
5071 * At the end, we mark the basic map as having reduced constants.
5072 * If this flag is still set on the next invocation of this function,
5073 * then we skip the computation.
5075 * Removing a common factor may result in a tightening of some of
5076 * the constraints. If this happens, then we may end up with two
5077 * opposite inequalities that can be replaced by an equality.
5078 * We therefore call isl_basic_map_detect_inequality_pairs,
5079 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5080 * and isl_basic_map_gauss if such a pair was found.
5082 * Note that this function may leave the result in an inconsistent state.
5083 * In particular, the constraints may not be gaussed.
5084 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5085 * for some of the test cases to pass successfully.
5086 * Any potential modification of the representation is therefore only
5087 * performed on a single copy of the basic map.
5089 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5090 __isl_take isl_basic_map *bmap)
5092 unsigned total;
5093 isl_ctx *ctx;
5094 isl_vec *v;
5095 isl_mat *eq, *T, *T2;
5096 int i;
5097 int tightened;
5099 if (!bmap)
5100 return NULL;
5101 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5102 return bmap;
5103 if (isl_basic_map_is_rational(bmap))
5104 return bmap;
5105 if (bmap->n_eq == 0)
5106 return bmap;
5107 if (!has_multiple_var_equality(bmap))
5108 return bmap;
5110 total = isl_basic_map_dim(bmap, isl_dim_all);
5111 ctx = isl_basic_map_get_ctx(bmap);
5112 v = isl_vec_alloc(ctx, 1 + total);
5113 if (!v)
5114 return isl_basic_map_free(bmap);
5116 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
5117 T = isl_mat_variable_compression(eq, &T2);
5118 if (!T || !T2)
5119 goto error;
5120 if (T->n_col == 0) {
5121 isl_mat_free(T);
5122 isl_mat_free(T2);
5123 isl_vec_free(v);
5124 return isl_basic_map_set_to_empty(bmap);
5127 bmap = isl_basic_map_cow(bmap);
5128 if (!bmap)
5129 goto error;
5131 tightened = 0;
5132 for (i = 0; i < bmap->n_ineq; ++i) {
5133 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
5134 v = isl_vec_mat_product(v, isl_mat_copy(T));
5135 v = normalize_constraint(v, &tightened);
5136 v = isl_vec_mat_product(v, isl_mat_copy(T2));
5137 if (!v)
5138 goto error;
5139 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
5142 isl_mat_free(T);
5143 isl_mat_free(T2);
5144 isl_vec_free(v);
5146 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5148 if (tightened) {
5149 int progress = 0;
5151 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5152 if (progress) {
5153 bmap = eliminate_divs_eq(bmap, &progress);
5154 bmap = isl_basic_map_gauss(bmap, NULL);
5158 return bmap;
5159 error:
5160 isl_mat_free(T);
5161 isl_mat_free(T2);
5162 isl_vec_free(v);
5163 return isl_basic_map_free(bmap);
5166 /* Shift the integer division at position "div" of "bmap"
5167 * by "shift" times the variable at position "pos".
5168 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5169 * corresponds to the constant term.
5171 * That is, if the integer division has the form
5173 * floor(f(x)/d)
5175 * then replace it by
5177 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5179 __isl_give isl_basic_map *isl_basic_map_shift_div(
5180 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5182 int i;
5183 unsigned total;
5185 if (isl_int_is_zero(shift))
5186 return bmap;
5187 if (!bmap)
5188 return NULL;
5190 total = isl_basic_map_dim(bmap, isl_dim_all);
5191 total -= isl_basic_map_dim(bmap, isl_dim_div);
5193 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5195 for (i = 0; i < bmap->n_eq; ++i) {
5196 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5197 continue;
5198 isl_int_submul(bmap->eq[i][pos],
5199 shift, bmap->eq[i][1 + total + div]);
5201 for (i = 0; i < bmap->n_ineq; ++i) {
5202 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5203 continue;
5204 isl_int_submul(bmap->ineq[i][pos],
5205 shift, bmap->ineq[i][1 + total + div]);
5207 for (i = 0; i < bmap->n_div; ++i) {
5208 if (isl_int_is_zero(bmap->div[i][0]))
5209 continue;
5210 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5211 continue;
5212 isl_int_submul(bmap->div[i][1 + pos],
5213 shift, bmap->div[i][1 + 1 + total + div]);
5216 return bmap;