2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
14 #include <isl/space.h>
15 #include <isl/constraint.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_private.h>
20 #include <isl_ast_build_private.h>
23 /* Compute the "opposite" of the (numerator of the) argument of a div
24 * with denominator "d".
26 * In particular, compute
30 static __isl_give isl_aff
*oppose_div_arg(__isl_take isl_aff
*aff
,
31 __isl_take isl_val
*d
)
33 aff
= isl_aff_neg(aff
);
34 aff
= isl_aff_add_constant_val(aff
, d
);
35 aff
= isl_aff_add_constant_si(aff
, -1);
40 /* Internal data structure used inside isl_ast_expr_add_term.
41 * The domain of "build" is used to simplify the expressions.
42 * "build" needs to be set by the caller of isl_ast_expr_add_term.
43 * "ls" is the domain local space of the affine expression
44 * of which a term is being added.
45 * "cst" is the constant term of the expression in which the added term
46 * appears. It may be modified by isl_ast_expr_add_term.
48 * "v" is the coefficient of the term that is being constructed and
49 * is set internally by isl_ast_expr_add_term.
51 struct isl_ast_add_term_data
{
58 /* Given the numerator "aff" of the argument of an integer division
59 * with denominator "d", check if it can be made non-negative over
60 * data->build->domain by stealing part of the constant term of
61 * the expression in which the integer division appears.
63 * In particular, the outer expression is of the form
65 * v * floor(aff/d) + cst
67 * We already know that "aff" itself may attain negative values.
68 * Here we check if aff + d*floor(cst/v) is non-negative, such
69 * that we could rewrite the expression to
71 * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
73 * Note that aff + d*floor(cst/v) can only possibly be non-negative
74 * if data->cst and data->v have the same sign.
75 * Similarly, if floor(cst/v) is zero, then there is no point in
78 static isl_bool
is_non_neg_after_stealing(__isl_keep isl_aff
*aff
,
79 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
86 if (isl_val_sgn(data
->cst
) != isl_val_sgn(data
->v
))
87 return isl_bool_false
;
89 shift
= isl_val_div(isl_val_copy(data
->cst
), isl_val_copy(data
->v
));
90 shift
= isl_val_floor(shift
);
91 is_zero
= isl_val_is_zero(shift
);
92 if (is_zero
< 0 || is_zero
) {
94 return isl_bool_not(is_zero
);
96 shift
= isl_val_mul(shift
, isl_val_copy(d
));
97 shifted
= isl_aff_copy(aff
);
98 shifted
= isl_aff_add_constant_val(shifted
, shift
);
99 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, shifted
);
100 isl_aff_free(shifted
);
105 /* Given the numerator "aff" of the argument of an integer division
106 * with denominator "d", steal part of the constant term of
107 * the expression in which the integer division appears to make it
108 * non-negative over data->build->domain.
110 * In particular, the outer expression is of the form
112 * v * floor(aff/d) + cst
114 * We know that "aff" itself may attain negative values,
115 * but that aff + d*floor(cst/v) is non-negative.
116 * Find the minimal positive value that we need to add to "aff"
117 * to make it positive and adjust data->cst accordingly.
118 * That is, compute the minimal value "m" of "aff" over
119 * data->build->domain and take
127 * and rewrite the expression to
129 * v * floor((aff + s*d)/d) + (cst - v*s)
131 static __isl_give isl_aff
*steal_from_cst(__isl_take isl_aff
*aff
,
132 __isl_keep isl_val
*d
, struct isl_ast_add_term_data
*data
)
137 domain
= isl_ast_build_get_domain(data
->build
);
138 shift
= isl_set_min_val(domain
, aff
);
139 isl_set_free(domain
);
141 shift
= isl_val_neg(shift
);
142 shift
= isl_val_div(shift
, isl_val_copy(d
));
143 shift
= isl_val_ceil(shift
);
145 t
= isl_val_copy(shift
);
146 t
= isl_val_mul(t
, isl_val_copy(data
->v
));
147 data
->cst
= isl_val_sub(data
->cst
, t
);
149 shift
= isl_val_mul(shift
, isl_val_copy(d
));
150 return isl_aff_add_constant_val(aff
, shift
);
153 /* Construct an expression representing the binary operation "type"
154 * (some division or modulo) applied to the expressions
155 * constructed from "aff" and "v".
157 static __isl_give isl_ast_expr
*div_mod(enum isl_ast_expr_op_type type
,
158 __isl_take isl_aff
*aff
, __isl_take isl_val
*v
,
159 __isl_keep isl_ast_build
*build
)
161 isl_ast_expr
*expr1
, *expr2
;
163 expr1
= isl_ast_expr_from_aff(aff
, build
);
164 expr2
= isl_ast_expr_from_val(v
);
165 return isl_ast_expr_alloc_binary(type
, expr1
, expr2
);
168 /* Create an isl_ast_expr evaluating the div at position "pos" in data->ls.
169 * The result is simplified in terms of data->build->domain.
170 * This function may change (the sign of) data->v.
172 * data->ls is known to be non-NULL.
174 * Let the div be of the form floor(e/d).
175 * If the ast_build_prefer_pdiv option is set then we check if "e"
176 * is non-negative, so that we can generate
178 * (pdiv_q, expr(e), expr(d))
182 * (fdiv_q, expr(e), expr(d))
184 * If the ast_build_prefer_pdiv option is set and
185 * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
186 * If so, we can rewrite
188 * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
190 * and still use pdiv_q, while changing the sign of data->v.
192 * Otherwise, we check if
196 * is non-negative and if so, replace floor(e/d) by
198 * floor((e + s*d)/d) - s
200 * with s the minimal shift that makes the argument non-negative.
202 static __isl_give isl_ast_expr
*var_div(struct isl_ast_add_term_data
*data
,
205 isl_ctx
*ctx
= isl_local_space_get_ctx(data
->ls
);
208 enum isl_ast_expr_op_type type
;
210 aff
= isl_local_space_get_div(data
->ls
, pos
);
211 d
= isl_aff_get_denominator_val(aff
);
212 aff
= isl_aff_scale_val(aff
, isl_val_copy(d
));
214 type
= isl_ast_expr_op_fdiv_q
;
215 if (isl_options_get_ast_build_prefer_pdiv(ctx
)) {
217 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, aff
);
218 if (non_neg
>= 0 && !non_neg
) {
219 isl_aff
*opp
= oppose_div_arg(isl_aff_copy(aff
),
221 non_neg
= isl_ast_build_aff_is_nonneg(data
->build
, opp
);
222 if (non_neg
>= 0 && non_neg
) {
223 data
->v
= isl_val_neg(data
->v
);
229 if (non_neg
>= 0 && !non_neg
) {
230 non_neg
= is_non_neg_after_stealing(aff
, d
, data
);
231 if (non_neg
>= 0 && non_neg
)
232 aff
= steal_from_cst(aff
, d
, data
);
235 aff
= isl_aff_free(aff
);
237 type
= isl_ast_expr_op_pdiv_q
;
240 return div_mod(type
, aff
, d
, data
->build
);
243 /* Create an isl_ast_expr evaluating the specified dimension of data->ls.
244 * The result is simplified in terms of data->build->domain.
245 * This function may change (the sign of) data->v.
247 * The isl_ast_expr is constructed based on the type of the dimension.
248 * - divs are constructed by var_div
249 * - set variables are constructed from the iterator isl_ids in data->build
250 * - parameters are constructed from the isl_ids in data->ls
252 static __isl_give isl_ast_expr
*var(struct isl_ast_add_term_data
*data
,
253 enum isl_dim_type type
, int pos
)
255 isl_ctx
*ctx
= isl_local_space_get_ctx(data
->ls
);
258 if (type
== isl_dim_div
)
259 return var_div(data
, pos
);
261 if (type
== isl_dim_set
) {
262 id
= isl_ast_build_get_iterator_id(data
->build
, pos
);
263 return isl_ast_expr_from_id(id
);
266 if (!isl_local_space_has_dim_id(data
->ls
, type
, pos
))
267 isl_die(ctx
, isl_error_internal
, "unnamed dimension",
269 id
= isl_local_space_get_dim_id(data
->ls
, type
, pos
);
270 return isl_ast_expr_from_id(id
);
273 /* Does "expr" represent the zero integer?
275 static isl_bool
ast_expr_is_zero(__isl_keep isl_ast_expr
*expr
)
278 return isl_bool_error
;
279 if (expr
->type
!= isl_ast_expr_int
)
280 return isl_bool_false
;
281 return isl_val_is_zero(expr
->u
.v
);
284 /* Create an expression representing the sum of "expr1" and "expr2",
285 * provided neither of the two expressions is identically zero.
287 static __isl_give isl_ast_expr
*ast_expr_add(__isl_take isl_ast_expr
*expr1
,
288 __isl_take isl_ast_expr
*expr2
)
290 if (!expr1
|| !expr2
)
293 if (ast_expr_is_zero(expr1
)) {
294 isl_ast_expr_free(expr1
);
298 if (ast_expr_is_zero(expr2
)) {
299 isl_ast_expr_free(expr2
);
303 return isl_ast_expr_add(expr1
, expr2
);
305 isl_ast_expr_free(expr1
);
306 isl_ast_expr_free(expr2
);
310 /* Subtract expr2 from expr1.
312 * If expr2 is zero, we simply return expr1.
313 * If expr1 is zero, we return
315 * (isl_ast_expr_op_minus, expr2)
317 * Otherwise, we return
319 * (isl_ast_expr_op_sub, expr1, expr2)
321 static __isl_give isl_ast_expr
*ast_expr_sub(__isl_take isl_ast_expr
*expr1
,
322 __isl_take isl_ast_expr
*expr2
)
324 if (!expr1
|| !expr2
)
327 if (ast_expr_is_zero(expr2
)) {
328 isl_ast_expr_free(expr2
);
332 if (ast_expr_is_zero(expr1
)) {
333 isl_ast_expr_free(expr1
);
334 return isl_ast_expr_neg(expr2
);
337 return isl_ast_expr_sub(expr1
, expr2
);
339 isl_ast_expr_free(expr1
);
340 isl_ast_expr_free(expr2
);
344 /* Return an isl_ast_expr that represents
348 * v is assumed to be non-negative.
349 * The result is simplified in terms of build->domain.
351 static __isl_give isl_ast_expr
*isl_ast_expr_mod(__isl_keep isl_val
*v
,
352 __isl_keep isl_aff
*aff
, __isl_keep isl_val
*d
,
353 __isl_keep isl_ast_build
*build
)
361 expr
= div_mod(isl_ast_expr_op_pdiv_r
,
362 isl_aff_copy(aff
), isl_val_copy(d
), build
);
364 if (!isl_val_is_one(v
)) {
365 c
= isl_ast_expr_from_val(isl_val_copy(v
));
366 expr
= isl_ast_expr_mul(c
, expr
);
372 /* Create an isl_ast_expr that scales "expr" by "v".
374 * If v is 1, we simply return expr.
375 * If v is -1, we return
377 * (isl_ast_expr_op_minus, expr)
379 * Otherwise, we return
381 * (isl_ast_expr_op_mul, expr(v), expr)
383 static __isl_give isl_ast_expr
*scale(__isl_take isl_ast_expr
*expr
,
384 __isl_take isl_val
*v
)
390 if (isl_val_is_one(v
)) {
395 if (isl_val_is_negone(v
)) {
397 expr
= isl_ast_expr_neg(expr
);
399 c
= isl_ast_expr_from_val(v
);
400 expr
= isl_ast_expr_mul(c
, expr
);
406 isl_ast_expr_free(expr
);
410 /* Add an expression for "*v" times the specified dimension of data->ls
412 * If the dimension is an integer division, then this function
413 * may modify data->cst in order to make the numerator non-negative.
414 * The result is simplified in terms of data->build->domain.
416 * Let e be the expression for the specified dimension,
417 * multiplied by the absolute value of "*v".
418 * If "*v" is negative, we create
420 * (isl_ast_expr_op_sub, expr, e)
422 * except when expr is trivially zero, in which case we create
424 * (isl_ast_expr_op_minus, e)
428 * If "*v" is positive, we simply create
430 * (isl_ast_expr_op_add, expr, e)
433 static __isl_give isl_ast_expr
*isl_ast_expr_add_term(
434 __isl_take isl_ast_expr
*expr
, enum isl_dim_type type
, int pos
,
435 __isl_take isl_val
*v
, struct isl_ast_add_term_data
*data
)
443 term
= var(data
, type
, pos
);
446 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
448 term
= scale(term
, v
);
449 return ast_expr_sub(expr
, term
);
451 term
= scale(term
, v
);
452 return ast_expr_add(expr
, term
);
456 /* Add an expression for "v" to expr.
458 static __isl_give isl_ast_expr
*isl_ast_expr_add_int(
459 __isl_take isl_ast_expr
*expr
, __isl_take isl_val
*v
)
461 isl_ast_expr
*expr_int
;
466 if (isl_val_is_zero(v
)) {
471 if (isl_val_is_neg(v
) && !ast_expr_is_zero(expr
)) {
473 expr_int
= isl_ast_expr_from_val(v
);
474 return ast_expr_sub(expr
, expr_int
);
476 expr_int
= isl_ast_expr_from_val(v
);
477 return ast_expr_add(expr
, expr_int
);
480 isl_ast_expr_free(expr
);
485 /* Internal data structure used inside extract_modulos.
487 * If any modulo expressions are detected in "aff", then the
488 * expression is removed from "aff" and added to either "pos" or "neg"
489 * depending on the sign of the coefficient of the modulo expression
492 * "add" is an expression that needs to be added to "aff" at the end of
493 * the computation. It is NULL as long as no modulos have been extracted.
495 * "i" is the position in "aff" of the div under investigation
496 * "v" is the coefficient in "aff" of the div
497 * "div" is the argument of the div, with the denominator removed
498 * "d" is the original denominator of the argument of the div
500 * If set, then "partial" is the (positively weighted) sum
501 * of the affine expressions of one or more previously considered constraints
502 * that could still be complemented to an expression equal to "div".
503 * "nonneg" is an affine expression that is non-negative over "build"
504 * and that can be used to extract a modulo expression from "div".
505 * In particular, if "sign" is 1, then the coefficients of "nonneg"
506 * are equal to those of "div" modulo "d". If "sign" is -1, then
507 * the coefficients of "nonneg" are opposite to those of "div" modulo "d".
508 * If "sign" is 0, then no such affine expression has been found (yet).
510 struct isl_extract_mod_data
{
511 isl_ast_build
*build
;
533 * represent (a special case of) a test for some linear expression
536 * In particular, is it of the form
542 static isl_bool
is_even_test(struct isl_extract_mod_data
*data
,
543 __isl_keep isl_aff
*arg
)
548 res
= isl_val_eq_si(data
->d
, 2);
552 cst
= isl_aff_get_constant_val(arg
);
553 res
= isl_val_eq_si(cst
, -1);
559 /* Given that data->v * div_i in data->aff is equal to
561 * f * (term - (arg mod d))
563 * with data->d * f = data->v and "arg" non-negative on data->build, add
569 * abs(f) * (arg mod d)
571 * to data->neg or data->pos depending on the sign of -f.
573 * In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
574 * with "lin" some linear expression, first replace
576 * f * (term - ((lin - 1) mod 2))
580 * -f * (1 - term - (lin mod 2))
582 * These two are equal because
584 * ((lin - 1) mod 2) + (lin mod 2) = 1
586 * Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
588 static isl_stat
extract_term_and_mod(struct isl_extract_mod_data
*data
,
589 __isl_take isl_aff
*term
, __isl_take isl_aff
*arg
)
595 even
= is_even_test(data
, arg
);
597 arg
= isl_aff_free(arg
);
599 term
= oppose_div_arg(term
, isl_val_copy(data
->d
));
600 data
->v
= isl_val_neg(data
->v
);
601 arg
= isl_aff_set_constant_si(arg
, 0);
604 data
->v
= isl_val_div(data
->v
, isl_val_copy(data
->d
));
605 s
= isl_val_sgn(data
->v
);
606 data
->v
= isl_val_abs(data
->v
);
607 expr
= isl_ast_expr_mod(data
->v
, arg
, data
->d
, data
->build
);
610 data
->neg
= ast_expr_add(data
->neg
, expr
);
612 data
->pos
= ast_expr_add(data
->pos
, expr
);
613 data
->aff
= isl_aff_set_coefficient_si(data
->aff
,
614 isl_dim_div
, data
->i
, 0);
616 data
->v
= isl_val_neg(data
->v
);
617 term
= isl_aff_scale_val(term
, isl_val_copy(data
->v
));
622 data
->add
= isl_aff_add(data
->add
, term
);
624 return isl_stat_error
;
629 /* Given that data->v * div_i in data->aff is of the form
631 * f * d * floor(div/d)
633 * with div nonnegative on data->build, rewrite it as
635 * f * (div - (div mod d)) = f * div - f * (div mod d)
643 * abs(f) * (div mod d)
645 * to data->neg or data->pos depending on the sign of -f.
647 static isl_stat
extract_mod(struct isl_extract_mod_data
*data
)
649 return extract_term_and_mod(data
, isl_aff_copy(data
->div
),
650 isl_aff_copy(data
->div
));
653 /* Given that data->v * div_i in data->aff is of the form
655 * f * d * floor(div/d) (1)
657 * check if div is non-negative on data->build and, if so,
658 * extract the corresponding modulo from data->aff.
659 * If not, then check if
663 * is non-negative on data->build. If so, replace (1) by
665 * -f * d * floor((-div + d - 1)/d)
667 * and extract the corresponding modulo from data->aff.
669 * This function may modify data->div.
671 static isl_stat
extract_nonneg_mod(struct isl_extract_mod_data
*data
)
675 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
679 return extract_mod(data
);
681 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
682 mod
= isl_ast_build_aff_is_nonneg(data
->build
, data
->div
);
686 data
->v
= isl_val_neg(data
->v
);
687 return extract_mod(data
);
692 data
->aff
= isl_aff_free(data
->aff
);
693 return isl_stat_error
;
696 /* Does "c" have a constant term that is "too large"?
697 * Here, "too large" is fairly arbitrarily set to 1 << 15.
699 static isl_bool
has_large_constant_term(__isl_keep isl_constraint
*c
)
704 v
= isl_val_abs(isl_constraint_get_constant_val(c
));
706 return isl_bool_error
;
707 sign
= isl_val_cmp_si(v
, 1 << 15);
709 return isl_bool_ok(sign
> 0);
712 /* Is the affine expression with constant term returned by "get_constant"
713 * "simpler" than data->nonneg
714 * for use in extracting a modulo expression?
716 * Currently, only this constant term is considered.
717 * In particular, we prefer the affine expression with the smallest constant
719 * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
720 * then we would pick x >= 0
722 * More detailed heuristics could be used if it turns out that there is a need.
724 static isl_bool
is_simpler(struct isl_extract_mod_data
*data
,
725 __isl_give isl_val
*get_constant(struct isl_extract_mod_data
*data
,
726 void *user
), void *user
)
732 return isl_bool_true
;
734 v1
= isl_val_abs(get_constant(data
, user
));
735 v2
= isl_val_abs(isl_aff_get_constant_val(data
->nonneg
));
736 simpler
= isl_val_lt(v1
, v2
);
743 /* Return the constant term of "c".
745 static __isl_give isl_val
*get_constraint_constant(
746 struct isl_extract_mod_data
*data
, void *user
)
748 isl_constraint
*c
= user
;
750 return isl_constraint_get_constant_val(c
);
753 /* Is the affine expression of constraint "c" "simpler" than data->nonneg
754 * for use in extracting a modulo expression?
756 * The test is based on the constant term of "c".
758 static isl_bool
mod_constraint_is_simpler(struct isl_extract_mod_data
*data
,
759 __isl_keep isl_constraint
*c
)
761 return is_simpler(data
, &get_constraint_constant
, c
);
764 /* Replace data->nonneg by the affine expression "aff" and
765 * set data->sign to "sign".
767 static isl_stat
replace_nonneg(struct isl_extract_mod_data
*data
,
768 __isl_take isl_aff
*aff
, int sign
)
770 isl_aff_free(data
->nonneg
);
774 return isl_stat_non_null(data
->nonneg
);
777 /* If "c" is "simpler" than data->nonneg,
778 * then replace data->nonneg by the affine expression of "c" and
779 * set data->sign to "sign".
781 static isl_stat
replace_if_simpler(struct isl_extract_mod_data
*data
,
782 __isl_keep isl_constraint
*c
, int sign
)
786 simpler
= mod_constraint_is_simpler(data
, c
);
787 if (simpler
< 0 || !simpler
)
788 return isl_stat_non_error_bool(simpler
);
790 return replace_nonneg(data
, isl_constraint_get_aff(c
), sign
);
793 /* Internal data structure used inside check_parallel_or_opposite.
795 * "data" is the information passed down from the caller.
796 * "c" is the constraint being inspected.
798 * "n" contains the number of parameters and the number of input dimensions and
799 * is set by the first call to parallel_or_opposite_scan.
800 * "parallel" is set as long as the coefficients of "c" are still potentially
801 * equal to those of data->div modulo data->d.
802 * "opposite" is set as long as the coefficients of "c" are still potentially
803 * opposite to those of data->div modulo data->d.
804 * "partial" is set if the coefficients of "c" are still potentially
805 * a subset of those of data->div.
806 * "final" is set is the coefficients in data->partial together with those
807 * of "c" still cover the coefficients of data->div.
809 * If "f" is set, then it is the factor with which the coefficients
810 * of "c" need to be multiplied to match those of data->div.
812 struct isl_parallel_stat
{
813 struct isl_extract_mod_data
*data
;
825 /* Should the scan of coefficients be continued?
826 * That is, are the coefficients still (potentially) (partially) equal or
829 static isl_bool
parallel_or_opposite_continue(struct isl_parallel_stat
*stat
)
831 if (stat
->parallel
< 0 || stat
->opposite
< 0 || stat
->partial
< 0)
832 return isl_bool_error
;
834 return isl_bool_ok(stat
->parallel
|| stat
->opposite
|| stat
->partial
);
837 /* Is coefficient "i" of type "c_type" of stat->c potentially equal or
838 * opposite to coefficient "i" of type "a_type" of stat->data->div
839 * modulo stat->data->div?
840 * In particular, are they both zero or both non-zero?
842 * Note that while the coefficients of stat->data->div can be reasonably
843 * expected not to involve any coefficients that are multiples of stat->data->d,
844 * "c" may very well involve such coefficients.
845 * This means that some cases of equal or opposite constraints can be missed
848 * If the coefficient of stat->data->div is zero, but that of "c" is not,
849 * then the coefficients of "c" cannot form a subset of those
850 * of stat->data->div.
851 * If the coefficient of stat->data->div is not zero,
852 * then check that it does not appear in both "c" and stat->data->partial.
853 * If it does not appear in either, then it must appear in some later constraint
854 * and "c" can therefore not be the last in the sequence of constraints
855 * that sum up to stat->data->div.
857 static isl_bool
parallel_or_opposite_feasible(struct isl_parallel_stat
*stat
,
858 enum isl_dim_type c_type
, enum isl_dim_type a_type
, int i
)
862 a
= isl_constraint_involves_dims(stat
->c
, c_type
, i
, 1);
863 b
= isl_aff_involves_dims(stat
->data
->div
, a_type
, i
, 1);
865 return isl_bool_error
;
867 stat
->parallel
= stat
->opposite
= isl_bool_false
;
869 return parallel_or_opposite_continue(stat
);
871 stat
->partial
= isl_bool_false
;
872 if (b
&& (a
|| stat
->final
) && stat
->data
->partial
) {
875 c
= isl_aff_involves_dims(stat
->data
->partial
, a_type
, i
, 1);
877 return isl_bool_error
;
879 stat
->partial
= isl_bool_false
;
884 return parallel_or_opposite_continue(stat
);
887 /* Update stat->partial based on the coefficient "v1" of stat->c and
888 * "v2" of stat->data->div, where "v2" is known not to be zero.
889 * "v1" may be modified by this function and the modified value is returned.
890 * This function may also set stat->f.
892 * If "v1" is zero, then no update needs to be performed.
893 * Otherwise, stat->partial can only remain set if "c" is part
894 * of some positively weighted sum that is equal to stat->data->div.
895 * This means that v2 divided by v1 needs to be a positive integer.
896 * This quotient is stored in stat->f. If this quotient has already
897 * been set for a previous coefficient, then it needs to be the same.
899 static __isl_give isl_val
*update_is_partial(struct isl_parallel_stat
*stat
,
900 __isl_take isl_val
*v1
, __isl_keep isl_val
*v2
)
904 if (isl_val_is_zero(v1
))
907 stat
->partial
= isl_val_is_divisible_by(v2
, v1
);
908 if (stat
->partial
< 0 || !stat
->partial
)
911 v1
= isl_val_div(isl_val_copy(v2
), v1
);
912 stat
->partial
= isl_val_is_pos(v1
);
913 if (stat
->partial
< 0 || !stat
->partial
)
916 stat
->f
= isl_val_copy(v1
);
917 stat
->partial
= isl_val_eq(v1
, stat
->f
);
921 /* Is coefficient "i" of type "c_type" of stat->c equal or
922 * opposite to coefficient "i" of type "a_type" of stat->data->div
923 * modulo stat->data->div, or
924 * could stat->c be part of a positively weighted sum equal to stat->data->div?
925 * This function may set stat->f (at most once).
927 * If the coefficient of stat->data->div is zero,
928 * then parallel_or_opposite_feasible has already checked
929 * that the coefficient of stat->c is zero as well,
930 * so no further checks are needed.
932 static isl_bool
is_parallel_or_opposite(struct isl_parallel_stat
*stat
,
933 enum isl_dim_type c_type
, enum isl_dim_type a_type
, int i
)
938 b
= isl_aff_involves_dims(stat
->data
->div
, a_type
, i
, 1);
940 return isl_bool_not(b
);
942 v1
= isl_constraint_get_coefficient_val(stat
->c
, c_type
, i
);
943 v2
= isl_aff_get_coefficient_val(stat
->data
->div
, a_type
, i
);
944 if (stat
->parallel
) {
945 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
946 stat
->parallel
= isl_val_is_divisible_by(v1
, stat
->data
->d
);
947 v1
= isl_val_add(v1
, isl_val_copy(v2
));
949 if (stat
->opposite
) {
950 v1
= isl_val_add(v1
, isl_val_copy(v2
));
951 stat
->opposite
= isl_val_is_divisible_by(v1
, stat
->data
->d
);
953 v1
= update_is_partial(stat
, v1
, v2
);
957 return parallel_or_opposite_continue(stat
);
960 /* Scan the coefficients of stat->c to see if they are (potentially)
961 * equal or opposite to those of stat->data->div modulo stat->data->d,
962 * calling "fn" on each coefficient.
963 * IF "init" is set, then this is the first call to this function and
964 * then stat->n is initialized.
966 static isl_bool
parallel_or_opposite_scan(struct isl_parallel_stat
*stat
,
967 isl_bool (*fn
)(struct isl_parallel_stat
*stat
,
968 enum isl_dim_type c_type
, enum isl_dim_type a_type
, int i
),
971 enum isl_dim_type c_type
[2] = { isl_dim_param
, isl_dim_set
};
972 enum isl_dim_type a_type
[2] = { isl_dim_param
, isl_dim_in
};
975 for (t
= 0; t
< 2; ++t
) {
977 stat
->n
[t
] = isl_constraint_dim(stat
->c
, c_type
[t
]);
979 return isl_bool_error
;
981 for (i
= 0; i
< stat
->n
[t
]; ++i
) {
984 ok
= fn(stat
, c_type
[t
], a_type
[t
], i
);
990 return isl_bool_true
;
993 /* Update stat->data->partial with stat->c.
995 * In particular, if stat->c with weight stat->f turns out
996 * to potentially be a part of a weighted sum equal to stat->data->div
997 * (i.e., stat->partial is set), then add this scaled version of stat->c
998 * to stat->data->partial or initialize stat->data->partial if it has not
1001 static isl_stat
update_partial(struct isl_parallel_stat
*stat
)
1008 aff
= isl_constraint_get_aff(stat
->c
);
1009 aff
= isl_aff_scale_val(aff
, isl_val_copy(stat
->f
));
1010 if (!stat
->data
->partial
)
1011 stat
->data
->partial
= aff
;
1013 stat
->data
->partial
= isl_aff_add(stat
->data
->partial
, aff
);
1015 return isl_stat_non_null(stat
->data
->partial
);
1018 /* Return the constant term of data->partial.
1020 static __isl_give isl_val
*get_partial_constant(
1021 struct isl_extract_mod_data
*data
, void *user
)
1023 return isl_aff_get_constant_val(data
->partial
);
1026 /* Is the affine expression data->partial "simpler" than data->nonneg
1027 * for use in extracting a modulo expression?
1029 * The test is based on the constant term of data->partial.
1031 static isl_bool
partial_is_simpler(struct isl_extract_mod_data
*data
)
1033 return is_simpler(data
, &get_partial_constant
, NULL
);
1036 /* If stat->data->partial is complete and is "simpler" than data->nonneg,
1037 * then replace stat->data->nonneg by stat->data->partial.
1039 static isl_stat
replace_by_partial_if_simpler(struct isl_parallel_stat
*stat
)
1047 simpler
= partial_is_simpler(stat
->data
);
1048 if (simpler
< 0 || !simpler
)
1049 return isl_stat_non_error_bool(simpler
);
1051 partial
= stat
->data
->partial
;
1052 stat
->data
->partial
= NULL
;
1054 return replace_nonneg(stat
->data
, partial
, 1);
1057 /* Check if the coefficients of "c" are either equal or opposite to those
1058 * of data->div modulo data->d. If so, and if "c" is "simpler" than
1059 * data->nonneg, then replace data->nonneg by the affine expression of "c"
1060 * and set data->sign accordingly.
1061 * Also check if "c" is part of a positively weighted sum of constraints
1062 * that is equal to data->div, where each constraint has distinct non-zero
1063 * coefficients. If "c" is the last constraint in this sum
1064 * (and the sum is "simpler" than data->nonneg)
1065 * then also replace data->nonneg by this sum.
1066 * If "c" is equal or opposite to data->div, then it is not considered
1067 * to be part of a sum.
1069 * Both "c" and data->div are assumed not to involve any integer divisions.
1071 * Before we start the actual comparison, we first quickly check if
1072 * "c" and data->div have the same non-zero coefficients.
1073 * If not, then we assume that "c" is not of the desired form.
1075 * If the constant term is "too large", then the constraint is rejected.
1076 * We do this to avoid picking up constraints that bound a variable
1077 * by a very large number, say the largest or smallest possible
1078 * variable in the representation of some integer type.
1080 static isl_stat
check_parallel_or_opposite(struct isl_extract_mod_data
*data
,
1081 __isl_keep isl_constraint
*c
)
1083 struct isl_parallel_stat stat
= {
1086 .parallel
= isl_bool_true
,
1087 .opposite
= isl_bool_true
,
1088 .partial
= isl_bool_true
,
1089 .final
= data
->partial
!= NULL
,
1094 ok
= parallel_or_opposite_scan(&stat
,
1095 ¶llel_or_opposite_feasible
, 1);
1097 return isl_stat_non_error_bool(ok
);
1099 skip
= has_large_constant_term(c
);
1100 if (skip
< 0 || skip
)
1101 return isl_stat_non_error_bool(skip
);
1103 if (stat
.parallel
|| stat
.opposite
)
1104 stat
.partial
= isl_bool_false
;
1106 ok
= parallel_or_opposite_scan(&stat
, &is_parallel_or_opposite
, 0);
1108 if (update_partial(&stat
) < 0)
1109 ok
= isl_bool_error
;
1110 isl_val_free(stat
.f
);
1112 return isl_stat_non_error_bool(ok
);
1115 return replace_by_partial_if_simpler(&stat
);
1117 return replace_if_simpler(data
, c
, stat
.parallel
? 1 : -1);
1120 /* Wrapper around check_parallel_or_opposite for use
1121 * as a isl_basic_set_foreach_constraint callback.
1123 static isl_stat
check_parallel_or_opposite_wrap(__isl_take isl_constraint
*c
,
1126 struct isl_extract_mod_data
*data
= user
;
1129 res
= check_parallel_or_opposite(data
, c
);
1130 isl_constraint_free(c
);
1135 /* Given that data->v * div_i in data->aff is of the form
1137 * f * d * floor(div/d) (1)
1139 * see if we can find an expression div' that is non-negative over data->build
1140 * and that is related to div through
1142 * div' = div + d * e
1146 * div' = -div + d - 1 + d * e
1148 * with e some affine expression.
1149 * If so, we write (1) as
1151 * f * div + f * (div' mod d)
1155 * -f * (-div + d - 1) - f * (div' mod d)
1157 * exploiting (in the second case) the fact that
1159 * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
1162 * We first try to find an appropriate expression for div'
1163 * from the constraints of data->build->domain (which is therefore
1164 * guaranteed to be non-negative on data->build), where we remove
1165 * any integer divisions from the constraints and skip this step
1166 * if "div" itself involves any integer divisions.
1167 * The following cases are considered for div':
1168 * - individual constraints, or
1169 * - a sum of constraints that involve disjoint sets of variables and
1170 * where the sum is exactly equal to div (i.e., e = 0).
1171 * If we cannot find an appropriate expression this way, then
1172 * we pass control to extract_nonneg_mod where check
1173 * if div or "-div + d -1" themselves happen to be
1174 * non-negative on data->build.
1176 * While looking for an appropriate constraint in data->build->domain,
1177 * we ignore the constant term, so after finding such a constraint,
1178 * we still need to fix up the constant term.
1179 * In particular, if a is the constant term of "div"
1180 * (or d - 1 - the constant term of "div" if data->sign < 0)
1181 * and b is the constant term of the constraint, then we need to find
1182 * a non-negative constant c such that
1184 * b + c \equiv a mod d
1190 * and add it to b to obtain the constant term of div'.
1191 * If this constant term is "too negative", then we add an appropriate
1192 * multiple of d to make it positive.
1195 * Note that the above is only a very simple heuristic for finding an
1196 * appropriate expression. We could try a bit harder by also considering
1197 * arbitrary linear combinations of constraints,
1198 * although that could potentially be much more expensive as it involves
1199 * the solution of an LP problem.
1201 * In particular, if v_i is a column vector representing constraint i,
1202 * w represents div and e_i is the i-th unit vector, then we are looking
1203 * for a solution of the constraints
1205 * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
1207 * with \lambda_i >= 0 and alpha_i of unrestricted sign.
1208 * If we are not just interested in a non-negative expression, but
1209 * also in one with a minimal range, then we don't just want
1210 * c = \sum_i lambda_i v_i to be non-negative over the domain,
1211 * but also beta - c = \sum_i mu_i v_i, where beta is a scalar
1212 * that we want to minimize and we now also have to take into account
1213 * the constant terms of the constraints.
1214 * Alternatively, we could first compute the dual of the domain
1215 * and plug in the constraints on the coefficients.
1217 static isl_stat
try_extract_mod(struct isl_extract_mod_data
*data
)
1219 isl_basic_set
*hull
;
1227 n
= isl_aff_dim(data
->div
, isl_dim_div
);
1231 if (isl_aff_involves_dims(data
->div
, isl_dim_div
, 0, n
))
1232 return extract_nonneg_mod(data
);
1234 hull
= isl_set_simple_hull(isl_set_copy(data
->build
->domain
));
1235 hull
= isl_basic_set_remove_divs(hull
);
1237 data
->nonneg
= NULL
;
1238 data
->partial
= NULL
;
1239 r
= isl_basic_set_foreach_constraint(hull
,
1240 &check_parallel_or_opposite_wrap
, data
);
1241 isl_aff_free(data
->partial
);
1242 isl_basic_set_free(hull
);
1244 if (!data
->sign
|| r
< 0) {
1245 isl_aff_free(data
->nonneg
);
1248 return extract_nonneg_mod(data
);
1251 v1
= isl_aff_get_constant_val(data
->div
);
1252 v2
= isl_aff_get_constant_val(data
->nonneg
);
1253 if (data
->sign
< 0) {
1254 v1
= isl_val_neg(v1
);
1255 v1
= isl_val_add(v1
, isl_val_copy(data
->d
));
1256 v1
= isl_val_sub_ui(v1
, 1);
1258 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
1259 v1
= isl_val_mod(v1
, isl_val_copy(data
->d
));
1260 v1
= isl_val_add(v1
, v2
);
1261 v2
= isl_val_div(isl_val_copy(v1
), isl_val_copy(data
->d
));
1262 v2
= isl_val_ceil(v2
);
1263 if (isl_val_is_neg(v2
)) {
1264 v2
= isl_val_mul(v2
, isl_val_copy(data
->d
));
1265 v1
= isl_val_sub(v1
, isl_val_copy(v2
));
1267 data
->nonneg
= isl_aff_set_constant_val(data
->nonneg
, v1
);
1270 if (data
->sign
< 0) {
1271 data
->div
= oppose_div_arg(data
->div
, isl_val_copy(data
->d
));
1272 data
->v
= isl_val_neg(data
->v
);
1275 return extract_term_and_mod(data
,
1276 isl_aff_copy(data
->div
), data
->nonneg
);
1278 data
->aff
= isl_aff_free(data
->aff
);
1279 return isl_stat_error
;
1282 /* Check if "data->aff" involves any (implicit) modulo computations based
1284 * If so, remove them from aff and add expressions corresponding
1285 * to those modulo computations to data->pos and/or data->neg.
1287 * "aff" is assumed to be an integer affine expression.
1289 * In particular, check if (v * div_j) is of the form
1291 * f * m * floor(a / m)
1293 * and, if so, rewrite it as
1295 * f * (a - (a mod m)) = f * a - f * (a mod m)
1297 * and extract out -f * (a mod m).
1298 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1299 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1301 * Note that in order to represent "a mod m" as
1303 * (isl_ast_expr_op_pdiv_r, a, m)
1305 * we need to make sure that a is non-negative.
1306 * If not, we check if "-a + m - 1" is non-negative.
1307 * If so, we can rewrite
1309 * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
1311 * and still extract a modulo.
1313 static int extract_modulo(struct isl_extract_mod_data
*data
)
1315 data
->div
= isl_aff_get_div(data
->aff
, data
->i
);
1316 data
->d
= isl_aff_get_denominator_val(data
->div
);
1317 if (isl_val_is_divisible_by(data
->v
, data
->d
)) {
1318 data
->div
= isl_aff_scale_val(data
->div
, isl_val_copy(data
->d
));
1319 if (try_extract_mod(data
) < 0)
1320 data
->aff
= isl_aff_free(data
->aff
);
1322 isl_aff_free(data
->div
);
1323 isl_val_free(data
->d
);
1327 /* Check if "aff" involves any (implicit) modulo computations.
1328 * If so, remove them from aff and add expressions corresponding
1329 * to those modulo computations to *pos and/or *neg.
1330 * We only do this if the option ast_build_prefer_pdiv is set.
1332 * "aff" is assumed to be an integer affine expression.
1334 * A modulo expression is of the form
1336 * a mod m = a - m * floor(a / m)
1338 * To detect them in aff, we look for terms of the form
1340 * f * m * floor(a / m)
1344 * f * (a - (a mod m)) = f * a - f * (a mod m)
1346 * and extract out -f * (a mod m).
1347 * In particular, if f > 0, we add (f * (a mod m)) to *neg.
1348 * If f < 0, we add ((-f) * (a mod m)) to *pos.
1350 static __isl_give isl_aff
*extract_modulos(__isl_take isl_aff
*aff
,
1351 __isl_keep isl_ast_expr
**pos
, __isl_keep isl_ast_expr
**neg
,
1352 __isl_keep isl_ast_build
*build
)
1354 struct isl_extract_mod_data data
= { build
, aff
, *pos
, *neg
};
1361 ctx
= isl_aff_get_ctx(aff
);
1362 if (!isl_options_get_ast_build_prefer_pdiv(ctx
))
1365 n
= isl_aff_dim(data
.aff
, isl_dim_div
);
1367 return isl_aff_free(aff
);
1368 for (data
.i
= 0; data
.i
< n
; ++data
.i
) {
1369 data
.v
= isl_aff_get_coefficient_val(data
.aff
,
1370 isl_dim_div
, data
.i
);
1372 return isl_aff_free(aff
);
1373 if (isl_val_is_zero(data
.v
) ||
1374 isl_val_is_one(data
.v
) || isl_val_is_negone(data
.v
)) {
1375 isl_val_free(data
.v
);
1378 if (extract_modulo(&data
) < 0)
1379 data
.aff
= isl_aff_free(data
.aff
);
1380 isl_val_free(data
.v
);
1386 data
.aff
= isl_aff_add(data
.aff
, data
.add
);
1393 /* Call "fn" on every non-zero coefficient of "aff",
1394 * passing it in the type of dimension (in terms of the domain),
1395 * the position and the value, as long as "fn" returns isl_bool_true.
1396 * If "reverse" is set, then the coefficients are considered in reverse order
1399 static isl_bool
every_non_zero_coefficient(__isl_keep isl_aff
*aff
,
1401 isl_bool (*fn
)(enum isl_dim_type type
, int pos
, __isl_take isl_val
*v
,
1406 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_div
};
1407 enum isl_dim_type l
[] = { isl_dim_param
, isl_dim_set
, isl_dim_div
};
1410 for (i
= 0; i
< 3; ++i
) {
1413 n
= isl_aff_dim(aff
, t
[i
]);
1415 return isl_bool_error
;
1416 for (j
= 0; j
< n
; ++j
) {
1420 pos
= reverse
? n
- 1 - j
: j
;
1421 v
= isl_aff_get_coefficient_val(aff
, t
[i
], pos
);
1422 ok
= isl_val_is_zero(v
);
1424 ok
= fn(l
[i
], pos
, v
, user
);
1432 return isl_bool_true
;
1435 /* Internal data structure for extract_rational.
1437 * "d" is the denominator of the original affine expression.
1438 * "ls" is its domain local space.
1439 * "rat" collects the rational part.
1441 struct isl_ast_extract_rational_data
{
1443 isl_local_space
*ls
;
1448 /* Given a non-zero term in an affine expression equal to "v" times
1449 * the variable of type "type" at position "pos",
1450 * add it to data->rat if "v" is not a multiple of data->d.
1452 static isl_bool
add_rational(enum isl_dim_type type
, int pos
,
1453 __isl_take isl_val
*v
, void *user
)
1455 struct isl_ast_extract_rational_data
*data
= user
;
1458 if (isl_val_is_divisible_by(v
, data
->d
)) {
1460 return isl_bool_true
;
1462 rat
= isl_aff_var_on_domain(isl_local_space_copy(data
->ls
), type
, pos
);
1463 rat
= isl_aff_scale_val(rat
, v
);
1464 data
->rat
= isl_aff_add(data
->rat
, rat
);
1465 return isl_bool_true
;
1468 /* Check if aff involves any non-integer coefficients.
1469 * If so, split aff into
1471 * aff = aff1 + (aff2 / d)
1473 * with both aff1 and aff2 having only integer coefficients.
1474 * Return aff1 and add (aff2 / d) to *expr.
1476 static __isl_give isl_aff
*extract_rational(__isl_take isl_aff
*aff
,
1477 __isl_keep isl_ast_expr
**expr
, __isl_keep isl_ast_build
*build
)
1479 struct isl_ast_extract_rational_data data
= { NULL
};
1480 isl_ast_expr
*rat_expr
;
1485 data
.d
= isl_aff_get_denominator_val(aff
);
1488 if (isl_val_is_one(data
.d
)) {
1489 isl_val_free(data
.d
);
1493 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.d
));
1495 data
.ls
= isl_aff_get_domain_local_space(aff
);
1496 data
.rat
= isl_aff_zero_on_domain(isl_local_space_copy(data
.ls
));
1498 if (every_non_zero_coefficient(aff
, 0, &add_rational
, &data
) < 0)
1501 v
= isl_aff_get_constant_val(aff
);
1502 if (isl_val_is_divisible_by(v
, data
.d
)) {
1507 rat_0
= isl_aff_val_on_domain(isl_local_space_copy(data
.ls
), v
);
1508 data
.rat
= isl_aff_add(data
.rat
, rat_0
);
1511 isl_local_space_free(data
.ls
);
1513 aff
= isl_aff_sub(aff
, isl_aff_copy(data
.rat
));
1514 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(data
.d
));
1516 rat_expr
= div_mod(isl_ast_expr_op_div
, data
.rat
, data
.d
, build
);
1517 *expr
= ast_expr_add(*expr
, rat_expr
);
1521 isl_aff_free(data
.rat
);
1522 isl_local_space_free(data
.ls
);
1524 isl_val_free(data
.d
);
1528 /* Internal data structure for isl_ast_expr_from_aff.
1530 * "term" contains the information for adding a term.
1531 * "expr" collects the results.
1533 struct isl_ast_add_terms_data
{
1534 struct isl_ast_add_term_data
*term
;
1538 /* Given a non-zero term in an affine expression equal to "v" times
1539 * the variable of type "type" at position "pos",
1540 * add the corresponding AST expression to data->expr.
1542 static isl_bool
add_term(enum isl_dim_type type
, int pos
,
1543 __isl_take isl_val
*v
, void *user
)
1545 struct isl_ast_add_terms_data
*data
= user
;
1548 isl_ast_expr_add_term(data
->expr
, type
, pos
, v
, data
->term
);
1550 return isl_bool_true
;
1553 /* Add terms to "expr" for each variable in "aff".
1554 * The result is simplified in terms of data->build->domain.
1556 static __isl_give isl_ast_expr
*add_terms(__isl_take isl_ast_expr
*expr
,
1557 __isl_keep isl_aff
*aff
, struct isl_ast_add_term_data
*data
)
1559 struct isl_ast_add_terms_data terms_data
= { data
, expr
};
1561 if (every_non_zero_coefficient(aff
, 0, &add_term
, &terms_data
) < 0)
1562 return isl_ast_expr_free(terms_data
.expr
);
1564 return terms_data
.expr
;
1567 /* Construct an isl_ast_expr that evaluates the affine expression "aff".
1568 * The result is simplified in terms of build->domain.
1570 * We first extract hidden modulo computations from the affine expression
1571 * and then add terms for each variable with a non-zero coefficient.
1572 * Finally, if the affine expression has a non-trivial denominator,
1573 * we divide the resulting isl_ast_expr by this denominator.
1575 __isl_give isl_ast_expr
*isl_ast_expr_from_aff(__isl_take isl_aff
*aff
,
1576 __isl_keep isl_ast_build
*build
)
1578 isl_ctx
*ctx
= isl_aff_get_ctx(aff
);
1579 isl_ast_expr
*expr
, *expr_neg
;
1580 struct isl_ast_add_term_data term_data
;
1585 expr
= isl_ast_expr_alloc_int_si(ctx
, 0);
1586 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1588 aff
= extract_rational(aff
, &expr
, build
);
1590 aff
= extract_modulos(aff
, &expr
, &expr_neg
, build
);
1591 expr
= ast_expr_sub(expr
, expr_neg
);
1593 term_data
.build
= build
;
1594 term_data
.ls
= isl_aff_get_domain_local_space(aff
);
1595 term_data
.cst
= isl_aff_get_constant_val(aff
);
1596 expr
= add_terms(expr
, aff
, &term_data
);
1598 expr
= isl_ast_expr_add_int(expr
, term_data
.cst
);
1599 isl_local_space_free(term_data
.ls
);
1605 /* Internal data structure for coefficients_of_sign.
1607 * "sign" is the sign of the coefficients that should be retained.
1608 * "aff" is the affine expression of which some coefficients are zeroed out.
1610 struct isl_ast_coefficients_of_sign_data
{
1615 /* Clear the specified coefficient of data->aff if the value "v"
1616 * does not have the required sign.
1618 static isl_bool
clear_opposite_sign(enum isl_dim_type type
, int pos
,
1619 __isl_take isl_val
*v
, void *user
)
1621 struct isl_ast_coefficients_of_sign_data
*data
= user
;
1623 if (type
== isl_dim_set
)
1625 if (data
->sign
* isl_val_sgn(v
) < 0)
1626 data
->aff
= isl_aff_set_coefficient_si(data
->aff
, type
, pos
, 0);
1629 return isl_bool_true
;
1632 /* Extract the coefficients of "aff" (excluding the constant term)
1633 * that have the given sign.
1635 * Take a copy of "aff" and clear the coefficients that do not have
1636 * the required sign.
1637 * Consider the coefficients in reverse order since clearing
1638 * the coefficient of an integer division in data.aff
1639 * could result in the removal of that integer division from data.aff,
1640 * changing the positions of all subsequent integer divisions of data.aff,
1641 * while those of "aff" remain the same.
1643 static __isl_give isl_aff
*coefficients_of_sign(__isl_take isl_aff
*aff
,
1646 struct isl_ast_coefficients_of_sign_data data
;
1649 data
.aff
= isl_aff_copy(aff
);
1650 if (every_non_zero_coefficient(aff
, 1, &clear_opposite_sign
, &data
) < 0)
1651 data
.aff
= isl_aff_free(data
.aff
);
1654 data
.aff
= isl_aff_set_constant_si(data
.aff
, 0);
1659 /* Should the constant term "v" be considered positive?
1661 * A positive constant will be added to "pos" by the caller,
1662 * while a negative constant will be added to "neg".
1663 * If either "pos" or "neg" is exactly zero, then we prefer
1664 * to add the constant "v" to that side, irrespective of the sign of "v".
1665 * This results in slightly shorter expressions and may reduce the risk
1668 static isl_bool
constant_is_considered_positive(__isl_keep isl_val
*v
,
1669 __isl_keep isl_ast_expr
*pos
, __isl_keep isl_ast_expr
*neg
)
1673 zero
= ast_expr_is_zero(pos
);
1674 if (zero
< 0 || zero
)
1676 zero
= ast_expr_is_zero(neg
);
1677 if (zero
< 0 || zero
)
1678 return isl_bool_not(zero
);
1679 return isl_val_is_pos(v
);
1682 /* Check if the equality
1686 * represents a stride constraint on the integer division "pos".
1688 * In particular, if the integer division "pos" is equal to
1692 * then check if aff is equal to
1698 * If so, the equality is exactly
1702 * Note that in principle we could also accept
1706 * where e and e' differ by a constant.
1708 static isl_bool
is_stride_constraint(__isl_keep isl_aff
*aff
, int pos
)
1714 div
= isl_aff_get_div(aff
, pos
);
1715 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1716 d
= isl_aff_get_denominator_val(div
);
1717 eq
= isl_val_abs_eq(c
, d
);
1718 if (eq
>= 0 && eq
) {
1719 aff
= isl_aff_copy(aff
);
1720 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1721 div
= isl_aff_scale_val(div
, d
);
1722 if (isl_val_is_pos(c
))
1723 div
= isl_aff_neg(div
);
1724 eq
= isl_aff_plain_is_equal(div
, aff
);
1734 /* Are all coefficients of "aff" (zero or) negative?
1736 static isl_bool
all_negative_coefficients(__isl_keep isl_aff
*aff
)
1741 n
= isl_aff_dim(aff
, isl_dim_param
);
1743 return isl_bool_error
;
1744 for (i
= 0; i
< n
; ++i
)
1745 if (isl_aff_coefficient_sgn(aff
, isl_dim_param
, i
) > 0)
1746 return isl_bool_false
;
1748 n
= isl_aff_dim(aff
, isl_dim_in
);
1750 return isl_bool_error
;
1751 for (i
= 0; i
< n
; ++i
)
1752 if (isl_aff_coefficient_sgn(aff
, isl_dim_in
, i
) > 0)
1753 return isl_bool_false
;
1755 return isl_bool_true
;
1758 /* Give an equality of the form
1760 * aff = e - d floor(e/d) = 0
1764 * aff = -e + d floor(e/d) = 0
1766 * with the integer division "pos" equal to floor(e/d),
1767 * construct the AST expression
1769 * (isl_ast_expr_op_eq,
1770 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1772 * If e only has negative coefficients, then construct
1774 * (isl_ast_expr_op_eq,
1775 * (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
1779 static __isl_give isl_ast_expr
*extract_stride_constraint(
1780 __isl_take isl_aff
*aff
, int pos
, __isl_keep isl_ast_build
*build
)
1785 isl_ast_expr
*expr
, *cst
;
1790 ctx
= isl_aff_get_ctx(aff
);
1792 c
= isl_aff_get_coefficient_val(aff
, isl_dim_div
, pos
);
1793 aff
= isl_aff_set_coefficient_si(aff
, isl_dim_div
, pos
, 0);
1795 all_neg
= all_negative_coefficients(aff
);
1797 aff
= isl_aff_free(aff
);
1799 aff
= isl_aff_neg(aff
);
1801 cst
= isl_ast_expr_from_val(isl_val_abs(c
));
1802 expr
= isl_ast_expr_from_aff(aff
, build
);
1804 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r
, expr
, cst
);
1805 cst
= isl_ast_expr_alloc_int_si(ctx
, 0);
1806 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_eq
, expr
, cst
);
1811 /* Construct an isl_ast_expr evaluating
1813 * "expr_pos" == "expr_neg", if "eq" is set, or
1814 * "expr_pos" >= "expr_neg", if "eq" is not set
1816 * However, if "expr_pos" is an integer constant (and "expr_neg" is not),
1817 * then the two expressions are interchanged. This ensures that,
1818 * e.g., "i <= 5" is constructed rather than "5 >= i".
1820 static __isl_give isl_ast_expr
*construct_constraint_expr(int eq
,
1821 __isl_take isl_ast_expr
*expr_pos
, __isl_take isl_ast_expr
*expr_neg
)
1824 enum isl_ast_expr_op_type type
;
1825 int pos_is_cst
, neg_is_cst
;
1827 pos_is_cst
= isl_ast_expr_get_type(expr_pos
) == isl_ast_expr_int
;
1828 neg_is_cst
= isl_ast_expr_get_type(expr_neg
) == isl_ast_expr_int
;
1829 if (pos_is_cst
&& !neg_is_cst
) {
1830 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_le
;
1831 expr
= isl_ast_expr_alloc_binary(type
, expr_neg
, expr_pos
);
1833 type
= eq
? isl_ast_expr_op_eq
: isl_ast_expr_op_ge
;
1834 expr
= isl_ast_expr_alloc_binary(type
, expr_pos
, expr_neg
);
1840 /* Construct an isl_ast_expr that evaluates the condition "aff" == 0
1841 * (if "eq" is set) or "aff" >= 0 (otherwise).
1842 * The result is simplified in terms of build->domain.
1844 * We first extract hidden modulo computations from "aff"
1845 * and then collect all the terms with a positive coefficient in cons_pos
1846 * and the terms with a negative coefficient in cons_neg.
1848 * The result is then essentially of the form
1850 * (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
1854 * (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
1856 * However, if there are no terms with positive coefficients (or no terms
1857 * with negative coefficients), then the constant term is added to "pos"
1858 * (or "neg"), ignoring the sign of the constant term.
1860 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint_no_stride(
1861 int eq
, __isl_take isl_aff
*aff
, __isl_keep isl_ast_build
*build
)
1863 isl_bool cst_is_pos
;
1865 isl_ast_expr
*expr_pos
;
1866 isl_ast_expr
*expr_neg
;
1867 isl_aff
*aff_pos
, *aff_neg
;
1868 struct isl_ast_add_term_data data
;
1870 ctx
= isl_aff_get_ctx(aff
);
1871 expr_pos
= isl_ast_expr_alloc_int_si(ctx
, 0);
1872 expr_neg
= isl_ast_expr_alloc_int_si(ctx
, 0);
1874 aff
= extract_modulos(aff
, &expr_pos
, &expr_neg
, build
);
1877 data
.ls
= isl_aff_get_domain_local_space(aff
);
1878 data
.cst
= isl_aff_get_constant_val(aff
);
1880 aff_pos
= coefficients_of_sign(isl_aff_copy(aff
), 1);
1881 aff_neg
= isl_aff_neg(coefficients_of_sign(aff
, -1));
1883 expr_pos
= add_terms(expr_pos
, aff_pos
, &data
);
1884 data
.cst
= isl_val_neg(data
.cst
);
1885 expr_neg
= add_terms(expr_neg
, aff_neg
, &data
);
1886 data
.cst
= isl_val_neg(data
.cst
);
1887 isl_local_space_free(data
.ls
);
1890 constant_is_considered_positive(data
.cst
, expr_pos
, expr_neg
);
1892 expr_pos
= isl_ast_expr_free(expr_pos
);
1895 expr_pos
= isl_ast_expr_add_int(expr_pos
, data
.cst
);
1897 data
.cst
= isl_val_neg(data
.cst
);
1898 expr_neg
= isl_ast_expr_add_int(expr_neg
, data
.cst
);
1901 isl_aff_free(aff_pos
);
1902 isl_aff_free(aff_neg
);
1903 return construct_constraint_expr(eq
, expr_pos
, expr_neg
);
1906 /* Construct an isl_ast_expr that evaluates the condition "constraint".
1907 * The result is simplified in terms of build->domain.
1909 * We first check if the constraint is an equality of the form
1911 * e - d floor(e/d) = 0
1917 * If so, we convert it to
1919 * (isl_ast_expr_op_eq,
1920 * (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
1922 static __isl_give isl_ast_expr
*isl_ast_expr_from_constraint(
1923 __isl_take isl_constraint
*constraint
, __isl_keep isl_ast_build
*build
)
1930 aff
= isl_constraint_get_aff(constraint
);
1931 eq
= isl_constraint_is_equality(constraint
);
1932 isl_constraint_free(constraint
);
1936 n
= isl_aff_dim(aff
, isl_dim_div
);
1938 aff
= isl_aff_free(aff
);
1940 for (i
= 0; i
< n
; ++i
) {
1942 is_stride
= is_stride_constraint(aff
, i
);
1946 return extract_stride_constraint(aff
, i
, build
);
1949 return isl_ast_expr_from_constraint_no_stride(eq
, aff
, build
);
1955 /* Wrapper around isl_constraint_cmp_last_non_zero for use
1956 * as a callback to isl_constraint_list_sort.
1957 * If isl_constraint_cmp_last_non_zero cannot tell the constraints
1958 * apart, then use isl_constraint_plain_cmp instead.
1960 static int cmp_constraint(__isl_keep isl_constraint
*a
,
1961 __isl_keep isl_constraint
*b
, void *user
)
1965 cmp
= isl_constraint_cmp_last_non_zero(a
, b
);
1968 return isl_constraint_plain_cmp(a
, b
);
1971 /* Construct an isl_ast_expr that evaluates the conditions defining "bset".
1972 * The result is simplified in terms of build->domain.
1974 * If "bset" is not bounded by any constraint, then we construct
1975 * the expression "1", i.e., "true".
1977 * Otherwise, we sort the constraints, putting constraints that involve
1978 * integer divisions after those that do not, and construct an "and"
1979 * of the ast expressions of the individual constraints.
1981 * Each constraint is added to the generated constraints of the build
1982 * after it has been converted to an AST expression so that it can be used
1983 * to simplify the following constraints. This may change the truth value
1984 * of subsequent constraints that do not satisfy the earlier constraints,
1985 * but this does not affect the outcome of the conjunction as it is
1986 * only true if all the conjuncts are true (no matter in what order
1987 * they are evaluated). In particular, the constraints that do not
1988 * involve integer divisions may serve to simplify some constraints
1989 * that do involve integer divisions.
1991 __isl_give isl_ast_expr
*isl_ast_build_expr_from_basic_set(
1992 __isl_keep isl_ast_build
*build
, __isl_take isl_basic_set
*bset
)
1997 isl_constraint_list
*list
;
2001 list
= isl_basic_set_get_constraint_list(bset
);
2002 isl_basic_set_free(bset
);
2003 list
= isl_constraint_list_sort(list
, &cmp_constraint
, NULL
);
2004 n
= isl_constraint_list_n_constraint(list
);
2008 isl_ctx
*ctx
= isl_constraint_list_get_ctx(list
);
2009 isl_constraint_list_free(list
);
2010 return isl_ast_expr_alloc_int_si(ctx
, 1);
2013 build
= isl_ast_build_copy(build
);
2015 c
= isl_constraint_list_get_constraint(list
, 0);
2016 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
2017 set
= isl_set_from_basic_set(bset
);
2018 res
= isl_ast_expr_from_constraint(c
, build
);
2019 build
= isl_ast_build_restrict_generated(build
, set
);
2021 for (i
= 1; i
< n
; ++i
) {
2024 c
= isl_constraint_list_get_constraint(list
, i
);
2025 bset
= isl_basic_set_from_constraint(isl_constraint_copy(c
));
2026 set
= isl_set_from_basic_set(bset
);
2027 expr
= isl_ast_expr_from_constraint(c
, build
);
2028 build
= isl_ast_build_restrict_generated(build
, set
);
2029 res
= isl_ast_expr_and(res
, expr
);
2032 isl_constraint_list_free(list
);
2033 isl_ast_build_free(build
);
2037 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
2038 * The result is simplified in terms of build->domain.
2040 * If "set" is an (obviously) empty set, then return the expression "0".
2042 * If there are multiple disjuncts in the description of the set,
2043 * then subsequent disjuncts are simplified in a context where
2044 * the previous disjuncts have been removed from build->domain.
2045 * In particular, constraints that ensure that there is no overlap
2046 * with these previous disjuncts, can be removed.
2047 * This is mostly useful for disjuncts that are only defined by
2048 * a single constraint (relative to the build domain) as the opposite
2049 * of that single constraint can then be removed from the other disjuncts.
2050 * In order not to increase the number of disjuncts in the build domain
2051 * after subtracting the previous disjuncts of "set", the simple hull
2052 * is computed after taking the difference with each of these disjuncts.
2053 * This means that constraints that prevent overlap with a union
2054 * of multiple previous disjuncts are not removed.
2056 * "set" lives in the internal schedule space.
2058 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set_internal(
2059 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
2063 isl_basic_set
*bset
;
2064 isl_basic_set_list
*list
;
2068 list
= isl_set_get_basic_set_list(set
);
2071 n
= isl_basic_set_list_n_basic_set(list
);
2075 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
2076 isl_basic_set_list_free(list
);
2077 return isl_ast_expr_from_val(isl_val_zero(ctx
));
2080 domain
= isl_ast_build_get_domain(build
);
2082 bset
= isl_basic_set_list_get_basic_set(list
, 0);
2083 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
2084 res
= isl_ast_build_expr_from_basic_set(build
, bset
);
2086 for (i
= 1; i
< n
; ++i
) {
2090 rest
= isl_set_subtract(isl_set_copy(domain
), set
);
2091 rest
= isl_set_from_basic_set(isl_set_simple_hull(rest
));
2092 domain
= isl_set_intersect(domain
, rest
);
2093 bset
= isl_basic_set_list_get_basic_set(list
, i
);
2094 set
= isl_set_from_basic_set(isl_basic_set_copy(bset
));
2095 bset
= isl_basic_set_gist(bset
,
2096 isl_set_simple_hull(isl_set_copy(domain
)));
2097 expr
= isl_ast_build_expr_from_basic_set(build
, bset
);
2098 res
= isl_ast_expr_or(res
, expr
);
2101 isl_set_free(domain
);
2103 isl_basic_set_list_free(list
);
2107 /* Construct an isl_ast_expr that evaluates the conditions defining "set".
2108 * The result is simplified in terms of build->domain.
2110 * If "set" is an (obviously) empty set, then return the expression "0".
2112 * "set" lives in the external schedule space.
2114 * The internal AST expression generation assumes that there are
2115 * no unknown divs, so make sure an explicit representation is available.
2116 * Since the set comes from the outside, it may have constraints that
2117 * are redundant with respect to the build domain. Remove them first.
2119 __isl_give isl_ast_expr
*isl_ast_build_expr_from_set(
2120 __isl_keep isl_ast_build
*build
, __isl_take isl_set
*set
)
2124 needs_map
= isl_ast_build_need_schedule_map(build
);
2125 if (needs_map
< 0) {
2126 set
= isl_set_free(set
);
2127 } else if (needs_map
) {
2129 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2130 set
= isl_set_preimage_multi_aff(set
, ma
);
2133 set
= isl_set_compute_divs(set
);
2134 set
= isl_ast_build_compute_gist(build
, set
);
2135 return isl_ast_build_expr_from_set_internal(build
, set
);
2138 /* State of data about previous pieces in
2139 * isl_ast_build_expr_from_pw_aff_internal.
2141 * isl_state_none: no data about previous pieces
2142 * isl_state_single: data about a single previous piece
2143 * isl_state_min: data represents minimum of several pieces
2144 * isl_state_max: data represents maximum of several pieces
2146 enum isl_from_pw_aff_state
{
2153 /* Internal date structure representing a single piece in the input of
2154 * isl_ast_build_expr_from_pw_aff_internal.
2156 * If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
2157 * If "state" is isl_state_single, then "set_list" and "aff_list" contain the
2158 * single previous subpiece.
2159 * If "state" is isl_state_min, then "set_list" and "aff_list" contain
2160 * a sequence of several previous subpieces that are equal to the minimum
2161 * of the entries in "aff_list" over the union of "set_list"
2162 * If "state" is isl_state_max, then "set_list" and "aff_list" contain
2163 * a sequence of several previous subpieces that are equal to the maximum
2164 * of the entries in "aff_list" over the union of "set_list"
2166 * During the construction of the pieces, "set" is NULL.
2167 * After the construction, "set" is set to the union of the elements
2168 * in "set_list", at which point "set_list" is set to NULL.
2170 struct isl_from_pw_aff_piece
{
2171 enum isl_from_pw_aff_state state
;
2173 isl_set_list
*set_list
;
2174 isl_aff_list
*aff_list
;
2177 /* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
2179 * "build" specifies the domain against which the result is simplified.
2180 * "dom" is the domain of the entire isl_pw_aff.
2182 * "n" is the number of pieces constructed already.
2183 * In particular, during the construction of the pieces, "n" points to
2184 * the piece that is being constructed. After the construction of the
2185 * pieces, "n" is set to the total number of pieces.
2186 * "max" is the total number of allocated entries.
2187 * "p" contains the individual pieces.
2189 struct isl_from_pw_aff_data
{
2190 isl_ast_build
*build
;
2195 struct isl_from_pw_aff_piece
*p
;
2198 /* Initialize "data" based on "build" and "pa".
2200 static isl_stat
isl_from_pw_aff_data_init(struct isl_from_pw_aff_data
*data
,
2201 __isl_keep isl_ast_build
*build
, __isl_keep isl_pw_aff
*pa
)
2206 ctx
= isl_pw_aff_get_ctx(pa
);
2207 n
= isl_pw_aff_n_piece(pa
);
2209 return isl_stat_error
;
2211 isl_die(ctx
, isl_error_invalid
,
2212 "cannot handle void expression", return isl_stat_error
);
2214 data
->p
= isl_calloc_array(ctx
, struct isl_from_pw_aff_piece
, n
);
2216 return isl_stat_error
;
2217 data
->build
= build
;
2218 data
->dom
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
2224 /* Free all memory allocated for "data".
2226 static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data
*data
)
2230 isl_set_free(data
->dom
);
2234 for (i
= 0; i
< data
->max
; ++i
) {
2235 isl_set_free(data
->p
[i
].set
);
2236 isl_set_list_free(data
->p
[i
].set_list
);
2237 isl_aff_list_free(data
->p
[i
].aff_list
);
2242 /* Initialize the current entry of "data" to an unused piece.
2244 static void set_none(struct isl_from_pw_aff_data
*data
)
2246 data
->p
[data
->n
].state
= isl_state_none
;
2247 data
->p
[data
->n
].set_list
= NULL
;
2248 data
->p
[data
->n
].aff_list
= NULL
;
2251 /* Store "set" and "aff" in the current entry of "data" as a single subpiece.
2253 static void set_single(struct isl_from_pw_aff_data
*data
,
2254 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
2256 data
->p
[data
->n
].state
= isl_state_single
;
2257 data
->p
[data
->n
].set_list
= isl_set_list_from_set(set
);
2258 data
->p
[data
->n
].aff_list
= isl_aff_list_from_aff(aff
);
2261 /* Extend the current entry of "data" with "set" and "aff"
2262 * as a minimum expression.
2264 static isl_stat
extend_min(struct isl_from_pw_aff_data
*data
,
2265 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
2268 data
->p
[n
].state
= isl_state_min
;
2269 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
2270 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
2272 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
2273 return isl_stat_error
;
2277 /* Extend the current entry of "data" with "set" and "aff"
2278 * as a maximum expression.
2280 static isl_stat
extend_max(struct isl_from_pw_aff_data
*data
,
2281 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
)
2284 data
->p
[n
].state
= isl_state_max
;
2285 data
->p
[n
].set_list
= isl_set_list_add(data
->p
[n
].set_list
, set
);
2286 data
->p
[n
].aff_list
= isl_aff_list_add(data
->p
[n
].aff_list
, aff
);
2288 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
2289 return isl_stat_error
;
2293 /* Extend the domain of the current entry of "data", which is assumed
2294 * to contain a single subpiece, with "set". If "replace" is set,
2295 * then also replace the affine function by "aff". Otherwise,
2296 * simply free "aff".
2298 static isl_stat
extend_domain(struct isl_from_pw_aff_data
*data
,
2299 __isl_take isl_set
*set
, __isl_take isl_aff
*aff
, int replace
)
2304 set_n
= isl_set_list_get_set(data
->p
[n
].set_list
, 0);
2305 set_n
= isl_set_union(set_n
, set
);
2306 data
->p
[n
].set_list
=
2307 isl_set_list_set_set(data
->p
[n
].set_list
, 0, set_n
);
2310 data
->p
[n
].aff_list
=
2311 isl_aff_list_set_aff(data
->p
[n
].aff_list
, 0, aff
);
2315 if (!data
->p
[n
].set_list
|| !data
->p
[n
].aff_list
)
2316 return isl_stat_error
;
2320 /* Construct an isl_ast_expr from "list" within "build".
2321 * If "state" is isl_state_single, then "list" contains a single entry and
2322 * an isl_ast_expr is constructed for that entry.
2323 * Otherwise a min or max expression is constructed from "list"
2324 * depending on "state".
2326 static __isl_give isl_ast_expr
*ast_expr_from_aff_list(
2327 __isl_take isl_aff_list
*list
, enum isl_from_pw_aff_state state
,
2328 __isl_keep isl_ast_build
*build
)
2333 isl_ast_expr
*expr
= NULL
;
2334 enum isl_ast_expr_op_type op_type
;
2336 if (state
== isl_state_single
) {
2337 aff
= isl_aff_list_get_aff(list
, 0);
2338 isl_aff_list_free(list
);
2339 return isl_ast_expr_from_aff(aff
, build
);
2341 n
= isl_aff_list_n_aff(list
);
2344 op_type
= state
== isl_state_min
? isl_ast_expr_op_min
2345 : isl_ast_expr_op_max
;
2346 expr
= isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build
), op_type
, n
);
2348 for (i
= 0; i
< n
; ++i
) {
2349 isl_ast_expr
*expr_i
;
2351 aff
= isl_aff_list_get_aff(list
, i
);
2352 expr_i
= isl_ast_expr_from_aff(aff
, build
);
2353 expr
= isl_ast_expr_op_add_arg(expr
, expr_i
);
2356 isl_aff_list_free(list
);
2359 isl_aff_list_free(list
);
2360 isl_ast_expr_free(expr
);
2364 /* Extend the list of expressions in "next" to take into account
2365 * the piece at position "pos" in "data", allowing for a further extension
2366 * for the next piece(s).
2367 * In particular, "next" is extended with a select operation that selects
2368 * an isl_ast_expr corresponding to data->aff_list on data->set and
2369 * to an expression that will be filled in by later calls.
2370 * Return a pointer to the arguments of this select operation.
2371 * Afterwards, the state of "data" is set to isl_state_none.
2373 * The constraints of data->set are added to the generated
2374 * constraints of the build such that they can be exploited to simplify
2375 * the AST expression constructed from data->aff_list.
2377 static isl_ast_expr_list
**add_intermediate_piece(
2378 struct isl_from_pw_aff_data
*data
,
2379 int pos
, isl_ast_expr_list
**next
)
2382 isl_ast_build
*build
;
2383 isl_ast_expr
*ternary
, *arg
;
2384 isl_set
*set
, *gist
;
2386 set
= data
->p
[pos
].set
;
2387 data
->p
[pos
].set
= NULL
;
2388 ctx
= isl_ast_build_get_ctx(data
->build
);
2389 ternary
= isl_ast_expr_alloc_op(ctx
, isl_ast_expr_op_select
, 3);
2390 gist
= isl_set_gist(isl_set_copy(set
), isl_set_copy(data
->dom
));
2391 arg
= isl_ast_build_expr_from_set_internal(data
->build
, gist
);
2392 ternary
= isl_ast_expr_op_add_arg(ternary
, arg
);
2393 build
= isl_ast_build_copy(data
->build
);
2394 build
= isl_ast_build_restrict_generated(build
, set
);
2395 arg
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
2396 data
->p
[pos
].state
, build
);
2397 data
->p
[pos
].aff_list
= NULL
;
2398 isl_ast_build_free(build
);
2399 ternary
= isl_ast_expr_op_add_arg(ternary
, arg
);
2400 data
->p
[pos
].state
= isl_state_none
;
2404 *next
= isl_ast_expr_list_add(*next
, ternary
);
2405 return &ternary
->u
.op
.args
;
2408 /* Extend the list of expressions in "next" to take into account
2409 * the final piece, located at position "pos" in "data".
2410 * In particular, "next" is extended with an expression
2411 * to evaluate data->aff_list and the domain is ignored.
2412 * Return isl_stat_ok on success and isl_stat_error on failure.
2414 * The constraints of data->set are however added to the generated
2415 * constraints of the build such that they can be exploited to simplify
2416 * the AST expression constructed from data->aff_list.
2418 static isl_stat
add_last_piece(struct isl_from_pw_aff_data
*data
,
2419 int pos
, isl_ast_expr_list
**next
)
2421 isl_ast_build
*build
;
2424 if (data
->p
[pos
].state
== isl_state_none
)
2425 isl_die(isl_ast_build_get_ctx(data
->build
), isl_error_invalid
,
2426 "cannot handle void expression", return isl_stat_error
);
2428 build
= isl_ast_build_copy(data
->build
);
2429 build
= isl_ast_build_restrict_generated(build
, data
->p
[pos
].set
);
2430 data
->p
[pos
].set
= NULL
;
2431 last
= ast_expr_from_aff_list(data
->p
[pos
].aff_list
,
2432 data
->p
[pos
].state
, build
);
2433 *next
= isl_ast_expr_list_add(*next
, last
);
2434 data
->p
[pos
].aff_list
= NULL
;
2435 isl_ast_build_free(build
);
2436 data
->p
[pos
].state
= isl_state_none
;
2438 return isl_stat_error
;
2443 /* Return -1 if the piece "p1" should be sorted before "p2"
2444 * and 1 if it should be sorted after "p2".
2445 * Return 0 if they do not need to be sorted in a specific order.
2447 * Pieces are sorted according to the number of disjuncts
2450 static int sort_pieces_cmp(const void *p1
, const void *p2
, void *arg
)
2452 const struct isl_from_pw_aff_piece
*piece1
= p1
;
2453 const struct isl_from_pw_aff_piece
*piece2
= p2
;
2456 n1
= isl_set_n_basic_set(piece1
->set
);
2457 n2
= isl_set_n_basic_set(piece2
->set
);
2462 /* Construct an isl_ast_expr from the pieces in "data".
2463 * Return the result or NULL on failure.
2465 * When this function is called, data->n points to the current piece.
2466 * If this is an effective piece, then first increment data->n such
2467 * that data->n contains the number of pieces.
2468 * The "set_list" fields are subsequently replaced by the corresponding
2469 * "set" fields, after which the pieces are sorted according to
2470 * the number of disjuncts in these "set" fields.
2472 * Construct intermediate AST expressions for the initial pieces and
2473 * finish off with the final pieces.
2475 * Any piece that is not the very first is added to the list of arguments
2476 * of the previously constructed piece.
2477 * In order not to have to special case the first piece,
2478 * an extra list is created to hold the final result.
2480 static isl_ast_expr
*build_pieces(struct isl_from_pw_aff_data
*data
)
2484 isl_ast_expr_list
*res_list
;
2485 isl_ast_expr_list
**next
= &res_list
;
2488 if (data
->p
[data
->n
].state
!= isl_state_none
)
2490 ctx
= isl_ast_build_get_ctx(data
->build
);
2492 isl_die(ctx
, isl_error_invalid
,
2493 "cannot handle void expression", return NULL
);
2495 for (i
= 0; i
< data
->n
; ++i
) {
2496 data
->p
[i
].set
= isl_set_list_union(data
->p
[i
].set_list
);
2497 if (data
->p
[i
].state
!= isl_state_single
)
2498 data
->p
[i
].set
= isl_set_coalesce(data
->p
[i
].set
);
2499 data
->p
[i
].set_list
= NULL
;
2502 if (isl_sort(data
->p
, data
->n
, sizeof(data
->p
[0]),
2503 &sort_pieces_cmp
, NULL
) < 0)
2506 res_list
= isl_ast_expr_list_alloc(ctx
, 1);
2509 for (i
= 0; i
+ 1 < data
->n
; ++i
) {
2510 next
= add_intermediate_piece(data
, i
, next
);
2515 if (add_last_piece(data
, data
->n
- 1, next
) < 0)
2518 res
= isl_ast_expr_list_get_at(res_list
, 0);
2519 isl_ast_expr_list_free(res_list
);
2522 isl_ast_expr_list_free(res_list
);
2526 /* Is the domain of the current entry of "data", which is assumed
2527 * to contain a single subpiece, a subset of "set"?
2529 static isl_bool
single_is_subset(struct isl_from_pw_aff_data
*data
,
2530 __isl_keep isl_set
*set
)
2535 set_n
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, 0);
2536 subset
= isl_set_is_subset(set_n
, set
);
2537 isl_set_free(set_n
);
2542 /* Is "aff" a rational expression, i.e., does it have a denominator
2543 * different from one?
2545 static isl_bool
aff_is_rational(__isl_keep isl_aff
*aff
)
2550 den
= isl_aff_get_denominator_val(aff
);
2551 rational
= isl_bool_not(isl_val_is_one(den
));
2557 /* Does "list" consist of a single rational affine expression?
2559 static isl_bool
is_single_rational_aff(__isl_keep isl_aff_list
*list
)
2565 n
= isl_aff_list_n_aff(list
);
2567 return isl_bool_error
;
2569 return isl_bool_false
;
2570 aff
= isl_aff_list_get_aff(list
, 0);
2571 rational
= aff_is_rational(aff
);
2577 /* Can the list of subpieces in the last piece of "data" be extended with
2578 * "set" and "aff" based on "test"?
2579 * In particular, is it the case for each entry (set_i, aff_i) that
2581 * test(aff, aff_i) holds on set_i, and
2582 * test(aff_i, aff) holds on set?
2584 * "test" returns the set of elements where the tests holds, meaning
2585 * that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
2587 * This function is used to detect min/max expressions.
2588 * If the ast_build_detect_min_max option is turned off, then
2589 * do not even try and perform any detection and return false instead.
2591 * Rational affine expressions are not considered for min/max expressions
2592 * since the combined expression will be defined on the union of the domains,
2593 * while a rational expression may only yield integer values
2594 * on its own definition domain.
2596 static isl_bool
extends(struct isl_from_pw_aff_data
*data
,
2597 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
,
2598 __isl_give isl_basic_set
*(*test
)(__isl_take isl_aff
*aff1
,
2599 __isl_take isl_aff
*aff2
))
2603 isl_bool is_rational
;
2607 is_rational
= aff_is_rational(aff
);
2608 if (is_rational
>= 0 && !is_rational
)
2609 is_rational
= is_single_rational_aff(data
->p
[data
->n
].aff_list
);
2610 if (is_rational
< 0 || is_rational
)
2611 return isl_bool_not(is_rational
);
2613 ctx
= isl_ast_build_get_ctx(data
->build
);
2614 if (!isl_options_get_ast_build_detect_min_max(ctx
))
2615 return isl_bool_false
;
2617 n
= isl_set_list_n_set(data
->p
[data
->n
].set_list
);
2619 return isl_bool_error
;
2621 dom
= isl_ast_build_get_domain(data
->build
);
2622 set
= isl_set_intersect(dom
, isl_set_copy(set
));
2624 for (i
= 0; i
< n
; ++i
) {
2627 isl_set
*dom
, *required
;
2630 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2631 valid
= isl_set_from_basic_set(test(isl_aff_copy(aff
), aff_i
));
2632 required
= isl_set_list_get_set(data
->p
[data
->n
].set_list
, i
);
2633 dom
= isl_ast_build_get_domain(data
->build
);
2634 required
= isl_set_intersect(dom
, required
);
2635 is_valid
= isl_set_is_subset(required
, valid
);
2636 isl_set_free(required
);
2637 isl_set_free(valid
);
2638 if (is_valid
< 0 || !is_valid
) {
2643 aff_i
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, i
);
2644 valid
= isl_set_from_basic_set(test(aff_i
, isl_aff_copy(aff
)));
2645 is_valid
= isl_set_is_subset(set
, valid
);
2646 isl_set_free(valid
);
2647 if (is_valid
< 0 || !is_valid
) {
2654 return isl_bool_true
;
2657 /* Can the list of pieces in "data" be extended with "set" and "aff"
2658 * to form/preserve a minimum expression?
2659 * In particular, is it the case for each entry (set_i, aff_i) that
2661 * aff >= aff_i on set_i, and
2662 * aff_i >= aff on set?
2664 static isl_bool
extends_min(struct isl_from_pw_aff_data
*data
,
2665 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2667 return extends(data
, set
, aff
, &isl_aff_ge_basic_set
);
2670 /* Can the list of pieces in "data" be extended with "set" and "aff"
2671 * to form/preserve a maximum expression?
2672 * In particular, is it the case for each entry (set_i, aff_i) that
2674 * aff <= aff_i on set_i, and
2675 * aff_i <= aff on set?
2677 static isl_bool
extends_max(struct isl_from_pw_aff_data
*data
,
2678 __isl_keep isl_set
*set
, __isl_keep isl_aff
*aff
)
2680 return extends(data
, set
, aff
, &isl_aff_le_basic_set
);
2683 /* This function is called during the construction of an isl_ast_expr
2684 * that evaluates an isl_pw_aff.
2685 * If the last piece of "data" contains a single subpiece and
2686 * if its affine function is equal to "aff" on a part of the domain
2687 * that includes either "set" or the domain of that single subpiece,
2688 * then extend the domain of that single subpiece with "set".
2689 * If it was the original domain of the single subpiece where
2690 * the two affine functions are equal, then also replace
2691 * the affine function of the single subpiece by "aff".
2692 * If the last piece of "data" contains either a single subpiece
2693 * or a minimum, then check if this minimum expression can be extended
2695 * If so, extend the sequence and return.
2696 * Perform the same operation for maximum expressions.
2697 * If no such extension can be performed, then move to the next piece
2698 * in "data" (if the current piece contains any data), and then store
2699 * the current subpiece in the current piece of "data" for later handling.
2701 static isl_stat
ast_expr_from_pw_aff(__isl_take isl_set
*set
,
2702 __isl_take isl_aff
*aff
, void *user
)
2704 struct isl_from_pw_aff_data
*data
= user
;
2706 enum isl_from_pw_aff_state state
;
2708 state
= data
->p
[data
->n
].state
;
2709 if (state
== isl_state_single
) {
2712 isl_bool subset1
, subset2
= isl_bool_false
;
2713 aff0
= isl_aff_list_get_aff(data
->p
[data
->n
].aff_list
, 0);
2714 eq
= isl_aff_eq_set(isl_aff_copy(aff
), aff0
);
2715 subset1
= isl_set_is_subset(set
, eq
);
2716 if (subset1
>= 0 && !subset1
)
2717 subset2
= single_is_subset(data
, eq
);
2719 if (subset1
< 0 || subset2
< 0)
2722 return extend_domain(data
, set
, aff
, 0);
2724 return extend_domain(data
, set
, aff
, 1);
2726 if (state
== isl_state_single
|| state
== isl_state_min
) {
2727 test
= extends_min(data
, set
, aff
);
2731 return extend_min(data
, set
, aff
);
2733 if (state
== isl_state_single
|| state
== isl_state_max
) {
2734 test
= extends_max(data
, set
, aff
);
2738 return extend_max(data
, set
, aff
);
2740 if (state
!= isl_state_none
)
2742 set_single(data
, set
, aff
);
2748 return isl_stat_error
;
2751 /* Construct an isl_ast_expr that evaluates "pa".
2752 * The result is simplified in terms of build->domain.
2754 * The domain of "pa" lives in the internal schedule space.
2756 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff_internal(
2757 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2759 struct isl_from_pw_aff_data data
= { NULL
};
2760 isl_ast_expr
*res
= NULL
;
2762 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
2763 pa
= isl_pw_aff_coalesce(pa
);
2767 if (isl_from_pw_aff_data_init(&data
, build
, pa
) < 0)
2771 if (isl_pw_aff_foreach_piece(pa
, &ast_expr_from_pw_aff
, &data
) >= 0)
2772 res
= build_pieces(&data
);
2774 isl_pw_aff_free(pa
);
2775 isl_from_pw_aff_data_clear(&data
);
2778 isl_pw_aff_free(pa
);
2779 isl_from_pw_aff_data_clear(&data
);
2783 /* Construct an isl_ast_expr that evaluates "pa".
2784 * The result is simplified in terms of build->domain.
2786 * The domain of "pa" lives in the external schedule space.
2788 __isl_give isl_ast_expr
*isl_ast_build_expr_from_pw_aff(
2789 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_aff
*pa
)
2794 needs_map
= isl_ast_build_need_schedule_map(build
);
2795 if (needs_map
< 0) {
2796 pa
= isl_pw_aff_free(pa
);
2797 } else if (needs_map
) {
2799 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2800 pa
= isl_pw_aff_pullback_multi_aff(pa
, ma
);
2802 expr
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2806 /* Set the ids of the input dimensions of "mpa" to the iterator ids
2809 * The domain of "mpa" is assumed to live in the internal schedule domain.
2811 static __isl_give isl_multi_pw_aff
*set_iterator_names(
2812 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2817 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_in
);
2819 return isl_multi_pw_aff_free(mpa
);
2820 for (i
= 0; i
< n
; ++i
) {
2823 id
= isl_ast_build_get_iterator_id(build
, i
);
2824 mpa
= isl_multi_pw_aff_set_dim_id(mpa
, isl_dim_in
, i
, id
);
2830 /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
2831 * the remaining arguments derived from "mpa".
2832 * That is, construct a call or access expression that calls/accesses "arg0"
2833 * with arguments/indices specified by "mpa".
2835 static __isl_give isl_ast_expr
*isl_ast_build_with_arguments(
2836 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2837 __isl_take isl_ast_expr
*arg0
, __isl_take isl_multi_pw_aff
*mpa
)
2844 ctx
= isl_ast_build_get_ctx(build
);
2846 n
= isl_multi_pw_aff_dim(mpa
, isl_dim_out
);
2847 expr
= n
>= 0 ? isl_ast_expr_alloc_op(ctx
, type
, 1 + n
) : NULL
;
2848 expr
= isl_ast_expr_op_add_arg(expr
, arg0
);
2849 for (i
= 0; i
< n
; ++i
) {
2853 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, i
);
2854 arg
= isl_ast_build_expr_from_pw_aff_internal(build
, pa
);
2855 expr
= isl_ast_expr_op_add_arg(expr
, arg
);
2858 isl_multi_pw_aff_free(mpa
);
2862 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2863 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2864 __isl_take isl_multi_pw_aff
*mpa
);
2866 /* Construct an isl_ast_expr that accesses the member specified by "mpa".
2867 * The range of "mpa" is assumed to be wrapped relation.
2868 * The domain of this wrapped relation specifies the structure being
2869 * accessed, while the range of this wrapped relation spacifies the
2870 * member of the structure being accessed.
2872 * The domain of "mpa" is assumed to live in the internal schedule domain.
2874 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_member(
2875 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
2878 isl_multi_pw_aff
*domain
;
2879 isl_ast_expr
*domain_expr
, *expr
;
2880 enum isl_ast_expr_op_type type
= isl_ast_expr_op_access
;
2882 domain
= isl_multi_pw_aff_copy(mpa
);
2883 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
2884 domain_expr
= isl_ast_build_from_multi_pw_aff_internal(build
,
2886 mpa
= isl_multi_pw_aff_range_factor_range(mpa
);
2887 if (!isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2888 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2889 "missing field name", goto error
);
2890 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2891 expr
= isl_ast_expr_from_id(id
);
2892 expr
= isl_ast_expr_alloc_binary(isl_ast_expr_op_member
,
2894 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2896 isl_multi_pw_aff_free(mpa
);
2900 /* Construct an isl_ast_expr of type "type" that calls or accesses
2901 * the element specified by "mpa".
2902 * The first argument is obtained from the output tuple name.
2903 * The remaining arguments are given by the piecewise affine expressions.
2905 * If the range of "mpa" is a mapped relation, then we assume it
2906 * represents an access to a member of a structure.
2908 * The domain of "mpa" is assumed to live in the internal schedule domain.
2910 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff_internal(
2911 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2912 __isl_take isl_multi_pw_aff
*mpa
)
2921 if (type
== isl_ast_expr_op_access
&&
2922 isl_multi_pw_aff_range_is_wrapping(mpa
))
2923 return isl_ast_build_from_multi_pw_aff_member(build
, mpa
);
2925 mpa
= set_iterator_names(build
, mpa
);
2929 ctx
= isl_ast_build_get_ctx(build
);
2931 if (isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
))
2932 id
= isl_multi_pw_aff_get_tuple_id(mpa
, isl_dim_out
);
2934 id
= isl_id_alloc(ctx
, "", NULL
);
2936 expr
= isl_ast_expr_from_id(id
);
2937 return isl_ast_build_with_arguments(build
, type
, expr
, mpa
);
2939 isl_multi_pw_aff_free(mpa
);
2943 /* Construct an isl_ast_expr of type "type" that calls or accesses
2944 * the element specified by "pma".
2945 * The first argument is obtained from the output tuple name.
2946 * The remaining arguments are given by the piecewise affine expressions.
2948 * The domain of "pma" is assumed to live in the internal schedule domain.
2950 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff_internal(
2951 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2952 __isl_take isl_pw_multi_aff
*pma
)
2954 isl_multi_pw_aff
*mpa
;
2956 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
2957 return isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
2960 /* Construct an isl_ast_expr of type "type" that calls or accesses
2961 * the element specified by "mpa".
2962 * The first argument is obtained from the output tuple name.
2963 * The remaining arguments are given by the piecewise affine expressions.
2965 * The domain of "mpa" is assumed to live in the external schedule domain.
2967 static __isl_give isl_ast_expr
*isl_ast_build_from_multi_pw_aff(
2968 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
2969 __isl_take isl_multi_pw_aff
*mpa
)
2974 isl_space
*space_build
, *space_mpa
;
2976 space_build
= isl_ast_build_get_space(build
, 0);
2977 space_mpa
= isl_multi_pw_aff_get_space(mpa
);
2978 is_domain
= isl_space_tuple_is_equal(space_build
, isl_dim_set
,
2979 space_mpa
, isl_dim_in
);
2980 isl_space_free(space_build
);
2981 isl_space_free(space_mpa
);
2985 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
2986 "spaces don't match", goto error
);
2988 needs_map
= isl_ast_build_need_schedule_map(build
);
2993 ma
= isl_ast_build_get_schedule_map_multi_aff(build
);
2994 mpa
= isl_multi_pw_aff_pullback_multi_aff(mpa
, ma
);
2997 expr
= isl_ast_build_from_multi_pw_aff_internal(build
, type
, mpa
);
3000 isl_multi_pw_aff_free(mpa
);
3004 /* Construct an isl_ast_expr that calls the domain element specified by "mpa".
3005 * The name of the function is obtained from the output tuple name.
3006 * The arguments are given by the piecewise affine expressions.
3008 * The domain of "mpa" is assumed to live in the external schedule domain.
3010 __isl_give isl_ast_expr
*isl_ast_build_call_from_multi_pw_aff(
3011 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
3013 return isl_ast_build_from_multi_pw_aff(build
,
3014 isl_ast_expr_op_call
, mpa
);
3017 /* Construct an isl_ast_expr that accesses the array element specified by "mpa".
3018 * The name of the array is obtained from the output tuple name.
3019 * The index expressions are given by the piecewise affine expressions.
3021 * The domain of "mpa" is assumed to live in the external schedule domain.
3023 __isl_give isl_ast_expr
*isl_ast_build_access_from_multi_pw_aff(
3024 __isl_keep isl_ast_build
*build
, __isl_take isl_multi_pw_aff
*mpa
)
3026 return isl_ast_build_from_multi_pw_aff(build
,
3027 isl_ast_expr_op_access
, mpa
);
3030 /* Construct an isl_ast_expr of type "type" that calls or accesses
3031 * the element specified by "pma".
3032 * The first argument is obtained from the output tuple name.
3033 * The remaining arguments are given by the piecewise affine expressions.
3035 * The domain of "pma" is assumed to live in the external schedule domain.
3037 static __isl_give isl_ast_expr
*isl_ast_build_from_pw_multi_aff(
3038 __isl_keep isl_ast_build
*build
, enum isl_ast_expr_op_type type
,
3039 __isl_take isl_pw_multi_aff
*pma
)
3041 isl_multi_pw_aff
*mpa
;
3043 mpa
= isl_multi_pw_aff_from_pw_multi_aff(pma
);
3044 return isl_ast_build_from_multi_pw_aff(build
, type
, mpa
);
3047 /* Construct an isl_ast_expr that calls the domain element specified by "pma".
3048 * The name of the function is obtained from the output tuple name.
3049 * The arguments are given by the piecewise affine expressions.
3051 * The domain of "pma" is assumed to live in the external schedule domain.
3053 __isl_give isl_ast_expr
*isl_ast_build_call_from_pw_multi_aff(
3054 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
3056 return isl_ast_build_from_pw_multi_aff(build
,
3057 isl_ast_expr_op_call
, pma
);
3060 /* Construct an isl_ast_expr that accesses the array element specified by "pma".
3061 * The name of the array is obtained from the output tuple name.
3062 * The index expressions are given by the piecewise affine expressions.
3064 * The domain of "pma" is assumed to live in the external schedule domain.
3066 __isl_give isl_ast_expr
*isl_ast_build_access_from_pw_multi_aff(
3067 __isl_keep isl_ast_build
*build
, __isl_take isl_pw_multi_aff
*pma
)
3069 return isl_ast_build_from_pw_multi_aff(build
,
3070 isl_ast_expr_op_access
, pma
);
3073 /* Construct an isl_ast_expr that calls the domain element
3074 * specified by "executed".
3076 * "executed" is assumed to be single-valued, with a domain that lives
3077 * in the internal schedule space.
3079 __isl_give isl_ast_node
*isl_ast_build_call_from_executed(
3080 __isl_keep isl_ast_build
*build
, __isl_take isl_map
*executed
)
3082 isl_pw_multi_aff
*iteration
;
3085 iteration
= isl_pw_multi_aff_from_map(executed
);
3086 iteration
= isl_ast_build_compute_gist_pw_multi_aff(build
, iteration
);
3087 iteration
= isl_pw_multi_aff_intersect_domain(iteration
,
3088 isl_ast_build_get_domain(build
));
3089 expr
= isl_ast_build_from_pw_multi_aff_internal(build
,
3090 isl_ast_expr_op_call
, iteration
);
3091 return isl_ast_node_alloc_user(expr
);