2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
22 #include <isl/schedule_node.h>
25 enum isl_restriction_type
{
26 isl_restriction_type_empty
,
27 isl_restriction_type_none
,
28 isl_restriction_type_input
,
29 isl_restriction_type_output
32 struct isl_restriction
{
33 enum isl_restriction_type type
;
39 /* Create a restriction of the given type.
41 static __isl_give isl_restriction
*isl_restriction_alloc(
42 __isl_take isl_map
*source_map
, enum isl_restriction_type type
)
45 isl_restriction
*restr
;
50 ctx
= isl_map_get_ctx(source_map
);
51 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
57 isl_map_free(source_map
);
60 isl_map_free(source_map
);
64 /* Create a restriction that doesn't restrict anything.
66 __isl_give isl_restriction
*isl_restriction_none(__isl_take isl_map
*source_map
)
68 return isl_restriction_alloc(source_map
, isl_restriction_type_none
);
71 /* Create a restriction that removes everything.
73 __isl_give isl_restriction
*isl_restriction_empty(
74 __isl_take isl_map
*source_map
)
76 return isl_restriction_alloc(source_map
, isl_restriction_type_empty
);
79 /* Create a restriction on the input of the maximization problem
80 * based on the given source and sink restrictions.
82 __isl_give isl_restriction
*isl_restriction_input(
83 __isl_take isl_set
*source_restr
, __isl_take isl_set
*sink_restr
)
86 isl_restriction
*restr
;
88 if (!source_restr
|| !sink_restr
)
91 ctx
= isl_set_get_ctx(source_restr
);
92 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
96 restr
->type
= isl_restriction_type_input
;
97 restr
->source
= source_restr
;
98 restr
->sink
= sink_restr
;
102 isl_set_free(source_restr
);
103 isl_set_free(sink_restr
);
107 /* Create a restriction on the output of the maximization problem
108 * based on the given source restriction.
110 __isl_give isl_restriction
*isl_restriction_output(
111 __isl_take isl_set
*source_restr
)
114 isl_restriction
*restr
;
119 ctx
= isl_set_get_ctx(source_restr
);
120 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
124 restr
->type
= isl_restriction_type_output
;
125 restr
->source
= source_restr
;
129 isl_set_free(source_restr
);
133 __isl_null isl_restriction
*isl_restriction_free(
134 __isl_take isl_restriction
*restr
)
139 isl_set_free(restr
->source
);
140 isl_set_free(restr
->sink
);
145 isl_ctx
*isl_restriction_get_ctx(__isl_keep isl_restriction
*restr
)
147 return restr
? isl_set_get_ctx(restr
->source
) : NULL
;
150 /* A private structure to keep track of a mapping together with
151 * a user-specified identifier and a boolean indicating whether
152 * the map represents a must or may access/dependence.
154 struct isl_labeled_map
{
160 /* A structure containing the input for dependence analysis:
162 * - n_must + n_may (<= max_source) sources
163 * - a function for determining the relative order of sources and sink
164 * The must sources are placed before the may sources.
166 * domain_map is an auxiliary map that maps the sink access relation
167 * to the domain of this access relation.
169 * restrict_fn is a callback that (if not NULL) will be called
170 * right before any lexicographical maximization.
172 struct isl_access_info
{
174 struct isl_labeled_map sink
;
175 isl_access_level_before level_before
;
177 isl_access_restrict restrict_fn
;
183 struct isl_labeled_map source
[1];
186 /* A structure containing the output of dependence analysis:
187 * - n_source dependences
188 * - a wrapped subset of the sink for which definitely no source could be found
189 * - a wrapped subset of the sink for which possibly no source could be found
192 isl_set
*must_no_source
;
193 isl_set
*may_no_source
;
195 struct isl_labeled_map
*dep
;
198 /* Construct an isl_access_info structure and fill it up with
199 * the given data. The number of sources is set to 0.
201 __isl_give isl_access_info
*isl_access_info_alloc(__isl_take isl_map
*sink
,
202 void *sink_user
, isl_access_level_before fn
, int max_source
)
205 struct isl_access_info
*acc
;
210 ctx
= isl_map_get_ctx(sink
);
211 isl_assert(ctx
, max_source
>= 0, goto error
);
213 acc
= isl_calloc(ctx
, struct isl_access_info
,
214 sizeof(struct isl_access_info
) +
215 (max_source
- 1) * sizeof(struct isl_labeled_map
));
219 acc
->sink
.map
= sink
;
220 acc
->sink
.data
= sink_user
;
221 acc
->level_before
= fn
;
222 acc
->max_source
= max_source
;
232 /* Free the given isl_access_info structure.
234 __isl_null isl_access_info
*isl_access_info_free(
235 __isl_take isl_access_info
*acc
)
241 isl_map_free(acc
->domain_map
);
242 isl_map_free(acc
->sink
.map
);
243 for (i
= 0; i
< acc
->n_must
+ acc
->n_may
; ++i
)
244 isl_map_free(acc
->source
[i
].map
);
249 isl_ctx
*isl_access_info_get_ctx(__isl_keep isl_access_info
*acc
)
251 return acc
? isl_map_get_ctx(acc
->sink
.map
) : NULL
;
254 __isl_give isl_access_info
*isl_access_info_set_restrict(
255 __isl_take isl_access_info
*acc
, isl_access_restrict fn
, void *user
)
259 acc
->restrict_fn
= fn
;
260 acc
->restrict_user
= user
;
264 /* Add another source to an isl_access_info structure, making
265 * sure the "must" sources are placed before the "may" sources.
266 * This function may be called at most max_source times on a
267 * given isl_access_info structure, with max_source as specified
268 * in the call to isl_access_info_alloc that constructed the structure.
270 __isl_give isl_access_info
*isl_access_info_add_source(
271 __isl_take isl_access_info
*acc
, __isl_take isl_map
*source
,
272 int must
, void *source_user
)
278 ctx
= isl_map_get_ctx(acc
->sink
.map
);
279 isl_assert(ctx
, acc
->n_must
+ acc
->n_may
< acc
->max_source
, goto error
);
283 acc
->source
[acc
->n_must
+ acc
->n_may
] =
284 acc
->source
[acc
->n_must
];
285 acc
->source
[acc
->n_must
].map
= source
;
286 acc
->source
[acc
->n_must
].data
= source_user
;
287 acc
->source
[acc
->n_must
].must
= 1;
290 acc
->source
[acc
->n_must
+ acc
->n_may
].map
= source
;
291 acc
->source
[acc
->n_must
+ acc
->n_may
].data
= source_user
;
292 acc
->source
[acc
->n_must
+ acc
->n_may
].must
= 0;
298 isl_map_free(source
);
299 isl_access_info_free(acc
);
303 /* Return -n, 0 or n (with n a positive value), depending on whether
304 * the source access identified by p1 should be sorted before, together
305 * or after that identified by p2.
307 * If p1 appears before p2, then it should be sorted first.
308 * For more generic initial schedules, it is possible that neither
309 * p1 nor p2 appears before the other, or at least not in any obvious way.
310 * We therefore also check if p2 appears before p1, in which case p2
311 * should be sorted first.
312 * If not, we try to order the two statements based on the description
313 * of the iteration domains. This results in an arbitrary, but fairly
316 static int access_sort_cmp(const void *p1
, const void *p2
, void *user
)
318 isl_access_info
*acc
= user
;
319 const struct isl_labeled_map
*i1
, *i2
;
322 i1
= (const struct isl_labeled_map
*) p1
;
323 i2
= (const struct isl_labeled_map
*) p2
;
325 level1
= acc
->level_before(i1
->data
, i2
->data
);
329 level2
= acc
->level_before(i2
->data
, i1
->data
);
333 h1
= isl_map_get_hash(i1
->map
);
334 h2
= isl_map_get_hash(i2
->map
);
335 return h1
> h2
? 1 : h1
< h2
? -1 : 0;
338 /* Sort the must source accesses in their textual order.
340 static __isl_give isl_access_info
*isl_access_info_sort_sources(
341 __isl_take isl_access_info
*acc
)
345 if (acc
->n_must
<= 1)
348 if (isl_sort(acc
->source
, acc
->n_must
, sizeof(struct isl_labeled_map
),
349 access_sort_cmp
, acc
) < 0)
350 return isl_access_info_free(acc
);
355 /* Align the parameters of the two spaces if needed and then call
358 static __isl_give isl_space
*space_align_and_join(__isl_take isl_space
*left
,
359 __isl_take isl_space
*right
)
361 if (isl_space_match(left
, isl_dim_param
, right
, isl_dim_param
))
362 return isl_space_join(left
, right
);
364 left
= isl_space_align_params(left
, isl_space_copy(right
));
365 right
= isl_space_align_params(right
, isl_space_copy(left
));
366 return isl_space_join(left
, right
);
369 /* Initialize an empty isl_flow structure corresponding to a given
370 * isl_access_info structure.
371 * For each must access, two dependences are created (initialized
372 * to the empty relation), one for the resulting must dependences
373 * and one for the resulting may dependences. May accesses can
374 * only lead to may dependences, so only one dependence is created
376 * This function is private as isl_flow structures are only supposed
377 * to be created by isl_access_info_compute_flow.
379 static __isl_give isl_flow
*isl_flow_alloc(__isl_keep isl_access_info
*acc
)
383 struct isl_flow
*dep
;
388 ctx
= isl_map_get_ctx(acc
->sink
.map
);
389 dep
= isl_calloc_type(ctx
, struct isl_flow
);
393 n
= 2 * acc
->n_must
+ acc
->n_may
;
394 dep
->dep
= isl_calloc_array(ctx
, struct isl_labeled_map
, n
);
399 for (i
= 0; i
< acc
->n_must
; ++i
) {
401 dim
= space_align_and_join(
402 isl_map_get_space(acc
->source
[i
].map
),
403 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
404 dep
->dep
[2 * i
].map
= isl_map_empty(dim
);
405 dep
->dep
[2 * i
+ 1].map
= isl_map_copy(dep
->dep
[2 * i
].map
);
406 dep
->dep
[2 * i
].data
= acc
->source
[i
].data
;
407 dep
->dep
[2 * i
+ 1].data
= acc
->source
[i
].data
;
408 dep
->dep
[2 * i
].must
= 1;
409 dep
->dep
[2 * i
+ 1].must
= 0;
410 if (!dep
->dep
[2 * i
].map
|| !dep
->dep
[2 * i
+ 1].map
)
413 for (i
= acc
->n_must
; i
< acc
->n_must
+ acc
->n_may
; ++i
) {
415 dim
= space_align_and_join(
416 isl_map_get_space(acc
->source
[i
].map
),
417 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
418 dep
->dep
[acc
->n_must
+ i
].map
= isl_map_empty(dim
);
419 dep
->dep
[acc
->n_must
+ i
].data
= acc
->source
[i
].data
;
420 dep
->dep
[acc
->n_must
+ i
].must
= 0;
421 if (!dep
->dep
[acc
->n_must
+ i
].map
)
431 /* Iterate over all sources and for each resulting flow dependence
432 * that is not empty, call the user specfied function.
433 * The second argument in this function call identifies the source,
434 * while the third argument correspond to the final argument of
435 * the isl_flow_foreach call.
437 int isl_flow_foreach(__isl_keep isl_flow
*deps
,
438 int (*fn
)(__isl_take isl_map
*dep
, int must
, void *dep_user
, void *user
),
446 for (i
= 0; i
< deps
->n_source
; ++i
) {
447 if (isl_map_plain_is_empty(deps
->dep
[i
].map
))
449 if (fn(isl_map_copy(deps
->dep
[i
].map
), deps
->dep
[i
].must
,
450 deps
->dep
[i
].data
, user
) < 0)
457 /* Return a copy of the subset of the sink for which no source could be found.
459 __isl_give isl_map
*isl_flow_get_no_source(__isl_keep isl_flow
*deps
, int must
)
465 return isl_set_unwrap(isl_set_copy(deps
->must_no_source
));
467 return isl_set_unwrap(isl_set_copy(deps
->may_no_source
));
470 void isl_flow_free(__isl_take isl_flow
*deps
)
476 isl_set_free(deps
->must_no_source
);
477 isl_set_free(deps
->may_no_source
);
479 for (i
= 0; i
< deps
->n_source
; ++i
)
480 isl_map_free(deps
->dep
[i
].map
);
486 isl_ctx
*isl_flow_get_ctx(__isl_keep isl_flow
*deps
)
488 return deps
? isl_set_get_ctx(deps
->must_no_source
) : NULL
;
491 /* Return a map that enforces that the domain iteration occurs after
492 * the range iteration at the given level.
493 * If level is odd, then the domain iteration should occur after
494 * the target iteration in their shared level/2 outermost loops.
495 * In this case we simply need to enforce that these outermost
496 * loop iterations are the same.
497 * If level is even, then the loop iterator of the domain should
498 * be greater than the loop iterator of the range at the last
499 * of the level/2 shared loops, i.e., loop level/2 - 1.
501 static __isl_give isl_map
*after_at_level(__isl_take isl_space
*dim
, int level
)
503 struct isl_basic_map
*bmap
;
506 bmap
= isl_basic_map_equal(dim
, level
/2);
508 bmap
= isl_basic_map_more_at(dim
, level
/2 - 1);
510 return isl_map_from_basic_map(bmap
);
513 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
514 * but first check if the user has set acc->restrict_fn and if so
515 * update either the input or the output of the maximization problem
516 * with respect to the resulting restriction.
518 * Since the user expects a mapping from sink iterations to source iterations,
519 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
520 * to accessed array elements, we first need to project out the accessed
521 * sink array elements by applying acc->domain_map.
522 * Similarly, the sink restriction specified by the user needs to be
523 * converted back to the wrapped map.
525 static __isl_give isl_map
*restricted_partial_lexmax(
526 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*dep
,
527 int source
, __isl_take isl_set
*sink
, __isl_give isl_set
**empty
)
530 isl_restriction
*restr
;
531 isl_set
*sink_domain
;
535 if (!acc
->restrict_fn
)
536 return isl_map_partial_lexmax(dep
, sink
, empty
);
538 source_map
= isl_map_copy(dep
);
539 source_map
= isl_map_apply_domain(source_map
,
540 isl_map_copy(acc
->domain_map
));
541 sink_domain
= isl_set_copy(sink
);
542 sink_domain
= isl_set_apply(sink_domain
, isl_map_copy(acc
->domain_map
));
543 restr
= acc
->restrict_fn(source_map
, sink_domain
,
544 acc
->source
[source
].data
, acc
->restrict_user
);
545 isl_set_free(sink_domain
);
546 isl_map_free(source_map
);
550 if (restr
->type
== isl_restriction_type_input
) {
551 dep
= isl_map_intersect_range(dep
, isl_set_copy(restr
->source
));
552 sink_restr
= isl_set_copy(restr
->sink
);
553 sink_restr
= isl_set_apply(sink_restr
,
554 isl_map_reverse(isl_map_copy(acc
->domain_map
)));
555 sink
= isl_set_intersect(sink
, sink_restr
);
556 } else if (restr
->type
== isl_restriction_type_empty
) {
557 isl_space
*space
= isl_map_get_space(dep
);
559 dep
= isl_map_empty(space
);
562 res
= isl_map_partial_lexmax(dep
, sink
, empty
);
564 if (restr
->type
== isl_restriction_type_output
)
565 res
= isl_map_intersect_range(res
, isl_set_copy(restr
->source
));
567 isl_restriction_free(restr
);
576 /* Compute the last iteration of must source j that precedes the sink
577 * at the given level for sink iterations in set_C.
578 * The subset of set_C for which no such iteration can be found is returned
581 static struct isl_map
*last_source(struct isl_access_info
*acc
,
582 struct isl_set
*set_C
,
583 int j
, int level
, struct isl_set
**empty
)
585 struct isl_map
*read_map
;
586 struct isl_map
*write_map
;
587 struct isl_map
*dep_map
;
588 struct isl_map
*after
;
589 struct isl_map
*result
;
591 read_map
= isl_map_copy(acc
->sink
.map
);
592 write_map
= isl_map_copy(acc
->source
[j
].map
);
593 write_map
= isl_map_reverse(write_map
);
594 dep_map
= isl_map_apply_range(read_map
, write_map
);
595 after
= after_at_level(isl_map_get_space(dep_map
), level
);
596 dep_map
= isl_map_intersect(dep_map
, after
);
597 result
= restricted_partial_lexmax(acc
, dep_map
, j
, set_C
, empty
);
598 result
= isl_map_reverse(result
);
603 /* For a given mapping between iterations of must source j and iterations
604 * of the sink, compute the last iteration of must source k preceding
605 * the sink at level before_level for any of the sink iterations,
606 * but following the corresponding iteration of must source j at level
609 static struct isl_map
*last_later_source(struct isl_access_info
*acc
,
610 struct isl_map
*old_map
,
611 int j
, int before_level
,
612 int k
, int after_level
,
613 struct isl_set
**empty
)
616 struct isl_set
*set_C
;
617 struct isl_map
*read_map
;
618 struct isl_map
*write_map
;
619 struct isl_map
*dep_map
;
620 struct isl_map
*after_write
;
621 struct isl_map
*before_read
;
622 struct isl_map
*result
;
624 set_C
= isl_map_range(isl_map_copy(old_map
));
625 read_map
= isl_map_copy(acc
->sink
.map
);
626 write_map
= isl_map_copy(acc
->source
[k
].map
);
628 write_map
= isl_map_reverse(write_map
);
629 dep_map
= isl_map_apply_range(read_map
, write_map
);
630 dim
= space_align_and_join(isl_map_get_space(acc
->source
[k
].map
),
631 isl_space_reverse(isl_map_get_space(acc
->source
[j
].map
)));
632 after_write
= after_at_level(dim
, after_level
);
633 after_write
= isl_map_apply_range(after_write
, old_map
);
634 after_write
= isl_map_reverse(after_write
);
635 dep_map
= isl_map_intersect(dep_map
, after_write
);
636 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
637 dep_map
= isl_map_intersect(dep_map
, before_read
);
638 result
= restricted_partial_lexmax(acc
, dep_map
, k
, set_C
, empty
);
639 result
= isl_map_reverse(result
);
644 /* Given a shared_level between two accesses, return 1 if the
645 * the first can precede the second at the requested target_level.
646 * If the target level is odd, i.e., refers to a statement level
647 * dimension, then first needs to precede second at the requested
648 * level, i.e., shared_level must be equal to target_level.
649 * If the target level is odd, then the two loops should share
650 * at least the requested number of outer loops.
652 static int can_precede_at_level(int shared_level
, int target_level
)
654 if (shared_level
< target_level
)
656 if ((target_level
% 2) && shared_level
> target_level
)
661 /* Given a possible flow dependence temp_rel[j] between source j and the sink
662 * at level sink_level, remove those elements for which
663 * there is an iteration of another source k < j that is closer to the sink.
664 * The flow dependences temp_rel[k] are updated with the improved sources.
665 * Any improved source needs to precede the sink at the same level
666 * and needs to follow source j at the same or a deeper level.
667 * The lower this level, the later the execution date of source k.
668 * We therefore consider lower levels first.
670 * If temp_rel[j] is empty, then there can be no improvement and
671 * we return immediately.
673 static int intermediate_sources(__isl_keep isl_access_info
*acc
,
674 struct isl_map
**temp_rel
, int j
, int sink_level
)
677 int depth
= 2 * isl_map_dim(acc
->source
[j
].map
, isl_dim_in
) + 1;
679 if (isl_map_plain_is_empty(temp_rel
[j
]))
682 for (k
= j
- 1; k
>= 0; --k
) {
684 plevel
= acc
->level_before(acc
->source
[k
].data
, acc
->sink
.data
);
685 if (!can_precede_at_level(plevel
, sink_level
))
688 plevel2
= acc
->level_before(acc
->source
[j
].data
,
689 acc
->source
[k
].data
);
691 for (level
= sink_level
; level
<= depth
; ++level
) {
693 struct isl_set
*trest
;
694 struct isl_map
*copy
;
696 if (!can_precede_at_level(plevel2
, level
))
699 copy
= isl_map_copy(temp_rel
[j
]);
700 T
= last_later_source(acc
, copy
, j
, sink_level
, k
,
702 if (isl_map_plain_is_empty(T
)) {
707 temp_rel
[j
] = isl_map_intersect_range(temp_rel
[j
], trest
);
708 temp_rel
[k
] = isl_map_union_disjoint(temp_rel
[k
], T
);
715 /* Compute all iterations of may source j that precedes the sink at the given
716 * level for sink iterations in set_C.
718 static __isl_give isl_map
*all_sources(__isl_keep isl_access_info
*acc
,
719 __isl_take isl_set
*set_C
, int j
, int level
)
726 read_map
= isl_map_copy(acc
->sink
.map
);
727 read_map
= isl_map_intersect_domain(read_map
, set_C
);
728 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
729 write_map
= isl_map_reverse(write_map
);
730 dep_map
= isl_map_apply_range(read_map
, write_map
);
731 after
= after_at_level(isl_map_get_space(dep_map
), level
);
732 dep_map
= isl_map_intersect(dep_map
, after
);
734 return isl_map_reverse(dep_map
);
737 /* For a given mapping between iterations of must source k and iterations
738 * of the sink, compute the all iteration of may source j preceding
739 * the sink at level before_level for any of the sink iterations,
740 * but following the corresponding iteration of must source k at level
743 static __isl_give isl_map
*all_later_sources(__isl_keep isl_access_info
*acc
,
744 __isl_take isl_map
*old_map
,
745 int j
, int before_level
, int k
, int after_level
)
752 isl_map
*after_write
;
753 isl_map
*before_read
;
755 set_C
= isl_map_range(isl_map_copy(old_map
));
756 read_map
= isl_map_copy(acc
->sink
.map
);
757 read_map
= isl_map_intersect_domain(read_map
, set_C
);
758 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
760 write_map
= isl_map_reverse(write_map
);
761 dep_map
= isl_map_apply_range(read_map
, write_map
);
762 dim
= isl_space_join(isl_map_get_space(acc
->source
[acc
->n_must
+ j
].map
),
763 isl_space_reverse(isl_map_get_space(acc
->source
[k
].map
)));
764 after_write
= after_at_level(dim
, after_level
);
765 after_write
= isl_map_apply_range(after_write
, old_map
);
766 after_write
= isl_map_reverse(after_write
);
767 dep_map
= isl_map_intersect(dep_map
, after_write
);
768 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
769 dep_map
= isl_map_intersect(dep_map
, before_read
);
770 return isl_map_reverse(dep_map
);
773 /* Given the must and may dependence relations for the must accesses
774 * for level sink_level, check if there are any accesses of may access j
775 * that occur in between and return their union.
776 * If some of these accesses are intermediate with respect to
777 * (previously thought to be) must dependences, then these
778 * must dependences are turned into may dependences.
780 static __isl_give isl_map
*all_intermediate_sources(
781 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*map
,
782 struct isl_map
**must_rel
, struct isl_map
**may_rel
,
783 int j
, int sink_level
)
786 int depth
= 2 * isl_map_dim(acc
->source
[acc
->n_must
+ j
].map
,
789 for (k
= 0; k
< acc
->n_must
; ++k
) {
792 if (isl_map_plain_is_empty(may_rel
[k
]) &&
793 isl_map_plain_is_empty(must_rel
[k
]))
796 plevel
= acc
->level_before(acc
->source
[k
].data
,
797 acc
->source
[acc
->n_must
+ j
].data
);
799 for (level
= sink_level
; level
<= depth
; ++level
) {
804 if (!can_precede_at_level(plevel
, level
))
807 copy
= isl_map_copy(may_rel
[k
]);
808 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
809 map
= isl_map_union(map
, T
);
811 copy
= isl_map_copy(must_rel
[k
]);
812 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
813 ran
= isl_map_range(isl_map_copy(T
));
814 map
= isl_map_union(map
, T
);
815 may_rel
[k
] = isl_map_union_disjoint(may_rel
[k
],
816 isl_map_intersect_range(isl_map_copy(must_rel
[k
]),
818 T
= isl_map_from_domain_and_range(
820 isl_space_domain(isl_map_get_space(must_rel
[k
]))),
822 must_rel
[k
] = isl_map_subtract(must_rel
[k
], T
);
829 /* Compute dependences for the case where all accesses are "may"
830 * accesses, which boils down to computing memory based dependences.
831 * The generic algorithm would also work in this case, but it would
832 * be overkill to use it.
834 static __isl_give isl_flow
*compute_mem_based_dependences(
835 __isl_keep isl_access_info
*acc
)
842 res
= isl_flow_alloc(acc
);
846 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
847 maydo
= isl_set_copy(mustdo
);
849 for (i
= 0; i
< acc
->n_may
; ++i
) {
856 plevel
= acc
->level_before(acc
->source
[i
].data
, acc
->sink
.data
);
857 is_before
= plevel
& 1;
860 dim
= isl_map_get_space(res
->dep
[i
].map
);
862 before
= isl_map_lex_le_first(dim
, plevel
);
864 before
= isl_map_lex_lt_first(dim
, plevel
);
865 dep
= isl_map_apply_range(isl_map_copy(acc
->source
[i
].map
),
866 isl_map_reverse(isl_map_copy(acc
->sink
.map
)));
867 dep
= isl_map_intersect(dep
, before
);
868 mustdo
= isl_set_subtract(mustdo
,
869 isl_map_range(isl_map_copy(dep
)));
870 res
->dep
[i
].map
= isl_map_union(res
->dep
[i
].map
, dep
);
873 res
->may_no_source
= isl_set_subtract(maydo
, isl_set_copy(mustdo
));
874 res
->must_no_source
= mustdo
;
879 /* Compute dependences for the case where there is at least one
882 * The core algorithm considers all levels in which a source may precede
883 * the sink, where a level may either be a statement level or a loop level.
884 * The outermost statement level is 1, the first loop level is 2, etc...
885 * The algorithm basically does the following:
886 * for all levels l of the read access from innermost to outermost
887 * for all sources w that may precede the sink access at that level
888 * compute the last iteration of the source that precedes the sink access
890 * add result to possible last accesses at level l of source w
891 * for all sources w2 that we haven't considered yet at this level that may
892 * also precede the sink access
893 * for all levels l2 of w from l to innermost
894 * for all possible last accesses dep of w at l
895 * compute last iteration of w2 between the source and sink
897 * add result to possible last accesses at level l of write w2
898 * and replace possible last accesses dep by the remainder
901 * The above algorithm is applied to the must access. During the course
902 * of the algorithm, we keep track of sink iterations that still
903 * need to be considered. These iterations are split into those that
904 * haven't been matched to any source access (mustdo) and those that have only
905 * been matched to may accesses (maydo).
906 * At the end of each level, we also consider the may accesses.
907 * In particular, we consider may accesses that precede the remaining
908 * sink iterations, moving elements from mustdo to maydo when appropriate,
909 * and may accesses that occur between a must source and a sink of any
910 * dependences found at the current level, turning must dependences into
911 * may dependences when appropriate.
914 static __isl_give isl_flow
*compute_val_based_dependences(
915 __isl_keep isl_access_info
*acc
)
919 isl_set
*mustdo
= NULL
;
920 isl_set
*maydo
= NULL
;
923 isl_map
**must_rel
= NULL
;
924 isl_map
**may_rel
= NULL
;
929 res
= isl_flow_alloc(acc
);
932 ctx
= isl_map_get_ctx(acc
->sink
.map
);
934 depth
= 2 * isl_map_dim(acc
->sink
.map
, isl_dim_in
) + 1;
935 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
936 maydo
= isl_set_empty_like(mustdo
);
937 if (!mustdo
|| !maydo
)
939 if (isl_set_plain_is_empty(mustdo
))
942 must_rel
= isl_alloc_array(ctx
, struct isl_map
*, acc
->n_must
);
943 may_rel
= isl_alloc_array(ctx
, struct isl_map
*, acc
->n_must
);
944 if (!must_rel
|| !may_rel
)
947 for (level
= depth
; level
>= 1; --level
) {
948 for (j
= acc
->n_must
-1; j
>=0; --j
) {
949 must_rel
[j
] = isl_map_empty_like(res
->dep
[2 * j
].map
);
950 may_rel
[j
] = isl_map_copy(must_rel
[j
]);
953 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
955 struct isl_set
*rest
;
958 plevel
= acc
->level_before(acc
->source
[j
].data
,
960 if (!can_precede_at_level(plevel
, level
))
963 T
= last_source(acc
, mustdo
, j
, level
, &rest
);
964 must_rel
[j
] = isl_map_union_disjoint(must_rel
[j
], T
);
967 intermediate_sources(acc
, must_rel
, j
, level
);
969 T
= last_source(acc
, maydo
, j
, level
, &rest
);
970 may_rel
[j
] = isl_map_union_disjoint(may_rel
[j
], T
);
973 intermediate_sources(acc
, may_rel
, j
, level
);
975 if (isl_set_plain_is_empty(mustdo
) &&
976 isl_set_plain_is_empty(maydo
))
979 for (j
= j
- 1; j
>= 0; --j
) {
982 plevel
= acc
->level_before(acc
->source
[j
].data
,
984 if (!can_precede_at_level(plevel
, level
))
987 intermediate_sources(acc
, must_rel
, j
, level
);
988 intermediate_sources(acc
, may_rel
, j
, level
);
991 for (j
= 0; j
< acc
->n_may
; ++j
) {
996 plevel
= acc
->level_before(acc
->source
[acc
->n_must
+ j
].data
,
998 if (!can_precede_at_level(plevel
, level
))
1001 T
= all_sources(acc
, isl_set_copy(maydo
), j
, level
);
1002 res
->dep
[2 * acc
->n_must
+ j
].map
=
1003 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1004 T
= all_sources(acc
, isl_set_copy(mustdo
), j
, level
);
1005 ran
= isl_map_range(isl_map_copy(T
));
1006 res
->dep
[2 * acc
->n_must
+ j
].map
=
1007 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1008 mustdo
= isl_set_subtract(mustdo
, isl_set_copy(ran
));
1009 maydo
= isl_set_union_disjoint(maydo
, ran
);
1011 T
= res
->dep
[2 * acc
->n_must
+ j
].map
;
1012 T
= all_intermediate_sources(acc
, T
, must_rel
, may_rel
,
1014 res
->dep
[2 * acc
->n_must
+ j
].map
= T
;
1017 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1018 res
->dep
[2 * j
].map
=
1019 isl_map_union_disjoint(res
->dep
[2 * j
].map
,
1021 res
->dep
[2 * j
+ 1].map
=
1022 isl_map_union_disjoint(res
->dep
[2 * j
+ 1].map
,
1026 if (isl_set_plain_is_empty(mustdo
) &&
1027 isl_set_plain_is_empty(maydo
))
1034 res
->must_no_source
= mustdo
;
1035 res
->may_no_source
= maydo
;
1039 isl_set_free(mustdo
);
1040 isl_set_free(maydo
);
1046 /* Given a "sink" access, a list of n "source" accesses,
1047 * compute for each iteration of the sink access
1048 * and for each element accessed by that iteration,
1049 * the source access in the list that last accessed the
1050 * element accessed by the sink access before this sink access.
1051 * Each access is given as a map from the loop iterators
1052 * to the array indices.
1053 * The result is a list of n relations between source and sink
1054 * iterations and a subset of the domain of the sink access,
1055 * corresponding to those iterations that access an element
1056 * not previously accessed.
1058 * To deal with multi-valued sink access relations, the sink iteration
1059 * domain is first extended with dimensions that correspond to the data
1060 * space. After the computation is finished, these extra dimensions are
1061 * projected out again.
1063 __isl_give isl_flow
*isl_access_info_compute_flow(__isl_take isl_access_info
*acc
)
1066 struct isl_flow
*res
= NULL
;
1071 acc
->domain_map
= isl_map_domain_map(isl_map_copy(acc
->sink
.map
));
1072 acc
->sink
.map
= isl_map_range_map(acc
->sink
.map
);
1076 if (acc
->n_must
== 0)
1077 res
= compute_mem_based_dependences(acc
);
1079 acc
= isl_access_info_sort_sources(acc
);
1080 res
= compute_val_based_dependences(acc
);
1085 for (j
= 0; j
< res
->n_source
; ++j
) {
1086 res
->dep
[j
].map
= isl_map_apply_range(res
->dep
[j
].map
,
1087 isl_map_copy(acc
->domain_map
));
1088 if (!res
->dep
[j
].map
)
1091 if (!res
->must_no_source
|| !res
->may_no_source
)
1094 isl_access_info_free(acc
);
1097 isl_access_info_free(acc
);
1103 /* Keep track of some information about a schedule for a given
1104 * access. In particular, keep track of which dimensions
1105 * have a constant value and of the actual constant values.
1107 struct isl_sched_info
{
1112 static void sched_info_free(__isl_take
struct isl_sched_info
*info
)
1116 isl_vec_free(info
->cst
);
1121 /* Extract information on the constant dimensions of the schedule
1122 * for a given access. The "map" is of the form
1126 * with S the schedule domain, D the iteration domain and A the data domain.
1128 static __isl_give
struct isl_sched_info
*sched_info_alloc(
1129 __isl_keep isl_map
*map
)
1133 struct isl_sched_info
*info
;
1139 dim
= isl_space_unwrap(isl_space_domain(isl_map_get_space(map
)));
1142 n
= isl_space_dim(dim
, isl_dim_in
);
1143 isl_space_free(dim
);
1145 ctx
= isl_map_get_ctx(map
);
1146 info
= isl_alloc_type(ctx
, struct isl_sched_info
);
1149 info
->is_cst
= isl_alloc_array(ctx
, int, n
);
1150 info
->cst
= isl_vec_alloc(ctx
, n
);
1151 if (n
&& (!info
->is_cst
|| !info
->cst
))
1154 for (i
= 0; i
< n
; ++i
) {
1157 v
= isl_map_plain_get_val_if_fixed(map
, isl_dim_in
, i
);
1160 info
->is_cst
[i
] = !isl_val_is_nan(v
);
1161 if (info
->is_cst
[i
])
1162 info
->cst
= isl_vec_set_element_val(info
->cst
, i
, v
);
1169 sched_info_free(info
);
1173 /* This structure represents the input for a dependence analysis computation.
1175 * "sink" represents the sink accesses.
1176 * "must_source" represents the definite source accesses.
1177 * "may_source" represents the possible source accesses.
1179 * "schedule" or "schedule_map" represents the execution order.
1180 * Exactly one of these fields should be NULL. The other field
1181 * determines the execution order.
1183 * The domains of these four maps refer to the same iteration spaces(s).
1184 * The ranges of the first three maps also refer to the same data space(s).
1186 * After a call to isl_union_access_info_introduce_schedule,
1187 * the "schedule_map" field no longer contains useful information.
1189 struct isl_union_access_info
{
1190 isl_union_map
*sink
;
1191 isl_union_map
*must_source
;
1192 isl_union_map
*may_source
;
1194 isl_schedule
*schedule
;
1195 isl_union_map
*schedule_map
;
1198 /* Free "access" and return NULL.
1200 __isl_null isl_union_access_info
*isl_union_access_info_free(
1201 __isl_take isl_union_access_info
*access
)
1206 isl_union_map_free(access
->sink
);
1207 isl_union_map_free(access
->must_source
);
1208 isl_union_map_free(access
->may_source
);
1209 isl_schedule_free(access
->schedule
);
1210 isl_union_map_free(access
->schedule_map
);
1216 /* Return the isl_ctx to which "access" belongs.
1218 isl_ctx
*isl_union_access_info_get_ctx(__isl_keep isl_union_access_info
*access
)
1220 return access
? isl_union_map_get_ctx(access
->sink
) : NULL
;
1223 /* Create a new isl_union_access_info with the given sink accesses and
1224 * and no source accesses or schedule information.
1226 * By default, we use the schedule field of the isl_union_access_info,
1227 * but this may be overridden by a call
1228 * to isl_union_access_info_set_schedule_map.
1230 __isl_give isl_union_access_info
*isl_union_access_info_from_sink(
1231 __isl_take isl_union_map
*sink
)
1235 isl_union_map
*empty
;
1236 isl_union_access_info
*access
;
1240 ctx
= isl_union_map_get_ctx(sink
);
1241 access
= isl_alloc_type(ctx
, isl_union_access_info
);
1245 space
= isl_union_map_get_space(sink
);
1246 empty
= isl_union_map_empty(isl_space_copy(space
));
1247 access
->sink
= sink
;
1248 access
->must_source
= isl_union_map_copy(empty
);
1249 access
->may_source
= empty
;
1250 access
->schedule
= isl_schedule_empty(space
);
1251 access
->schedule_map
= NULL
;
1253 if (!access
->sink
|| !access
->must_source
||
1254 !access
->may_source
|| !access
->schedule
)
1255 return isl_union_access_info_free(access
);
1259 isl_union_map_free(sink
);
1263 /* Replace the definite source accesses of "access" by "must_source".
1265 __isl_give isl_union_access_info
*isl_union_access_info_set_must_source(
1266 __isl_take isl_union_access_info
*access
,
1267 __isl_take isl_union_map
*must_source
)
1269 if (!access
|| !must_source
)
1272 isl_union_map_free(access
->must_source
);
1273 access
->must_source
= must_source
;
1277 isl_union_access_info_free(access
);
1278 isl_union_map_free(must_source
);
1282 /* Replace the possible source accesses of "access" by "may_source".
1284 __isl_give isl_union_access_info
*isl_union_access_info_set_may_source(
1285 __isl_take isl_union_access_info
*access
,
1286 __isl_take isl_union_map
*may_source
)
1288 if (!access
|| !may_source
)
1291 isl_union_map_free(access
->may_source
);
1292 access
->may_source
= may_source
;
1296 isl_union_access_info_free(access
);
1297 isl_union_map_free(may_source
);
1301 /* Replace the schedule of "access" by "schedule".
1302 * Also free the schedule_map in case it was set last.
1304 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule(
1305 __isl_take isl_union_access_info
*access
,
1306 __isl_take isl_schedule
*schedule
)
1308 if (!access
|| !schedule
)
1311 access
->schedule_map
= isl_union_map_free(access
->schedule_map
);
1312 isl_schedule_free(access
->schedule
);
1313 access
->schedule
= schedule
;
1317 isl_union_access_info_free(access
);
1318 isl_schedule_free(schedule
);
1322 /* Replace the schedule map of "access" by "schedule_map".
1323 * Also free the schedule in case it was set last.
1325 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule_map(
1326 __isl_take isl_union_access_info
*access
,
1327 __isl_take isl_union_map
*schedule_map
)
1329 if (!access
|| !schedule_map
)
1332 isl_union_map_free(access
->schedule_map
);
1333 access
->schedule
= isl_schedule_free(access
->schedule
);
1334 access
->schedule_map
= schedule_map
;
1338 isl_union_access_info_free(access
);
1339 isl_union_map_free(schedule_map
);
1343 /* Update the fields of "access" such that they all have the same parameters,
1344 * keeping in mind that the schedule_map field may be NULL and ignoring
1345 * the schedule field.
1347 static __isl_give isl_union_access_info
*isl_union_access_info_align_params(
1348 __isl_take isl_union_access_info
*access
)
1355 space
= isl_union_map_get_space(access
->sink
);
1356 space
= isl_space_align_params(space
,
1357 isl_union_map_get_space(access
->must_source
));
1358 space
= isl_space_align_params(space
,
1359 isl_union_map_get_space(access
->may_source
));
1360 if (access
->schedule_map
)
1361 space
= isl_space_align_params(space
,
1362 isl_union_map_get_space(access
->schedule_map
));
1363 access
->sink
= isl_union_map_align_params(access
->sink
,
1364 isl_space_copy(space
));
1365 access
->must_source
= isl_union_map_align_params(access
->must_source
,
1366 isl_space_copy(space
));
1367 access
->may_source
= isl_union_map_align_params(access
->may_source
,
1368 isl_space_copy(space
));
1369 if (!access
->schedule_map
) {
1370 isl_space_free(space
);
1372 access
->schedule_map
=
1373 isl_union_map_align_params(access
->schedule_map
, space
);
1374 if (!access
->schedule_map
)
1375 return isl_union_access_info_free(access
);
1378 if (!access
->sink
|| !access
->must_source
|| !access
->may_source
)
1379 return isl_union_access_info_free(access
);
1384 /* Prepend the schedule dimensions to the iteration domains.
1386 * That is, if the schedule is of the form
1390 * while the access relations are of the form
1394 * then the updated access relations are of the form
1398 * The schedule map is also replaced by the map
1402 * that is used during the internal computation.
1403 * Neither the original schedule map nor this updated schedule map
1404 * are used after the call to this function.
1406 static __isl_give isl_union_access_info
*
1407 isl_union_access_info_introduce_schedule(
1408 __isl_take isl_union_access_info
*access
)
1415 sm
= isl_union_map_reverse(access
->schedule_map
);
1416 sm
= isl_union_map_range_map(sm
);
1417 access
->sink
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1419 access
->may_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1420 access
->may_source
);
1421 access
->must_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1422 access
->must_source
);
1423 access
->schedule_map
= sm
;
1425 if (!access
->sink
|| !access
->must_source
||
1426 !access
->may_source
|| !access
->schedule_map
)
1427 return isl_union_access_info_free(access
);
1432 /* This structure epresents the result of a dependence analysis computation.
1434 * "must_dep" represents the definite dependences.
1435 * "may_dep" represents the non-definite dependences.
1436 * "must_no_source" represents the subset of the sink accesses for which
1437 * definitely no source was found.
1438 * "may_no_source" represents the subset of the sink accesses for which
1439 * possibly, but not definitely, no source was found.
1441 struct isl_union_flow
{
1442 isl_union_map
*must_dep
;
1443 isl_union_map
*may_dep
;
1444 isl_union_map
*must_no_source
;
1445 isl_union_map
*may_no_source
;
1448 /* Free "flow" and return NULL.
1450 __isl_null isl_union_flow
*isl_union_flow_free(__isl_take isl_union_flow
*flow
)
1454 isl_union_map_free(flow
->must_dep
);
1455 isl_union_map_free(flow
->may_dep
);
1456 isl_union_map_free(flow
->must_no_source
);
1457 isl_union_map_free(flow
->may_no_source
);
1462 void isl_union_flow_dump(__isl_keep isl_union_flow
*flow
)
1467 fprintf(stderr
, "must dependences: ");
1468 isl_union_map_dump(flow
->must_dep
);
1469 fprintf(stderr
, "may dependences: ");
1470 isl_union_map_dump(flow
->may_dep
);
1471 fprintf(stderr
, "must no source: ");
1472 isl_union_map_dump(flow
->must_no_source
);
1473 fprintf(stderr
, "may no source: ");
1474 isl_union_map_dump(flow
->may_no_source
);
1477 /* Return the definite dependences in "flow".
1479 __isl_give isl_union_map
*isl_union_flow_get_must_dependence(
1480 __isl_keep isl_union_flow
*flow
)
1484 return isl_union_map_copy(flow
->must_dep
);
1487 /* Return the possible dependences in "flow", including the definite
1490 __isl_give isl_union_map
*isl_union_flow_get_may_dependence(
1491 __isl_keep isl_union_flow
*flow
)
1495 return isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
1496 isl_union_map_copy(flow
->may_dep
));
1499 /* Return the non-definite dependences in "flow".
1501 static __isl_give isl_union_map
*isl_union_flow_get_non_must_dependence(
1502 __isl_keep isl_union_flow
*flow
)
1506 return isl_union_map_copy(flow
->may_dep
);
1509 /* Return the subset of the sink accesses for which definitely
1510 * no source was found.
1512 __isl_give isl_union_map
*isl_union_flow_get_must_no_source(
1513 __isl_keep isl_union_flow
*flow
)
1517 return isl_union_map_copy(flow
->must_no_source
);
1520 /* Return the subset of the sink accesses for which possibly
1521 * no source was found, including those for which definitely
1522 * no source was found.
1524 __isl_give isl_union_map
*isl_union_flow_get_may_no_source(
1525 __isl_keep isl_union_flow
*flow
)
1529 return isl_union_map_union(isl_union_map_copy(flow
->must_no_source
),
1530 isl_union_map_copy(flow
->may_no_source
));
1533 /* Return the subset of the sink accesses for which possibly, but not
1534 * definitely, no source was found.
1536 static __isl_give isl_union_map
*isl_union_flow_get_non_must_no_source(
1537 __isl_keep isl_union_flow
*flow
)
1541 return isl_union_map_copy(flow
->may_no_source
);
1544 /* Create a new isl_union_flow object, initialized with empty
1545 * dependence relations and sink subsets.
1547 static __isl_give isl_union_flow
*isl_union_flow_alloc(
1548 __isl_take isl_space
*space
)
1551 isl_union_map
*empty
;
1552 isl_union_flow
*flow
;
1556 ctx
= isl_space_get_ctx(space
);
1557 flow
= isl_alloc_type(ctx
, isl_union_flow
);
1561 empty
= isl_union_map_empty(space
);
1562 flow
->must_dep
= isl_union_map_copy(empty
);
1563 flow
->may_dep
= isl_union_map_copy(empty
);
1564 flow
->must_no_source
= isl_union_map_copy(empty
);
1565 flow
->may_no_source
= empty
;
1567 if (!flow
->must_dep
|| !flow
->may_dep
||
1568 !flow
->must_no_source
|| !flow
->may_no_source
)
1569 return isl_union_flow_free(flow
);
1573 isl_space_free(space
);
1577 /* Drop the schedule dimensions from the iteration domains in "flow".
1578 * In particular, the schedule dimensions have been prepended
1579 * to the iteration domains prior to the dependence analysis by
1580 * replacing the iteration domain D, by the wrapped map [S -> D].
1581 * Replace these wrapped maps by the original D.
1583 static __isl_give isl_union_flow
*isl_union_flow_drop_schedule(
1584 __isl_take isl_union_flow
*flow
)
1589 flow
->must_dep
= isl_union_map_factor_range(flow
->must_dep
);
1590 flow
->may_dep
= isl_union_map_factor_range(flow
->may_dep
);
1591 flow
->must_no_source
=
1592 isl_union_map_domain_factor_range(flow
->must_no_source
);
1593 flow
->may_no_source
=
1594 isl_union_map_domain_factor_range(flow
->may_no_source
);
1596 if (!flow
->must_dep
|| !flow
->may_dep
||
1597 !flow
->must_no_source
|| !flow
->may_no_source
)
1598 return isl_union_flow_free(flow
);
1603 struct isl_compute_flow_data
{
1604 isl_union_map
*must_source
;
1605 isl_union_map
*may_source
;
1606 isl_union_flow
*flow
;
1611 struct isl_sched_info
*sink_info
;
1612 struct isl_sched_info
**source_info
;
1613 isl_access_info
*accesses
;
1616 static int count_matching_array(__isl_take isl_map
*map
, void *user
)
1620 struct isl_compute_flow_data
*data
;
1622 data
= (struct isl_compute_flow_data
*)user
;
1624 dim
= isl_space_range(isl_map_get_space(map
));
1626 eq
= isl_space_is_equal(dim
, data
->dim
);
1628 isl_space_free(dim
);
1639 static int collect_matching_array(__isl_take isl_map
*map
, void *user
)
1643 struct isl_sched_info
*info
;
1644 struct isl_compute_flow_data
*data
;
1646 data
= (struct isl_compute_flow_data
*)user
;
1648 dim
= isl_space_range(isl_map_get_space(map
));
1650 eq
= isl_space_is_equal(dim
, data
->dim
);
1652 isl_space_free(dim
);
1661 info
= sched_info_alloc(map
);
1662 data
->source_info
[data
->count
] = info
;
1664 data
->accesses
= isl_access_info_add_source(data
->accesses
,
1665 map
, data
->must
, info
);
1675 /* Determine the shared nesting level and the "textual order" of
1676 * the given accesses.
1678 * We first determine the minimal schedule dimension for both accesses.
1680 * If among those dimensions, we can find one where both have a fixed
1681 * value and if moreover those values are different, then the previous
1682 * dimension is the last shared nesting level and the textual order
1683 * is determined based on the order of the fixed values.
1684 * If no such fixed values can be found, then we set the shared
1685 * nesting level to the minimal schedule dimension, with no textual ordering.
1687 static int before(void *first
, void *second
)
1689 struct isl_sched_info
*info1
= first
;
1690 struct isl_sched_info
*info2
= second
;
1694 n1
= isl_vec_size(info1
->cst
);
1695 n2
= isl_vec_size(info2
->cst
);
1700 for (i
= 0; i
< n1
; ++i
) {
1704 if (!info1
->is_cst
[i
])
1706 if (!info2
->is_cst
[i
])
1708 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
1712 r
= 2 * i
+ (cmp
< 0);
1720 /* Given a sink access, look for all the source accesses that access
1721 * the same array and perform dataflow analysis on them using
1722 * isl_access_info_compute_flow.
1724 static int compute_flow(__isl_take isl_map
*map
, void *user
)
1728 struct isl_compute_flow_data
*data
;
1732 data
= (struct isl_compute_flow_data
*)user
;
1735 ctx
= isl_map_get_ctx(map
);
1737 data
->accesses
= NULL
;
1738 data
->sink_info
= NULL
;
1739 data
->source_info
= NULL
;
1741 data
->dim
= isl_space_range(isl_map_get_space(map
));
1743 if (isl_union_map_foreach_map(data
->must_source
,
1744 &count_matching_array
, data
) < 0)
1746 if (isl_union_map_foreach_map(data
->may_source
,
1747 &count_matching_array
, data
) < 0)
1750 data
->sink_info
= sched_info_alloc(map
);
1751 data
->source_info
= isl_calloc_array(ctx
, struct isl_sched_info
*,
1754 data
->accesses
= isl_access_info_alloc(isl_map_copy(map
),
1755 data
->sink_info
, &before
, data
->count
);
1756 if (!data
->sink_info
|| (data
->count
&& !data
->source_info
) ||
1761 if (isl_union_map_foreach_map(data
->must_source
,
1762 &collect_matching_array
, data
) < 0)
1765 if (isl_union_map_foreach_map(data
->may_source
,
1766 &collect_matching_array
, data
) < 0)
1769 flow
= isl_access_info_compute_flow(data
->accesses
);
1770 data
->accesses
= NULL
;
1775 df
->must_no_source
= isl_union_map_union(df
->must_no_source
,
1776 isl_union_map_from_map(isl_flow_get_no_source(flow
, 1)));
1777 df
->may_no_source
= isl_union_map_union(df
->may_no_source
,
1778 isl_union_map_from_map(isl_flow_get_no_source(flow
, 0)));
1780 for (i
= 0; i
< flow
->n_source
; ++i
) {
1782 dep
= isl_union_map_from_map(isl_map_copy(flow
->dep
[i
].map
));
1783 if (flow
->dep
[i
].must
)
1784 df
->must_dep
= isl_union_map_union(df
->must_dep
, dep
);
1786 df
->may_dep
= isl_union_map_union(df
->may_dep
, dep
);
1789 isl_flow_free(flow
);
1791 sched_info_free(data
->sink_info
);
1792 if (data
->source_info
) {
1793 for (i
= 0; i
< data
->count
; ++i
)
1794 sched_info_free(data
->source_info
[i
]);
1795 free(data
->source_info
);
1797 isl_space_free(data
->dim
);
1802 isl_access_info_free(data
->accesses
);
1803 sched_info_free(data
->sink_info
);
1804 if (data
->source_info
) {
1805 for (i
= 0; i
< data
->count
; ++i
)
1806 sched_info_free(data
->source_info
[i
]);
1807 free(data
->source_info
);
1809 isl_space_free(data
->dim
);
1815 /* Remove the must accesses from the may accesses.
1817 * A must access always trumps a may access, so there is no need
1818 * for a must access to also be considered as a may access. Doing so
1819 * would only cost extra computations only to find out that
1820 * the duplicated may access does not make any difference.
1822 static __isl_give isl_union_access_info
*isl_union_access_info_normalize(
1823 __isl_take isl_union_access_info
*access
)
1827 access
->may_source
= isl_union_map_subtract(access
->may_source
,
1828 isl_union_map_copy(access
->must_source
));
1829 if (!access
->may_source
)
1830 return isl_union_access_info_free(access
);
1835 /* Given a description of the "sink" accesses, the "source" accesses and
1836 * a schedule, compute for each instance of a sink access
1837 * and for each element accessed by that instance,
1838 * the possible or definite source accesses that last accessed the
1839 * element accessed by the sink access before this sink access
1840 * in the sense that there is no intermediate definite source access.
1842 * The must_no_source and may_no_source elements of the result
1843 * are subsets of access->sink. The elements must_dep and may_dep
1844 * map domain elements of access->{may,must)_source to
1845 * domain elements of access->sink.
1847 * This function is used when only the schedule map representation
1850 * We first prepend the schedule dimensions to the domain
1851 * of the accesses so that we can easily compare their relative order.
1852 * Then we consider each sink access individually in compute_flow.
1854 static __isl_give isl_union_flow
*compute_flow_union_map(
1855 __isl_take isl_union_access_info
*access
)
1857 struct isl_compute_flow_data data
;
1859 access
= isl_union_access_info_align_params(access
);
1860 access
= isl_union_access_info_introduce_schedule(access
);
1864 data
.must_source
= access
->must_source
;
1865 data
.may_source
= access
->may_source
;
1867 data
.flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
1869 if (isl_union_map_foreach_map(access
->sink
, &compute_flow
, &data
) < 0)
1872 data
.flow
= isl_union_flow_drop_schedule(data
.flow
);
1874 isl_union_access_info_free(access
);
1877 isl_union_access_info_free(access
);
1878 isl_union_flow_free(data
.flow
);
1882 /* A schedule access relation.
1884 * The access relation "access" is of the form [S -> D] -> A,
1885 * where S corresponds to the prefix schedule at "node".
1886 * "must" is only relevant for source accesses and indicates
1887 * whether the access is a must source or a may source.
1889 struct isl_scheduled_access
{
1892 isl_schedule_node
*node
;
1895 /* Data structure for keeping track of individual scheduled sink and source
1896 * accesses when computing dependence analysis based on a schedule tree.
1898 * "n_sink" is the number of used entries in "sink"
1899 * "n_source" is the number of used entries in "source"
1901 * "set_sink", "must" and "node" are only used inside collect_sink_source,
1902 * to keep track of the current node and
1903 * of what extract_sink_source needs to do.
1905 struct isl_compute_flow_schedule_data
{
1906 isl_union_access_info
*access
;
1911 struct isl_scheduled_access
*sink
;
1912 struct isl_scheduled_access
*source
;
1916 isl_schedule_node
*node
;
1919 /* Align the parameters of all sinks with all sources.
1921 * If there are no sinks or no sources, then no alignment is needed.
1923 static void isl_compute_flow_schedule_data_align_params(
1924 struct isl_compute_flow_schedule_data
*data
)
1929 if (data
->n_sink
== 0 || data
->n_source
== 0)
1932 space
= isl_map_get_space(data
->sink
[0].access
);
1934 for (i
= 1; i
< data
->n_sink
; ++i
)
1935 space
= isl_space_align_params(space
,
1936 isl_map_get_space(data
->sink
[i
].access
));
1937 for (i
= 0; i
< data
->n_source
; ++i
)
1938 space
= isl_space_align_params(space
,
1939 isl_map_get_space(data
->source
[i
].access
));
1941 for (i
= 0; i
< data
->n_sink
; ++i
)
1942 data
->sink
[i
].access
=
1943 isl_map_align_params(data
->sink
[i
].access
,
1944 isl_space_copy(space
));
1945 for (i
= 0; i
< data
->n_source
; ++i
)
1946 data
->source
[i
].access
=
1947 isl_map_align_params(data
->source
[i
].access
,
1948 isl_space_copy(space
));
1950 isl_space_free(space
);
1953 /* Free all the memory referenced from "data".
1954 * Do not free "data" itself as it may be allocated on the stack.
1956 static void isl_compute_flow_schedule_data_clear(
1957 struct isl_compute_flow_schedule_data
*data
)
1961 for (i
= 0; i
< data
->n_sink
; ++i
) {
1962 isl_map_free(data
->sink
[i
].access
);
1963 isl_schedule_node_free(data
->sink
[i
].node
);
1966 for (i
= 0; i
< data
->n_source
; ++i
) {
1967 isl_map_free(data
->source
[i
].access
);
1968 isl_schedule_node_free(data
->source
[i
].node
);
1974 /* isl_schedule_foreach_schedule_node callback for counting
1975 * (an upper bound on) the number of sinks and sources.
1977 * Sinks and sources are only extracted at leaves of the tree,
1978 * so we skip the node if it is not a leaf.
1979 * Otherwise we increment data->n_sink and data->n_source with
1980 * the number of spaces in the sink and source access domains
1981 * that reach this node.
1983 static int count_sink_source(__isl_keep isl_schedule_node
*node
, void *user
)
1985 struct isl_compute_flow_schedule_data
*data
= user
;
1986 isl_union_set
*domain
;
1987 isl_union_map
*umap
;
1990 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
1993 domain
= isl_schedule_node_get_universe_domain(node
);
1995 umap
= isl_union_map_copy(data
->access
->sink
);
1996 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
1997 data
->n_sink
+= isl_union_map_n_map(umap
);
1998 isl_union_map_free(umap
);
2002 umap
= isl_union_map_copy(data
->access
->must_source
);
2003 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2004 data
->n_source
+= isl_union_map_n_map(umap
);
2005 isl_union_map_free(umap
);
2009 umap
= isl_union_map_copy(data
->access
->may_source
);
2010 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2011 data
->n_source
+= isl_union_map_n_map(umap
);
2012 isl_union_map_free(umap
);
2016 isl_union_set_free(domain
);
2021 /* Add a single scheduled sink or source (depending on data->set_sink)
2022 * with scheduled access relation "map", must property data->must and
2023 * schedule node data->node to the list of sinks or sources.
2025 static int extract_sink_source(__isl_take isl_map
*map
, void *user
)
2027 struct isl_compute_flow_schedule_data
*data
= user
;
2028 struct isl_scheduled_access
*access
;
2031 access
= data
->sink
+ data
->n_sink
++;
2033 access
= data
->source
+ data
->n_source
++;
2035 access
->access
= map
;
2036 access
->must
= data
->must
;
2037 access
->node
= isl_schedule_node_copy(data
->node
);
2042 /* isl_schedule_foreach_schedule_node callback for collecting
2043 * individual scheduled source and sink accesses.
2045 * We only collect accesses at the leaves of the schedule tree.
2046 * We prepend the schedule dimensions at the leaf to the iteration
2047 * domains of the source and sink accesses and then extract
2048 * the individual accesses (per space).
2050 * In particular, if the prefix schedule at the node is of the form
2054 * while the access relations are of the form
2058 * then the updated access relations are of the form
2062 * Note that S consists of a single space such that introducing S
2063 * in the access relations does not increase the number of spaces.
2065 static int collect_sink_source(__isl_keep isl_schedule_node
*node
, void *user
)
2067 struct isl_compute_flow_schedule_data
*data
= user
;
2068 isl_union_map
*prefix
;
2069 isl_union_map
*umap
;
2072 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2077 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
2078 prefix
= isl_union_map_reverse(prefix
);
2079 prefix
= isl_union_map_range_map(prefix
);
2082 umap
= isl_union_map_copy(data
->access
->sink
);
2083 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2084 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2086 isl_union_map_free(umap
);
2090 umap
= isl_union_map_copy(data
->access
->must_source
);
2091 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2092 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2094 isl_union_map_free(umap
);
2098 umap
= isl_union_map_copy(data
->access
->may_source
);
2099 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2100 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2102 isl_union_map_free(umap
);
2104 isl_union_map_free(prefix
);
2109 /* isl_access_info_compute_flow callback for determining whether
2110 * the shared nesting level and the ordering within that level
2111 * for two scheduled accesses for use in compute_single_flow.
2113 * The tokens passed to this function refer to the leaves
2114 * in the schedule tree where the accesses take place.
2116 * If n is the shared number of loops, then we need to return
2117 * "2 * n + 1" if "first" precedes "second" inside the innermost
2118 * shared loop and "2 * n" otherwise.
2120 * The innermost shared ancestor may be the leaves themselves
2121 * if the accesses take place in the same leaf. Otherwise,
2122 * it is either a set node or a sequence node. Only in the case
2123 * of a sequence node do we consider one access to precede the other.
2125 static int before_node(void *first
, void *second
)
2127 isl_schedule_node
*node1
= first
;
2128 isl_schedule_node
*node2
= second
;
2129 isl_schedule_node
*shared
;
2133 shared
= isl_schedule_node_get_shared_ancestor(node1
, node2
);
2137 depth
= isl_schedule_node_get_schedule_depth(shared
);
2138 if (isl_schedule_node_get_type(shared
) == isl_schedule_node_sequence
) {
2141 pos1
= isl_schedule_node_get_ancestor_child_position(node1
,
2143 pos2
= isl_schedule_node_get_ancestor_child_position(node2
,
2145 before
= pos1
< pos2
;
2148 isl_schedule_node_free(shared
);
2150 return 2 * depth
+ before
;
2153 /* Add the scheduled sources from "data" that access
2154 * the same data space as "sink" to "access".
2156 static __isl_give isl_access_info
*add_matching_sources(
2157 __isl_take isl_access_info
*access
, struct isl_scheduled_access
*sink
,
2158 struct isl_compute_flow_schedule_data
*data
)
2163 space
= isl_space_range(isl_map_get_space(sink
->access
));
2164 for (i
= 0; i
< data
->n_source
; ++i
) {
2165 struct isl_scheduled_access
*source
;
2166 isl_space
*source_space
;
2169 source
= &data
->source
[i
];
2170 source_space
= isl_map_get_space(source
->access
);
2171 source_space
= isl_space_range(source_space
);
2172 eq
= isl_space_is_equal(space
, source_space
);
2173 isl_space_free(source_space
);
2180 access
= isl_access_info_add_source(access
,
2181 isl_map_copy(source
->access
), source
->must
, source
->node
);
2184 isl_space_free(space
);
2187 isl_space_free(space
);
2188 isl_access_info_free(access
);
2192 /* Given a scheduled sink access relation "sink", compute the corresponding
2193 * dependences on the sources in "data" and add the computed dependences
2196 static __isl_give isl_union_flow
*compute_single_flow(
2197 __isl_take isl_union_flow
*uf
, struct isl_scheduled_access
*sink
,
2198 struct isl_compute_flow_schedule_data
*data
)
2201 isl_access_info
*access
;
2208 access
= isl_access_info_alloc(isl_map_copy(sink
->access
), sink
->node
,
2209 &before_node
, data
->n_source
);
2210 access
= add_matching_sources(access
, sink
, data
);
2212 flow
= isl_access_info_compute_flow(access
);
2214 return isl_union_flow_free(uf
);
2216 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 1));
2217 uf
->must_no_source
= isl_union_map_union(uf
->must_no_source
,
2218 isl_union_map_from_map(map
));
2219 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 0));
2220 uf
->may_no_source
= isl_union_map_union(uf
->may_no_source
,
2221 isl_union_map_from_map(map
));
2223 for (i
= 0; i
< flow
->n_source
; ++i
) {
2226 map
= isl_map_factor_range(isl_map_copy(flow
->dep
[i
].map
));
2227 dep
= isl_union_map_from_map(map
);
2228 if (flow
->dep
[i
].must
)
2229 uf
->must_dep
= isl_union_map_union(uf
->must_dep
, dep
);
2231 uf
->may_dep
= isl_union_map_union(uf
->may_dep
, dep
);
2234 isl_flow_free(flow
);
2239 /* Given a description of the "sink" accesses, the "source" accesses and
2240 * a schedule, compute for each instance of a sink access
2241 * and for each element accessed by that instance,
2242 * the possible or definite source accesses that last accessed the
2243 * element accessed by the sink access before this sink access
2244 * in the sense that there is no intermediate definite source access.
2246 * The must_no_source and may_no_source elements of the result
2247 * are subsets of access->sink. The elements must_dep and may_dep
2248 * map domain elements of access->{may,must)_source to
2249 * domain elements of access->sink.
2251 * This function is used when a schedule tree representation
2254 * We extract the individual scheduled source and sink access relations and
2255 * then compute dependences for each scheduled sink individually.
2257 static __isl_give isl_union_flow
*compute_flow_schedule(
2258 __isl_take isl_union_access_info
*access
)
2260 struct isl_compute_flow_schedule_data data
= { access
};
2263 isl_union_flow
*flow
;
2265 ctx
= isl_union_access_info_get_ctx(access
);
2269 if (isl_schedule_foreach_schedule_node(access
->schedule
,
2270 &count_sink_source
, &data
) < 0)
2273 n
= data
.n_sink
+ data
.n_source
;
2274 data
.sink
= isl_calloc_array(ctx
, struct isl_scheduled_access
, n
);
2275 if (n
&& !data
.sink
)
2277 data
.source
= data
.sink
+ data
.n_sink
;
2281 if (isl_schedule_foreach_schedule_node(access
->schedule
,
2282 &collect_sink_source
, &data
) < 0)
2285 flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
2287 isl_compute_flow_schedule_data_align_params(&data
);
2289 for (i
= 0; i
< data
.n_sink
; ++i
)
2290 flow
= compute_single_flow(flow
, &data
.sink
[i
], &data
);
2292 isl_compute_flow_schedule_data_clear(&data
);
2294 isl_union_access_info_free(access
);
2297 isl_union_access_info_free(access
);
2298 isl_compute_flow_schedule_data_clear(&data
);
2302 /* Given a description of the "sink" accesses, the "source" accesses and
2303 * a schedule, compute for each instance of a sink access
2304 * and for each element accessed by that instance,
2305 * the possible or definite source accesses that last accessed the
2306 * element accessed by the sink access before this sink access
2307 * in the sense that there is no intermediate definite source access.
2309 * The must_no_source and may_no_source elements of the result
2310 * are subsets of access->sink. The elements must_dep and may_dep
2311 * map domain elements of access->{may,must)_source to
2312 * domain elements of access->sink.
2314 * We check whether the schedule is available as a schedule tree
2315 * or a schedule map and call the correpsonding function to perform
2318 __isl_give isl_union_flow
*isl_union_access_info_compute_flow(
2319 __isl_take isl_union_access_info
*access
)
2321 access
= isl_union_access_info_normalize(access
);
2324 if (access
->schedule
)
2325 return compute_flow_schedule(access
);
2327 return compute_flow_union_map(access
);
2330 /* Given a collection of "sink" and "source" accesses,
2331 * compute for each iteration of a sink access
2332 * and for each element accessed by that iteration,
2333 * the source access in the list that last accessed the
2334 * element accessed by the sink access before this sink access.
2335 * Each access is given as a map from the loop iterators
2336 * to the array indices.
2337 * The result is a relations between source and sink
2338 * iterations and a subset of the domain of the sink accesses,
2339 * corresponding to those iterations that access an element
2340 * not previously accessed.
2342 * We collect the inputs in an isl_union_access_info object,
2343 * call isl_union_access_info_compute_flow and extract
2344 * the outputs from the result.
2346 int isl_union_map_compute_flow(__isl_take isl_union_map
*sink
,
2347 __isl_take isl_union_map
*must_source
,
2348 __isl_take isl_union_map
*may_source
,
2349 __isl_take isl_union_map
*schedule
,
2350 __isl_give isl_union_map
**must_dep
, __isl_give isl_union_map
**may_dep
,
2351 __isl_give isl_union_map
**must_no_source
,
2352 __isl_give isl_union_map
**may_no_source
)
2354 isl_union_access_info
*access
;
2355 isl_union_flow
*flow
;
2357 access
= isl_union_access_info_from_sink(sink
);
2358 access
= isl_union_access_info_set_must_source(access
, must_source
);
2359 access
= isl_union_access_info_set_may_source(access
, may_source
);
2360 access
= isl_union_access_info_set_schedule_map(access
, schedule
);
2361 flow
= isl_union_access_info_compute_flow(access
);
2364 *must_dep
= isl_union_flow_get_must_dependence(flow
);
2366 *may_dep
= isl_union_flow_get_non_must_dependence(flow
);
2368 *must_no_source
= isl_union_flow_get_must_no_source(flow
);
2370 *may_no_source
= isl_union_flow_get_non_must_no_source(flow
);
2372 isl_union_flow_free(flow
);
2374 if ((must_dep
&& !*must_dep
) || (may_dep
&& !*may_dep
) ||
2375 (must_no_source
&& !*must_no_source
) ||
2376 (may_no_source
&& !*may_no_source
))
2382 *must_dep
= isl_union_map_free(*must_dep
);
2384 *may_dep
= isl_union_map_free(*may_dep
);
2386 *must_no_source
= isl_union_map_free(*must_no_source
);
2388 *may_no_source
= isl_union_map_free(*may_no_source
);