isl_coalesce.c: tighten_on_relaxed_facet: allow multiple relaxed constraints
[isl.git] / isl_polynomial.c
blob6bf19b51c126120b93cccde34205613aca5db9e4
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <stdlib.h>
12 #define ISL_DIM_H
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
16 #include <isl_lp_private.h>
17 #include <isl_seq.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
25 #include <isl_range.h>
26 #include <isl_local.h>
27 #include <isl_local_space_private.h>
28 #include <isl_aff_private.h>
29 #include <isl_val_private.h>
30 #include <isl_config.h>
31 #include <isl/deprecated/polynomial_int.h>
33 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
35 switch (type) {
36 case isl_dim_param: return 0;
37 case isl_dim_in: return dim->nparam;
38 case isl_dim_out: return dim->nparam + dim->n_in;
39 default: return 0;
43 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
45 if (!up)
46 return -1;
48 return up->var < 0;
51 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
53 if (!up)
54 return NULL;
56 isl_assert(up->ctx, up->var < 0, return NULL);
58 return (struct isl_upoly_cst *)up;
61 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
63 if (!up)
64 return NULL;
66 isl_assert(up->ctx, up->var >= 0, return NULL);
68 return (struct isl_upoly_rec *)up;
71 /* Compare two polynomials.
73 * Return -1 if "up1" is "smaller" than "up2", 1 if "up1" is "greater"
74 * than "up2" and 0 if they are equal.
76 static int isl_upoly_plain_cmp(__isl_keep struct isl_upoly *up1,
77 __isl_keep struct isl_upoly *up2)
79 int i;
80 struct isl_upoly_rec *rec1, *rec2;
82 if (up1 == up2)
83 return 0;
84 if (!up1)
85 return -1;
86 if (!up2)
87 return 1;
88 if (up1->var != up2->var)
89 return up1->var - up2->var;
91 if (isl_upoly_is_cst(up1)) {
92 struct isl_upoly_cst *cst1, *cst2;
93 int cmp;
95 cst1 = isl_upoly_as_cst(up1);
96 cst2 = isl_upoly_as_cst(up2);
97 if (!cst1 || !cst2)
98 return 0;
99 cmp = isl_int_cmp(cst1->n, cst2->n);
100 if (cmp != 0)
101 return cmp;
102 return isl_int_cmp(cst1->d, cst2->d);
105 rec1 = isl_upoly_as_rec(up1);
106 rec2 = isl_upoly_as_rec(up2);
107 if (!rec1 || !rec2)
108 return 0;
110 if (rec1->n != rec2->n)
111 return rec1->n - rec2->n;
113 for (i = 0; i < rec1->n; ++i) {
114 int cmp = isl_upoly_plain_cmp(rec1->p[i], rec2->p[i]);
115 if (cmp != 0)
116 return cmp;
119 return 0;
122 isl_bool isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
123 __isl_keep struct isl_upoly *up2)
125 int i;
126 struct isl_upoly_rec *rec1, *rec2;
128 if (!up1 || !up2)
129 return isl_bool_error;
130 if (up1 == up2)
131 return isl_bool_true;
132 if (up1->var != up2->var)
133 return isl_bool_false;
134 if (isl_upoly_is_cst(up1)) {
135 struct isl_upoly_cst *cst1, *cst2;
136 cst1 = isl_upoly_as_cst(up1);
137 cst2 = isl_upoly_as_cst(up2);
138 if (!cst1 || !cst2)
139 return isl_bool_error;
140 return isl_int_eq(cst1->n, cst2->n) &&
141 isl_int_eq(cst1->d, cst2->d);
144 rec1 = isl_upoly_as_rec(up1);
145 rec2 = isl_upoly_as_rec(up2);
146 if (!rec1 || !rec2)
147 return isl_bool_error;
149 if (rec1->n != rec2->n)
150 return isl_bool_false;
152 for (i = 0; i < rec1->n; ++i) {
153 isl_bool eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
154 if (eq < 0 || !eq)
155 return eq;
158 return isl_bool_true;
161 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
163 struct isl_upoly_cst *cst;
165 if (!up)
166 return -1;
167 if (!isl_upoly_is_cst(up))
168 return 0;
170 cst = isl_upoly_as_cst(up);
171 if (!cst)
172 return -1;
174 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
177 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
179 struct isl_upoly_cst *cst;
181 if (!up)
182 return 0;
183 if (!isl_upoly_is_cst(up))
184 return 0;
186 cst = isl_upoly_as_cst(up);
187 if (!cst)
188 return 0;
190 return isl_int_sgn(cst->n);
193 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
195 struct isl_upoly_cst *cst;
197 if (!up)
198 return -1;
199 if (!isl_upoly_is_cst(up))
200 return 0;
202 cst = isl_upoly_as_cst(up);
203 if (!cst)
204 return -1;
206 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
209 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
211 struct isl_upoly_cst *cst;
213 if (!up)
214 return -1;
215 if (!isl_upoly_is_cst(up))
216 return 0;
218 cst = isl_upoly_as_cst(up);
219 if (!cst)
220 return -1;
222 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
225 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
227 struct isl_upoly_cst *cst;
229 if (!up)
230 return -1;
231 if (!isl_upoly_is_cst(up))
232 return 0;
234 cst = isl_upoly_as_cst(up);
235 if (!cst)
236 return -1;
238 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
241 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
243 struct isl_upoly_cst *cst;
245 if (!up)
246 return -1;
247 if (!isl_upoly_is_cst(up))
248 return 0;
250 cst = isl_upoly_as_cst(up);
251 if (!cst)
252 return -1;
254 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
257 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
259 struct isl_upoly_cst *cst;
261 if (!up)
262 return -1;
263 if (!isl_upoly_is_cst(up))
264 return 0;
266 cst = isl_upoly_as_cst(up);
267 if (!cst)
268 return -1;
270 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
273 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
275 struct isl_upoly_cst *cst;
277 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
278 if (!cst)
279 return NULL;
281 cst->up.ref = 1;
282 cst->up.ctx = ctx;
283 isl_ctx_ref(ctx);
284 cst->up.var = -1;
286 isl_int_init(cst->n);
287 isl_int_init(cst->d);
289 return cst;
292 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
294 struct isl_upoly_cst *cst;
296 cst = isl_upoly_cst_alloc(ctx);
297 if (!cst)
298 return NULL;
300 isl_int_set_si(cst->n, 0);
301 isl_int_set_si(cst->d, 1);
303 return &cst->up;
306 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
308 struct isl_upoly_cst *cst;
310 cst = isl_upoly_cst_alloc(ctx);
311 if (!cst)
312 return NULL;
314 isl_int_set_si(cst->n, 1);
315 isl_int_set_si(cst->d, 1);
317 return &cst->up;
320 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
322 struct isl_upoly_cst *cst;
324 cst = isl_upoly_cst_alloc(ctx);
325 if (!cst)
326 return NULL;
328 isl_int_set_si(cst->n, 1);
329 isl_int_set_si(cst->d, 0);
331 return &cst->up;
334 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
336 struct isl_upoly_cst *cst;
338 cst = isl_upoly_cst_alloc(ctx);
339 if (!cst)
340 return NULL;
342 isl_int_set_si(cst->n, -1);
343 isl_int_set_si(cst->d, 0);
345 return &cst->up;
348 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
350 struct isl_upoly_cst *cst;
352 cst = isl_upoly_cst_alloc(ctx);
353 if (!cst)
354 return NULL;
356 isl_int_set_si(cst->n, 0);
357 isl_int_set_si(cst->d, 0);
359 return &cst->up;
362 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
363 isl_int n, isl_int d)
365 struct isl_upoly_cst *cst;
367 cst = isl_upoly_cst_alloc(ctx);
368 if (!cst)
369 return NULL;
371 isl_int_set(cst->n, n);
372 isl_int_set(cst->d, d);
374 return &cst->up;
377 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
378 int var, int size)
380 struct isl_upoly_rec *rec;
382 isl_assert(ctx, var >= 0, return NULL);
383 isl_assert(ctx, size >= 0, return NULL);
384 rec = isl_calloc(ctx, struct isl_upoly_rec,
385 sizeof(struct isl_upoly_rec) +
386 size * sizeof(struct isl_upoly *));
387 if (!rec)
388 return NULL;
390 rec->up.ref = 1;
391 rec->up.ctx = ctx;
392 isl_ctx_ref(ctx);
393 rec->up.var = var;
395 rec->n = 0;
396 rec->size = size;
398 return rec;
401 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
402 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
404 qp = isl_qpolynomial_cow(qp);
405 if (!qp || !dim)
406 goto error;
408 isl_space_free(qp->dim);
409 qp->dim = dim;
411 return qp;
412 error:
413 isl_qpolynomial_free(qp);
414 isl_space_free(dim);
415 return NULL;
418 /* Reset the space of "qp". This function is called from isl_pw_templ.c
419 * and doesn't know if the space of an element object is represented
420 * directly or through its domain. It therefore passes along both.
422 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
423 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
424 __isl_take isl_space *domain)
426 isl_space_free(space);
427 return isl_qpolynomial_reset_domain_space(qp, domain);
430 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
432 return qp ? qp->dim->ctx : NULL;
435 __isl_give isl_space *isl_qpolynomial_get_domain_space(
436 __isl_keep isl_qpolynomial *qp)
438 return qp ? isl_space_copy(qp->dim) : NULL;
441 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
443 isl_space *space;
444 if (!qp)
445 return NULL;
446 space = isl_space_copy(qp->dim);
447 space = isl_space_from_domain(space);
448 space = isl_space_add_dims(space, isl_dim_out, 1);
449 return space;
452 /* Return the number of variables of the given type in the domain of "qp".
454 unsigned isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
455 enum isl_dim_type type)
457 if (!qp)
458 return 0;
459 if (type == isl_dim_div)
460 return qp->div->n_row;
461 if (type == isl_dim_all)
462 return isl_space_dim(qp->dim, isl_dim_all) +
463 isl_qpolynomial_domain_dim(qp, isl_dim_div);
464 return isl_space_dim(qp->dim, type);
467 /* Externally, an isl_qpolynomial has a map space, but internally, the
468 * ls field corresponds to the domain of that space.
470 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
471 enum isl_dim_type type)
473 if (!qp)
474 return 0;
475 if (type == isl_dim_out)
476 return 1;
477 if (type == isl_dim_in)
478 type = isl_dim_set;
479 return isl_qpolynomial_domain_dim(qp, type);
482 /* Return the offset of the first coefficient of type "type" in
483 * the domain of "qp".
485 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
486 enum isl_dim_type type)
488 if (!qp)
489 return 0;
490 switch (type) {
491 case isl_dim_cst:
492 return 0;
493 case isl_dim_param:
494 case isl_dim_set:
495 return 1 + isl_space_offset(qp->dim, type);
496 case isl_dim_div:
497 return 1 + isl_space_dim(qp->dim, isl_dim_all);
498 default:
499 return 0;
503 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
505 return qp ? isl_upoly_is_zero(qp->upoly) : isl_bool_error;
508 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
510 return qp ? isl_upoly_is_one(qp->upoly) : isl_bool_error;
513 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
515 return qp ? isl_upoly_is_nan(qp->upoly) : isl_bool_error;
518 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
520 return qp ? isl_upoly_is_infty(qp->upoly) : isl_bool_error;
523 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
525 return qp ? isl_upoly_is_neginfty(qp->upoly) : isl_bool_error;
528 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
530 return qp ? isl_upoly_sgn(qp->upoly) : 0;
533 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
535 isl_int_clear(cst->n);
536 isl_int_clear(cst->d);
539 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
541 int i;
543 for (i = 0; i < rec->n; ++i)
544 isl_upoly_free(rec->p[i]);
547 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
549 if (!up)
550 return NULL;
552 up->ref++;
553 return up;
556 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
558 struct isl_upoly_cst *cst;
559 struct isl_upoly_cst *dup;
561 cst = isl_upoly_as_cst(up);
562 if (!cst)
563 return NULL;
565 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
566 if (!dup)
567 return NULL;
568 isl_int_set(dup->n, cst->n);
569 isl_int_set(dup->d, cst->d);
571 return &dup->up;
574 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
576 int i;
577 struct isl_upoly_rec *rec;
578 struct isl_upoly_rec *dup;
580 rec = isl_upoly_as_rec(up);
581 if (!rec)
582 return NULL;
584 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
585 if (!dup)
586 return NULL;
588 for (i = 0; i < rec->n; ++i) {
589 dup->p[i] = isl_upoly_copy(rec->p[i]);
590 if (!dup->p[i])
591 goto error;
592 dup->n++;
595 return &dup->up;
596 error:
597 isl_upoly_free(&dup->up);
598 return NULL;
601 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
603 if (!up)
604 return NULL;
606 if (isl_upoly_is_cst(up))
607 return isl_upoly_dup_cst(up);
608 else
609 return isl_upoly_dup_rec(up);
612 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
614 if (!up)
615 return NULL;
617 if (up->ref == 1)
618 return up;
619 up->ref--;
620 return isl_upoly_dup(up);
623 void isl_upoly_free(__isl_take struct isl_upoly *up)
625 if (!up)
626 return;
628 if (--up->ref > 0)
629 return;
631 if (up->var < 0)
632 upoly_free_cst((struct isl_upoly_cst *)up);
633 else
634 upoly_free_rec((struct isl_upoly_rec *)up);
636 isl_ctx_deref(up->ctx);
637 free(up);
640 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
642 isl_int gcd;
644 isl_int_init(gcd);
645 isl_int_gcd(gcd, cst->n, cst->d);
646 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
647 isl_int_divexact(cst->n, cst->n, gcd);
648 isl_int_divexact(cst->d, cst->d, gcd);
650 isl_int_clear(gcd);
653 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
654 __isl_take struct isl_upoly *up2)
656 struct isl_upoly_cst *cst1;
657 struct isl_upoly_cst *cst2;
659 up1 = isl_upoly_cow(up1);
660 if (!up1 || !up2)
661 goto error;
663 cst1 = isl_upoly_as_cst(up1);
664 cst2 = isl_upoly_as_cst(up2);
666 if (isl_int_eq(cst1->d, cst2->d))
667 isl_int_add(cst1->n, cst1->n, cst2->n);
668 else {
669 isl_int_mul(cst1->n, cst1->n, cst2->d);
670 isl_int_addmul(cst1->n, cst2->n, cst1->d);
671 isl_int_mul(cst1->d, cst1->d, cst2->d);
674 isl_upoly_cst_reduce(cst1);
676 isl_upoly_free(up2);
677 return up1;
678 error:
679 isl_upoly_free(up1);
680 isl_upoly_free(up2);
681 return NULL;
684 static __isl_give struct isl_upoly *replace_by_zero(
685 __isl_take struct isl_upoly *up)
687 struct isl_ctx *ctx;
689 if (!up)
690 return NULL;
691 ctx = up->ctx;
692 isl_upoly_free(up);
693 return isl_upoly_zero(ctx);
696 static __isl_give struct isl_upoly *replace_by_constant_term(
697 __isl_take struct isl_upoly *up)
699 struct isl_upoly_rec *rec;
700 struct isl_upoly *cst;
702 if (!up)
703 return NULL;
705 rec = isl_upoly_as_rec(up);
706 if (!rec)
707 goto error;
708 cst = isl_upoly_copy(rec->p[0]);
709 isl_upoly_free(up);
710 return cst;
711 error:
712 isl_upoly_free(up);
713 return NULL;
716 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
717 __isl_take struct isl_upoly *up2)
719 int i;
720 struct isl_upoly_rec *rec1, *rec2;
722 if (!up1 || !up2)
723 goto error;
725 if (isl_upoly_is_nan(up1)) {
726 isl_upoly_free(up2);
727 return up1;
730 if (isl_upoly_is_nan(up2)) {
731 isl_upoly_free(up1);
732 return up2;
735 if (isl_upoly_is_zero(up1)) {
736 isl_upoly_free(up1);
737 return up2;
740 if (isl_upoly_is_zero(up2)) {
741 isl_upoly_free(up2);
742 return up1;
745 if (up1->var < up2->var)
746 return isl_upoly_sum(up2, up1);
748 if (up2->var < up1->var) {
749 struct isl_upoly_rec *rec;
750 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
751 isl_upoly_free(up1);
752 return up2;
754 up1 = isl_upoly_cow(up1);
755 rec = isl_upoly_as_rec(up1);
756 if (!rec)
757 goto error;
758 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
759 if (rec->n == 1)
760 up1 = replace_by_constant_term(up1);
761 return up1;
764 if (isl_upoly_is_cst(up1))
765 return isl_upoly_sum_cst(up1, up2);
767 rec1 = isl_upoly_as_rec(up1);
768 rec2 = isl_upoly_as_rec(up2);
769 if (!rec1 || !rec2)
770 goto error;
772 if (rec1->n < rec2->n)
773 return isl_upoly_sum(up2, up1);
775 up1 = isl_upoly_cow(up1);
776 rec1 = isl_upoly_as_rec(up1);
777 if (!rec1)
778 goto error;
780 for (i = rec2->n - 1; i >= 0; --i) {
781 rec1->p[i] = isl_upoly_sum(rec1->p[i],
782 isl_upoly_copy(rec2->p[i]));
783 if (!rec1->p[i])
784 goto error;
785 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
786 isl_upoly_free(rec1->p[i]);
787 rec1->n--;
791 if (rec1->n == 0)
792 up1 = replace_by_zero(up1);
793 else if (rec1->n == 1)
794 up1 = replace_by_constant_term(up1);
796 isl_upoly_free(up2);
798 return up1;
799 error:
800 isl_upoly_free(up1);
801 isl_upoly_free(up2);
802 return NULL;
805 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
806 __isl_take struct isl_upoly *up, isl_int v)
808 struct isl_upoly_cst *cst;
810 up = isl_upoly_cow(up);
811 if (!up)
812 return NULL;
814 cst = isl_upoly_as_cst(up);
816 isl_int_addmul(cst->n, cst->d, v);
818 return up;
821 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
822 __isl_take struct isl_upoly *up, isl_int v)
824 struct isl_upoly_rec *rec;
826 if (!up)
827 return NULL;
829 if (isl_upoly_is_cst(up))
830 return isl_upoly_cst_add_isl_int(up, v);
832 up = isl_upoly_cow(up);
833 rec = isl_upoly_as_rec(up);
834 if (!rec)
835 goto error;
837 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
838 if (!rec->p[0])
839 goto error;
841 return up;
842 error:
843 isl_upoly_free(up);
844 return NULL;
847 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
848 __isl_take struct isl_upoly *up, isl_int v)
850 struct isl_upoly_cst *cst;
852 if (isl_upoly_is_zero(up))
853 return up;
855 up = isl_upoly_cow(up);
856 if (!up)
857 return NULL;
859 cst = isl_upoly_as_cst(up);
861 isl_int_mul(cst->n, cst->n, v);
863 return up;
866 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
867 __isl_take struct isl_upoly *up, isl_int v)
869 int i;
870 struct isl_upoly_rec *rec;
872 if (!up)
873 return NULL;
875 if (isl_upoly_is_cst(up))
876 return isl_upoly_cst_mul_isl_int(up, v);
878 up = isl_upoly_cow(up);
879 rec = isl_upoly_as_rec(up);
880 if (!rec)
881 goto error;
883 for (i = 0; i < rec->n; ++i) {
884 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
885 if (!rec->p[i])
886 goto error;
889 return up;
890 error:
891 isl_upoly_free(up);
892 return NULL;
895 /* Multiply the constant polynomial "up" by "v".
897 static __isl_give struct isl_upoly *isl_upoly_cst_scale_val(
898 __isl_take struct isl_upoly *up, __isl_keep isl_val *v)
900 struct isl_upoly_cst *cst;
902 if (isl_upoly_is_zero(up))
903 return up;
905 up = isl_upoly_cow(up);
906 if (!up)
907 return NULL;
909 cst = isl_upoly_as_cst(up);
911 isl_int_mul(cst->n, cst->n, v->n);
912 isl_int_mul(cst->d, cst->d, v->d);
913 isl_upoly_cst_reduce(cst);
915 return up;
918 /* Multiply the polynomial "up" by "v".
920 static __isl_give struct isl_upoly *isl_upoly_scale_val(
921 __isl_take struct isl_upoly *up, __isl_keep isl_val *v)
923 int i;
924 struct isl_upoly_rec *rec;
926 if (!up)
927 return NULL;
929 if (isl_upoly_is_cst(up))
930 return isl_upoly_cst_scale_val(up, v);
932 up = isl_upoly_cow(up);
933 rec = isl_upoly_as_rec(up);
934 if (!rec)
935 goto error;
937 for (i = 0; i < rec->n; ++i) {
938 rec->p[i] = isl_upoly_scale_val(rec->p[i], v);
939 if (!rec->p[i])
940 goto error;
943 return up;
944 error:
945 isl_upoly_free(up);
946 return NULL;
949 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
950 __isl_take struct isl_upoly *up2)
952 struct isl_upoly_cst *cst1;
953 struct isl_upoly_cst *cst2;
955 up1 = isl_upoly_cow(up1);
956 if (!up1 || !up2)
957 goto error;
959 cst1 = isl_upoly_as_cst(up1);
960 cst2 = isl_upoly_as_cst(up2);
962 isl_int_mul(cst1->n, cst1->n, cst2->n);
963 isl_int_mul(cst1->d, cst1->d, cst2->d);
965 isl_upoly_cst_reduce(cst1);
967 isl_upoly_free(up2);
968 return up1;
969 error:
970 isl_upoly_free(up1);
971 isl_upoly_free(up2);
972 return NULL;
975 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
976 __isl_take struct isl_upoly *up2)
978 struct isl_upoly_rec *rec1;
979 struct isl_upoly_rec *rec2;
980 struct isl_upoly_rec *res = NULL;
981 int i, j;
982 int size;
984 rec1 = isl_upoly_as_rec(up1);
985 rec2 = isl_upoly_as_rec(up2);
986 if (!rec1 || !rec2)
987 goto error;
988 size = rec1->n + rec2->n - 1;
989 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
990 if (!res)
991 goto error;
993 for (i = 0; i < rec1->n; ++i) {
994 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
995 isl_upoly_copy(rec1->p[i]));
996 if (!res->p[i])
997 goto error;
998 res->n++;
1000 for (; i < size; ++i) {
1001 res->p[i] = isl_upoly_zero(up1->ctx);
1002 if (!res->p[i])
1003 goto error;
1004 res->n++;
1006 for (i = 0; i < rec1->n; ++i) {
1007 for (j = 1; j < rec2->n; ++j) {
1008 struct isl_upoly *up;
1009 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
1010 isl_upoly_copy(rec1->p[i]));
1011 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
1012 if (!res->p[i + j])
1013 goto error;
1017 isl_upoly_free(up1);
1018 isl_upoly_free(up2);
1020 return &res->up;
1021 error:
1022 isl_upoly_free(up1);
1023 isl_upoly_free(up2);
1024 isl_upoly_free(&res->up);
1025 return NULL;
1028 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
1029 __isl_take struct isl_upoly *up2)
1031 if (!up1 || !up2)
1032 goto error;
1034 if (isl_upoly_is_nan(up1)) {
1035 isl_upoly_free(up2);
1036 return up1;
1039 if (isl_upoly_is_nan(up2)) {
1040 isl_upoly_free(up1);
1041 return up2;
1044 if (isl_upoly_is_zero(up1)) {
1045 isl_upoly_free(up2);
1046 return up1;
1049 if (isl_upoly_is_zero(up2)) {
1050 isl_upoly_free(up1);
1051 return up2;
1054 if (isl_upoly_is_one(up1)) {
1055 isl_upoly_free(up1);
1056 return up2;
1059 if (isl_upoly_is_one(up2)) {
1060 isl_upoly_free(up2);
1061 return up1;
1064 if (up1->var < up2->var)
1065 return isl_upoly_mul(up2, up1);
1067 if (up2->var < up1->var) {
1068 int i;
1069 struct isl_upoly_rec *rec;
1070 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
1071 isl_ctx *ctx = up1->ctx;
1072 isl_upoly_free(up1);
1073 isl_upoly_free(up2);
1074 return isl_upoly_nan(ctx);
1076 up1 = isl_upoly_cow(up1);
1077 rec = isl_upoly_as_rec(up1);
1078 if (!rec)
1079 goto error;
1081 for (i = 0; i < rec->n; ++i) {
1082 rec->p[i] = isl_upoly_mul(rec->p[i],
1083 isl_upoly_copy(up2));
1084 if (!rec->p[i])
1085 goto error;
1087 isl_upoly_free(up2);
1088 return up1;
1091 if (isl_upoly_is_cst(up1))
1092 return isl_upoly_mul_cst(up1, up2);
1094 return isl_upoly_mul_rec(up1, up2);
1095 error:
1096 isl_upoly_free(up1);
1097 isl_upoly_free(up2);
1098 return NULL;
1101 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
1102 unsigned power)
1104 struct isl_upoly *res;
1106 if (!up)
1107 return NULL;
1108 if (power == 1)
1109 return up;
1111 if (power % 2)
1112 res = isl_upoly_copy(up);
1113 else
1114 res = isl_upoly_one(up->ctx);
1116 while (power >>= 1) {
1117 up = isl_upoly_mul(up, isl_upoly_copy(up));
1118 if (power % 2)
1119 res = isl_upoly_mul(res, isl_upoly_copy(up));
1122 isl_upoly_free(up);
1123 return res;
1126 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
1127 unsigned n_div, __isl_take struct isl_upoly *up)
1129 struct isl_qpolynomial *qp = NULL;
1130 unsigned total;
1132 if (!dim || !up)
1133 goto error;
1135 if (!isl_space_is_set(dim))
1136 isl_die(isl_space_get_ctx(dim), isl_error_invalid,
1137 "domain of polynomial should be a set", goto error);
1139 total = isl_space_dim(dim, isl_dim_all);
1141 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
1142 if (!qp)
1143 goto error;
1145 qp->ref = 1;
1146 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1147 if (!qp->div)
1148 goto error;
1150 qp->dim = dim;
1151 qp->upoly = up;
1153 return qp;
1154 error:
1155 isl_space_free(dim);
1156 isl_upoly_free(up);
1157 isl_qpolynomial_free(qp);
1158 return NULL;
1161 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1163 if (!qp)
1164 return NULL;
1166 qp->ref++;
1167 return qp;
1170 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1172 struct isl_qpolynomial *dup;
1174 if (!qp)
1175 return NULL;
1177 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1178 isl_upoly_copy(qp->upoly));
1179 if (!dup)
1180 return NULL;
1181 isl_mat_free(dup->div);
1182 dup->div = isl_mat_copy(qp->div);
1183 if (!dup->div)
1184 goto error;
1186 return dup;
1187 error:
1188 isl_qpolynomial_free(dup);
1189 return NULL;
1192 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1194 if (!qp)
1195 return NULL;
1197 if (qp->ref == 1)
1198 return qp;
1199 qp->ref--;
1200 return isl_qpolynomial_dup(qp);
1203 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1204 __isl_take isl_qpolynomial *qp)
1206 if (!qp)
1207 return NULL;
1209 if (--qp->ref > 0)
1210 return NULL;
1212 isl_space_free(qp->dim);
1213 isl_mat_free(qp->div);
1214 isl_upoly_free(qp->upoly);
1216 free(qp);
1217 return NULL;
1220 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1222 int i;
1223 struct isl_upoly_rec *rec;
1224 struct isl_upoly_cst *cst;
1226 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1227 if (!rec)
1228 return NULL;
1229 for (i = 0; i < 1 + power; ++i) {
1230 rec->p[i] = isl_upoly_zero(ctx);
1231 if (!rec->p[i])
1232 goto error;
1233 rec->n++;
1235 cst = isl_upoly_as_cst(rec->p[power]);
1236 isl_int_set_si(cst->n, 1);
1238 return &rec->up;
1239 error:
1240 isl_upoly_free(&rec->up);
1241 return NULL;
1244 /* r array maps original positions to new positions.
1246 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1247 int *r)
1249 int i;
1250 struct isl_upoly_rec *rec;
1251 struct isl_upoly *base;
1252 struct isl_upoly *res;
1254 if (isl_upoly_is_cst(up))
1255 return up;
1257 rec = isl_upoly_as_rec(up);
1258 if (!rec)
1259 goto error;
1261 isl_assert(up->ctx, rec->n >= 1, goto error);
1263 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1264 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1266 for (i = rec->n - 2; i >= 0; --i) {
1267 res = isl_upoly_mul(res, isl_upoly_copy(base));
1268 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1271 isl_upoly_free(base);
1272 isl_upoly_free(up);
1274 return res;
1275 error:
1276 isl_upoly_free(up);
1277 return NULL;
1280 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1282 int n_row, n_col;
1283 int equal;
1285 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1286 div1->n_col >= div2->n_col, return -1);
1288 if (div1->n_row == div2->n_row)
1289 return isl_mat_is_equal(div1, div2);
1291 n_row = div1->n_row;
1292 n_col = div1->n_col;
1293 div1->n_row = div2->n_row;
1294 div1->n_col = div2->n_col;
1296 equal = isl_mat_is_equal(div1, div2);
1298 div1->n_row = n_row;
1299 div1->n_col = n_col;
1301 return equal;
1304 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1306 int li, lj;
1308 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1309 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1311 if (li != lj)
1312 return li - lj;
1314 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1317 struct isl_div_sort_info {
1318 isl_mat *div;
1319 int row;
1322 static int div_sort_cmp(const void *p1, const void *p2)
1324 const struct isl_div_sort_info *i1, *i2;
1325 i1 = (const struct isl_div_sort_info *) p1;
1326 i2 = (const struct isl_div_sort_info *) p2;
1328 return cmp_row(i1->div, i1->row, i2->row);
1331 /* Sort divs and remove duplicates.
1333 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1335 int i;
1336 int skip;
1337 int len;
1338 struct isl_div_sort_info *array = NULL;
1339 int *pos = NULL, *at = NULL;
1340 int *reordering = NULL;
1341 unsigned div_pos;
1343 if (!qp)
1344 return NULL;
1345 if (qp->div->n_row <= 1)
1346 return qp;
1348 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1350 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1351 qp->div->n_row);
1352 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1353 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1354 len = qp->div->n_col - 2;
1355 reordering = isl_alloc_array(qp->div->ctx, int, len);
1356 if (!array || !pos || !at || !reordering)
1357 goto error;
1359 for (i = 0; i < qp->div->n_row; ++i) {
1360 array[i].div = qp->div;
1361 array[i].row = i;
1362 pos[i] = i;
1363 at[i] = i;
1366 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1367 div_sort_cmp);
1369 for (i = 0; i < div_pos; ++i)
1370 reordering[i] = i;
1372 for (i = 0; i < qp->div->n_row; ++i) {
1373 if (pos[array[i].row] == i)
1374 continue;
1375 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1376 pos[at[i]] = pos[array[i].row];
1377 at[pos[array[i].row]] = at[i];
1378 at[i] = array[i].row;
1379 pos[array[i].row] = i;
1382 skip = 0;
1383 for (i = 0; i < len - div_pos; ++i) {
1384 if (i > 0 &&
1385 isl_seq_eq(qp->div->row[i - skip - 1],
1386 qp->div->row[i - skip], qp->div->n_col)) {
1387 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1388 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1389 2 + div_pos + i - skip);
1390 qp->div = isl_mat_drop_cols(qp->div,
1391 2 + div_pos + i - skip, 1);
1392 skip++;
1394 reordering[div_pos + array[i].row] = div_pos + i - skip;
1397 qp->upoly = reorder(qp->upoly, reordering);
1399 if (!qp->upoly || !qp->div)
1400 goto error;
1402 free(at);
1403 free(pos);
1404 free(array);
1405 free(reordering);
1407 return qp;
1408 error:
1409 free(at);
1410 free(pos);
1411 free(array);
1412 free(reordering);
1413 isl_qpolynomial_free(qp);
1414 return NULL;
1417 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1418 int *exp, int first)
1420 int i;
1421 struct isl_upoly_rec *rec;
1423 if (isl_upoly_is_cst(up))
1424 return up;
1426 if (up->var < first)
1427 return up;
1429 if (exp[up->var - first] == up->var - first)
1430 return up;
1432 up = isl_upoly_cow(up);
1433 if (!up)
1434 goto error;
1436 up->var = exp[up->var - first] + first;
1438 rec = isl_upoly_as_rec(up);
1439 if (!rec)
1440 goto error;
1442 for (i = 0; i < rec->n; ++i) {
1443 rec->p[i] = expand(rec->p[i], exp, first);
1444 if (!rec->p[i])
1445 goto error;
1448 return up;
1449 error:
1450 isl_upoly_free(up);
1451 return NULL;
1454 static __isl_give isl_qpolynomial *with_merged_divs(
1455 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1456 __isl_take isl_qpolynomial *qp2),
1457 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1459 int *exp1 = NULL;
1460 int *exp2 = NULL;
1461 isl_mat *div = NULL;
1462 int n_div1, n_div2;
1464 qp1 = isl_qpolynomial_cow(qp1);
1465 qp2 = isl_qpolynomial_cow(qp2);
1467 if (!qp1 || !qp2)
1468 goto error;
1470 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1471 qp1->div->n_col >= qp2->div->n_col, goto error);
1473 n_div1 = qp1->div->n_row;
1474 n_div2 = qp2->div->n_row;
1475 exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1476 exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1477 if ((n_div1 && !exp1) || (n_div2 && !exp2))
1478 goto error;
1480 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1481 if (!div)
1482 goto error;
1484 isl_mat_free(qp1->div);
1485 qp1->div = isl_mat_copy(div);
1486 isl_mat_free(qp2->div);
1487 qp2->div = isl_mat_copy(div);
1489 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1490 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1492 if (!qp1->upoly || !qp2->upoly)
1493 goto error;
1495 isl_mat_free(div);
1496 free(exp1);
1497 free(exp2);
1499 return fn(qp1, qp2);
1500 error:
1501 isl_mat_free(div);
1502 free(exp1);
1503 free(exp2);
1504 isl_qpolynomial_free(qp1);
1505 isl_qpolynomial_free(qp2);
1506 return NULL;
1509 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1510 __isl_take isl_qpolynomial *qp2)
1512 qp1 = isl_qpolynomial_cow(qp1);
1514 if (!qp1 || !qp2)
1515 goto error;
1517 if (qp1->div->n_row < qp2->div->n_row)
1518 return isl_qpolynomial_add(qp2, qp1);
1520 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1521 if (!compatible_divs(qp1->div, qp2->div))
1522 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1524 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1525 if (!qp1->upoly)
1526 goto error;
1528 isl_qpolynomial_free(qp2);
1530 return qp1;
1531 error:
1532 isl_qpolynomial_free(qp1);
1533 isl_qpolynomial_free(qp2);
1534 return NULL;
1537 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1538 __isl_keep isl_set *dom,
1539 __isl_take isl_qpolynomial *qp1,
1540 __isl_take isl_qpolynomial *qp2)
1542 qp1 = isl_qpolynomial_add(qp1, qp2);
1543 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1544 return qp1;
1547 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1548 __isl_take isl_qpolynomial *qp2)
1550 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1553 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1554 __isl_take isl_qpolynomial *qp, isl_int v)
1556 if (isl_int_is_zero(v))
1557 return qp;
1559 qp = isl_qpolynomial_cow(qp);
1560 if (!qp)
1561 return NULL;
1563 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1564 if (!qp->upoly)
1565 goto error;
1567 return qp;
1568 error:
1569 isl_qpolynomial_free(qp);
1570 return NULL;
1574 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1576 if (!qp)
1577 return NULL;
1579 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1582 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1583 __isl_take isl_qpolynomial *qp, isl_int v)
1585 if (isl_int_is_one(v))
1586 return qp;
1588 if (qp && isl_int_is_zero(v)) {
1589 isl_qpolynomial *zero;
1590 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1591 isl_qpolynomial_free(qp);
1592 return zero;
1595 qp = isl_qpolynomial_cow(qp);
1596 if (!qp)
1597 return NULL;
1599 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1600 if (!qp->upoly)
1601 goto error;
1603 return qp;
1604 error:
1605 isl_qpolynomial_free(qp);
1606 return NULL;
1609 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1610 __isl_take isl_qpolynomial *qp, isl_int v)
1612 return isl_qpolynomial_mul_isl_int(qp, v);
1615 /* Multiply "qp" by "v".
1617 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1618 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1620 if (!qp || !v)
1621 goto error;
1623 if (!isl_val_is_rat(v))
1624 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1625 "expecting rational factor", goto error);
1627 if (isl_val_is_one(v)) {
1628 isl_val_free(v);
1629 return qp;
1632 if (isl_val_is_zero(v)) {
1633 isl_space *space;
1635 space = isl_qpolynomial_get_domain_space(qp);
1636 isl_qpolynomial_free(qp);
1637 isl_val_free(v);
1638 return isl_qpolynomial_zero_on_domain(space);
1641 qp = isl_qpolynomial_cow(qp);
1642 if (!qp)
1643 goto error;
1645 qp->upoly = isl_upoly_scale_val(qp->upoly, v);
1646 if (!qp->upoly)
1647 qp = isl_qpolynomial_free(qp);
1649 isl_val_free(v);
1650 return qp;
1651 error:
1652 isl_val_free(v);
1653 isl_qpolynomial_free(qp);
1654 return NULL;
1657 /* Divide "qp" by "v".
1659 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1660 __isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1662 if (!qp || !v)
1663 goto error;
1665 if (!isl_val_is_rat(v))
1666 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1667 "expecting rational factor", goto error);
1668 if (isl_val_is_zero(v))
1669 isl_die(isl_val_get_ctx(v), isl_error_invalid,
1670 "cannot scale down by zero", goto error);
1672 return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
1673 error:
1674 isl_val_free(v);
1675 isl_qpolynomial_free(qp);
1676 return NULL;
1679 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1680 __isl_take isl_qpolynomial *qp2)
1682 qp1 = isl_qpolynomial_cow(qp1);
1684 if (!qp1 || !qp2)
1685 goto error;
1687 if (qp1->div->n_row < qp2->div->n_row)
1688 return isl_qpolynomial_mul(qp2, qp1);
1690 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1691 if (!compatible_divs(qp1->div, qp2->div))
1692 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1694 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1695 if (!qp1->upoly)
1696 goto error;
1698 isl_qpolynomial_free(qp2);
1700 return qp1;
1701 error:
1702 isl_qpolynomial_free(qp1);
1703 isl_qpolynomial_free(qp2);
1704 return NULL;
1707 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1708 unsigned power)
1710 qp = isl_qpolynomial_cow(qp);
1712 if (!qp)
1713 return NULL;
1715 qp->upoly = isl_upoly_pow(qp->upoly, power);
1716 if (!qp->upoly)
1717 goto error;
1719 return qp;
1720 error:
1721 isl_qpolynomial_free(qp);
1722 return NULL;
1725 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1726 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1728 int i;
1730 if (power == 1)
1731 return pwqp;
1733 pwqp = isl_pw_qpolynomial_cow(pwqp);
1734 if (!pwqp)
1735 return NULL;
1737 for (i = 0; i < pwqp->n; ++i) {
1738 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1739 if (!pwqp->p[i].qp)
1740 return isl_pw_qpolynomial_free(pwqp);
1743 return pwqp;
1746 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1747 __isl_take isl_space *dim)
1749 if (!dim)
1750 return NULL;
1751 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1754 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1755 __isl_take isl_space *dim)
1757 if (!dim)
1758 return NULL;
1759 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1762 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1763 __isl_take isl_space *dim)
1765 if (!dim)
1766 return NULL;
1767 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1770 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1771 __isl_take isl_space *dim)
1773 if (!dim)
1774 return NULL;
1775 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1778 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1779 __isl_take isl_space *dim)
1781 if (!dim)
1782 return NULL;
1783 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1786 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1787 __isl_take isl_space *dim,
1788 isl_int v)
1790 struct isl_qpolynomial *qp;
1791 struct isl_upoly_cst *cst;
1793 if (!dim)
1794 return NULL;
1796 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1797 if (!qp)
1798 return NULL;
1800 cst = isl_upoly_as_cst(qp->upoly);
1801 isl_int_set(cst->n, v);
1803 return qp;
1806 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1807 isl_int *n, isl_int *d)
1809 struct isl_upoly_cst *cst;
1811 if (!qp)
1812 return -1;
1814 if (!isl_upoly_is_cst(qp->upoly))
1815 return 0;
1817 cst = isl_upoly_as_cst(qp->upoly);
1818 if (!cst)
1819 return -1;
1821 if (n)
1822 isl_int_set(*n, cst->n);
1823 if (d)
1824 isl_int_set(*d, cst->d);
1826 return 1;
1829 /* Return the constant term of "up".
1831 static __isl_give isl_val *isl_upoly_get_constant_val(
1832 __isl_keep struct isl_upoly *up)
1834 struct isl_upoly_cst *cst;
1836 if (!up)
1837 return NULL;
1839 while (!isl_upoly_is_cst(up)) {
1840 struct isl_upoly_rec *rec;
1842 rec = isl_upoly_as_rec(up);
1843 if (!rec)
1844 return NULL;
1845 up = rec->p[0];
1848 cst = isl_upoly_as_cst(up);
1849 if (!cst)
1850 return NULL;
1851 return isl_val_rat_from_isl_int(cst->up.ctx, cst->n, cst->d);
1854 /* Return the constant term of "qp".
1856 __isl_give isl_val *isl_qpolynomial_get_constant_val(
1857 __isl_keep isl_qpolynomial *qp)
1859 if (!qp)
1860 return NULL;
1862 return isl_upoly_get_constant_val(qp->upoly);
1865 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1867 int is_cst;
1868 struct isl_upoly_rec *rec;
1870 if (!up)
1871 return -1;
1873 if (up->var < 0)
1874 return 1;
1876 rec = isl_upoly_as_rec(up);
1877 if (!rec)
1878 return -1;
1880 if (rec->n > 2)
1881 return 0;
1883 isl_assert(up->ctx, rec->n > 1, return -1);
1885 is_cst = isl_upoly_is_cst(rec->p[1]);
1886 if (is_cst < 0)
1887 return -1;
1888 if (!is_cst)
1889 return 0;
1891 return isl_upoly_is_affine(rec->p[0]);
1894 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1896 if (!qp)
1897 return -1;
1899 if (qp->div->n_row > 0)
1900 return 0;
1902 return isl_upoly_is_affine(qp->upoly);
1905 static void update_coeff(__isl_keep isl_vec *aff,
1906 __isl_keep struct isl_upoly_cst *cst, int pos)
1908 isl_int gcd;
1909 isl_int f;
1911 if (isl_int_is_zero(cst->n))
1912 return;
1914 isl_int_init(gcd);
1915 isl_int_init(f);
1916 isl_int_gcd(gcd, cst->d, aff->el[0]);
1917 isl_int_divexact(f, cst->d, gcd);
1918 isl_int_divexact(gcd, aff->el[0], gcd);
1919 isl_seq_scale(aff->el, aff->el, f, aff->size);
1920 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1921 isl_int_clear(gcd);
1922 isl_int_clear(f);
1925 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1926 __isl_keep isl_vec *aff)
1928 struct isl_upoly_cst *cst;
1929 struct isl_upoly_rec *rec;
1931 if (!up || !aff)
1932 return -1;
1934 if (up->var < 0) {
1935 struct isl_upoly_cst *cst;
1937 cst = isl_upoly_as_cst(up);
1938 if (!cst)
1939 return -1;
1940 update_coeff(aff, cst, 0);
1941 return 0;
1944 rec = isl_upoly_as_rec(up);
1945 if (!rec)
1946 return -1;
1947 isl_assert(up->ctx, rec->n == 2, return -1);
1949 cst = isl_upoly_as_cst(rec->p[1]);
1950 if (!cst)
1951 return -1;
1952 update_coeff(aff, cst, 1 + up->var);
1954 return isl_upoly_update_affine(rec->p[0], aff);
1957 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1958 __isl_keep isl_qpolynomial *qp)
1960 isl_vec *aff;
1961 unsigned d;
1963 if (!qp)
1964 return NULL;
1966 d = isl_space_dim(qp->dim, isl_dim_all);
1967 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1968 if (!aff)
1969 return NULL;
1971 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1972 isl_int_set_si(aff->el[0], 1);
1974 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1975 goto error;
1977 return aff;
1978 error:
1979 isl_vec_free(aff);
1980 return NULL;
1983 /* Compare two quasi-polynomials.
1985 * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
1986 * than "qp2" and 0 if they are equal.
1988 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
1989 __isl_keep isl_qpolynomial *qp2)
1991 int cmp;
1993 if (qp1 == qp2)
1994 return 0;
1995 if (!qp1)
1996 return -1;
1997 if (!qp2)
1998 return 1;
2000 cmp = isl_space_cmp(qp1->dim, qp2->dim);
2001 if (cmp != 0)
2002 return cmp;
2004 cmp = isl_local_cmp(qp1->div, qp2->div);
2005 if (cmp != 0)
2006 return cmp;
2008 return isl_upoly_plain_cmp(qp1->upoly, qp2->upoly);
2011 /* Is "qp1" obviously equal to "qp2"?
2013 * NaN is not equal to anything, not even to another NaN.
2015 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2016 __isl_keep isl_qpolynomial *qp2)
2018 isl_bool equal;
2020 if (!qp1 || !qp2)
2021 return isl_bool_error;
2023 if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2024 return isl_bool_false;
2026 equal = isl_space_is_equal(qp1->dim, qp2->dim);
2027 if (equal < 0 || !equal)
2028 return equal;
2030 equal = isl_mat_is_equal(qp1->div, qp2->div);
2031 if (equal < 0 || !equal)
2032 return equal;
2034 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
2037 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
2039 int i;
2040 struct isl_upoly_rec *rec;
2042 if (isl_upoly_is_cst(up)) {
2043 struct isl_upoly_cst *cst;
2044 cst = isl_upoly_as_cst(up);
2045 if (!cst)
2046 return;
2047 isl_int_lcm(*d, *d, cst->d);
2048 return;
2051 rec = isl_upoly_as_rec(up);
2052 if (!rec)
2053 return;
2055 for (i = 0; i < rec->n; ++i)
2056 upoly_update_den(rec->p[i], d);
2059 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
2061 isl_int_set_si(*d, 1);
2062 if (!qp)
2063 return;
2064 upoly_update_den(qp->upoly, d);
2067 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2068 __isl_take isl_space *dim, int pos, int power)
2070 struct isl_ctx *ctx;
2072 if (!dim)
2073 return NULL;
2075 ctx = dim->ctx;
2077 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
2080 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
2081 enum isl_dim_type type, unsigned pos)
2083 if (!dim)
2084 return NULL;
2086 isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
2087 isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
2089 if (type == isl_dim_set)
2090 pos += isl_space_dim(dim, isl_dim_param);
2092 return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
2093 error:
2094 isl_space_free(dim);
2095 return NULL;
2098 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
2099 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
2101 int i;
2102 struct isl_upoly_rec *rec;
2103 struct isl_upoly *base, *res;
2105 if (!up)
2106 return NULL;
2108 if (isl_upoly_is_cst(up))
2109 return up;
2111 if (up->var < first)
2112 return up;
2114 rec = isl_upoly_as_rec(up);
2115 if (!rec)
2116 goto error;
2118 isl_assert(up->ctx, rec->n >= 1, goto error);
2120 if (up->var >= first + n)
2121 base = isl_upoly_var_pow(up->ctx, up->var, 1);
2122 else
2123 base = isl_upoly_copy(subs[up->var - first]);
2125 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
2126 for (i = rec->n - 2; i >= 0; --i) {
2127 struct isl_upoly *t;
2128 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
2129 res = isl_upoly_mul(res, isl_upoly_copy(base));
2130 res = isl_upoly_sum(res, t);
2133 isl_upoly_free(base);
2134 isl_upoly_free(up);
2136 return res;
2137 error:
2138 isl_upoly_free(up);
2139 return NULL;
2142 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
2143 isl_int denom, unsigned len)
2145 int i;
2146 struct isl_upoly *up;
2148 isl_assert(ctx, len >= 1, return NULL);
2150 up = isl_upoly_rat_cst(ctx, f[0], denom);
2151 for (i = 0; i < len - 1; ++i) {
2152 struct isl_upoly *t;
2153 struct isl_upoly *c;
2155 if (isl_int_is_zero(f[1 + i]))
2156 continue;
2158 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
2159 t = isl_upoly_var_pow(ctx, i, 1);
2160 t = isl_upoly_mul(c, t);
2161 up = isl_upoly_sum(up, t);
2164 return up;
2167 /* Remove common factor of non-constant terms and denominator.
2169 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2171 isl_ctx *ctx = qp->div->ctx;
2172 unsigned total = qp->div->n_col - 2;
2174 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2175 isl_int_gcd(ctx->normalize_gcd,
2176 ctx->normalize_gcd, qp->div->row[div][0]);
2177 if (isl_int_is_one(ctx->normalize_gcd))
2178 return;
2180 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2181 ctx->normalize_gcd, total);
2182 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2183 ctx->normalize_gcd);
2184 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2185 ctx->normalize_gcd);
2188 /* Replace the integer division identified by "div" by the polynomial "s".
2189 * The integer division is assumed not to appear in the definition
2190 * of any other integer divisions.
2192 static __isl_give isl_qpolynomial *substitute_div(
2193 __isl_take isl_qpolynomial *qp,
2194 int div, __isl_take struct isl_upoly *s)
2196 int i;
2197 int total;
2198 int *reordering;
2200 if (!qp || !s)
2201 goto error;
2203 qp = isl_qpolynomial_cow(qp);
2204 if (!qp)
2205 goto error;
2207 total = isl_space_dim(qp->dim, isl_dim_all);
2208 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
2209 if (!qp->upoly)
2210 goto error;
2212 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
2213 if (!reordering)
2214 goto error;
2215 for (i = 0; i < total + div; ++i)
2216 reordering[i] = i;
2217 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
2218 reordering[i] = i - 1;
2219 qp->div = isl_mat_drop_rows(qp->div, div, 1);
2220 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
2221 qp->upoly = reorder(qp->upoly, reordering);
2222 free(reordering);
2224 if (!qp->upoly || !qp->div)
2225 goto error;
2227 isl_upoly_free(s);
2228 return qp;
2229 error:
2230 isl_qpolynomial_free(qp);
2231 isl_upoly_free(s);
2232 return NULL;
2235 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2236 * divisions because d is equal to 1 by their definition, i.e., e.
2238 static __isl_give isl_qpolynomial *substitute_non_divs(
2239 __isl_take isl_qpolynomial *qp)
2241 int i, j;
2242 int total;
2243 struct isl_upoly *s;
2245 if (!qp)
2246 return NULL;
2248 total = isl_space_dim(qp->dim, isl_dim_all);
2249 for (i = 0; qp && i < qp->div->n_row; ++i) {
2250 if (!isl_int_is_one(qp->div->row[i][0]))
2251 continue;
2252 for (j = i + 1; j < qp->div->n_row; ++j) {
2253 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
2254 continue;
2255 isl_seq_combine(qp->div->row[j] + 1,
2256 qp->div->ctx->one, qp->div->row[j] + 1,
2257 qp->div->row[j][2 + total + i],
2258 qp->div->row[i] + 1, 1 + total + i);
2259 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
2260 normalize_div(qp, j);
2262 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2263 qp->div->row[i][0], qp->div->n_col - 1);
2264 qp = substitute_div(qp, i, s);
2265 --i;
2268 return qp;
2271 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2272 * with d the denominator. When replacing the coefficient e of x by
2273 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2274 * inside the division, so we need to add floor(e/d) * x outside.
2275 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2276 * to adjust the coefficient of x in each later div that depends on the
2277 * current div "div" and also in the affine expressions in the rows of "mat"
2278 * (if they too depend on "div").
2280 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2281 __isl_keep isl_mat **mat)
2283 int i, j;
2284 isl_int v;
2285 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2287 isl_int_init(v);
2288 for (i = 0; i < 1 + total + div; ++i) {
2289 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2290 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2291 continue;
2292 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2293 isl_int_fdiv_r(qp->div->row[div][1 + i],
2294 qp->div->row[div][1 + i], qp->div->row[div][0]);
2295 *mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2296 for (j = div + 1; j < qp->div->n_row; ++j) {
2297 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2298 continue;
2299 isl_int_addmul(qp->div->row[j][1 + i],
2300 v, qp->div->row[j][2 + total + div]);
2303 isl_int_clear(v);
2306 /* Check if the last non-zero coefficient is bigger that half of the
2307 * denominator. If so, we will invert the div to further reduce the number
2308 * of distinct divs that may appear.
2309 * If the last non-zero coefficient is exactly half the denominator,
2310 * then we continue looking for earlier coefficients that are bigger
2311 * than half the denominator.
2313 static int needs_invert(__isl_keep isl_mat *div, int row)
2315 int i;
2316 int cmp;
2318 for (i = div->n_col - 1; i >= 1; --i) {
2319 if (isl_int_is_zero(div->row[row][i]))
2320 continue;
2321 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2322 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2323 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2324 if (cmp)
2325 return cmp > 0;
2326 if (i == 1)
2327 return 1;
2330 return 0;
2333 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2334 * We only invert the coefficients of e (and the coefficient of q in
2335 * later divs and in the rows of "mat"). After calling this function, the
2336 * coefficients of e should be reduced again.
2338 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2339 __isl_keep isl_mat **mat)
2341 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2343 isl_seq_neg(qp->div->row[div] + 1,
2344 qp->div->row[div] + 1, qp->div->n_col - 1);
2345 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2346 isl_int_add(qp->div->row[div][1],
2347 qp->div->row[div][1], qp->div->row[div][0]);
2348 *mat = isl_mat_col_neg(*mat, 1 + total + div);
2349 isl_mat_col_mul(qp->div, 2 + total + div,
2350 qp->div->ctx->negone, 2 + total + div);
2353 /* Reduce all divs of "qp" to have coefficients
2354 * in the interval [0, d-1], with d the denominator and such that the
2355 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2356 * The modifications to the integer divisions need to be reflected
2357 * in the factors of the polynomial that refer to the original
2358 * integer divisions. To this end, the modifications are collected
2359 * as a set of affine expressions and then plugged into the polynomial.
2361 * After the reduction, some divs may have become redundant or identical,
2362 * so we call substitute_non_divs and sort_divs. If these functions
2363 * eliminate divs or merge two or more divs into one, the coefficients
2364 * of the enclosing divs may have to be reduced again, so we call
2365 * ourselves recursively if the number of divs decreases.
2367 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2369 int i;
2370 isl_ctx *ctx;
2371 isl_mat *mat;
2372 struct isl_upoly **s;
2373 unsigned o_div, n_div, total;
2375 if (!qp)
2376 return NULL;
2378 total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2379 n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2380 o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2381 ctx = isl_qpolynomial_get_ctx(qp);
2382 mat = isl_mat_zero(ctx, n_div, 1 + total);
2384 for (i = 0; i < n_div; ++i)
2385 mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2387 for (i = 0; i < qp->div->n_row; ++i) {
2388 normalize_div(qp, i);
2389 reduce_div(qp, i, &mat);
2390 if (needs_invert(qp->div, i)) {
2391 invert_div(qp, i, &mat);
2392 reduce_div(qp, i, &mat);
2395 if (!mat)
2396 goto error;
2398 s = isl_alloc_array(ctx, struct isl_upoly *, n_div);
2399 if (n_div && !s)
2400 goto error;
2401 for (i = 0; i < n_div; ++i)
2402 s[i] = isl_upoly_from_affine(ctx, mat->row[i], ctx->one,
2403 1 + total);
2404 qp->upoly = isl_upoly_subs(qp->upoly, o_div - 1, n_div, s);
2405 for (i = 0; i < n_div; ++i)
2406 isl_upoly_free(s[i]);
2407 free(s);
2408 if (!qp->upoly)
2409 goto error;
2411 isl_mat_free(mat);
2413 qp = substitute_non_divs(qp);
2414 qp = sort_divs(qp);
2415 if (qp && isl_qpolynomial_domain_dim(qp, isl_dim_div) < n_div)
2416 return reduce_divs(qp);
2418 return qp;
2419 error:
2420 isl_qpolynomial_free(qp);
2421 isl_mat_free(mat);
2422 return NULL;
2425 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2426 __isl_take isl_space *dim, const isl_int n, const isl_int d)
2428 struct isl_qpolynomial *qp;
2429 struct isl_upoly_cst *cst;
2431 if (!dim)
2432 return NULL;
2434 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2435 if (!qp)
2436 return NULL;
2438 cst = isl_upoly_as_cst(qp->upoly);
2439 isl_int_set(cst->n, n);
2440 isl_int_set(cst->d, d);
2442 return qp;
2445 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2447 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2448 __isl_take isl_space *domain, __isl_take isl_val *val)
2450 isl_qpolynomial *qp;
2451 struct isl_upoly_cst *cst;
2453 if (!domain || !val)
2454 goto error;
2456 qp = isl_qpolynomial_alloc(isl_space_copy(domain), 0,
2457 isl_upoly_zero(domain->ctx));
2458 if (!qp)
2459 goto error;
2461 cst = isl_upoly_as_cst(qp->upoly);
2462 isl_int_set(cst->n, val->n);
2463 isl_int_set(cst->d, val->d);
2465 isl_space_free(domain);
2466 isl_val_free(val);
2467 return qp;
2468 error:
2469 isl_space_free(domain);
2470 isl_val_free(val);
2471 return NULL;
2474 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2476 struct isl_upoly_rec *rec;
2477 int i;
2479 if (!up)
2480 return -1;
2482 if (isl_upoly_is_cst(up))
2483 return 0;
2485 if (up->var < d)
2486 active[up->var] = 1;
2488 rec = isl_upoly_as_rec(up);
2489 for (i = 0; i < rec->n; ++i)
2490 if (up_set_active(rec->p[i], active, d) < 0)
2491 return -1;
2493 return 0;
2496 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2498 int i, j;
2499 int d = isl_space_dim(qp->dim, isl_dim_all);
2501 if (!qp || !active)
2502 return -1;
2504 for (i = 0; i < d; ++i)
2505 for (j = 0; j < qp->div->n_row; ++j) {
2506 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2507 continue;
2508 active[i] = 1;
2509 break;
2512 return up_set_active(qp->upoly, active, d);
2515 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2516 enum isl_dim_type type, unsigned first, unsigned n)
2518 int i;
2519 int *active = NULL;
2520 isl_bool involves = isl_bool_false;
2522 if (!qp)
2523 return isl_bool_error;
2524 if (n == 0)
2525 return isl_bool_false;
2527 isl_assert(qp->dim->ctx,
2528 first + n <= isl_qpolynomial_dim(qp, type),
2529 return isl_bool_error);
2530 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2531 type == isl_dim_in, return isl_bool_error);
2533 active = isl_calloc_array(qp->dim->ctx, int,
2534 isl_space_dim(qp->dim, isl_dim_all));
2535 if (set_active(qp, active) < 0)
2536 goto error;
2538 if (type == isl_dim_in)
2539 first += isl_space_dim(qp->dim, isl_dim_param);
2540 for (i = 0; i < n; ++i)
2541 if (active[first + i]) {
2542 involves = isl_bool_true;
2543 break;
2546 free(active);
2548 return involves;
2549 error:
2550 free(active);
2551 return isl_bool_error;
2554 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2555 * of the divs that do appear in the quasi-polynomial.
2557 static __isl_give isl_qpolynomial *remove_redundant_divs(
2558 __isl_take isl_qpolynomial *qp)
2560 int i, j;
2561 int d;
2562 int len;
2563 int skip;
2564 int *active = NULL;
2565 int *reordering = NULL;
2566 int redundant = 0;
2567 int n_div;
2568 isl_ctx *ctx;
2570 if (!qp)
2571 return NULL;
2572 if (qp->div->n_row == 0)
2573 return qp;
2575 d = isl_space_dim(qp->dim, isl_dim_all);
2576 len = qp->div->n_col - 2;
2577 ctx = isl_qpolynomial_get_ctx(qp);
2578 active = isl_calloc_array(ctx, int, len);
2579 if (!active)
2580 goto error;
2582 if (up_set_active(qp->upoly, active, len) < 0)
2583 goto error;
2585 for (i = qp->div->n_row - 1; i >= 0; --i) {
2586 if (!active[d + i]) {
2587 redundant = 1;
2588 continue;
2590 for (j = 0; j < i; ++j) {
2591 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2592 continue;
2593 active[d + j] = 1;
2594 break;
2598 if (!redundant) {
2599 free(active);
2600 return qp;
2603 reordering = isl_alloc_array(qp->div->ctx, int, len);
2604 if (!reordering)
2605 goto error;
2607 for (i = 0; i < d; ++i)
2608 reordering[i] = i;
2610 skip = 0;
2611 n_div = qp->div->n_row;
2612 for (i = 0; i < n_div; ++i) {
2613 if (!active[d + i]) {
2614 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2615 qp->div = isl_mat_drop_cols(qp->div,
2616 2 + d + i - skip, 1);
2617 skip++;
2619 reordering[d + i] = d + i - skip;
2622 qp->upoly = reorder(qp->upoly, reordering);
2624 if (!qp->upoly || !qp->div)
2625 goto error;
2627 free(active);
2628 free(reordering);
2630 return qp;
2631 error:
2632 free(active);
2633 free(reordering);
2634 isl_qpolynomial_free(qp);
2635 return NULL;
2638 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2639 unsigned first, unsigned n)
2641 int i;
2642 struct isl_upoly_rec *rec;
2644 if (!up)
2645 return NULL;
2646 if (n == 0 || up->var < 0 || up->var < first)
2647 return up;
2648 if (up->var < first + n) {
2649 up = replace_by_constant_term(up);
2650 return isl_upoly_drop(up, first, n);
2652 up = isl_upoly_cow(up);
2653 if (!up)
2654 return NULL;
2655 up->var -= n;
2656 rec = isl_upoly_as_rec(up);
2657 if (!rec)
2658 goto error;
2660 for (i = 0; i < rec->n; ++i) {
2661 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2662 if (!rec->p[i])
2663 goto error;
2666 return up;
2667 error:
2668 isl_upoly_free(up);
2669 return NULL;
2672 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2673 __isl_take isl_qpolynomial *qp,
2674 enum isl_dim_type type, unsigned pos, const char *s)
2676 qp = isl_qpolynomial_cow(qp);
2677 if (!qp)
2678 return NULL;
2679 if (type == isl_dim_out)
2680 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2681 "cannot set name of output/set dimension",
2682 return isl_qpolynomial_free(qp));
2683 if (type == isl_dim_in)
2684 type = isl_dim_set;
2685 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2686 if (!qp->dim)
2687 goto error;
2688 return qp;
2689 error:
2690 isl_qpolynomial_free(qp);
2691 return NULL;
2694 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2695 __isl_take isl_qpolynomial *qp,
2696 enum isl_dim_type type, unsigned first, unsigned n)
2698 if (!qp)
2699 return NULL;
2700 if (type == isl_dim_out)
2701 isl_die(qp->dim->ctx, isl_error_invalid,
2702 "cannot drop output/set dimension",
2703 goto error);
2704 if (type == isl_dim_in)
2705 type = isl_dim_set;
2706 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2707 return qp;
2709 qp = isl_qpolynomial_cow(qp);
2710 if (!qp)
2711 return NULL;
2713 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2714 goto error);
2715 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2716 type == isl_dim_set, goto error);
2718 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2719 if (!qp->dim)
2720 goto error;
2722 if (type == isl_dim_set)
2723 first += isl_space_dim(qp->dim, isl_dim_param);
2725 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2726 if (!qp->div)
2727 goto error;
2729 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2730 if (!qp->upoly)
2731 goto error;
2733 return qp;
2734 error:
2735 isl_qpolynomial_free(qp);
2736 return NULL;
2739 /* Project the domain of the quasi-polynomial onto its parameter space.
2740 * The quasi-polynomial may not involve any of the domain dimensions.
2742 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2743 __isl_take isl_qpolynomial *qp)
2745 isl_space *space;
2746 unsigned n;
2747 int involves;
2749 n = isl_qpolynomial_dim(qp, isl_dim_in);
2750 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2751 if (involves < 0)
2752 return isl_qpolynomial_free(qp);
2753 if (involves)
2754 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2755 "polynomial involves some of the domain dimensions",
2756 return isl_qpolynomial_free(qp));
2757 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2758 space = isl_qpolynomial_get_domain_space(qp);
2759 space = isl_space_params(space);
2760 qp = isl_qpolynomial_reset_domain_space(qp, space);
2761 return qp;
2764 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2765 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2767 int i, j, k;
2768 isl_int denom;
2769 unsigned total;
2770 unsigned n_div;
2771 struct isl_upoly *up;
2773 if (!eq)
2774 goto error;
2775 if (eq->n_eq == 0) {
2776 isl_basic_set_free(eq);
2777 return qp;
2780 qp = isl_qpolynomial_cow(qp);
2781 if (!qp)
2782 goto error;
2783 qp->div = isl_mat_cow(qp->div);
2784 if (!qp->div)
2785 goto error;
2787 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2788 n_div = eq->n_div;
2789 isl_int_init(denom);
2790 for (i = 0; i < eq->n_eq; ++i) {
2791 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2792 if (j < 0 || j == 0 || j >= total)
2793 continue;
2795 for (k = 0; k < qp->div->n_row; ++k) {
2796 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2797 continue;
2798 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2799 &qp->div->row[k][0]);
2800 normalize_div(qp, k);
2803 if (isl_int_is_pos(eq->eq[i][j]))
2804 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2805 isl_int_abs(denom, eq->eq[i][j]);
2806 isl_int_set_si(eq->eq[i][j], 0);
2808 up = isl_upoly_from_affine(qp->dim->ctx,
2809 eq->eq[i], denom, total);
2810 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2811 isl_upoly_free(up);
2813 isl_int_clear(denom);
2815 if (!qp->upoly)
2816 goto error;
2818 isl_basic_set_free(eq);
2820 qp = substitute_non_divs(qp);
2821 qp = sort_divs(qp);
2823 return qp;
2824 error:
2825 isl_basic_set_free(eq);
2826 isl_qpolynomial_free(qp);
2827 return NULL;
2830 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2832 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2833 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2835 if (!qp || !eq)
2836 goto error;
2837 if (qp->div->n_row > 0)
2838 eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
2839 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2840 error:
2841 isl_basic_set_free(eq);
2842 isl_qpolynomial_free(qp);
2843 return NULL;
2846 static __isl_give isl_basic_set *add_div_constraints(
2847 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2849 int i;
2850 unsigned total;
2852 if (!bset || !div)
2853 goto error;
2855 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2856 if (!bset)
2857 goto error;
2858 total = isl_basic_set_total_dim(bset);
2859 for (i = 0; i < div->n_row; ++i)
2860 if (isl_basic_set_add_div_constraints_var(bset,
2861 total - div->n_row + i, div->row[i]) < 0)
2862 goto error;
2864 isl_mat_free(div);
2865 return bset;
2866 error:
2867 isl_mat_free(div);
2868 isl_basic_set_free(bset);
2869 return NULL;
2872 /* Look for equalities among the variables shared by context and qp
2873 * and the integer divisions of qp, if any.
2874 * The equalities are then used to eliminate variables and/or integer
2875 * divisions from qp.
2877 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2878 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2880 isl_basic_set *aff;
2882 if (!qp)
2883 goto error;
2884 if (qp->div->n_row > 0) {
2885 isl_basic_set *bset;
2886 context = isl_set_add_dims(context, isl_dim_set,
2887 qp->div->n_row);
2888 bset = isl_basic_set_universe(isl_set_get_space(context));
2889 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2890 context = isl_set_intersect(context,
2891 isl_set_from_basic_set(bset));
2894 aff = isl_set_affine_hull(context);
2895 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2896 error:
2897 isl_qpolynomial_free(qp);
2898 isl_set_free(context);
2899 return NULL;
2902 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2903 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2905 isl_space *space = isl_qpolynomial_get_domain_space(qp);
2906 isl_set *dom_context = isl_set_universe(space);
2907 dom_context = isl_set_intersect_params(dom_context, context);
2908 return isl_qpolynomial_gist(qp, dom_context);
2911 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2912 __isl_take isl_qpolynomial *qp)
2914 isl_set *dom;
2916 if (!qp)
2917 return NULL;
2918 if (isl_qpolynomial_is_zero(qp)) {
2919 isl_space *dim = isl_qpolynomial_get_space(qp);
2920 isl_qpolynomial_free(qp);
2921 return isl_pw_qpolynomial_zero(dim);
2924 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2925 return isl_pw_qpolynomial_alloc(dom, qp);
2928 #undef PW
2929 #define PW isl_pw_qpolynomial
2930 #undef EL
2931 #define EL isl_qpolynomial
2932 #undef EL_IS_ZERO
2933 #define EL_IS_ZERO is_zero
2934 #undef ZERO
2935 #define ZERO zero
2936 #undef IS_ZERO
2937 #define IS_ZERO is_zero
2938 #undef FIELD
2939 #define FIELD qp
2940 #undef DEFAULT_IS_ZERO
2941 #define DEFAULT_IS_ZERO 1
2943 #define NO_PULLBACK
2945 #include <isl_pw_templ.c>
2947 #undef UNION
2948 #define UNION isl_union_pw_qpolynomial
2949 #undef PART
2950 #define PART isl_pw_qpolynomial
2951 #undef PARTS
2952 #define PARTS pw_qpolynomial
2954 #include <isl_union_single.c>
2955 #include <isl_union_eval.c>
2956 #include <isl_union_neg.c>
2958 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2960 if (!pwqp)
2961 return -1;
2963 if (pwqp->n != -1)
2964 return 0;
2966 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2967 return 0;
2969 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2972 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2973 __isl_take isl_pw_qpolynomial *pwqp1,
2974 __isl_take isl_pw_qpolynomial *pwqp2)
2976 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2979 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2980 __isl_take isl_pw_qpolynomial *pwqp1,
2981 __isl_take isl_pw_qpolynomial *pwqp2)
2983 int i, j, n;
2984 struct isl_pw_qpolynomial *res;
2986 if (!pwqp1 || !pwqp2)
2987 goto error;
2989 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
2990 goto error);
2992 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2993 isl_pw_qpolynomial_free(pwqp2);
2994 return pwqp1;
2997 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2998 isl_pw_qpolynomial_free(pwqp1);
2999 return pwqp2;
3002 if (isl_pw_qpolynomial_is_one(pwqp1)) {
3003 isl_pw_qpolynomial_free(pwqp1);
3004 return pwqp2;
3007 if (isl_pw_qpolynomial_is_one(pwqp2)) {
3008 isl_pw_qpolynomial_free(pwqp2);
3009 return pwqp1;
3012 n = pwqp1->n * pwqp2->n;
3013 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3015 for (i = 0; i < pwqp1->n; ++i) {
3016 for (j = 0; j < pwqp2->n; ++j) {
3017 struct isl_set *common;
3018 struct isl_qpolynomial *prod;
3019 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3020 isl_set_copy(pwqp2->p[j].set));
3021 if (isl_set_plain_is_empty(common)) {
3022 isl_set_free(common);
3023 continue;
3026 prod = isl_qpolynomial_mul(
3027 isl_qpolynomial_copy(pwqp1->p[i].qp),
3028 isl_qpolynomial_copy(pwqp2->p[j].qp));
3030 res = isl_pw_qpolynomial_add_piece(res, common, prod);
3034 isl_pw_qpolynomial_free(pwqp1);
3035 isl_pw_qpolynomial_free(pwqp2);
3037 return res;
3038 error:
3039 isl_pw_qpolynomial_free(pwqp1);
3040 isl_pw_qpolynomial_free(pwqp2);
3041 return NULL;
3044 __isl_give isl_val *isl_upoly_eval(__isl_take struct isl_upoly *up,
3045 __isl_take isl_vec *vec)
3047 int i;
3048 struct isl_upoly_rec *rec;
3049 isl_val *res;
3050 isl_val *base;
3052 if (isl_upoly_is_cst(up)) {
3053 isl_vec_free(vec);
3054 res = isl_upoly_get_constant_val(up);
3055 isl_upoly_free(up);
3056 return res;
3059 rec = isl_upoly_as_rec(up);
3060 if (!rec)
3061 goto error;
3063 isl_assert(up->ctx, rec->n >= 1, goto error);
3065 base = isl_val_rat_from_isl_int(up->ctx,
3066 vec->el[1 + up->var], vec->el[0]);
3068 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
3069 isl_vec_copy(vec));
3071 for (i = rec->n - 2; i >= 0; --i) {
3072 res = isl_val_mul(res, isl_val_copy(base));
3073 res = isl_val_add(res,
3074 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
3075 isl_vec_copy(vec)));
3078 isl_val_free(base);
3079 isl_upoly_free(up);
3080 isl_vec_free(vec);
3081 return res;
3082 error:
3083 isl_upoly_free(up);
3084 isl_vec_free(vec);
3085 return NULL;
3088 /* Evaluate "qp" in the void point "pnt".
3089 * In particular, return the value NaN.
3091 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3092 __isl_take isl_point *pnt)
3094 isl_ctx *ctx;
3096 ctx = isl_point_get_ctx(pnt);
3097 isl_qpolynomial_free(qp);
3098 isl_point_free(pnt);
3099 return isl_val_nan(ctx);
3102 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3103 __isl_take isl_point *pnt)
3105 isl_bool is_void;
3106 isl_vec *ext;
3107 isl_val *v;
3109 if (!qp || !pnt)
3110 goto error;
3111 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3112 is_void = isl_point_is_void(pnt);
3113 if (is_void < 0)
3114 goto error;
3115 if (is_void)
3116 return eval_void(qp, pnt);
3118 if (qp->div->n_row == 0)
3119 ext = isl_vec_copy(pnt->vec);
3120 else {
3121 int i;
3122 unsigned dim = isl_space_dim(qp->dim, isl_dim_all);
3123 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
3124 if (!ext)
3125 goto error;
3127 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
3128 for (i = 0; i < qp->div->n_row; ++i) {
3129 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
3130 1 + dim + i, &ext->el[1+dim+i]);
3131 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
3132 qp->div->row[i][0]);
3136 v = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
3138 isl_qpolynomial_free(qp);
3139 isl_point_free(pnt);
3141 return v;
3142 error:
3143 isl_qpolynomial_free(qp);
3144 isl_point_free(pnt);
3145 return NULL;
3148 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
3149 __isl_keep struct isl_upoly_cst *cst2)
3151 int cmp;
3152 isl_int t;
3153 isl_int_init(t);
3154 isl_int_mul(t, cst1->n, cst2->d);
3155 isl_int_submul(t, cst2->n, cst1->d);
3156 cmp = isl_int_sgn(t);
3157 isl_int_clear(t);
3158 return cmp;
3161 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3162 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3163 unsigned first, unsigned n)
3165 unsigned total;
3166 unsigned g_pos;
3167 int *exp;
3169 if (!qp)
3170 return NULL;
3171 if (type == isl_dim_out)
3172 isl_die(qp->div->ctx, isl_error_invalid,
3173 "cannot insert output/set dimensions",
3174 goto error);
3175 if (type == isl_dim_in)
3176 type = isl_dim_set;
3177 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3178 return qp;
3180 qp = isl_qpolynomial_cow(qp);
3181 if (!qp)
3182 return NULL;
3184 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
3185 goto error);
3187 g_pos = pos(qp->dim, type) + first;
3189 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3190 if (!qp->div)
3191 goto error;
3193 total = qp->div->n_col - 2;
3194 if (total > g_pos) {
3195 int i;
3196 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3197 if (!exp)
3198 goto error;
3199 for (i = 0; i < total - g_pos; ++i)
3200 exp[i] = i + n;
3201 qp->upoly = expand(qp->upoly, exp, g_pos);
3202 free(exp);
3203 if (!qp->upoly)
3204 goto error;
3207 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
3208 if (!qp->dim)
3209 goto error;
3211 return qp;
3212 error:
3213 isl_qpolynomial_free(qp);
3214 return NULL;
3217 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3218 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3220 unsigned pos;
3222 pos = isl_qpolynomial_dim(qp, type);
3224 return isl_qpolynomial_insert_dims(qp, type, pos, n);
3227 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
3228 __isl_take isl_pw_qpolynomial *pwqp,
3229 enum isl_dim_type type, unsigned n)
3231 unsigned pos;
3233 pos = isl_pw_qpolynomial_dim(pwqp, type);
3235 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
3238 static int *reordering_move(isl_ctx *ctx,
3239 unsigned len, unsigned dst, unsigned src, unsigned n)
3241 int i;
3242 int *reordering;
3244 reordering = isl_alloc_array(ctx, int, len);
3245 if (!reordering)
3246 return NULL;
3248 if (dst <= src) {
3249 for (i = 0; i < dst; ++i)
3250 reordering[i] = i;
3251 for (i = 0; i < n; ++i)
3252 reordering[src + i] = dst + i;
3253 for (i = 0; i < src - dst; ++i)
3254 reordering[dst + i] = dst + n + i;
3255 for (i = 0; i < len - src - n; ++i)
3256 reordering[src + n + i] = src + n + i;
3257 } else {
3258 for (i = 0; i < src; ++i)
3259 reordering[i] = i;
3260 for (i = 0; i < n; ++i)
3261 reordering[src + i] = dst + i;
3262 for (i = 0; i < dst - src; ++i)
3263 reordering[src + n + i] = src + i;
3264 for (i = 0; i < len - dst - n; ++i)
3265 reordering[dst + n + i] = dst + n + i;
3268 return reordering;
3271 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3272 __isl_take isl_qpolynomial *qp,
3273 enum isl_dim_type dst_type, unsigned dst_pos,
3274 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3276 unsigned g_dst_pos;
3277 unsigned g_src_pos;
3278 int *reordering;
3280 if (n == 0)
3281 return qp;
3283 qp = isl_qpolynomial_cow(qp);
3284 if (!qp)
3285 return NULL;
3287 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3288 isl_die(qp->dim->ctx, isl_error_invalid,
3289 "cannot move output/set dimension",
3290 goto error);
3291 if (dst_type == isl_dim_in)
3292 dst_type = isl_dim_set;
3293 if (src_type == isl_dim_in)
3294 src_type = isl_dim_set;
3296 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3297 goto error);
3299 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3300 g_src_pos = pos(qp->dim, src_type) + src_pos;
3301 if (dst_type > src_type)
3302 g_dst_pos -= n;
3304 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3305 if (!qp->div)
3306 goto error;
3307 qp = sort_divs(qp);
3308 if (!qp)
3309 goto error;
3311 reordering = reordering_move(qp->dim->ctx,
3312 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3313 if (!reordering)
3314 goto error;
3316 qp->upoly = reorder(qp->upoly, reordering);
3317 free(reordering);
3318 if (!qp->upoly)
3319 goto error;
3321 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3322 if (!qp->dim)
3323 goto error;
3325 return qp;
3326 error:
3327 isl_qpolynomial_free(qp);
3328 return NULL;
3331 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3332 isl_int *f, isl_int denom)
3334 struct isl_upoly *up;
3336 dim = isl_space_domain(dim);
3337 if (!dim)
3338 return NULL;
3340 up = isl_upoly_from_affine(dim->ctx, f, denom,
3341 1 + isl_space_dim(dim, isl_dim_all));
3343 return isl_qpolynomial_alloc(dim, 0, up);
3346 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3348 isl_ctx *ctx;
3349 struct isl_upoly *up;
3350 isl_qpolynomial *qp;
3352 if (!aff)
3353 return NULL;
3355 ctx = isl_aff_get_ctx(aff);
3356 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3357 aff->v->size - 1);
3359 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3360 aff->ls->div->n_row, up);
3361 if (!qp)
3362 goto error;
3364 isl_mat_free(qp->div);
3365 qp->div = isl_mat_copy(aff->ls->div);
3366 qp->div = isl_mat_cow(qp->div);
3367 if (!qp->div)
3368 goto error;
3370 isl_aff_free(aff);
3371 qp = reduce_divs(qp);
3372 qp = remove_redundant_divs(qp);
3373 return qp;
3374 error:
3375 isl_aff_free(aff);
3376 return isl_qpolynomial_free(qp);
3379 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3380 __isl_take isl_pw_aff *pwaff)
3382 int i;
3383 isl_pw_qpolynomial *pwqp;
3385 if (!pwaff)
3386 return NULL;
3388 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3389 pwaff->n);
3391 for (i = 0; i < pwaff->n; ++i) {
3392 isl_set *dom;
3393 isl_qpolynomial *qp;
3395 dom = isl_set_copy(pwaff->p[i].set);
3396 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3397 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3400 isl_pw_aff_free(pwaff);
3401 return pwqp;
3404 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3405 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3407 isl_aff *aff;
3409 aff = isl_constraint_get_bound(c, type, pos);
3410 isl_constraint_free(c);
3411 return isl_qpolynomial_from_aff(aff);
3414 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3415 * in "qp" by subs[i].
3417 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3418 __isl_take isl_qpolynomial *qp,
3419 enum isl_dim_type type, unsigned first, unsigned n,
3420 __isl_keep isl_qpolynomial **subs)
3422 int i;
3423 struct isl_upoly **ups;
3425 if (n == 0)
3426 return qp;
3428 qp = isl_qpolynomial_cow(qp);
3429 if (!qp)
3430 return NULL;
3432 if (type == isl_dim_out)
3433 isl_die(qp->dim->ctx, isl_error_invalid,
3434 "cannot substitute output/set dimension",
3435 goto error);
3436 if (type == isl_dim_in)
3437 type = isl_dim_set;
3439 for (i = 0; i < n; ++i)
3440 if (!subs[i])
3441 goto error;
3443 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3444 goto error);
3446 for (i = 0; i < n; ++i)
3447 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3448 goto error);
3450 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3451 for (i = 0; i < n; ++i)
3452 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3454 first += pos(qp->dim, type);
3456 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3457 if (!ups)
3458 goto error;
3459 for (i = 0; i < n; ++i)
3460 ups[i] = subs[i]->upoly;
3462 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3464 free(ups);
3466 if (!qp->upoly)
3467 goto error;
3469 return qp;
3470 error:
3471 isl_qpolynomial_free(qp);
3472 return NULL;
3475 /* Extend "bset" with extra set dimensions for each integer division
3476 * in "qp" and then call "fn" with the extended bset and the polynomial
3477 * that results from replacing each of the integer divisions by the
3478 * corresponding extra set dimension.
3480 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3481 __isl_keep isl_basic_set *bset,
3482 int (*fn)(__isl_take isl_basic_set *bset,
3483 __isl_take isl_qpolynomial *poly, void *user), void *user)
3485 isl_space *dim;
3486 isl_mat *div;
3487 isl_qpolynomial *poly;
3489 if (!qp || !bset)
3490 goto error;
3491 if (qp->div->n_row == 0)
3492 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3493 user);
3495 div = isl_mat_copy(qp->div);
3496 dim = isl_space_copy(qp->dim);
3497 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3498 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3499 bset = isl_basic_set_copy(bset);
3500 bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row);
3501 bset = add_div_constraints(bset, div);
3503 return fn(bset, poly, user);
3504 error:
3505 return -1;
3508 /* Return total degree in variables first (inclusive) up to last (exclusive).
3510 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3512 int deg = -1;
3513 int i;
3514 struct isl_upoly_rec *rec;
3516 if (!up)
3517 return -2;
3518 if (isl_upoly_is_zero(up))
3519 return -1;
3520 if (isl_upoly_is_cst(up) || up->var < first)
3521 return 0;
3523 rec = isl_upoly_as_rec(up);
3524 if (!rec)
3525 return -2;
3527 for (i = 0; i < rec->n; ++i) {
3528 int d;
3530 if (isl_upoly_is_zero(rec->p[i]))
3531 continue;
3532 d = isl_upoly_degree(rec->p[i], first, last);
3533 if (up->var < last)
3534 d += i;
3535 if (d > deg)
3536 deg = d;
3539 return deg;
3542 /* Return total degree in set variables.
3544 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3546 unsigned ovar;
3547 unsigned nvar;
3549 if (!poly)
3550 return -2;
3552 ovar = isl_space_offset(poly->dim, isl_dim_set);
3553 nvar = isl_space_dim(poly->dim, isl_dim_set);
3554 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3557 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3558 unsigned pos, int deg)
3560 int i;
3561 struct isl_upoly_rec *rec;
3563 if (!up)
3564 return NULL;
3566 if (isl_upoly_is_cst(up) || up->var < pos) {
3567 if (deg == 0)
3568 return isl_upoly_copy(up);
3569 else
3570 return isl_upoly_zero(up->ctx);
3573 rec = isl_upoly_as_rec(up);
3574 if (!rec)
3575 return NULL;
3577 if (up->var == pos) {
3578 if (deg < rec->n)
3579 return isl_upoly_copy(rec->p[deg]);
3580 else
3581 return isl_upoly_zero(up->ctx);
3584 up = isl_upoly_copy(up);
3585 up = isl_upoly_cow(up);
3586 rec = isl_upoly_as_rec(up);
3587 if (!rec)
3588 goto error;
3590 for (i = 0; i < rec->n; ++i) {
3591 struct isl_upoly *t;
3592 t = isl_upoly_coeff(rec->p[i], pos, deg);
3593 if (!t)
3594 goto error;
3595 isl_upoly_free(rec->p[i]);
3596 rec->p[i] = t;
3599 return up;
3600 error:
3601 isl_upoly_free(up);
3602 return NULL;
3605 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3607 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3608 __isl_keep isl_qpolynomial *qp,
3609 enum isl_dim_type type, unsigned t_pos, int deg)
3611 unsigned g_pos;
3612 struct isl_upoly *up;
3613 isl_qpolynomial *c;
3615 if (!qp)
3616 return NULL;
3618 if (type == isl_dim_out)
3619 isl_die(qp->div->ctx, isl_error_invalid,
3620 "output/set dimension does not have a coefficient",
3621 return NULL);
3622 if (type == isl_dim_in)
3623 type = isl_dim_set;
3625 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3626 return NULL);
3628 g_pos = pos(qp->dim, type) + t_pos;
3629 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3631 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3632 if (!c)
3633 return NULL;
3634 isl_mat_free(c->div);
3635 c->div = isl_mat_copy(qp->div);
3636 if (!c->div)
3637 goto error;
3638 return c;
3639 error:
3640 isl_qpolynomial_free(c);
3641 return NULL;
3644 /* Homogenize the polynomial in the variables first (inclusive) up to
3645 * last (exclusive) by inserting powers of variable first.
3646 * Variable first is assumed not to appear in the input.
3648 __isl_give struct isl_upoly *isl_upoly_homogenize(
3649 __isl_take struct isl_upoly *up, int deg, int target,
3650 int first, int last)
3652 int i;
3653 struct isl_upoly_rec *rec;
3655 if (!up)
3656 return NULL;
3657 if (isl_upoly_is_zero(up))
3658 return up;
3659 if (deg == target)
3660 return up;
3661 if (isl_upoly_is_cst(up) || up->var < first) {
3662 struct isl_upoly *hom;
3664 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3665 if (!hom)
3666 goto error;
3667 rec = isl_upoly_as_rec(hom);
3668 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3670 return hom;
3673 up = isl_upoly_cow(up);
3674 rec = isl_upoly_as_rec(up);
3675 if (!rec)
3676 goto error;
3678 for (i = 0; i < rec->n; ++i) {
3679 if (isl_upoly_is_zero(rec->p[i]))
3680 continue;
3681 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3682 up->var < last ? deg + i : i, target,
3683 first, last);
3684 if (!rec->p[i])
3685 goto error;
3688 return up;
3689 error:
3690 isl_upoly_free(up);
3691 return NULL;
3694 /* Homogenize the polynomial in the set variables by introducing
3695 * powers of an extra set variable at position 0.
3697 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3698 __isl_take isl_qpolynomial *poly)
3700 unsigned ovar;
3701 unsigned nvar;
3702 int deg = isl_qpolynomial_degree(poly);
3704 if (deg < -1)
3705 goto error;
3707 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3708 poly = isl_qpolynomial_cow(poly);
3709 if (!poly)
3710 goto error;
3712 ovar = isl_space_offset(poly->dim, isl_dim_set);
3713 nvar = isl_space_dim(poly->dim, isl_dim_set);
3714 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3715 ovar, ovar + nvar);
3716 if (!poly->upoly)
3717 goto error;
3719 return poly;
3720 error:
3721 isl_qpolynomial_free(poly);
3722 return NULL;
3725 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3726 __isl_take isl_mat *div)
3728 isl_term *term;
3729 int n;
3731 if (!dim || !div)
3732 goto error;
3734 n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3736 term = isl_calloc(dim->ctx, struct isl_term,
3737 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3738 if (!term)
3739 goto error;
3741 term->ref = 1;
3742 term->dim = dim;
3743 term->div = div;
3744 isl_int_init(term->n);
3745 isl_int_init(term->d);
3747 return term;
3748 error:
3749 isl_space_free(dim);
3750 isl_mat_free(div);
3751 return NULL;
3754 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3756 if (!term)
3757 return NULL;
3759 term->ref++;
3760 return term;
3763 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3765 int i;
3766 isl_term *dup;
3767 unsigned total;
3769 if (!term)
3770 return NULL;
3772 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3774 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3775 if (!dup)
3776 return NULL;
3778 isl_int_set(dup->n, term->n);
3779 isl_int_set(dup->d, term->d);
3781 for (i = 0; i < total; ++i)
3782 dup->pow[i] = term->pow[i];
3784 return dup;
3787 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3789 if (!term)
3790 return NULL;
3792 if (term->ref == 1)
3793 return term;
3794 term->ref--;
3795 return isl_term_dup(term);
3798 void isl_term_free(__isl_take isl_term *term)
3800 if (!term)
3801 return;
3803 if (--term->ref > 0)
3804 return;
3806 isl_space_free(term->dim);
3807 isl_mat_free(term->div);
3808 isl_int_clear(term->n);
3809 isl_int_clear(term->d);
3810 free(term);
3813 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3815 if (!term)
3816 return 0;
3818 switch (type) {
3819 case isl_dim_param:
3820 case isl_dim_in:
3821 case isl_dim_out: return isl_space_dim(term->dim, type);
3822 case isl_dim_div: return term->div->n_row;
3823 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3824 term->div->n_row;
3825 default: return 0;
3829 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3831 return term ? term->dim->ctx : NULL;
3834 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3836 if (!term)
3837 return;
3838 isl_int_set(*n, term->n);
3841 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3843 if (!term)
3844 return;
3845 isl_int_set(*d, term->d);
3848 /* Return the coefficient of the term "term".
3850 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
3852 if (!term)
3853 return NULL;
3855 return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
3856 term->n, term->d);
3859 int isl_term_get_exp(__isl_keep isl_term *term,
3860 enum isl_dim_type type, unsigned pos)
3862 if (!term)
3863 return -1;
3865 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3867 if (type >= isl_dim_set)
3868 pos += isl_space_dim(term->dim, isl_dim_param);
3869 if (type >= isl_dim_div)
3870 pos += isl_space_dim(term->dim, isl_dim_set);
3872 return term->pow[pos];
3875 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3877 isl_local_space *ls;
3878 isl_aff *aff;
3880 if (!term)
3881 return NULL;
3883 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3884 return NULL);
3886 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3887 isl_mat_copy(term->div));
3888 aff = isl_aff_alloc(ls);
3889 if (!aff)
3890 return NULL;
3892 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3894 aff = isl_aff_normalize(aff);
3896 return aff;
3899 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3900 isl_stat (*fn)(__isl_take isl_term *term, void *user),
3901 __isl_take isl_term *term, void *user)
3903 int i;
3904 struct isl_upoly_rec *rec;
3906 if (!up || !term)
3907 goto error;
3909 if (isl_upoly_is_zero(up))
3910 return term;
3912 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3913 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3914 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3916 if (isl_upoly_is_cst(up)) {
3917 struct isl_upoly_cst *cst;
3918 cst = isl_upoly_as_cst(up);
3919 if (!cst)
3920 goto error;
3921 term = isl_term_cow(term);
3922 if (!term)
3923 goto error;
3924 isl_int_set(term->n, cst->n);
3925 isl_int_set(term->d, cst->d);
3926 if (fn(isl_term_copy(term), user) < 0)
3927 goto error;
3928 return term;
3931 rec = isl_upoly_as_rec(up);
3932 if (!rec)
3933 goto error;
3935 for (i = 0; i < rec->n; ++i) {
3936 term = isl_term_cow(term);
3937 if (!term)
3938 goto error;
3939 term->pow[up->var] = i;
3940 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3941 if (!term)
3942 goto error;
3944 term->pow[up->var] = 0;
3946 return term;
3947 error:
3948 isl_term_free(term);
3949 return NULL;
3952 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3953 isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
3955 isl_term *term;
3957 if (!qp)
3958 return isl_stat_error;
3960 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3961 if (!term)
3962 return isl_stat_error;
3964 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3966 isl_term_free(term);
3968 return term ? isl_stat_ok : isl_stat_error;
3971 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3973 struct isl_upoly *up;
3974 isl_qpolynomial *qp;
3975 int i, n;
3977 if (!term)
3978 return NULL;
3980 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3982 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3983 for (i = 0; i < n; ++i) {
3984 if (!term->pow[i])
3985 continue;
3986 up = isl_upoly_mul(up,
3987 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3990 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3991 if (!qp)
3992 goto error;
3993 isl_mat_free(qp->div);
3994 qp->div = isl_mat_copy(term->div);
3995 if (!qp->div)
3996 goto error;
3998 isl_term_free(term);
3999 return qp;
4000 error:
4001 isl_qpolynomial_free(qp);
4002 isl_term_free(term);
4003 return NULL;
4006 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4007 __isl_take isl_space *dim)
4009 int i;
4010 int extra;
4011 unsigned total;
4013 if (!qp || !dim)
4014 goto error;
4016 if (isl_space_is_equal(qp->dim, dim)) {
4017 isl_space_free(dim);
4018 return qp;
4021 qp = isl_qpolynomial_cow(qp);
4022 if (!qp)
4023 goto error;
4025 extra = isl_space_dim(dim, isl_dim_set) -
4026 isl_space_dim(qp->dim, isl_dim_set);
4027 total = isl_space_dim(qp->dim, isl_dim_all);
4028 if (qp->div->n_row) {
4029 int *exp;
4031 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4032 if (!exp)
4033 goto error;
4034 for (i = 0; i < qp->div->n_row; ++i)
4035 exp[i] = extra + i;
4036 qp->upoly = expand(qp->upoly, exp, total);
4037 free(exp);
4038 if (!qp->upoly)
4039 goto error;
4041 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4042 if (!qp->div)
4043 goto error;
4044 for (i = 0; i < qp->div->n_row; ++i)
4045 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4047 isl_space_free(qp->dim);
4048 qp->dim = dim;
4050 return qp;
4051 error:
4052 isl_space_free(dim);
4053 isl_qpolynomial_free(qp);
4054 return NULL;
4057 /* For each parameter or variable that does not appear in qp,
4058 * first eliminate the variable from all constraints and then set it to zero.
4060 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4061 __isl_keep isl_qpolynomial *qp)
4063 int *active = NULL;
4064 int i;
4065 int d;
4066 unsigned nparam;
4067 unsigned nvar;
4069 if (!set || !qp)
4070 goto error;
4072 d = isl_space_dim(set->dim, isl_dim_all);
4073 active = isl_calloc_array(set->ctx, int, d);
4074 if (set_active(qp, active) < 0)
4075 goto error;
4077 for (i = 0; i < d; ++i)
4078 if (!active[i])
4079 break;
4081 if (i == d) {
4082 free(active);
4083 return set;
4086 nparam = isl_space_dim(set->dim, isl_dim_param);
4087 nvar = isl_space_dim(set->dim, isl_dim_set);
4088 for (i = 0; i < nparam; ++i) {
4089 if (active[i])
4090 continue;
4091 set = isl_set_eliminate(set, isl_dim_param, i, 1);
4092 set = isl_set_fix_si(set, isl_dim_param, i, 0);
4094 for (i = 0; i < nvar; ++i) {
4095 if (active[nparam + i])
4096 continue;
4097 set = isl_set_eliminate(set, isl_dim_set, i, 1);
4098 set = isl_set_fix_si(set, isl_dim_set, i, 0);
4101 free(active);
4103 return set;
4104 error:
4105 free(active);
4106 isl_set_free(set);
4107 return NULL;
4110 struct isl_opt_data {
4111 isl_qpolynomial *qp;
4112 int first;
4113 isl_val *opt;
4114 int max;
4117 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4119 struct isl_opt_data *data = (struct isl_opt_data *)user;
4120 isl_val *val;
4122 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4123 if (data->first) {
4124 data->first = 0;
4125 data->opt = val;
4126 } else if (data->max) {
4127 data->opt = isl_val_max(data->opt, val);
4128 } else {
4129 data->opt = isl_val_min(data->opt, val);
4132 return isl_stat_ok;
4135 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4136 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4138 struct isl_opt_data data = { NULL, 1, NULL, max };
4140 if (!set || !qp)
4141 goto error;
4143 if (isl_upoly_is_cst(qp->upoly)) {
4144 isl_set_free(set);
4145 data.opt = isl_qpolynomial_get_constant_val(qp);
4146 isl_qpolynomial_free(qp);
4147 return data.opt;
4150 set = fix_inactive(set, qp);
4152 data.qp = qp;
4153 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4154 goto error;
4156 if (data.first)
4157 data.opt = isl_val_zero(isl_set_get_ctx(set));
4159 isl_set_free(set);
4160 isl_qpolynomial_free(qp);
4161 return data.opt;
4162 error:
4163 isl_set_free(set);
4164 isl_qpolynomial_free(qp);
4165 isl_val_free(data.opt);
4166 return NULL;
4169 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4170 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4172 int i;
4173 int n_sub;
4174 isl_ctx *ctx;
4175 struct isl_upoly **subs;
4176 isl_mat *mat, *diag;
4178 qp = isl_qpolynomial_cow(qp);
4179 if (!qp || !morph)
4180 goto error;
4182 ctx = qp->dim->ctx;
4183 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
4185 n_sub = morph->inv->n_row - 1;
4186 if (morph->inv->n_row != morph->inv->n_col)
4187 n_sub += qp->div->n_row;
4188 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
4189 if (n_sub && !subs)
4190 goto error;
4192 for (i = 0; 1 + i < morph->inv->n_row; ++i)
4193 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
4194 morph->inv->row[0][0], morph->inv->n_col);
4195 if (morph->inv->n_row != morph->inv->n_col)
4196 for (i = 0; i < qp->div->n_row; ++i)
4197 subs[morph->inv->n_row - 1 + i] =
4198 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4200 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
4202 for (i = 0; i < n_sub; ++i)
4203 isl_upoly_free(subs[i]);
4204 free(subs);
4206 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4207 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4208 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4209 mat = isl_mat_diagonal(mat, diag);
4210 qp->div = isl_mat_product(qp->div, mat);
4211 isl_space_free(qp->dim);
4212 qp->dim = isl_space_copy(morph->ran->dim);
4214 if (!qp->upoly || !qp->div || !qp->dim)
4215 goto error;
4217 isl_morph_free(morph);
4219 return qp;
4220 error:
4221 isl_qpolynomial_free(qp);
4222 isl_morph_free(morph);
4223 return NULL;
4226 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4227 __isl_take isl_union_pw_qpolynomial *upwqp1,
4228 __isl_take isl_union_pw_qpolynomial *upwqp2)
4230 return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4231 &isl_pw_qpolynomial_mul);
4234 /* Reorder the columns of the given div definitions according to the
4235 * given reordering.
4237 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
4238 __isl_take isl_reordering *r)
4240 int i, j;
4241 isl_mat *mat;
4242 int extra;
4244 if (!div || !r)
4245 goto error;
4247 extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
4248 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
4249 if (!mat)
4250 goto error;
4252 for (i = 0; i < div->n_row; ++i) {
4253 isl_seq_cpy(mat->row[i], div->row[i], 2);
4254 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
4255 for (j = 0; j < r->len; ++j)
4256 isl_int_set(mat->row[i][2 + r->pos[j]],
4257 div->row[i][2 + j]);
4260 isl_reordering_free(r);
4261 isl_mat_free(div);
4262 return mat;
4263 error:
4264 isl_reordering_free(r);
4265 isl_mat_free(div);
4266 return NULL;
4269 /* Reorder the dimension of "qp" according to the given reordering.
4271 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4272 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4274 qp = isl_qpolynomial_cow(qp);
4275 if (!qp)
4276 goto error;
4278 r = isl_reordering_extend(r, qp->div->n_row);
4279 if (!r)
4280 goto error;
4282 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
4283 if (!qp->div)
4284 goto error;
4286 qp->upoly = reorder(qp->upoly, r->pos);
4287 if (!qp->upoly)
4288 goto error;
4290 qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim));
4292 isl_reordering_free(r);
4293 return qp;
4294 error:
4295 isl_qpolynomial_free(qp);
4296 isl_reordering_free(r);
4297 return NULL;
4300 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4301 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4303 if (!qp || !model)
4304 goto error;
4306 if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
4307 isl_reordering *exp;
4309 model = isl_space_drop_dims(model, isl_dim_in,
4310 0, isl_space_dim(model, isl_dim_in));
4311 model = isl_space_drop_dims(model, isl_dim_out,
4312 0, isl_space_dim(model, isl_dim_out));
4313 exp = isl_parameter_alignment_reordering(qp->dim, model);
4314 exp = isl_reordering_extend_space(exp,
4315 isl_qpolynomial_get_domain_space(qp));
4316 qp = isl_qpolynomial_realign_domain(qp, exp);
4319 isl_space_free(model);
4320 return qp;
4321 error:
4322 isl_space_free(model);
4323 isl_qpolynomial_free(qp);
4324 return NULL;
4327 struct isl_split_periods_data {
4328 int max_periods;
4329 isl_pw_qpolynomial *res;
4332 /* Create a slice where the integer division "div" has the fixed value "v".
4333 * In particular, if "div" refers to floor(f/m), then create a slice
4335 * m v <= f <= m v + (m - 1)
4337 * or
4339 * f - m v >= 0
4340 * -f + m v + (m - 1) >= 0
4342 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4343 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4345 int total;
4346 isl_basic_set *bset = NULL;
4347 int k;
4349 if (!dim || !qp)
4350 goto error;
4352 total = isl_space_dim(dim, isl_dim_all);
4353 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4355 k = isl_basic_set_alloc_inequality(bset);
4356 if (k < 0)
4357 goto error;
4358 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4359 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4361 k = isl_basic_set_alloc_inequality(bset);
4362 if (k < 0)
4363 goto error;
4364 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4365 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4366 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4367 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4369 isl_space_free(dim);
4370 return isl_set_from_basic_set(bset);
4371 error:
4372 isl_basic_set_free(bset);
4373 isl_space_free(dim);
4374 return NULL;
4377 static isl_stat split_periods(__isl_take isl_set *set,
4378 __isl_take isl_qpolynomial *qp, void *user);
4380 /* Create a slice of the domain "set" such that integer division "div"
4381 * has the fixed value "v" and add the results to data->res,
4382 * replacing the integer division by "v" in "qp".
4384 static isl_stat set_div(__isl_take isl_set *set,
4385 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4386 struct isl_split_periods_data *data)
4388 int i;
4389 int total;
4390 isl_set *slice;
4391 struct isl_upoly *cst;
4393 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4394 set = isl_set_intersect(set, slice);
4396 if (!qp)
4397 goto error;
4399 total = isl_space_dim(qp->dim, isl_dim_all);
4401 for (i = div + 1; i < qp->div->n_row; ++i) {
4402 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4403 continue;
4404 isl_int_addmul(qp->div->row[i][1],
4405 qp->div->row[i][2 + total + div], v);
4406 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4409 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4410 qp = substitute_div(qp, div, cst);
4412 return split_periods(set, qp, data);
4413 error:
4414 isl_set_free(set);
4415 isl_qpolynomial_free(qp);
4416 return -1;
4419 /* Split the domain "set" such that integer division "div"
4420 * has a fixed value (ranging from "min" to "max") on each slice
4421 * and add the results to data->res.
4423 static isl_stat split_div(__isl_take isl_set *set,
4424 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4425 struct isl_split_periods_data *data)
4427 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4428 isl_set *set_i = isl_set_copy(set);
4429 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4431 if (set_div(set_i, qp_i, div, min, data) < 0)
4432 goto error;
4434 isl_set_free(set);
4435 isl_qpolynomial_free(qp);
4436 return isl_stat_ok;
4437 error:
4438 isl_set_free(set);
4439 isl_qpolynomial_free(qp);
4440 return isl_stat_error;
4443 /* If "qp" refers to any integer division
4444 * that can only attain "max_periods" distinct values on "set"
4445 * then split the domain along those distinct values.
4446 * Add the results (or the original if no splitting occurs)
4447 * to data->res.
4449 static isl_stat split_periods(__isl_take isl_set *set,
4450 __isl_take isl_qpolynomial *qp, void *user)
4452 int i;
4453 isl_pw_qpolynomial *pwqp;
4454 struct isl_split_periods_data *data;
4455 isl_int min, max;
4456 int total;
4457 isl_stat r = isl_stat_ok;
4459 data = (struct isl_split_periods_data *)user;
4461 if (!set || !qp)
4462 goto error;
4464 if (qp->div->n_row == 0) {
4465 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4466 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4467 return isl_stat_ok;
4470 isl_int_init(min);
4471 isl_int_init(max);
4472 total = isl_space_dim(qp->dim, isl_dim_all);
4473 for (i = 0; i < qp->div->n_row; ++i) {
4474 enum isl_lp_result lp_res;
4476 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4477 qp->div->n_row) != -1)
4478 continue;
4480 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4481 set->ctx->one, &min, NULL, NULL);
4482 if (lp_res == isl_lp_error)
4483 goto error2;
4484 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4485 continue;
4486 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4488 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4489 set->ctx->one, &max, NULL, NULL);
4490 if (lp_res == isl_lp_error)
4491 goto error2;
4492 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4493 continue;
4494 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4496 isl_int_sub(max, max, min);
4497 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4498 isl_int_add(max, max, min);
4499 break;
4503 if (i < qp->div->n_row) {
4504 r = split_div(set, qp, i, min, max, data);
4505 } else {
4506 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4507 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4510 isl_int_clear(max);
4511 isl_int_clear(min);
4513 return r;
4514 error2:
4515 isl_int_clear(max);
4516 isl_int_clear(min);
4517 error:
4518 isl_set_free(set);
4519 isl_qpolynomial_free(qp);
4520 return isl_stat_error;
4523 /* If any quasi-polynomial in pwqp refers to any integer division
4524 * that can only attain "max_periods" distinct values on its domain
4525 * then split the domain along those distinct values.
4527 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4528 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4530 struct isl_split_periods_data data;
4532 data.max_periods = max_periods;
4533 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4535 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4536 goto error;
4538 isl_pw_qpolynomial_free(pwqp);
4540 return data.res;
4541 error:
4542 isl_pw_qpolynomial_free(data.res);
4543 isl_pw_qpolynomial_free(pwqp);
4544 return NULL;
4547 /* Construct a piecewise quasipolynomial that is constant on the given
4548 * domain. In particular, it is
4549 * 0 if cst == 0
4550 * 1 if cst == 1
4551 * infinity if cst == -1
4553 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4554 __isl_take isl_basic_set *bset, int cst)
4556 isl_space *dim;
4557 isl_qpolynomial *qp;
4559 if (!bset)
4560 return NULL;
4562 bset = isl_basic_set_params(bset);
4563 dim = isl_basic_set_get_space(bset);
4564 if (cst < 0)
4565 qp = isl_qpolynomial_infty_on_domain(dim);
4566 else if (cst == 0)
4567 qp = isl_qpolynomial_zero_on_domain(dim);
4568 else
4569 qp = isl_qpolynomial_one_on_domain(dim);
4570 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4573 /* Factor bset, call fn on each of the factors and return the product.
4575 * If no factors can be found, simply call fn on the input.
4576 * Otherwise, construct the factors based on the factorizer,
4577 * call fn on each factor and compute the product.
4579 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4580 __isl_take isl_basic_set *bset,
4581 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4583 int i, n;
4584 isl_space *dim;
4585 isl_set *set;
4586 isl_factorizer *f;
4587 isl_qpolynomial *qp;
4588 isl_pw_qpolynomial *pwqp;
4589 unsigned nparam;
4590 unsigned nvar;
4592 f = isl_basic_set_factorizer(bset);
4593 if (!f)
4594 goto error;
4595 if (f->n_group == 0) {
4596 isl_factorizer_free(f);
4597 return fn(bset);
4600 nparam = isl_basic_set_dim(bset, isl_dim_param);
4601 nvar = isl_basic_set_dim(bset, isl_dim_set);
4603 dim = isl_basic_set_get_space(bset);
4604 dim = isl_space_domain(dim);
4605 set = isl_set_universe(isl_space_copy(dim));
4606 qp = isl_qpolynomial_one_on_domain(dim);
4607 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4609 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4611 for (i = 0, n = 0; i < f->n_group; ++i) {
4612 isl_basic_set *bset_i;
4613 isl_pw_qpolynomial *pwqp_i;
4615 bset_i = isl_basic_set_copy(bset);
4616 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4617 nparam + n + f->len[i], nvar - n - f->len[i]);
4618 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4619 nparam, n);
4620 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4621 n + f->len[i], nvar - n - f->len[i]);
4622 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4624 pwqp_i = fn(bset_i);
4625 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4627 n += f->len[i];
4630 isl_basic_set_free(bset);
4631 isl_factorizer_free(f);
4633 return pwqp;
4634 error:
4635 isl_basic_set_free(bset);
4636 return NULL;
4639 /* Factor bset, call fn on each of the factors and return the product.
4640 * The function is assumed to evaluate to zero on empty domains,
4641 * to one on zero-dimensional domains and to infinity on unbounded domains
4642 * and will not be called explicitly on zero-dimensional or unbounded domains.
4644 * We first check for some special cases and remove all equalities.
4645 * Then we hand over control to compressed_multiplicative_call.
4647 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4648 __isl_take isl_basic_set *bset,
4649 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4651 int bounded;
4652 isl_morph *morph;
4653 isl_pw_qpolynomial *pwqp;
4655 if (!bset)
4656 return NULL;
4658 if (isl_basic_set_plain_is_empty(bset))
4659 return constant_on_domain(bset, 0);
4661 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4662 return constant_on_domain(bset, 1);
4664 bounded = isl_basic_set_is_bounded(bset);
4665 if (bounded < 0)
4666 goto error;
4667 if (!bounded)
4668 return constant_on_domain(bset, -1);
4670 if (bset->n_eq == 0)
4671 return compressed_multiplicative_call(bset, fn);
4673 morph = isl_basic_set_full_compression(bset);
4674 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4676 pwqp = compressed_multiplicative_call(bset, fn);
4678 morph = isl_morph_dom_params(morph);
4679 morph = isl_morph_ran_params(morph);
4680 morph = isl_morph_inverse(morph);
4682 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4684 return pwqp;
4685 error:
4686 isl_basic_set_free(bset);
4687 return NULL;
4690 /* Drop all floors in "qp", turning each integer division [a/m] into
4691 * a rational division a/m. If "down" is set, then the integer division
4692 * is replaced by (a-(m-1))/m instead.
4694 static __isl_give isl_qpolynomial *qp_drop_floors(
4695 __isl_take isl_qpolynomial *qp, int down)
4697 int i;
4698 struct isl_upoly *s;
4700 if (!qp)
4701 return NULL;
4702 if (qp->div->n_row == 0)
4703 return qp;
4705 qp = isl_qpolynomial_cow(qp);
4706 if (!qp)
4707 return NULL;
4709 for (i = qp->div->n_row - 1; i >= 0; --i) {
4710 if (down) {
4711 isl_int_sub(qp->div->row[i][1],
4712 qp->div->row[i][1], qp->div->row[i][0]);
4713 isl_int_add_ui(qp->div->row[i][1],
4714 qp->div->row[i][1], 1);
4716 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4717 qp->div->row[i][0], qp->div->n_col - 1);
4718 qp = substitute_div(qp, i, s);
4719 if (!qp)
4720 return NULL;
4723 return qp;
4726 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4727 * a rational division a/m.
4729 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4730 __isl_take isl_pw_qpolynomial *pwqp)
4732 int i;
4734 if (!pwqp)
4735 return NULL;
4737 if (isl_pw_qpolynomial_is_zero(pwqp))
4738 return pwqp;
4740 pwqp = isl_pw_qpolynomial_cow(pwqp);
4741 if (!pwqp)
4742 return NULL;
4744 for (i = 0; i < pwqp->n; ++i) {
4745 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4746 if (!pwqp->p[i].qp)
4747 goto error;
4750 return pwqp;
4751 error:
4752 isl_pw_qpolynomial_free(pwqp);
4753 return NULL;
4756 /* Adjust all the integer divisions in "qp" such that they are at least
4757 * one over the given orthant (identified by "signs"). This ensures
4758 * that they will still be non-negative even after subtracting (m-1)/m.
4760 * In particular, f is replaced by f' + v, changing f = [a/m]
4761 * to f' = [(a - m v)/m].
4762 * If the constant term k in a is smaller than m,
4763 * the constant term of v is set to floor(k/m) - 1.
4764 * For any other term, if the coefficient c and the variable x have
4765 * the same sign, then no changes are needed.
4766 * Otherwise, if the variable is positive (and c is negative),
4767 * then the coefficient of x in v is set to floor(c/m).
4768 * If the variable is negative (and c is positive),
4769 * then the coefficient of x in v is set to ceil(c/m).
4771 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4772 int *signs)
4774 int i, j;
4775 int total;
4776 isl_vec *v = NULL;
4777 struct isl_upoly *s;
4779 qp = isl_qpolynomial_cow(qp);
4780 if (!qp)
4781 return NULL;
4782 qp->div = isl_mat_cow(qp->div);
4783 if (!qp->div)
4784 goto error;
4786 total = isl_space_dim(qp->dim, isl_dim_all);
4787 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4789 for (i = 0; i < qp->div->n_row; ++i) {
4790 isl_int *row = qp->div->row[i];
4791 v = isl_vec_clr(v);
4792 if (!v)
4793 goto error;
4794 if (isl_int_lt(row[1], row[0])) {
4795 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4796 isl_int_sub_ui(v->el[0], v->el[0], 1);
4797 isl_int_submul(row[1], row[0], v->el[0]);
4799 for (j = 0; j < total; ++j) {
4800 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4801 continue;
4802 if (signs[j] < 0)
4803 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4804 else
4805 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4806 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4808 for (j = 0; j < i; ++j) {
4809 if (isl_int_sgn(row[2 + total + j]) >= 0)
4810 continue;
4811 isl_int_fdiv_q(v->el[1 + total + j],
4812 row[2 + total + j], row[0]);
4813 isl_int_submul(row[2 + total + j],
4814 row[0], v->el[1 + total + j]);
4816 for (j = i + 1; j < qp->div->n_row; ++j) {
4817 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4818 continue;
4819 isl_seq_combine(qp->div->row[j] + 1,
4820 qp->div->ctx->one, qp->div->row[j] + 1,
4821 qp->div->row[j][2 + total + i], v->el, v->size);
4823 isl_int_set_si(v->el[1 + total + i], 1);
4824 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4825 qp->div->ctx->one, v->size);
4826 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4827 isl_upoly_free(s);
4828 if (!qp->upoly)
4829 goto error;
4832 isl_vec_free(v);
4833 return qp;
4834 error:
4835 isl_vec_free(v);
4836 isl_qpolynomial_free(qp);
4837 return NULL;
4840 struct isl_to_poly_data {
4841 int sign;
4842 isl_pw_qpolynomial *res;
4843 isl_qpolynomial *qp;
4846 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4847 * We first make all integer divisions positive and then split the
4848 * quasipolynomials into terms with sign data->sign (the direction
4849 * of the requested approximation) and terms with the opposite sign.
4850 * In the first set of terms, each integer division [a/m] is
4851 * overapproximated by a/m, while in the second it is underapproximated
4852 * by (a-(m-1))/m.
4854 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4855 void *user)
4857 struct isl_to_poly_data *data = user;
4858 isl_pw_qpolynomial *t;
4859 isl_qpolynomial *qp, *up, *down;
4861 qp = isl_qpolynomial_copy(data->qp);
4862 qp = make_divs_pos(qp, signs);
4864 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4865 up = qp_drop_floors(up, 0);
4866 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4867 down = qp_drop_floors(down, 1);
4869 isl_qpolynomial_free(qp);
4870 qp = isl_qpolynomial_add(up, down);
4872 t = isl_pw_qpolynomial_alloc(orthant, qp);
4873 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4875 return 0;
4878 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4879 * the polynomial will be an overapproximation. If "sign" is negative,
4880 * it will be an underapproximation. If "sign" is zero, the approximation
4881 * will lie somewhere in between.
4883 * In particular, is sign == 0, we simply drop the floors, turning
4884 * the integer divisions into rational divisions.
4885 * Otherwise, we split the domains into orthants, make all integer divisions
4886 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4887 * depending on the requested sign and the sign of the term in which
4888 * the integer division appears.
4890 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4891 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4893 int i;
4894 struct isl_to_poly_data data;
4896 if (sign == 0)
4897 return pwqp_drop_floors(pwqp);
4899 if (!pwqp)
4900 return NULL;
4902 data.sign = sign;
4903 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4905 for (i = 0; i < pwqp->n; ++i) {
4906 if (pwqp->p[i].qp->div->n_row == 0) {
4907 isl_pw_qpolynomial *t;
4908 t = isl_pw_qpolynomial_alloc(
4909 isl_set_copy(pwqp->p[i].set),
4910 isl_qpolynomial_copy(pwqp->p[i].qp));
4911 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4912 continue;
4914 data.qp = pwqp->p[i].qp;
4915 if (isl_set_foreach_orthant(pwqp->p[i].set,
4916 &to_polynomial_on_orthant, &data) < 0)
4917 goto error;
4920 isl_pw_qpolynomial_free(pwqp);
4922 return data.res;
4923 error:
4924 isl_pw_qpolynomial_free(pwqp);
4925 isl_pw_qpolynomial_free(data.res);
4926 return NULL;
4929 static __isl_give isl_pw_qpolynomial *poly_entry(
4930 __isl_take isl_pw_qpolynomial *pwqp, void *user)
4932 int *sign = user;
4934 return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
4937 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4938 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4940 return isl_union_pw_qpolynomial_transform_inplace(upwqp,
4941 &poly_entry, &sign);
4944 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4945 __isl_take isl_qpolynomial *qp)
4947 int i, k;
4948 isl_space *dim;
4949 isl_vec *aff = NULL;
4950 isl_basic_map *bmap = NULL;
4951 unsigned pos;
4952 unsigned n_div;
4954 if (!qp)
4955 return NULL;
4956 if (!isl_upoly_is_affine(qp->upoly))
4957 isl_die(qp->dim->ctx, isl_error_invalid,
4958 "input quasi-polynomial not affine", goto error);
4959 aff = isl_qpolynomial_extract_affine(qp);
4960 if (!aff)
4961 goto error;
4962 dim = isl_qpolynomial_get_space(qp);
4963 pos = 1 + isl_space_offset(dim, isl_dim_out);
4964 n_div = qp->div->n_row;
4965 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4967 for (i = 0; i < n_div; ++i) {
4968 k = isl_basic_map_alloc_div(bmap);
4969 if (k < 0)
4970 goto error;
4971 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4972 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4973 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4974 goto error;
4976 k = isl_basic_map_alloc_equality(bmap);
4977 if (k < 0)
4978 goto error;
4979 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4980 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4981 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4983 isl_vec_free(aff);
4984 isl_qpolynomial_free(qp);
4985 bmap = isl_basic_map_finalize(bmap);
4986 return bmap;
4987 error:
4988 isl_vec_free(aff);
4989 isl_qpolynomial_free(qp);
4990 isl_basic_map_free(bmap);
4991 return NULL;