isl_tab_add_valid_eq: keep track of whether equality is negated
[isl.git] / isl_affine_hull.c
blobc3e55e3151084c30d9a05a0165f7ac9eb68e11c4
1 #include "isl_ctx.h"
2 #include "isl_seq.h"
3 #include "isl_set.h"
4 #include "isl_lp.h"
5 #include "isl_map.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_sample.h"
9 #include "isl_tab.h"
11 struct isl_basic_map *isl_basic_map_implicit_equalities(
12 struct isl_basic_map *bmap)
14 struct isl_tab *tab;
16 if (!bmap)
17 return bmap;
19 bmap = isl_basic_map_gauss(bmap, NULL);
20 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
21 return bmap;
22 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
23 return bmap;
24 if (bmap->n_ineq <= 1)
25 return bmap;
27 tab = isl_tab_from_basic_map(bmap);
28 tab = isl_tab_detect_equalities(tab);
29 bmap = isl_basic_map_update_from_tab(bmap, tab);
30 isl_tab_free(tab);
31 bmap = isl_basic_map_gauss(bmap, NULL);
32 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
33 return bmap;
36 struct isl_basic_set *isl_basic_set_implicit_equalities(
37 struct isl_basic_set *bset)
39 return (struct isl_basic_set *)
40 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
43 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
45 int i;
47 if (!map)
48 return map;
50 for (i = 0; i < map->n; ++i) {
51 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
52 if (!map->p[i])
53 goto error;
56 return map;
57 error:
58 isl_map_free(map);
59 return NULL;
62 /* Make eq[row][col] of both bmaps equal so we can add the row
63 * add the column to the common matrix.
64 * Note that because of the echelon form, the columns of row row
65 * after column col are zero.
67 static void set_common_multiple(
68 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
69 unsigned row, unsigned col)
71 isl_int m, c;
73 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
74 return;
76 isl_int_init(c);
77 isl_int_init(m);
78 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
79 isl_int_divexact(c, m, bset1->eq[row][col]);
80 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
81 isl_int_divexact(c, m, bset2->eq[row][col]);
82 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
83 isl_int_clear(c);
84 isl_int_clear(m);
87 /* Delete a given equality, moving all the following equalities one up.
89 static void delete_row(struct isl_basic_set *bset, unsigned row)
91 isl_int *t;
92 int r;
94 t = bset->eq[row];
95 bset->n_eq--;
96 for (r = row; r < bset->n_eq; ++r)
97 bset->eq[r] = bset->eq[r+1];
98 bset->eq[bset->n_eq] = t;
101 /* Make first row entries in column col of bset1 identical to
102 * those of bset2, using the fact that entry bset1->eq[row][col]=a
103 * is non-zero. Initially, these elements of bset1 are all zero.
104 * For each row i < row, we set
105 * A[i] = a * A[i] + B[i][col] * A[row]
106 * B[i] = a * B[i]
107 * so that
108 * A[i][col] = B[i][col] = a * old(B[i][col])
110 static void construct_column(
111 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
112 unsigned row, unsigned col)
114 int r;
115 isl_int a;
116 isl_int b;
117 unsigned total;
119 isl_int_init(a);
120 isl_int_init(b);
121 total = 1 + isl_basic_set_n_dim(bset1);
122 for (r = 0; r < row; ++r) {
123 if (isl_int_is_zero(bset2->eq[r][col]))
124 continue;
125 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
126 isl_int_divexact(a, bset1->eq[row][col], b);
127 isl_int_divexact(b, bset2->eq[r][col], b);
128 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
129 b, bset1->eq[row], total);
130 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
132 isl_int_clear(a);
133 isl_int_clear(b);
134 delete_row(bset1, row);
137 /* Make first row entries in column col of bset1 identical to
138 * those of bset2, using only these entries of the two matrices.
139 * Let t be the last row with different entries.
140 * For each row i < t, we set
141 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
142 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
143 * so that
144 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
146 static int transform_column(
147 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
148 unsigned row, unsigned col)
150 int i, t;
151 isl_int a, b, g;
152 unsigned total;
154 for (t = row-1; t >= 0; --t)
155 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
156 break;
157 if (t < 0)
158 return 0;
160 total = 1 + isl_basic_set_n_dim(bset1);
161 isl_int_init(a);
162 isl_int_init(b);
163 isl_int_init(g);
164 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
165 for (i = 0; i < t; ++i) {
166 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
167 isl_int_gcd(g, a, b);
168 isl_int_divexact(a, a, g);
169 isl_int_divexact(g, b, g);
170 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
171 total);
172 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
173 total);
175 isl_int_clear(a);
176 isl_int_clear(b);
177 isl_int_clear(g);
178 delete_row(bset1, t);
179 delete_row(bset2, t);
180 return 1;
183 /* The implementation is based on Section 5.2 of Michael Karr,
184 * "Affine Relationships Among Variables of a Program",
185 * except that the echelon form we use starts from the last column
186 * and that we are dealing with integer coefficients.
188 static struct isl_basic_set *affine_hull(
189 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
191 unsigned total;
192 int col;
193 int row;
195 total = 1 + isl_basic_set_n_dim(bset1);
197 row = 0;
198 for (col = total-1; col >= 0; --col) {
199 int is_zero1 = row >= bset1->n_eq ||
200 isl_int_is_zero(bset1->eq[row][col]);
201 int is_zero2 = row >= bset2->n_eq ||
202 isl_int_is_zero(bset2->eq[row][col]);
203 if (!is_zero1 && !is_zero2) {
204 set_common_multiple(bset1, bset2, row, col);
205 ++row;
206 } else if (!is_zero1 && is_zero2) {
207 construct_column(bset1, bset2, row, col);
208 } else if (is_zero1 && !is_zero2) {
209 construct_column(bset2, bset1, row, col);
210 } else {
211 if (transform_column(bset1, bset2, row, col))
212 --row;
215 isl_basic_set_free(bset2);
216 isl_assert(ctx, row == bset1->n_eq, goto error);
217 bset1 = isl_basic_set_normalize_constraints(bset1);
218 return bset1;
219 error:
220 isl_basic_set_free(bset1);
221 return NULL;
224 static struct isl_basic_set *isl_basic_set_from_vec(struct isl_vec *vec)
226 int i;
227 int k;
228 struct isl_basic_set *bset = NULL;
229 struct isl_ctx *ctx;
230 unsigned dim;
232 if (!vec)
233 return NULL;
234 ctx = vec->ctx;
235 isl_assert(ctx, vec->size != 0, goto error);
237 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
238 if (!bset)
239 goto error;
240 dim = isl_basic_set_n_dim(bset);
241 for (i = dim - 1; i >= 0; --i) {
242 k = isl_basic_set_alloc_equality(bset);
243 if (k < 0)
244 goto error;
245 isl_seq_clr(bset->eq[k], 1 + dim);
246 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
247 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
249 isl_vec_free(vec);
251 return bset;
252 error:
253 isl_basic_set_free(bset);
254 isl_vec_free(vec);
255 return NULL;
258 /* Find an integer point in "bset" that lies outside of the equality
259 * "eq" e(x) = 0.
260 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
261 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
262 * The point, if found, is returned as a singleton set.
263 * If no point can be found, the empty set is returned.
265 * Before solving an ILP problem, we first check if simply
266 * adding the normal of the constraint to one of the known
267 * integer points in the basic set yields another point
268 * inside the basic set.
270 * The caller of this function ensures that "bset" is bounded.
272 static struct isl_basic_set *outside_point(struct isl_ctx *ctx,
273 struct isl_basic_set *bset, isl_int *eq, int up)
275 struct isl_basic_set *slice = NULL;
276 struct isl_vec *sample;
277 struct isl_basic_set *point;
278 unsigned dim;
279 int k;
281 dim = isl_basic_set_n_dim(bset);
282 sample = isl_vec_alloc(ctx, 1 + dim);
283 if (!sample)
284 return NULL;
285 isl_int_set_si(sample->block.data[0], 1);
286 isl_seq_combine(sample->block.data + 1,
287 ctx->one, bset->sample->block.data + 1,
288 up ? ctx->one : ctx->negone, eq + 1, dim);
289 if (isl_basic_set_contains(bset, sample))
290 return isl_basic_set_from_vec(sample);
291 isl_vec_free(sample);
292 sample = NULL;
294 slice = isl_basic_set_copy(bset);
295 if (!slice)
296 goto error;
297 slice = isl_basic_set_cow(slice);
298 slice = isl_basic_set_extend(slice, 0, dim, 0, 0, 1);
299 k = isl_basic_set_alloc_inequality(slice);
300 if (k < 0)
301 goto error;
302 if (up)
303 isl_seq_cpy(slice->ineq[k], eq, 1 + dim);
304 else
305 isl_seq_neg(slice->ineq[k], eq, 1 + dim);
306 isl_int_sub_ui(slice->ineq[k][0], slice->ineq[k][0], 1);
308 sample = isl_basic_set_sample_bounded(slice);
309 if (!sample)
310 goto error;
311 if (sample->size == 0) {
312 isl_vec_free(sample);
313 point = isl_basic_set_empty_like(bset);
314 } else
315 point = isl_basic_set_from_vec(sample);
317 return point;
318 error:
319 isl_basic_set_free(slice);
320 return NULL;
323 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
325 int i;
327 bset = isl_basic_set_cow(bset);
328 if (!bset)
329 return NULL;
330 isl_assert(bset->ctx, bset->n_div == 0, goto error);
332 for (i = 0; i < bset->n_eq; ++i)
333 isl_int_set_si(bset->eq[i][0], 0);
335 for (i = 0; i < bset->n_ineq; ++i)
336 isl_int_set_si(bset->ineq[i][0], 0);
338 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
339 return isl_basic_set_implicit_equalities(bset);
340 error:
341 isl_basic_set_free(bset);
342 return NULL;
345 /* Extend an initial (under-)approximation of the affine hull of "bset"
346 * by looking for points that do not satisfy one of the equalities
347 * in the current approximation and adding them to that approximation
348 * until no such points can be found any more.
350 * The caller of this function ensures that "bset" is bounded.
352 static struct isl_basic_set *extend_affine_hull(struct isl_basic_set *bset,
353 struct isl_basic_set *hull)
355 int i, j;
356 struct isl_ctx *ctx;
357 unsigned dim;
359 ctx = bset->ctx;
360 dim = isl_basic_set_n_dim(bset);
361 for (i = 0; i < dim; ++i) {
362 struct isl_basic_set *point;
363 for (j = 0; j < hull->n_eq; ++j) {
364 point = outside_point(ctx, bset, hull->eq[j], 1);
365 if (!point)
366 goto error;
367 if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
368 break;
369 isl_basic_set_free(point);
370 point = outside_point(ctx, bset, hull->eq[j], 0);
371 if (!point)
372 goto error;
373 if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
374 break;
375 isl_basic_set_free(point);
377 if (j == hull->n_eq)
378 break;
379 hull = affine_hull(hull, point);
381 isl_basic_set_free(bset);
383 return hull;
384 error:
385 isl_basic_set_free(bset);
386 isl_basic_set_free(hull);
387 return NULL;
390 /* Drop all constraints in bset that involve any of the dimensions
391 * first to first+n-1.
393 static struct isl_basic_set *drop_constraints_involving
394 (struct isl_basic_set *bset, unsigned first, unsigned n)
396 int i;
398 if (!bset)
399 return NULL;
401 bset = isl_basic_set_cow(bset);
403 for (i = bset->n_eq - 1; i >= 0; --i) {
404 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
405 continue;
406 isl_basic_set_drop_equality(bset, i);
409 for (i = bset->n_ineq - 1; i >= 0; --i) {
410 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
411 continue;
412 isl_basic_set_drop_inequality(bset, i);
415 return bset;
418 /* Compute the affine hull of "bset", where "hull" is an initial approximation
419 * with only a single point of "bset" and "cone" is the recession cone
420 * of "bset".
422 * We first compute a unimodular transformation that puts the unbounded
423 * directions in the last dimensions. In particular, we take a transformation
424 * that maps all equalities to equalities (in HNF) on the first dimensions.
425 * Let x be the original dimensions and y the transformed, with y_1 bounded
426 * and y_2 unbounded.
428 * [ y_1 ] [ y_1 ] [ Q_1 ]
429 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
431 * Let's call the input basic set S and the initial hull H.
432 * We compute S' = preimage(S, U) and H' = preimage(H, U)
433 * and drop the final dimensions including any constraints involving them.
434 * This results in sets S'' and H''.
435 * Then we extend H'' to the affine hull A'' of S''.
436 * Let F y_1 >= g be the constraint system of A''. In the transformed
437 * space the y_2 are unbounded, so we can add them back without any constraints,
438 * resulting in
440 * [ y_1 ]
441 * [ F 0 ] [ y_2 ] >= g
442 * or
443 * [ Q_1 ]
444 * [ F 0 ] [ Q_2 ] x >= g
445 * or
446 * F Q_1 x >= g
448 * The affine hull in the original space is then obtained as
449 * A = preimage(A'', Q_1).
451 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
452 struct isl_basic_set *hull, struct isl_basic_set *cone)
454 unsigned total;
455 unsigned cone_dim;
456 struct isl_mat *M, *U, *Q;
458 if (!bset || !hull || !cone)
459 goto error;
461 total = isl_basic_set_total_dim(cone);
462 cone_dim = total - cone->n_eq;
464 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
465 M = isl_mat_left_hermite(M, 0, &U, &Q);
466 if (!M)
467 goto error;
468 isl_mat_free(M);
470 U = isl_mat_lin_to_aff(U);
471 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
472 hull = isl_basic_set_preimage(hull, U);
474 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
475 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
476 hull = drop_constraints_involving(hull, total - cone_dim, cone_dim);
477 hull = isl_basic_set_drop_dims(hull, total - cone_dim, cone_dim);
479 Q = isl_mat_lin_to_aff(Q);
480 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
482 if (bset && bset->sample)
483 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
485 hull = extend_affine_hull(bset, hull);
487 hull = isl_basic_set_preimage(hull, Q);
489 isl_basic_set_free(cone);
491 return hull;
492 error:
493 isl_basic_set_free(bset);
494 isl_basic_set_free(hull);
495 isl_basic_set_free(cone);
496 return NULL;
499 /* Look for all equalities satisfied by the integer points in bset,
500 * which is assumed not to have any explicit equalities.
502 * The equalities are obtained by successively looking for
503 * a point that is affinely independent of the points found so far.
504 * In particular, for each equality satisfied by the points so far,
505 * we check if there is any point on a hyperplane parallel to the
506 * corresponding hyperplane shifted by at least one (in either direction).
508 * Before looking for any outside points, we first compute the recession
509 * cone. The directions of this recession cone will always be part
510 * of the affine hull, so there is no need for looking for any points
511 * in these directions.
512 * In particular, if the recession cone is full-dimensional, then
513 * the affine hull is simply the whole universe.
515 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
517 struct isl_basic_set *hull = NULL;
518 struct isl_vec *sample = NULL;
519 struct isl_basic_set *cone;
521 if (isl_basic_set_is_empty(bset))
522 return bset;
524 sample = isl_basic_set_sample(isl_basic_set_copy(bset));
525 if (!sample)
526 goto error;
527 if (sample->size == 0) {
528 isl_vec_free(sample);
529 hull = isl_basic_set_empty_like(bset);
530 isl_basic_set_free(bset);
531 return hull;
533 if (sample->size == 1) {
534 isl_vec_free(sample);
535 return bset;
538 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
539 if (!cone)
540 goto error;
541 if (cone->n_eq == 0) {
542 isl_basic_set_free(cone);
543 isl_vec_free(sample);
544 hull = isl_basic_set_universe_like(bset);
545 isl_basic_set_free(bset);
546 return hull;
549 hull = isl_basic_set_from_vec(sample);
550 if (cone->n_eq < isl_basic_set_total_dim(cone))
551 return affine_hull_with_cone(bset, hull, cone);
553 isl_basic_set_free(cone);
554 return extend_affine_hull(bset, hull);
555 error:
556 isl_vec_free(sample);
557 isl_basic_set_free(bset);
558 isl_basic_set_free(hull);
559 return NULL;
562 /* Look for all equalities satisfied by the integer points in bmap
563 * that are independent of the equalities already explicitly available
564 * in bmap.
566 * We first remove all equalities already explicitly available,
567 * then look for additional equalities in the reduced space
568 * and then transform the result to the original space.
569 * The original equalities are _not_ added to this set. This is
570 * the responsibility of the calling function.
571 * The resulting basic set has all meaning about the dimensions removed.
572 * In particular, dimensions that correspond to existential variables
573 * in bmap and that are found to be fixed are not removed.
575 static struct isl_basic_set *equalities_in_underlying_set(
576 struct isl_basic_map *bmap)
578 struct isl_mat *T2 = NULL;
579 struct isl_basic_set *bset = NULL;
580 struct isl_basic_set *hull = NULL;
582 bset = isl_basic_map_underlying_set(bmap);
583 bset = isl_basic_set_remove_equalities(bset, NULL, &T2);
584 if (!bset)
585 goto error;
587 hull = uset_affine_hull(bset);
588 if (T2)
589 hull = isl_basic_set_preimage(hull, T2);
591 return hull;
592 error:
593 isl_mat_free(T2);
594 isl_basic_set_free(bset);
595 isl_basic_set_free(hull);
596 return NULL;
599 /* Detect and make explicit all equalities satisfied by the (integer)
600 * points in bmap.
602 struct isl_basic_map *isl_basic_map_detect_equalities(
603 struct isl_basic_map *bmap)
605 int i, j;
606 struct isl_basic_set *hull = NULL;
608 if (!bmap)
609 return NULL;
610 if (bmap->n_ineq == 0)
611 return bmap;
612 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
613 return bmap;
614 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
615 return bmap;
616 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
617 return isl_basic_map_implicit_equalities(bmap);
619 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
620 if (!hull)
621 goto error;
622 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
623 isl_basic_set_free(hull);
624 return isl_basic_map_set_to_empty(bmap);
626 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
627 hull->n_eq, 0);
628 for (i = 0; i < hull->n_eq; ++i) {
629 j = isl_basic_map_alloc_equality(bmap);
630 if (j < 0)
631 goto error;
632 isl_seq_cpy(bmap->eq[j], hull->eq[i],
633 1 + isl_basic_set_total_dim(hull));
635 isl_basic_set_free(hull);
636 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
637 bmap = isl_basic_map_simplify(bmap);
638 return isl_basic_map_finalize(bmap);
639 error:
640 isl_basic_set_free(hull);
641 isl_basic_map_free(bmap);
642 return NULL;
645 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
647 struct isl_basic_map *bmap;
648 int i;
650 if (!map)
651 return NULL;
653 for (i = 0; i < map->n; ++i) {
654 bmap = isl_basic_map_copy(map->p[i]);
655 bmap = isl_basic_map_detect_equalities(bmap);
656 if (!bmap)
657 goto error;
658 isl_basic_map_free(map->p[i]);
659 map->p[i] = bmap;
662 return map;
663 error:
664 isl_map_free(map);
665 return NULL;
668 /* After computing the rational affine hull (by detecting the implicit
669 * equalities), we compute the additional equalities satisfied by
670 * the integer points (if any) and add the original equalities back in.
672 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
674 struct isl_basic_set *hull = NULL;
676 bmap = isl_basic_map_detect_equalities(bmap);
677 bmap = isl_basic_map_cow(bmap);
678 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
679 return bmap;
682 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
684 return (struct isl_basic_set *)
685 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
688 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
690 int i;
691 struct isl_basic_map *model = NULL;
692 struct isl_basic_map *hull = NULL;
693 struct isl_set *set;
695 if (!map)
696 return NULL;
698 if (map->n == 0) {
699 hull = isl_basic_map_empty_like_map(map);
700 isl_map_free(map);
701 return hull;
704 map = isl_map_detect_equalities(map);
705 map = isl_map_align_divs(map);
706 if (!map)
707 return NULL;
708 model = isl_basic_map_copy(map->p[0]);
709 set = isl_map_underlying_set(map);
710 set = isl_set_cow(set);
711 if (!set)
712 goto error;
714 for (i = 0; i < set->n; ++i) {
715 set->p[i] = isl_basic_set_cow(set->p[i]);
716 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
717 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
718 if (!set->p[i])
719 goto error;
721 set = isl_set_remove_empty_parts(set);
722 if (set->n == 0) {
723 hull = isl_basic_map_empty_like(model);
724 isl_basic_map_free(model);
725 } else {
726 struct isl_basic_set *bset;
727 while (set->n > 1) {
728 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
729 if (!set->p[0])
730 goto error;
732 bset = isl_basic_set_copy(set->p[0]);
733 hull = isl_basic_map_overlying_set(bset, model);
735 isl_set_free(set);
736 hull = isl_basic_map_simplify(hull);
737 return isl_basic_map_finalize(hull);
738 error:
739 isl_basic_map_free(model);
740 isl_set_free(set);
741 return NULL;
744 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
746 return (struct isl_basic_set *)
747 isl_map_affine_hull((struct isl_map *)set);