2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_equalities.h"
16 #include <isl_dim_private.h>
17 #include <isl_mat_private.h>
19 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
21 isl_int
*t
= bmap
->eq
[a
];
22 bmap
->eq
[a
] = bmap
->eq
[b
];
26 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
29 isl_int
*t
= bmap
->ineq
[a
];
30 bmap
->ineq
[a
] = bmap
->ineq
[b
];
35 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
37 isl_seq_cpy(c
, c
+ n
, rem
);
38 isl_seq_clr(c
+ rem
, n
);
41 /* Drop n dimensions starting at first.
43 * In principle, this frees up some extra variables as the number
44 * of columns remains constant, but we would have to extend
45 * the div array too as the number of rows in this array is assumed
46 * to be equal to extra.
48 struct isl_basic_set
*isl_basic_set_drop_dims(
49 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
56 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
58 if (n
== 0 && !isl_dim_get_tuple_name(bset
->dim
, isl_dim_set
))
61 bset
= isl_basic_set_cow(bset
);
65 for (i
= 0; i
< bset
->n_eq
; ++i
)
66 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
67 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
69 for (i
= 0; i
< bset
->n_ineq
; ++i
)
70 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
71 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
73 for (i
= 0; i
< bset
->n_div
; ++i
)
74 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
75 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
77 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
81 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
82 bset
= isl_basic_set_simplify(bset
);
83 return isl_basic_set_finalize(bset
);
85 isl_basic_set_free(bset
);
89 struct isl_set
*isl_set_drop_dims(
90 struct isl_set
*set
, unsigned first
, unsigned n
)
97 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
99 if (n
== 0 && !isl_dim_get_tuple_name(set
->dim
, isl_dim_set
))
101 set
= isl_set_cow(set
);
104 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
108 for (i
= 0; i
< set
->n
; ++i
) {
109 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
114 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
121 /* Move "n" divs starting at "first" to the end of the list of divs.
123 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
124 unsigned first
, unsigned n
)
129 if (first
+ n
== bmap
->n_div
)
132 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
135 for (i
= 0; i
< n
; ++i
)
136 div
[i
] = bmap
->div
[first
+ i
];
137 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
138 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
139 for (i
= 0; i
< n
; ++i
)
140 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
144 isl_basic_map_free(bmap
);
148 /* Drop "n" dimensions of type "type" starting at "first".
150 * In principle, this frees up some extra variables as the number
151 * of columns remains constant, but we would have to extend
152 * the div array too as the number of rows in this array is assumed
153 * to be equal to extra.
155 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
156 enum isl_dim_type type
, unsigned first
, unsigned n
)
166 dim
= isl_basic_map_dim(bmap
, type
);
167 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
169 if (n
== 0 && !isl_dim_get_tuple_name(bmap
->dim
, type
))
172 bmap
= isl_basic_map_cow(bmap
);
176 offset
= isl_basic_map_offset(bmap
, type
) + first
;
177 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
178 for (i
= 0; i
< bmap
->n_eq
; ++i
)
179 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
181 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
182 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
184 for (i
= 0; i
< bmap
->n_div
; ++i
)
185 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
187 if (type
== isl_dim_div
) {
188 bmap
= move_divs_last(bmap
, first
, n
);
191 isl_basic_map_free_div(bmap
, n
);
193 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
197 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
198 bmap
= isl_basic_map_simplify(bmap
);
199 return isl_basic_map_finalize(bmap
);
201 isl_basic_map_free(bmap
);
205 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
206 enum isl_dim_type type
, unsigned first
, unsigned n
)
208 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
212 struct isl_basic_map
*isl_basic_map_drop_inputs(
213 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
215 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
218 struct isl_map
*isl_map_drop(struct isl_map
*map
,
219 enum isl_dim_type type
, unsigned first
, unsigned n
)
226 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
228 if (n
== 0 && !isl_dim_get_tuple_name(map
->dim
, type
))
230 map
= isl_map_cow(map
);
233 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
237 for (i
= 0; i
< map
->n
; ++i
) {
238 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
242 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
250 struct isl_set
*isl_set_drop(struct isl_set
*set
,
251 enum isl_dim_type type
, unsigned first
, unsigned n
)
253 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
256 struct isl_map
*isl_map_drop_inputs(
257 struct isl_map
*map
, unsigned first
, unsigned n
)
259 return isl_map_drop(map
, isl_dim_in
, first
, n
);
263 * We don't cow, as the div is assumed to be redundant.
265 static struct isl_basic_map
*isl_basic_map_drop_div(
266 struct isl_basic_map
*bmap
, unsigned div
)
274 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
276 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
278 for (i
= 0; i
< bmap
->n_eq
; ++i
)
279 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
281 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
282 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
283 isl_basic_map_drop_inequality(bmap
, i
);
287 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
290 for (i
= 0; i
< bmap
->n_div
; ++i
)
291 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
293 if (div
!= bmap
->n_div
- 1) {
295 isl_int
*t
= bmap
->div
[div
];
297 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
298 bmap
->div
[j
] = bmap
->div
[j
+1];
300 bmap
->div
[bmap
->n_div
- 1] = t
;
302 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
303 isl_basic_map_free_div(bmap
, 1);
307 isl_basic_map_free(bmap
);
311 struct isl_basic_map
*isl_basic_map_normalize_constraints(
312 struct isl_basic_map
*bmap
)
316 unsigned total
= isl_basic_map_total_dim(bmap
);
322 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
323 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
324 if (isl_int_is_zero(gcd
)) {
325 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
326 bmap
= isl_basic_map_set_to_empty(bmap
);
329 isl_basic_map_drop_equality(bmap
, i
);
332 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
333 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
334 if (isl_int_is_one(gcd
))
336 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
337 bmap
= isl_basic_map_set_to_empty(bmap
);
340 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
343 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
344 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
345 if (isl_int_is_zero(gcd
)) {
346 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
347 bmap
= isl_basic_map_set_to_empty(bmap
);
350 isl_basic_map_drop_inequality(bmap
, i
);
353 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
354 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
355 if (isl_int_is_one(gcd
))
357 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
358 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
365 struct isl_basic_set
*isl_basic_set_normalize_constraints(
366 struct isl_basic_set
*bset
)
368 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
369 (struct isl_basic_map
*)bset
);
372 /* Assumes divs have been ordered if keep_divs is set.
374 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
375 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
381 total
= isl_basic_map_total_dim(bmap
);
382 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
384 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
385 if (bmap
->eq
[k
] == eq
)
387 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
391 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
392 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
395 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
396 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
400 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
401 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
402 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
405 for (k
= 0; k
< bmap
->n_div
; ++k
) {
406 if (isl_int_is_zero(bmap
->div
[k
][0]))
408 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
412 /* We need to be careful about circular definitions,
413 * so for now we just remove the definition of div k
414 * if the equality contains any divs.
415 * If keep_divs is set, then the divs have been ordered
416 * and we can keep the definition as long as the result
419 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
420 isl_seq_elim(bmap
->div
[k
]+1, eq
,
421 1+pos
, 1+total
, &bmap
->div
[k
][0]);
423 isl_seq_clr(bmap
->div
[k
], 1 + total
);
424 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
428 /* Assumes divs have been ordered if keep_divs is set.
430 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
431 unsigned div
, int keep_divs
)
433 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
435 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
437 isl_basic_map_drop_div(bmap
, div
);
440 /* Check if elimination of div "div" using equality "eq" would not
441 * result in a div depending on a later div.
443 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
448 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
450 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
452 if (last_div
< 0 || last_div
<= div
)
455 for (k
= 0; k
<= last_div
; ++k
) {
456 if (isl_int_is_zero(bmap
->div
[k
][0]))
458 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
465 /* Elimininate divs based on equalities
467 static struct isl_basic_map
*eliminate_divs_eq(
468 struct isl_basic_map
*bmap
, int *progress
)
475 bmap
= isl_basic_map_order_divs(bmap
);
480 off
= 1 + isl_dim_total(bmap
->dim
);
482 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
483 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
484 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
485 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
487 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
491 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
492 isl_basic_map_drop_equality(bmap
, i
);
497 return eliminate_divs_eq(bmap
, progress
);
501 /* Elimininate divs based on inequalities
503 static struct isl_basic_map
*eliminate_divs_ineq(
504 struct isl_basic_map
*bmap
, int *progress
)
515 off
= 1 + isl_dim_total(bmap
->dim
);
517 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
518 for (i
= 0; i
< bmap
->n_eq
; ++i
)
519 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
523 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
524 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
526 if (i
< bmap
->n_ineq
)
529 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
530 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
532 bmap
= isl_basic_map_drop_div(bmap
, d
);
539 struct isl_basic_map
*isl_basic_map_gauss(
540 struct isl_basic_map
*bmap
, int *progress
)
548 bmap
= isl_basic_map_order_divs(bmap
);
553 total
= isl_basic_map_total_dim(bmap
);
554 total_var
= total
- bmap
->n_div
;
556 last_var
= total
- 1;
557 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
558 for (; last_var
>= 0; --last_var
) {
559 for (k
= done
; k
< bmap
->n_eq
; ++k
)
560 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
568 swap_equality(bmap
, k
, done
);
569 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
570 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
572 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
575 if (last_var
>= total_var
&&
576 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
577 unsigned div
= last_var
- total_var
;
578 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
579 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
580 isl_int_set(bmap
->div
[div
][0],
581 bmap
->eq
[done
][1+last_var
]);
582 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
585 if (done
== bmap
->n_eq
)
587 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
588 if (isl_int_is_zero(bmap
->eq
[k
][0]))
590 return isl_basic_map_set_to_empty(bmap
);
592 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
596 struct isl_basic_set
*isl_basic_set_gauss(
597 struct isl_basic_set
*bset
, int *progress
)
599 return (struct isl_basic_set
*)isl_basic_map_gauss(
600 (struct isl_basic_map
*)bset
, progress
);
604 static unsigned int round_up(unsigned int v
)
615 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
616 struct isl_basic_map
*bmap
, int k
)
619 unsigned total
= isl_basic_map_total_dim(bmap
);
620 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
621 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
622 if (&bmap
->ineq
[k
] != index
[h
] &&
623 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
628 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
629 struct isl_basic_set
*bset
, int k
)
631 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
634 /* If we can eliminate more than one div, then we need to make
635 * sure we do it from last div to first div, in order not to
636 * change the position of the other divs that still need to
639 static struct isl_basic_map
*remove_duplicate_divs(
640 struct isl_basic_map
*bmap
, int *progress
)
652 if (!bmap
|| bmap
->n_div
<= 1)
655 total_var
= isl_dim_total(bmap
->dim
);
656 total
= total_var
+ bmap
->n_div
;
659 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
660 if (!isl_int_is_zero(bmap
->div
[k
][0]))
665 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
666 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
667 bits
= ffs(size
) - 1;
668 index
= isl_calloc_array(ctx
, int, size
);
671 eq
= isl_blk_alloc(ctx
, 1+total
);
672 if (isl_blk_is_error(eq
))
675 isl_seq_clr(eq
.data
, 1+total
);
676 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
677 for (--k
; k
>= 0; --k
) {
680 if (isl_int_is_zero(bmap
->div
[k
][0]))
683 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
684 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
685 if (isl_seq_eq(bmap
->div
[k
],
686 bmap
->div
[index
[h
]-1], 2+total
))
695 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
699 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
700 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
701 eliminate_div(bmap
, eq
.data
, l
, 0);
702 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
703 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
706 isl_blk_free(ctx
, eq
);
713 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
718 total
= isl_dim_total(bmap
->dim
);
719 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
720 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
724 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
730 /* Normalize divs that appear in equalities.
732 * In particular, we assume that bmap contains some equalities
737 * and we want to replace the set of e_i by a minimal set and
738 * such that the new e_i have a canonical representation in terms
740 * If any of the equalities involves more than one divs, then
741 * we currently simply bail out.
743 * Let us first additionally assume that all equalities involve
744 * a div. The equalities then express modulo constraints on the
745 * remaining variables and we can use "parameter compression"
746 * to find a minimal set of constraints. The result is a transformation
748 * x = T(x') = x_0 + G x'
750 * with G a lower-triangular matrix with all elements below the diagonal
751 * non-negative and smaller than the diagonal element on the same row.
752 * We first normalize x_0 by making the same property hold in the affine
754 * The rows i of G with a 1 on the diagonal do not impose any modulo
755 * constraint and simply express x_i = x'_i.
756 * For each of the remaining rows i, we introduce a div and a corresponding
757 * equality. In particular
759 * g_ii e_j = x_i - g_i(x')
761 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
762 * corresponding div (if g_kk != 1).
764 * If there are any equalities not involving any div, then we
765 * first apply a variable compression on the variables x:
767 * x = C x'' x'' = C_2 x
769 * and perform the above parameter compression on A C instead of on A.
770 * The resulting compression is then of the form
772 * x'' = T(x') = x_0 + G x'
774 * and in constructing the new divs and the corresponding equalities,
775 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
776 * by the corresponding row from C_2.
778 static struct isl_basic_map
*normalize_divs(
779 struct isl_basic_map
*bmap
, int *progress
)
786 struct isl_mat
*T
= NULL
;
787 struct isl_mat
*C
= NULL
;
788 struct isl_mat
*C2
= NULL
;
796 if (bmap
->n_div
== 0)
802 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
805 total
= isl_dim_total(bmap
->dim
);
806 div_eq
= n_pure_div_eq(bmap
);
810 if (div_eq
< bmap
->n_eq
) {
811 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
812 bmap
->n_eq
- div_eq
, 0, 1 + total
);
813 C
= isl_mat_variable_compression(B
, &C2
);
817 bmap
= isl_basic_map_set_to_empty(bmap
);
824 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
827 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
828 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
830 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
832 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
835 B
= isl_mat_product(B
, C
);
839 T
= isl_mat_parameter_compression(B
, d
);
843 bmap
= isl_basic_map_set_to_empty(bmap
);
849 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
850 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
851 if (isl_int_is_zero(v
))
853 isl_mat_col_submul(T
, 0, v
, 1 + i
);
856 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
859 /* We have to be careful because dropping equalities may reorder them */
861 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
862 for (i
= 0; i
< bmap
->n_eq
; ++i
)
863 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
865 if (i
< bmap
->n_eq
) {
866 bmap
= isl_basic_map_drop_div(bmap
, j
);
867 isl_basic_map_drop_equality(bmap
, i
);
873 for (i
= 1; i
< T
->n_row
; ++i
) {
874 if (isl_int_is_one(T
->row
[i
][i
]))
879 if (needed
> dropped
) {
880 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
885 for (i
= 1; i
< T
->n_row
; ++i
) {
886 if (isl_int_is_one(T
->row
[i
][i
]))
888 k
= isl_basic_map_alloc_div(bmap
);
889 pos
[i
] = 1 + total
+ k
;
890 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
891 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
893 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
895 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
896 for (j
= 0; j
< i
; ++j
) {
897 if (isl_int_is_zero(T
->row
[i
][j
]))
899 if (pos
[j
] < T
->n_row
&& C2
)
900 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
901 C2
->row
[pos
[j
]], 1 + total
);
903 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
906 j
= isl_basic_map_alloc_equality(bmap
);
907 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
908 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
917 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
927 static struct isl_basic_map
*set_div_from_lower_bound(
928 struct isl_basic_map
*bmap
, int div
, int ineq
)
930 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
932 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
933 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
934 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
935 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
936 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
941 /* Check whether it is ok to define a div based on an inequality.
942 * To avoid the introduction of circular definitions of divs, we
943 * do not allow such a definition if the resulting expression would refer to
944 * any other undefined divs or if any known div is defined in
945 * terms of the unknown div.
947 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
951 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
953 /* Not defined in terms of unknown divs */
954 for (j
= 0; j
< bmap
->n_div
; ++j
) {
957 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
959 if (isl_int_is_zero(bmap
->div
[j
][0]))
963 /* No other div defined in terms of this one => avoid loops */
964 for (j
= 0; j
< bmap
->n_div
; ++j
) {
967 if (isl_int_is_zero(bmap
->div
[j
][0]))
969 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
976 /* Given two constraints "k" and "l" that are opposite to each other,
977 * except for the constant term, check if we can use them
978 * to obtain an expression for one of the hitherto unknown divs.
979 * "sum" is the sum of the constant terms of the constraints.
980 * If this sum is strictly smaller than the coefficient of one
981 * of the divs, then this pair can be used define the div.
982 * To avoid the introduction of circular definitions of divs, we
983 * do not use the pair if the resulting expression would refer to
984 * any other undefined divs or if any known div is defined in
985 * terms of the unknown div.
987 static struct isl_basic_map
*check_for_div_constraints(
988 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
991 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
993 for (i
= 0; i
< bmap
->n_div
; ++i
) {
994 if (!isl_int_is_zero(bmap
->div
[i
][0]))
996 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
998 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1000 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1002 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1003 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1005 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1013 static struct isl_basic_map
*remove_duplicate_constraints(
1014 struct isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1020 unsigned total
= isl_basic_map_total_dim(bmap
);
1023 if (!bmap
|| bmap
->n_ineq
<= 1)
1026 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1027 bits
= ffs(size
) - 1;
1028 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1032 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1033 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1034 h
= hash_index(index
, size
, bits
, bmap
, k
);
1036 index
[h
] = &bmap
->ineq
[k
];
1041 l
= index
[h
] - &bmap
->ineq
[0];
1042 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1043 swap_inequality(bmap
, k
, l
);
1044 isl_basic_map_drop_inequality(bmap
, k
);
1048 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1049 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1050 h
= hash_index(index
, size
, bits
, bmap
, k
);
1051 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1054 l
= index
[h
] - &bmap
->ineq
[0];
1055 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1056 if (isl_int_is_pos(sum
)) {
1058 bmap
= check_for_div_constraints(bmap
, k
, l
,
1062 if (isl_int_is_zero(sum
)) {
1063 /* We need to break out of the loop after these
1064 * changes since the contents of the hash
1065 * will no longer be valid.
1066 * Plus, we probably we want to regauss first.
1070 isl_basic_map_drop_inequality(bmap
, l
);
1071 isl_basic_map_inequality_to_equality(bmap
, k
);
1073 bmap
= isl_basic_map_set_to_empty(bmap
);
1083 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1090 bmap
= isl_basic_map_normalize_constraints(bmap
);
1091 bmap
= remove_duplicate_divs(bmap
, &progress
);
1092 bmap
= eliminate_divs_eq(bmap
, &progress
);
1093 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1094 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1095 /* requires equalities in normal form */
1096 bmap
= normalize_divs(bmap
, &progress
);
1097 bmap
= remove_duplicate_constraints(bmap
, &progress
, 1);
1102 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1104 return (struct isl_basic_set
*)
1105 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1109 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1110 isl_int
*constraint
, unsigned div
)
1117 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1119 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1121 isl_int_sub(bmap
->div
[div
][1],
1122 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1123 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1124 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1125 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1126 isl_int_add(bmap
->div
[div
][1],
1127 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1130 if (isl_seq_first_non_zero(constraint
+pos
+1,
1131 bmap
->n_div
-div
-1) != -1)
1133 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1134 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1136 if (isl_seq_first_non_zero(constraint
+pos
+1,
1137 bmap
->n_div
-div
-1) != -1)
1146 /* If the only constraints a div d=floor(f/m)
1147 * appears in are its two defining constraints
1150 * -(f - (m - 1)) + m d >= 0
1152 * then it can safely be removed.
1154 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1157 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1159 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1160 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1163 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1164 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1166 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1170 for (i
= 0; i
< bmap
->n_div
; ++i
)
1171 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1178 * Remove divs that don't occur in any of the constraints or other divs.
1179 * These can arise when dropping some of the variables in a quast
1180 * returned by piplib.
1182 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1189 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1190 if (!div_is_redundant(bmap
, i
))
1192 bmap
= isl_basic_map_drop_div(bmap
, i
);
1197 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1199 bmap
= remove_redundant_divs(bmap
);
1202 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1206 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1208 return (struct isl_basic_set
*)
1209 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1212 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1218 for (i
= 0; i
< set
->n
; ++i
) {
1219 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1229 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1235 for (i
= 0; i
< map
->n
; ++i
) {
1236 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1240 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1248 /* Remove definition of any div that is defined in terms of the given variable.
1249 * The div itself is not removed. Functions such as
1250 * eliminate_divs_ineq depend on the other divs remaining in place.
1252 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1257 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1258 if (isl_int_is_zero(bmap
->div
[i
][0]))
1260 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1262 isl_int_set_si(bmap
->div
[i
][0], 0);
1267 /* Eliminate the specified variables from the constraints using
1268 * Fourier-Motzkin. The variables themselves are not removed.
1270 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1271 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1281 total
= isl_basic_map_total_dim(bmap
);
1283 bmap
= isl_basic_map_cow(bmap
);
1284 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1285 bmap
= remove_dependent_vars(bmap
, d
);
1287 for (d
= pos
+ n
- 1;
1288 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1289 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1290 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1291 int n_lower
, n_upper
;
1294 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1295 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1297 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1298 isl_basic_map_drop_equality(bmap
, i
);
1305 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1306 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1308 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1311 bmap
= isl_basic_map_extend_constraints(bmap
,
1312 0, n_lower
* n_upper
);
1315 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1317 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1320 for (j
= 0; j
< i
; ++j
) {
1321 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1324 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1325 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1327 k
= isl_basic_map_alloc_inequality(bmap
);
1330 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1332 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1333 1+d
, 1+total
, NULL
);
1335 isl_basic_map_drop_inequality(bmap
, i
);
1338 if (n_lower
> 0 && n_upper
> 0) {
1339 bmap
= isl_basic_map_normalize_constraints(bmap
);
1340 bmap
= remove_duplicate_constraints(bmap
, NULL
, 0);
1341 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1342 bmap
= isl_basic_map_remove_redundancies(bmap
);
1345 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1349 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1352 isl_basic_map_free(bmap
);
1356 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1357 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1359 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1360 (struct isl_basic_map
*)bset
, pos
, n
);
1363 /* Don't assume equalities are in order, because align_divs
1364 * may have changed the order of the divs.
1366 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1371 total
= isl_dim_total(bmap
->dim
);
1372 for (d
= 0; d
< total
; ++d
)
1374 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1375 for (d
= total
- 1; d
>= 0; --d
) {
1376 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1384 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1386 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1389 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1390 struct isl_basic_map
*bmap
, int *elim
)
1396 total
= isl_dim_total(bmap
->dim
);
1397 for (d
= total
- 1; d
>= 0; --d
) {
1398 if (isl_int_is_zero(src
[1+d
]))
1403 isl_seq_cpy(dst
, src
, 1 + total
);
1406 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1411 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1412 struct isl_basic_set
*bset
, int *elim
)
1414 return reduced_using_equalities(dst
, src
,
1415 (struct isl_basic_map
*)bset
, elim
);
1418 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1419 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1424 if (!bset
|| !context
)
1427 if (context
->n_eq
== 0) {
1428 isl_basic_set_free(context
);
1432 bset
= isl_basic_set_cow(bset
);
1436 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1439 set_compute_elimination_index(context
, elim
);
1440 for (i
= 0; i
< bset
->n_eq
; ++i
)
1441 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1443 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1444 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1446 isl_basic_set_free(context
);
1448 bset
= isl_basic_set_simplify(bset
);
1449 bset
= isl_basic_set_finalize(bset
);
1452 isl_basic_set_free(bset
);
1453 isl_basic_set_free(context
);
1457 static struct isl_basic_set
*remove_shifted_constraints(
1458 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1468 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1469 bits
= ffs(size
) - 1;
1470 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1474 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1475 h
= set_hash_index(index
, size
, bits
, context
, k
);
1476 index
[h
] = &context
->ineq
[k
];
1478 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1479 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1482 l
= index
[h
] - &context
->ineq
[0];
1483 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1485 bset
= isl_basic_set_cow(bset
);
1488 isl_basic_set_drop_inequality(bset
, k
);
1498 /* Remove all information from bset that is redundant in the context
1499 * of context. Both bset and context are assumed to be full-dimensional.
1501 * We first * remove the inequalities from "bset"
1502 * that are obviously redundant with respect to some inequality in "context".
1504 * If there are any inequalities left, we construct a tableau for
1505 * the context and then add the inequalities of "bset".
1506 * Before adding these inequalities, we freeze all constraints such that
1507 * they won't be considered redundant in terms of the constraints of "bset".
1508 * Then we detect all redundant constraints (among the
1509 * constraints that weren't frozen), first by checking for redundancy in the
1510 * the tableau and then by checking if replacing a constraint by its negation
1511 * would lead to an empty set. This last step is fairly expensive
1512 * and could be optimized by more reuse of the tableau.
1513 * Finally, we update bset according to the results.
1515 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1516 __isl_take isl_basic_set
*context
)
1519 isl_basic_set
*combined
= NULL
;
1520 struct isl_tab
*tab
= NULL
;
1521 unsigned context_ineq
;
1524 if (!bset
|| !context
)
1527 if (isl_basic_set_is_universe(bset
)) {
1528 isl_basic_set_free(context
);
1532 if (isl_basic_set_is_universe(context
)) {
1533 isl_basic_set_free(context
);
1537 bset
= remove_shifted_constraints(bset
, context
);
1540 if (bset
->n_ineq
== 0)
1543 context_ineq
= context
->n_ineq
;
1544 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1545 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1546 tab
= isl_tab_from_basic_set(combined
);
1547 for (i
= 0; i
< context_ineq
; ++i
)
1548 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1550 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1551 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1552 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1554 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1558 if (isl_tab_detect_redundant(tab
) < 0)
1560 total
= isl_basic_set_total_dim(bset
);
1561 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
1563 if (tab
->con
[i
].is_redundant
)
1565 tab
->con
[i
].is_redundant
= 1;
1566 combined
= isl_basic_set_dup(bset
);
1567 combined
= isl_basic_set_update_from_tab(combined
, tab
);
1568 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
1569 k
= isl_basic_set_alloc_inequality(combined
);
1572 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
1573 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
1574 is_empty
= isl_basic_set_is_empty(combined
);
1577 isl_basic_set_free(combined
);
1580 tab
->con
[i
].is_redundant
= 0;
1582 for (i
= 0; i
< context_ineq
; ++i
)
1583 tab
->con
[i
].is_redundant
= 1;
1584 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1586 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1587 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1592 bset
= isl_basic_set_simplify(bset
);
1593 bset
= isl_basic_set_finalize(bset
);
1594 isl_basic_set_free(context
);
1598 isl_basic_set_free(combined
);
1599 isl_basic_set_free(context
);
1600 isl_basic_set_free(bset
);
1604 /* Remove all information from bset that is redundant in the context
1605 * of context. In particular, equalities that are linear combinations
1606 * of those in context are removed. Then the inequalities that are
1607 * redundant in the context of the equalities and inequalities of
1608 * context are removed.
1610 * We first compute the integer affine hull of the intersection,
1611 * compute the gist inside this affine hull and then add back
1612 * those equalities that are not implied by the context.
1614 * If two constraints are mutually redundant, then uset_gist_full
1615 * will remove the second of those constraints. We therefore first
1616 * sort the constraints so that constraints not involving existentially
1617 * quantified variables are given precedence over those that do.
1618 * We have to perform this sorting before the variable compression,
1619 * because that may effect the order of the variables.
1621 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
1622 __isl_take isl_basic_set
*context
)
1627 isl_basic_set
*aff_context
;
1630 if (!bset
|| !context
)
1633 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
1634 if (isl_basic_set_plain_is_empty(bset
)) {
1635 isl_basic_set_free(context
);
1638 bset
= isl_basic_set_sort_constraints(bset
);
1639 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
1642 if (isl_basic_set_plain_is_empty(aff
)) {
1643 isl_basic_set_free(aff
);
1644 isl_basic_set_free(context
);
1647 if (aff
->n_eq
== 0) {
1648 isl_basic_set_free(aff
);
1649 return uset_gist_full(bset
, context
);
1651 total
= isl_basic_set_total_dim(bset
);
1652 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
1653 eq
= isl_mat_cow(eq
);
1654 T
= isl_mat_variable_compression(eq
, &T2
);
1655 if (T
&& T
->n_col
== 0) {
1658 isl_basic_set_free(context
);
1659 isl_basic_set_free(aff
);
1660 return isl_basic_set_set_to_empty(bset
);
1663 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
1665 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
1666 context
= isl_basic_set_preimage(context
, T
);
1668 bset
= uset_gist_full(bset
, context
);
1669 bset
= isl_basic_set_preimage(bset
, T2
);
1670 bset
= isl_basic_set_intersect(bset
, aff
);
1671 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
1674 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1675 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1680 isl_basic_set_free(bset
);
1681 isl_basic_set_free(context
);
1685 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1686 * We simply add the equalities in context to bmap and then do a regular
1687 * div normalizations. Better results can be obtained by normalizing
1688 * only the divs in bmap than do not also appear in context.
1689 * We need to be careful to reduce the divs using the equalities
1690 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1691 * spurious constraints.
1693 static struct isl_basic_map
*normalize_divs_in_context(
1694 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1697 unsigned total_context
;
1700 div_eq
= n_pure_div_eq(bmap
);
1704 if (context
->n_div
> 0)
1705 bmap
= isl_basic_map_align_divs(bmap
, context
);
1707 total_context
= isl_basic_map_total_dim(context
);
1708 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1709 for (i
= 0; i
< context
->n_eq
; ++i
) {
1711 k
= isl_basic_map_alloc_equality(bmap
);
1712 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1713 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1714 isl_basic_map_total_dim(bmap
) - total_context
);
1716 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1717 bmap
= normalize_divs(bmap
, NULL
);
1718 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1722 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1723 struct isl_basic_map
*context
)
1725 struct isl_basic_set
*bset
;
1727 if (!bmap
|| !context
)
1730 if (isl_basic_map_is_universe(bmap
)) {
1731 isl_basic_map_free(context
);
1734 if (isl_basic_map_plain_is_empty(context
)) {
1735 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1736 isl_basic_map_free(context
);
1737 isl_basic_map_free(bmap
);
1738 return isl_basic_map_universe(dim
);
1740 if (isl_basic_map_plain_is_empty(bmap
)) {
1741 isl_basic_map_free(context
);
1745 bmap
= isl_basic_map_remove_redundancies(bmap
);
1746 context
= isl_basic_map_remove_redundancies(context
);
1749 bmap
= normalize_divs_in_context(bmap
, context
);
1751 context
= isl_basic_map_align_divs(context
, bmap
);
1752 bmap
= isl_basic_map_align_divs(bmap
, context
);
1754 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1755 isl_basic_map_underlying_set(context
));
1757 return isl_basic_map_overlying_set(bset
, bmap
);
1759 isl_basic_map_free(bmap
);
1760 isl_basic_map_free(context
);
1765 * Assumes context has no implicit divs.
1767 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
1768 __isl_take isl_basic_map
*context
)
1772 if (!map
|| !context
)
1775 if (isl_basic_map_plain_is_empty(context
)) {
1776 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1777 isl_basic_map_free(context
);
1779 return isl_map_universe(dim
);
1782 context
= isl_basic_map_remove_redundancies(context
);
1783 map
= isl_map_cow(map
);
1784 if (!map
|| !context
)
1786 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1787 map
= isl_map_compute_divs(map
);
1788 for (i
= 0; i
< map
->n
; ++i
)
1789 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1790 for (i
= map
->n
- 1; i
>= 0; --i
) {
1791 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1792 isl_basic_map_copy(context
));
1795 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
1796 isl_basic_map_free(map
->p
[i
]);
1797 if (i
!= map
->n
- 1)
1798 map
->p
[i
] = map
->p
[map
->n
- 1];
1802 isl_basic_map_free(context
);
1803 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1807 isl_basic_map_free(context
);
1811 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
1812 __isl_take isl_map
*context
)
1814 context
= isl_map_compute_divs(context
);
1815 return isl_map_gist_basic_map(map
, isl_map_simple_hull(context
));
1818 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1819 struct isl_basic_set
*context
)
1821 return (struct isl_basic_set
*)isl_basic_map_gist(
1822 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1825 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
1826 __isl_take isl_basic_set
*context
)
1828 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
1829 (struct isl_basic_map
*)context
);
1832 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
1833 __isl_take isl_set
*context
)
1835 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1836 (struct isl_map
*)context
);
1839 /* Quick check to see if two basic maps are disjoint.
1840 * In particular, we reduce the equalities and inequalities of
1841 * one basic map in the context of the equalities of the other
1842 * basic map and check if we get a contradiction.
1844 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
1845 __isl_keep isl_basic_map
*bmap2
)
1847 struct isl_vec
*v
= NULL
;
1852 if (!bmap1
|| !bmap2
)
1854 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1856 if (bmap1
->n_div
|| bmap2
->n_div
)
1858 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1861 total
= isl_dim_total(bmap1
->dim
);
1864 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1867 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1870 compute_elimination_index(bmap1
, elim
);
1871 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1873 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1875 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1876 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1879 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1881 reduced
= reduced_using_equalities(v
->block
.data
,
1882 bmap2
->ineq
[i
], bmap1
, elim
);
1883 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1884 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1887 compute_elimination_index(bmap2
, elim
);
1888 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1890 reduced
= reduced_using_equalities(v
->block
.data
,
1891 bmap1
->ineq
[i
], bmap2
, elim
);
1892 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1893 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1909 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
1910 __isl_keep isl_basic_set
*bset2
)
1912 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
1913 (struct isl_basic_map
*)bset2
);
1916 int isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
1917 __isl_keep isl_map
*map2
)
1924 if (isl_map_plain_is_equal(map1
, map2
))
1927 for (i
= 0; i
< map1
->n
; ++i
) {
1928 for (j
= 0; j
< map2
->n
; ++j
) {
1929 int d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
1938 int isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
1939 __isl_keep isl_set
*set2
)
1941 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
1942 (struct isl_map
*)set2
);
1945 int isl_set_fast_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
1947 return isl_set_plain_is_disjoint(set1
, set2
);
1950 /* Check if we can combine a given div with lower bound l and upper
1951 * bound u with some other div and if so return that other div.
1952 * Otherwise return -1.
1954 * We first check that
1955 * - the bounds are opposites of each other (except for the constant
1957 * - the bounds do not reference any other div
1958 * - no div is defined in terms of this div
1960 * Let m be the size of the range allowed on the div by the bounds.
1961 * That is, the bounds are of the form
1963 * e <= a <= e + m - 1
1965 * with e some expression in the other variables.
1966 * We look for another div b such that no third div is defined in terms
1967 * of this second div b and such that in any constraint that contains
1968 * a (except for the given lower and upper bound), also contains b
1969 * with a coefficient that is m times that of b.
1970 * That is, all constraints (execpt for the lower and upper bound)
1973 * e + f (a + m b) >= 0
1975 * If so, we return b so that "a + m b" can be replaced by
1976 * a single div "c = a + m b".
1978 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
1979 unsigned div
, unsigned l
, unsigned u
)
1985 if (bmap
->n_div
<= 1)
1987 dim
= isl_dim_total(bmap
->dim
);
1988 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
1990 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
1991 bmap
->n_div
- div
- 1) != -1)
1993 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
1997 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1998 if (isl_int_is_zero(bmap
->div
[i
][0]))
2000 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2004 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2005 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2006 isl_int_sub(bmap
->ineq
[l
][0],
2007 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2008 bmap
= isl_basic_map_copy(bmap
);
2009 bmap
= isl_basic_map_set_to_empty(bmap
);
2010 isl_basic_map_free(bmap
);
2013 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2014 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2019 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2020 if (isl_int_is_zero(bmap
->div
[j
][0]))
2022 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2025 if (j
< bmap
->n_div
)
2027 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2029 if (j
== l
|| j
== u
)
2031 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2033 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2035 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2036 bmap
->ineq
[j
][1 + dim
+ div
],
2038 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2039 bmap
->ineq
[j
][1 + dim
+ i
]);
2040 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2041 bmap
->ineq
[j
][1 + dim
+ div
],
2046 if (j
< bmap
->n_ineq
)
2051 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2052 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2056 /* Given a lower and an upper bound on div i, construct an inequality
2057 * that when nonnegative ensures that this pair of bounds always allows
2058 * for an integer value of the given div.
2059 * The lower bound is inequality l, while the upper bound is inequality u.
2060 * The constructed inequality is stored in ineq.
2061 * g, fl, fu are temporary scalars.
2063 * Let the upper bound be
2067 * and the lower bound
2071 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2074 * - f_u e_l <= f_u f_l g a <= f_l e_u
2076 * Since all variables are integer valued, this is equivalent to
2078 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2080 * If this interval is at least f_u f_l g, then it contains at least
2081 * one integer value for a.
2082 * That is, the test constraint is
2084 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2086 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2087 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2090 dim
= isl_dim_total(bmap
->dim
);
2092 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2093 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2094 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2095 isl_int_neg(fu
, fu
);
2096 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2097 1 + dim
+ bmap
->n_div
);
2098 isl_int_add(ineq
[0], ineq
[0], fl
);
2099 isl_int_add(ineq
[0], ineq
[0], fu
);
2100 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2101 isl_int_mul(g
, g
, fl
);
2102 isl_int_mul(g
, g
, fu
);
2103 isl_int_sub(ineq
[0], ineq
[0], g
);
2106 /* Remove more kinds of divs that are not strictly needed.
2107 * In particular, if all pairs of lower and upper bounds on a div
2108 * are such that they allow at least one integer value of the div,
2109 * the we can eliminate the div using Fourier-Motzkin without
2110 * introducing any spurious solutions.
2112 static struct isl_basic_map
*drop_more_redundant_divs(
2113 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2115 struct isl_tab
*tab
= NULL
;
2116 struct isl_vec
*vec
= NULL
;
2128 dim
= isl_dim_total(bmap
->dim
);
2129 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2133 tab
= isl_tab_from_basic_map(bmap
);
2138 enum isl_lp_result res
;
2140 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2143 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2149 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2150 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2152 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2153 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2155 construct_test_ineq(bmap
, i
, l
, u
,
2156 vec
->el
, g
, fl
, fu
);
2157 res
= isl_tab_min(tab
, vec
->el
,
2158 bmap
->ctx
->one
, &g
, NULL
, 0);
2159 if (res
== isl_lp_error
)
2161 if (res
== isl_lp_empty
) {
2162 bmap
= isl_basic_map_set_to_empty(bmap
);
2165 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2168 if (u
< bmap
->n_ineq
)
2171 if (l
== bmap
->n_ineq
) {
2191 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
2192 return isl_basic_map_drop_redundant_divs(bmap
);
2195 isl_basic_map_free(bmap
);
2204 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2205 * and the upper bound u, div1 always occurs together with div2 in the form
2206 * (div1 + m div2), where m is the constant range on the variable div1
2207 * allowed by l and u, replace the pair div1 and div2 by a single
2208 * div that is equal to div1 + m div2.
2210 * The new div will appear in the location that contains div2.
2211 * We need to modify all constraints that contain
2212 * div2 = (div - div1) / m
2213 * (If a constraint does not contain div2, it will also not contain div1.)
2214 * If the constraint also contains div1, then we know they appear
2215 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2216 * i.e., the coefficient of div is f.
2218 * Otherwise, we first need to introduce div1 into the constraint.
2227 * A lower bound on div2
2231 * can be replaced by
2233 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2235 * with g = gcd(m,n).
2240 * can be replaced by
2242 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2244 * These constraint are those that we would obtain from eliminating
2245 * div1 using Fourier-Motzkin.
2247 * After all constraints have been modified, we drop the lower and upper
2248 * bound and then drop div1.
2250 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2251 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2256 unsigned dim
, total
;
2259 dim
= isl_dim_total(bmap
->dim
);
2260 total
= 1 + dim
+ bmap
->n_div
;
2265 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2266 isl_int_add_ui(m
, m
, 1);
2268 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2269 if (i
== l
|| i
== u
)
2271 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2273 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2274 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2275 isl_int_divexact(a
, m
, b
);
2276 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2277 if (isl_int_is_pos(b
)) {
2278 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2279 b
, bmap
->ineq
[l
], total
);
2282 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2283 b
, bmap
->ineq
[u
], total
);
2286 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2287 bmap
->ineq
[i
][1 + dim
+ div1
]);
2288 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2295 isl_basic_map_drop_inequality(bmap
, l
);
2296 isl_basic_map_drop_inequality(bmap
, u
);
2298 isl_basic_map_drop_inequality(bmap
, u
);
2299 isl_basic_map_drop_inequality(bmap
, l
);
2301 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2305 /* First check if we can coalesce any pair of divs and
2306 * then continue with dropping more redundant divs.
2308 * We loop over all pairs of lower and upper bounds on a div
2309 * with coefficient 1 and -1, respectively, check if there
2310 * is any other div "c" with which we can coalesce the div
2311 * and if so, perform the coalescing.
2313 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2314 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2319 dim
= isl_dim_total(bmap
->dim
);
2321 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2324 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2325 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2327 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2330 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2332 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2336 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2337 return isl_basic_map_drop_redundant_divs(bmap
);
2342 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2345 return drop_more_redundant_divs(bmap
, pairs
, n
);
2348 /* Remove divs that are not strictly needed.
2349 * In particular, if a div only occurs positively (or negatively)
2350 * in constraints, then it can simply be dropped.
2351 * Also, if a div occurs only occurs in two constraints and if moreover
2352 * those two constraints are opposite to each other, except for the constant
2353 * term and if the sum of the constant terms is such that for any value
2354 * of the other values, there is always at least one integer value of the
2355 * div, i.e., if one plus this sum is greater than or equal to
2356 * the (absolute value) of the coefficent of the div in the constraints,
2357 * then we can also simply drop the div.
2359 * If any divs are left after these simple checks then we move on
2360 * to more complicated cases in drop_more_redundant_divs.
2362 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2363 struct isl_basic_map
*bmap
)
2373 off
= isl_dim_total(bmap
->dim
);
2374 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2378 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2380 int last_pos
, last_neg
;
2384 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2385 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2386 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2392 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2393 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2397 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2402 pairs
[i
] = pos
* neg
;
2403 if (pairs
[i
] == 0) {
2404 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2405 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2406 isl_basic_map_drop_inequality(bmap
, j
);
2407 bmap
= isl_basic_map_drop_div(bmap
, i
);
2409 return isl_basic_map_drop_redundant_divs(bmap
);
2413 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2414 bmap
->ineq
[last_neg
] + 1,
2418 isl_int_add(bmap
->ineq
[last_pos
][0],
2419 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2420 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2421 bmap
->ineq
[last_pos
][0], 1);
2422 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2423 bmap
->ineq
[last_pos
][1+off
+i
]);
2424 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2425 bmap
->ineq
[last_pos
][0], 1);
2426 isl_int_sub(bmap
->ineq
[last_pos
][0],
2427 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2430 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2435 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2436 bmap
= isl_basic_map_simplify(bmap
);
2438 return isl_basic_map_drop_redundant_divs(bmap
);
2440 if (last_pos
> last_neg
) {
2441 isl_basic_map_drop_inequality(bmap
, last_pos
);
2442 isl_basic_map_drop_inequality(bmap
, last_neg
);
2444 isl_basic_map_drop_inequality(bmap
, last_neg
);
2445 isl_basic_map_drop_inequality(bmap
, last_pos
);
2447 bmap
= isl_basic_map_drop_div(bmap
, i
);
2449 return isl_basic_map_drop_redundant_divs(bmap
);
2453 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2459 isl_basic_map_free(bmap
);
2463 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2464 struct isl_basic_set
*bset
)
2466 return (struct isl_basic_set
*)
2467 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2470 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2476 for (i
= 0; i
< map
->n
; ++i
) {
2477 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2481 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2488 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2490 return (struct isl_set
*)
2491 isl_map_drop_redundant_divs((struct isl_map
*)set
);