2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_equalities.h"
12 #include "isl_map_private.h"
16 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
18 isl_int
*t
= bmap
->eq
[a
];
19 bmap
->eq
[a
] = bmap
->eq
[b
];
23 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
26 isl_int
*t
= bmap
->ineq
[a
];
27 bmap
->ineq
[a
] = bmap
->ineq
[b
];
32 static void set_swap_inequality(struct isl_basic_set
*bset
, int a
, int b
)
34 swap_inequality((struct isl_basic_map
*)bset
, a
, b
);
37 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
39 isl_seq_cpy(c
, c
+ n
, rem
);
40 isl_seq_clr(c
+ rem
, n
);
43 /* Drop n dimensions starting at first.
45 * In principle, this frees up some extra variables as the number
46 * of columns remains constant, but we would have to extend
47 * the div array too as the number of rows in this array is assumed
48 * to be equal to extra.
50 struct isl_basic_set
*isl_basic_set_drop_dims(
51 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
58 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
63 bset
= isl_basic_set_cow(bset
);
67 for (i
= 0; i
< bset
->n_eq
; ++i
)
68 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
69 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
71 for (i
= 0; i
< bset
->n_ineq
; ++i
)
72 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
73 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
75 for (i
= 0; i
< bset
->n_div
; ++i
)
76 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
77 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
79 bset
->dim
= isl_dim_drop_outputs(bset
->dim
, first
, n
);
83 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
84 bset
= isl_basic_set_simplify(bset
);
85 return isl_basic_set_finalize(bset
);
87 isl_basic_set_free(bset
);
91 struct isl_set
*isl_set_drop_dims(
92 struct isl_set
*set
, unsigned first
, unsigned n
)
99 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
103 set
= isl_set_cow(set
);
106 set
->dim
= isl_dim_drop_outputs(set
->dim
, first
, n
);
110 for (i
= 0; i
< set
->n
; ++i
) {
111 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
116 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
123 /* Move "n" divs starting at "first" to the end of the list of divs.
125 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
126 unsigned first
, unsigned n
)
131 if (first
+ n
== bmap
->n_div
)
134 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
137 for (i
= 0; i
< n
; ++i
)
138 div
[i
] = bmap
->div
[first
+ i
];
139 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
140 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
141 for (i
= 0; i
< n
; ++i
)
142 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
146 isl_basic_map_free(bmap
);
150 /* Drop "n" dimensions of type "type" starting at "first".
152 * In principle, this frees up some extra variables as the number
153 * of columns remains constant, but we would have to extend
154 * the div array too as the number of rows in this array is assumed
155 * to be equal to extra.
157 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
158 enum isl_dim_type type
, unsigned first
, unsigned n
)
168 dim
= isl_basic_map_dim(bmap
, type
);
169 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
174 bmap
= isl_basic_map_cow(bmap
);
178 offset
= isl_basic_map_offset(bmap
, type
) + first
;
179 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
180 for (i
= 0; i
< bmap
->n_eq
; ++i
)
181 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
183 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
184 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
186 for (i
= 0; i
< bmap
->n_div
; ++i
)
187 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
189 if (type
== isl_dim_div
) {
190 bmap
= move_divs_last(bmap
, first
, n
);
193 isl_basic_map_free_div(bmap
, n
);
195 bmap
->dim
= isl_dim_drop(bmap
->dim
, type
, first
, n
);
199 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
200 bmap
= isl_basic_map_simplify(bmap
);
201 return isl_basic_map_finalize(bmap
);
203 isl_basic_map_free(bmap
);
207 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
208 enum isl_dim_type type
, unsigned first
, unsigned n
)
210 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
214 struct isl_basic_map
*isl_basic_map_drop_inputs(
215 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
217 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
220 struct isl_map
*isl_map_drop(struct isl_map
*map
,
221 enum isl_dim_type type
, unsigned first
, unsigned n
)
228 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
232 map
= isl_map_cow(map
);
235 map
->dim
= isl_dim_drop(map
->dim
, type
, first
, n
);
239 for (i
= 0; i
< map
->n
; ++i
) {
240 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
244 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
252 struct isl_set
*isl_set_drop(struct isl_set
*set
,
253 enum isl_dim_type type
, unsigned first
, unsigned n
)
255 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
258 struct isl_map
*isl_map_drop_inputs(
259 struct isl_map
*map
, unsigned first
, unsigned n
)
261 return isl_map_drop(map
, isl_dim_in
, first
, n
);
265 * We don't cow, as the div is assumed to be redundant.
267 static struct isl_basic_map
*isl_basic_map_drop_div(
268 struct isl_basic_map
*bmap
, unsigned div
)
276 pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
278 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
280 for (i
= 0; i
< bmap
->n_eq
; ++i
)
281 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
283 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
284 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
285 isl_basic_map_drop_inequality(bmap
, i
);
289 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
292 for (i
= 0; i
< bmap
->n_div
; ++i
)
293 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
295 if (div
!= bmap
->n_div
- 1) {
297 isl_int
*t
= bmap
->div
[div
];
299 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
300 bmap
->div
[j
] = bmap
->div
[j
+1];
302 bmap
->div
[bmap
->n_div
- 1] = t
;
304 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
305 isl_basic_map_free_div(bmap
, 1);
309 isl_basic_map_free(bmap
);
313 struct isl_basic_map
*isl_basic_map_normalize_constraints(
314 struct isl_basic_map
*bmap
)
318 unsigned total
= isl_basic_map_total_dim(bmap
);
321 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
322 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
323 if (isl_int_is_zero(gcd
)) {
324 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
325 bmap
= isl_basic_map_set_to_empty(bmap
);
328 isl_basic_map_drop_equality(bmap
, i
);
331 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
332 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
333 if (isl_int_is_one(gcd
))
335 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
336 bmap
= isl_basic_map_set_to_empty(bmap
);
339 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
342 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
343 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
344 if (isl_int_is_zero(gcd
)) {
345 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
346 bmap
= isl_basic_map_set_to_empty(bmap
);
349 isl_basic_map_drop_inequality(bmap
, i
);
352 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
353 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
354 if (isl_int_is_one(gcd
))
356 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
357 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
364 struct isl_basic_set
*isl_basic_set_normalize_constraints(
365 struct isl_basic_set
*bset
)
367 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
368 (struct isl_basic_map
*)bset
);
371 /* Assumes divs have been ordered if keep_divs is set.
373 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
374 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
380 total
= isl_basic_map_total_dim(bmap
);
381 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
383 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
384 if (bmap
->eq
[k
] == eq
)
386 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
390 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
393 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
394 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
398 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
399 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
402 for (k
= 0; k
< bmap
->n_div
; ++k
) {
403 if (isl_int_is_zero(bmap
->div
[k
][0]))
405 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
409 /* We need to be careful about circular definitions,
410 * so for now we just remove the definition of div k
411 * if the equality contains any divs.
412 * If keep_divs is set, then the divs have been ordered
413 * and we can keep the definition as long as the result
416 if (last_div
== -1 || (keep_divs
&& last_div
< k
))
417 isl_seq_elim(bmap
->div
[k
]+1, eq
,
418 1+pos
, 1+total
, &bmap
->div
[k
][0]);
420 isl_seq_clr(bmap
->div
[k
], 1 + total
);
421 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
425 /* Assumes divs have been ordered if keep_divs is set.
427 static void eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
428 unsigned div
, int keep_divs
)
430 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
432 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
434 isl_basic_map_drop_div(bmap
, div
);
437 /* Check if elimination of div "div" using equality "eq" would not
438 * result in a div depending on a later div.
440 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
445 unsigned pos
= isl_dim_total(bmap
->dim
) + div
;
447 last_div
= isl_seq_last_non_zero(eq
+ 1 + isl_dim_total(bmap
->dim
),
449 if (last_div
< 0 || last_div
<= div
)
452 for (k
= 0; k
<= last_div
; ++k
) {
453 if (isl_int_is_zero(bmap
->div
[k
][0]))
455 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
462 /* Elimininate divs based on equalities
464 static struct isl_basic_map
*eliminate_divs_eq(
465 struct isl_basic_map
*bmap
, int *progress
)
472 bmap
= isl_basic_map_order_divs(bmap
);
477 off
= 1 + isl_dim_total(bmap
->dim
);
479 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
480 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
481 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
482 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
484 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
488 eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
489 isl_basic_map_drop_equality(bmap
, i
);
494 return eliminate_divs_eq(bmap
, progress
);
498 /* Elimininate divs based on inequalities
500 static struct isl_basic_map
*eliminate_divs_ineq(
501 struct isl_basic_map
*bmap
, int *progress
)
512 off
= 1 + isl_dim_total(bmap
->dim
);
514 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
515 for (i
= 0; i
< bmap
->n_eq
; ++i
)
516 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
520 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
521 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
523 if (i
< bmap
->n_ineq
)
526 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
527 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
529 bmap
= isl_basic_map_drop_div(bmap
, d
);
536 struct isl_basic_map
*isl_basic_map_gauss(
537 struct isl_basic_map
*bmap
, int *progress
)
545 bmap
= isl_basic_map_order_divs(bmap
);
550 total
= isl_basic_map_total_dim(bmap
);
551 total_var
= total
- bmap
->n_div
;
553 last_var
= total
- 1;
554 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
555 for (; last_var
>= 0; --last_var
) {
556 for (k
= done
; k
< bmap
->n_eq
; ++k
)
557 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
565 swap_equality(bmap
, k
, done
);
566 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
567 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
569 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
572 if (last_var
>= total_var
&&
573 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
574 unsigned div
= last_var
- total_var
;
575 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
576 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
577 isl_int_set(bmap
->div
[div
][0],
578 bmap
->eq
[done
][1+last_var
]);
579 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
582 if (done
== bmap
->n_eq
)
584 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
585 if (isl_int_is_zero(bmap
->eq
[k
][0]))
587 return isl_basic_map_set_to_empty(bmap
);
589 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
593 struct isl_basic_set
*isl_basic_set_gauss(
594 struct isl_basic_set
*bset
, int *progress
)
596 return (struct isl_basic_set
*)isl_basic_map_gauss(
597 (struct isl_basic_map
*)bset
, progress
);
601 static unsigned int round_up(unsigned int v
)
612 static int hash_index(isl_int
***index
, unsigned int size
, int bits
,
613 struct isl_basic_map
*bmap
, int k
)
616 unsigned total
= isl_basic_map_total_dim(bmap
);
617 uint32_t hash
= isl_seq_get_hash_bits(bmap
->ineq
[k
]+1, total
, bits
);
618 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
619 if (&bmap
->ineq
[k
] != index
[h
] &&
620 isl_seq_eq(bmap
->ineq
[k
]+1, index
[h
][0]+1, total
))
625 static int set_hash_index(isl_int
***index
, unsigned int size
, int bits
,
626 struct isl_basic_set
*bset
, int k
)
628 return hash_index(index
, size
, bits
, (struct isl_basic_map
*)bset
, k
);
631 /* If we can eliminate more than one div, then we need to make
632 * sure we do it from last div to first div, in order not to
633 * change the position of the other divs that still need to
636 static struct isl_basic_map
*remove_duplicate_divs(
637 struct isl_basic_map
*bmap
, int *progress
)
645 unsigned total_var
= isl_dim_total(bmap
->dim
);
646 unsigned total
= total_var
+ bmap
->n_div
;
649 if (bmap
->n_div
<= 1)
653 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
654 if (!isl_int_is_zero(bmap
->div
[k
][0]))
659 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
660 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
661 bits
= ffs(size
) - 1;
662 index
= isl_calloc_array(ctx
, int, size
);
665 eq
= isl_blk_alloc(ctx
, 1+total
);
666 if (isl_blk_is_error(eq
))
669 isl_seq_clr(eq
.data
, 1+total
);
670 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
671 for (--k
; k
>= 0; --k
) {
674 if (isl_int_is_zero(bmap
->div
[k
][0]))
677 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
678 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
679 if (isl_seq_eq(bmap
->div
[k
],
680 bmap
->div
[index
[h
]-1], 2+total
))
689 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
693 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
694 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
695 eliminate_div(bmap
, eq
.data
, l
, 0);
696 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
697 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
700 isl_blk_free(ctx
, eq
);
707 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
712 total
= isl_dim_total(bmap
->dim
);
713 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
714 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
718 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
724 /* Normalize divs that appear in equalities.
726 * In particular, we assume that bmap contains some equalities
731 * and we want to replace the set of e_i by a minimal set and
732 * such that the new e_i have a canonical representation in terms
734 * If any of the equalities involves more than one divs, then
735 * we currently simply bail out.
737 * Let us first additionally assume that all equalities involve
738 * a div. The equalities then express modulo constraints on the
739 * remaining variables and we can use "parameter compression"
740 * to find a minimal set of constraints. The result is a transformation
742 * x = T(x') = x_0 + G x'
744 * with G a lower-triangular matrix with all elements below the diagonal
745 * non-negative and smaller than the diagonal element on the same row.
746 * We first normalize x_0 by making the same property hold in the affine
748 * The rows i of G with a 1 on the diagonal do not impose any modulo
749 * constraint and simply express x_i = x'_i.
750 * For each of the remaining rows i, we introduce a div and a corresponding
751 * equality. In particular
753 * g_ii e_j = x_i - g_i(x')
755 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
756 * corresponding div (if g_kk != 1).
758 * If there are any equalities not involving any div, then we
759 * first apply a variable compression on the variables x:
761 * x = C x'' x'' = C_2 x
763 * and perform the above parameter compression on A C instead of on A.
764 * The resulting compression is then of the form
766 * x'' = T(x') = x_0 + G x'
768 * and in constructing the new divs and the corresponding equalities,
769 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
770 * by the corresponding row from C_2.
772 static struct isl_basic_map
*normalize_divs(
773 struct isl_basic_map
*bmap
, int *progress
)
780 struct isl_mat
*T
= NULL
;
781 struct isl_mat
*C
= NULL
;
782 struct isl_mat
*C2
= NULL
;
790 if (bmap
->n_div
== 0)
796 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
799 total
= isl_dim_total(bmap
->dim
);
800 div_eq
= n_pure_div_eq(bmap
);
804 if (div_eq
< bmap
->n_eq
) {
805 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, div_eq
,
806 bmap
->n_eq
- div_eq
, 0, 1 + total
);
807 C
= isl_mat_variable_compression(B
, &C2
);
811 bmap
= isl_basic_map_set_to_empty(bmap
);
818 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
821 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
822 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
824 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
826 B
= isl_mat_sub_alloc(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
829 B
= isl_mat_product(B
, C
);
833 T
= isl_mat_parameter_compression(B
, d
);
837 bmap
= isl_basic_map_set_to_empty(bmap
);
843 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
844 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
845 if (isl_int_is_zero(v
))
847 isl_mat_col_submul(T
, 0, v
, 1 + i
);
850 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
851 /* We have to be careful because dropping equalities may reorder them */
853 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
854 for (i
= 0; i
< bmap
->n_eq
; ++i
)
855 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
857 if (i
< bmap
->n_eq
) {
858 bmap
= isl_basic_map_drop_div(bmap
, j
);
859 isl_basic_map_drop_equality(bmap
, i
);
865 for (i
= 1; i
< T
->n_row
; ++i
) {
866 if (isl_int_is_one(T
->row
[i
][i
]))
871 if (needed
> dropped
) {
872 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
),
877 for (i
= 1; i
< T
->n_row
; ++i
) {
878 if (isl_int_is_one(T
->row
[i
][i
]))
880 k
= isl_basic_map_alloc_div(bmap
);
881 pos
[i
] = 1 + total
+ k
;
882 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
883 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
885 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
887 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
888 for (j
= 0; j
< i
; ++j
) {
889 if (isl_int_is_zero(T
->row
[i
][j
]))
891 if (pos
[j
] < T
->n_row
&& C2
)
892 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
893 C2
->row
[pos
[j
]], 1 + total
);
895 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
898 j
= isl_basic_map_alloc_equality(bmap
);
899 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
900 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
909 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
919 static struct isl_basic_map
*set_div_from_lower_bound(
920 struct isl_basic_map
*bmap
, int div
, int ineq
)
922 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
924 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
925 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
926 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
927 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
928 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
933 /* Check whether it is ok to define a div based on an inequality.
934 * To avoid the introduction of circular definitions of divs, we
935 * do not allow such a definition if the resulting expression would refer to
936 * any other undefined divs or if any known div is defined in
937 * terms of the unknown div.
939 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
943 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
945 /* Not defined in terms of unknown divs */
946 for (j
= 0; j
< bmap
->n_div
; ++j
) {
949 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
951 if (isl_int_is_zero(bmap
->div
[j
][0]))
955 /* No other div defined in terms of this one => avoid loops */
956 for (j
= 0; j
< bmap
->n_div
; ++j
) {
959 if (isl_int_is_zero(bmap
->div
[j
][0]))
961 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
968 /* Given two constraints "k" and "l" that are opposite to each other,
969 * except for the constant term, check if we can use them
970 * to obtain an expression for one of the hitherto unknown divs.
971 * "sum" is the sum of the constant terms of the constraints.
972 * If this sum is strictly smaller than the coefficient of one
973 * of the divs, then this pair can be used define the div.
974 * To avoid the introduction of circular definitions of divs, we
975 * do not use the pair if the resulting expression would refer to
976 * any other undefined divs or if any known div is defined in
977 * terms of the unknown div.
979 static struct isl_basic_map
*check_for_div_constraints(
980 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
983 unsigned total
= 1 + isl_dim_total(bmap
->dim
);
985 for (i
= 0; i
< bmap
->n_div
; ++i
) {
986 if (!isl_int_is_zero(bmap
->div
[i
][0]))
988 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
990 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
992 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
994 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
995 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
997 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1005 static struct isl_basic_map
*remove_duplicate_constraints(
1006 struct isl_basic_map
*bmap
, int *progress
)
1012 unsigned total
= isl_basic_map_total_dim(bmap
);
1015 if (bmap
->n_ineq
<= 1)
1018 size
= round_up(4 * (bmap
->n_ineq
+1) / 3 - 1);
1019 bits
= ffs(size
) - 1;
1020 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1024 index
[isl_seq_get_hash_bits(bmap
->ineq
[0]+1, total
, bits
)] = &bmap
->ineq
[0];
1025 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1026 h
= hash_index(index
, size
, bits
, bmap
, k
);
1028 index
[h
] = &bmap
->ineq
[k
];
1033 l
= index
[h
] - &bmap
->ineq
[0];
1034 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1035 swap_inequality(bmap
, k
, l
);
1036 isl_basic_map_drop_inequality(bmap
, k
);
1040 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1041 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1042 h
= hash_index(index
, size
, bits
, bmap
, k
);
1043 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1046 l
= index
[h
] - &bmap
->ineq
[0];
1047 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1048 if (isl_int_is_pos(sum
)) {
1049 bmap
= check_for_div_constraints(bmap
, k
, l
, sum
,
1053 if (isl_int_is_zero(sum
)) {
1054 /* We need to break out of the loop after these
1055 * changes since the contents of the hash
1056 * will no longer be valid.
1057 * Plus, we probably we want to regauss first.
1061 isl_basic_map_drop_inequality(bmap
, l
);
1062 isl_basic_map_inequality_to_equality(bmap
, k
);
1064 bmap
= isl_basic_map_set_to_empty(bmap
);
1074 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1081 bmap
= isl_basic_map_normalize_constraints(bmap
);
1082 bmap
= remove_duplicate_divs(bmap
, &progress
);
1083 bmap
= eliminate_divs_eq(bmap
, &progress
);
1084 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1085 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1086 /* requires equalities in normal form */
1087 bmap
= normalize_divs(bmap
, &progress
);
1088 bmap
= remove_duplicate_constraints(bmap
, &progress
);
1093 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1095 return (struct isl_basic_set
*)
1096 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1100 /* If the only constraints a div d=floor(f/m)
1101 * appears in are its two defining constraints
1104 * -(f - (m - 1)) + m d >= 0
1106 * then it can safely be removed.
1108 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1111 unsigned pos
= 1 + isl_dim_total(bmap
->dim
) + div
;
1113 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1114 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1117 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1118 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1120 if (isl_int_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1122 isl_int_sub(bmap
->div
[div
][1],
1123 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1124 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1125 neg
= isl_seq_is_neg(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
);
1126 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1127 isl_int_add(bmap
->div
[div
][1],
1128 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1131 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1132 bmap
->n_div
-div
-1) != -1)
1134 } else if (isl_int_abs_eq(bmap
->ineq
[i
][pos
], bmap
->div
[div
][0])) {
1135 if (!isl_seq_eq(bmap
->ineq
[i
], bmap
->div
[div
]+1, pos
))
1137 if (isl_seq_first_non_zero(bmap
->ineq
[i
]+pos
+1,
1138 bmap
->n_div
-div
-1) != -1)
1144 for (i
= 0; i
< bmap
->n_div
; ++i
)
1145 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1152 * Remove divs that don't occur in any of the constraints or other divs.
1153 * These can arise when dropping some of the variables in a quast
1154 * returned by piplib.
1156 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1163 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1164 if (!div_is_redundant(bmap
, i
))
1166 bmap
= isl_basic_map_drop_div(bmap
, i
);
1171 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1173 bmap
= remove_redundant_divs(bmap
);
1176 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1180 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1182 return (struct isl_basic_set
*)
1183 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1186 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1192 for (i
= 0; i
< set
->n
; ++i
) {
1193 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1203 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1209 for (i
= 0; i
< map
->n
; ++i
) {
1210 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1214 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1222 /* Remove definition of any div that is defined in terms of the given variable.
1223 * The div itself is not removed. Functions such as
1224 * eliminate_divs_ineq depend on the other divs remaining in place.
1226 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1231 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1232 if (isl_int_is_zero(bmap
->div
[i
][0]))
1234 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1236 isl_int_set_si(bmap
->div
[i
][0], 0);
1241 /* Eliminate the specified variables from the constraints using
1242 * Fourier-Motzkin. The variables themselves are not removed.
1244 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1245 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1255 total
= isl_basic_map_total_dim(bmap
);
1257 bmap
= isl_basic_map_cow(bmap
);
1258 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1259 bmap
= remove_dependent_vars(bmap
, d
);
1261 for (d
= pos
+ n
- 1;
1262 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1263 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1264 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1265 int n_lower
, n_upper
;
1268 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1269 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1271 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1272 isl_basic_map_drop_equality(bmap
, i
);
1279 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1280 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1282 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1285 bmap
= isl_basic_map_extend_constraints(bmap
,
1286 0, n_lower
* n_upper
);
1287 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1289 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1292 for (j
= 0; j
< i
; ++j
) {
1293 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1296 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1297 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1299 k
= isl_basic_map_alloc_inequality(bmap
);
1302 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1304 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1305 1+d
, 1+total
, NULL
);
1307 isl_basic_map_drop_inequality(bmap
, i
);
1310 if (n_lower
> 0 && n_upper
> 0) {
1311 bmap
= isl_basic_map_normalize_constraints(bmap
);
1312 bmap
= remove_duplicate_constraints(bmap
, NULL
);
1313 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1314 bmap
= isl_basic_map_convex_hull(bmap
);
1317 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1321 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1324 isl_basic_map_free(bmap
);
1328 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1329 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1331 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1332 (struct isl_basic_map
*)bset
, pos
, n
);
1335 /* Don't assume equalities are in order, because align_divs
1336 * may have changed the order of the divs.
1338 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1343 total
= isl_dim_total(bmap
->dim
);
1344 for (d
= 0; d
< total
; ++d
)
1346 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1347 for (d
= total
- 1; d
>= 0; --d
) {
1348 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1356 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1358 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1361 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1362 struct isl_basic_map
*bmap
, int *elim
)
1368 total
= isl_dim_total(bmap
->dim
);
1369 for (d
= total
- 1; d
>= 0; --d
) {
1370 if (isl_int_is_zero(src
[1+d
]))
1375 isl_seq_cpy(dst
, src
, 1 + total
);
1378 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1383 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1384 struct isl_basic_set
*bset
, int *elim
)
1386 return reduced_using_equalities(dst
, src
,
1387 (struct isl_basic_map
*)bset
, elim
);
1390 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1391 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1396 if (!bset
|| !context
)
1399 if (context
->n_eq
== 0) {
1400 isl_basic_set_free(context
);
1404 bset
= isl_basic_set_cow(bset
);
1408 elim
= isl_alloc_array(ctx
, int, isl_basic_set_n_dim(bset
));
1411 set_compute_elimination_index(context
, elim
);
1412 for (i
= 0; i
< bset
->n_eq
; ++i
)
1413 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1415 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1416 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1418 isl_basic_set_free(context
);
1420 bset
= isl_basic_set_simplify(bset
);
1421 bset
= isl_basic_set_finalize(bset
);
1424 isl_basic_set_free(bset
);
1425 isl_basic_set_free(context
);
1429 static struct isl_basic_set
*remove_shifted_constraints(
1430 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1440 size
= round_up(4 * (context
->n_ineq
+1) / 3 - 1);
1441 bits
= ffs(size
) - 1;
1442 index
= isl_calloc_array(ctx
, isl_int
**, size
);
1446 for (k
= 0; k
< context
->n_ineq
; ++k
) {
1447 h
= set_hash_index(index
, size
, bits
, context
, k
);
1448 index
[h
] = &context
->ineq
[k
];
1450 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1451 h
= set_hash_index(index
, size
, bits
, bset
, k
);
1454 l
= index
[h
] - &context
->ineq
[0];
1455 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1457 bset
= isl_basic_set_cow(bset
);
1460 isl_basic_set_drop_inequality(bset
, k
);
1470 /* Tighten (decrease) the constant terms of the inequalities based
1471 * on the equalities, without removing any integer points.
1472 * For example, if there is an equality
1480 * then we want to replace the inequality by
1484 * We do this by computing a variable compression and translating
1485 * the constraints to the compressed space.
1486 * If any constraint has coefficients (except the contant term)
1487 * with a common factor "f", then we can replace the constant term "c"
1494 * f * floor(c/f) - c = -fract(c/f)
1496 * and we can add the same value to the original constraint.
1498 * In the example, the compressed space only contains "j",
1499 * and the inequality translates to
1503 * We add -fract(-1/3) = -2 to the original constraint to obtain
1507 static struct isl_basic_set
*normalize_constraints_in_compressed_space(
1508 struct isl_basic_set
*bset
)
1512 struct isl_mat
*B
, *C
;
1518 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
))
1524 bset
= isl_basic_set_cow(bset
);
1528 total
= isl_basic_set_total_dim(bset
);
1529 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + total
);
1530 C
= isl_mat_variable_compression(B
, NULL
);
1533 if (C
->n_col
== 0) {
1535 return isl_basic_set_set_to_empty(bset
);
1537 B
= isl_mat_sub_alloc(bset
->ctx
, bset
->ineq
,
1538 0, bset
->n_ineq
, 0, 1 + total
);
1539 C
= isl_mat_product(B
, C
);
1544 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1545 isl_seq_gcd(C
->row
[i
] + 1, C
->n_col
- 1, &gcd
);
1546 if (isl_int_is_one(gcd
))
1548 isl_int_fdiv_r(C
->row
[i
][0], C
->row
[i
][0], gcd
);
1549 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], C
->row
[i
][0]);
1558 /* Remove all information from bset that is redundant in the context
1559 * of context. Both bset and context are assumed to be full-dimensional.
1561 * We first * remove the inequalities from "bset"
1562 * that are obviously redundant with respect to some inequality in "context".
1564 * If there are any inequalities left, we construct a tableau for
1565 * the context and then add the inequalities of "bset".
1566 * Before adding these inequalities, we freeze all constraints such that
1567 * they won't be considered redundant in terms of the constraints of "bset".
1568 * Then we detect all redundant constraints (among the
1569 * constraints that weren't frozen), first by checking for redundancy in the
1570 * the tableau and then by checking if replacing a constraint by its negation
1571 * would lead to an empty set. This last step is fairly expensive
1572 * and could be optimized by more reuse of the tableau.
1573 * Finally, we update bset according to the results.
1575 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
1576 __isl_take isl_basic_set
*context
)
1579 isl_basic_set
*combined
= NULL
;
1580 struct isl_tab
*tab
= NULL
;
1581 unsigned context_ineq
;
1584 if (!bset
|| !context
)
1587 if (isl_basic_set_is_universe(bset
)) {
1588 isl_basic_set_free(context
);
1592 if (isl_basic_set_is_universe(context
)) {
1593 isl_basic_set_free(context
);
1597 bset
= remove_shifted_constraints(bset
, context
);
1600 if (bset
->n_ineq
== 0)
1603 context_ineq
= context
->n_ineq
;
1604 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
1605 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
1606 tab
= isl_tab_from_basic_set(combined
);
1607 for (i
= 0; i
< context_ineq
; ++i
)
1608 if (isl_tab_freeze_constraint(tab
, i
) < 0)
1610 tab
= isl_tab_extend(tab
, bset
->n_ineq
);
1611 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1612 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
1614 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
1618 if (isl_tab_detect_redundant(tab
) < 0)
1620 total
= isl_basic_set_total_dim(bset
);
1621 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
1623 if (tab
->con
[i
].is_redundant
)
1625 tab
->con
[i
].is_redundant
= 1;
1626 combined
= isl_basic_set_dup(bset
);
1627 combined
= isl_basic_set_update_from_tab(combined
, tab
);
1628 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
1629 k
= isl_basic_set_alloc_inequality(combined
);
1632 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
1633 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
1634 is_empty
= isl_basic_set_is_empty(combined
);
1637 isl_basic_set_free(combined
);
1640 tab
->con
[i
].is_redundant
= 0;
1642 for (i
= 0; i
< context_ineq
; ++i
)
1643 tab
->con
[i
].is_redundant
= 1;
1644 bset
= isl_basic_set_update_from_tab(bset
, tab
);
1646 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1647 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1652 bset
= isl_basic_set_simplify(bset
);
1653 bset
= isl_basic_set_finalize(bset
);
1654 isl_basic_set_free(context
);
1658 isl_basic_set_free(combined
);
1659 isl_basic_set_free(context
);
1660 isl_basic_set_free(bset
);
1664 /* Remove all information from bset that is redundant in the context
1665 * of context. In particular, equalities that are linear combinations
1666 * of those in context are removed. Then the inequalities that are
1667 * redundant in the context of the equalities and inequalities of
1668 * context are removed.
1670 * We first compute the integer affine hull of the intersection,
1671 * compute the gist inside this affine hull and then add back
1672 * those equalities that are not implied by the context.
1674 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
1675 __isl_take isl_basic_set
*context
)
1680 isl_basic_set
*aff_context
;
1683 if (!bset
|| !context
)
1686 bset
= isl_basic_set_intersect(bset
, isl_basic_set_copy(context
));
1687 if (isl_basic_set_fast_is_empty(bset
)) {
1688 isl_basic_set_free(context
);
1691 aff
= isl_basic_set_affine_hull(isl_basic_set_copy(bset
));
1694 if (isl_basic_set_fast_is_empty(aff
)) {
1695 isl_basic_set_free(aff
);
1696 isl_basic_set_free(context
);
1699 if (aff
->n_eq
== 0) {
1700 isl_basic_set_free(aff
);
1701 return uset_gist_full(bset
, context
);
1703 total
= isl_basic_set_total_dim(bset
);
1704 eq
= isl_mat_sub_alloc(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
1705 eq
= isl_mat_cow(eq
);
1706 T
= isl_mat_variable_compression(eq
, &T2
);
1707 if (T
&& T
->n_col
== 0) {
1710 isl_basic_set_free(context
);
1711 isl_basic_set_free(aff
);
1712 return isl_basic_set_set_to_empty(bset
);
1715 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
1717 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
1718 context
= isl_basic_set_preimage(context
, T
);
1720 bset
= uset_gist_full(bset
, context
);
1721 bset
= isl_basic_set_preimage(bset
, T2
);
1722 bset
= isl_basic_set_intersect(bset
, aff
);
1723 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
1726 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
1727 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
1732 isl_basic_set_free(bset
);
1733 isl_basic_set_free(context
);
1737 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1738 * We simply add the equalities in context to bmap and then do a regular
1739 * div normalizations. Better results can be obtained by normalizing
1740 * only the divs in bmap than do not also appear in context.
1741 * We need to be careful to reduce the divs using the equalities
1742 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1743 * spurious constraints.
1745 static struct isl_basic_map
*normalize_divs_in_context(
1746 struct isl_basic_map
*bmap
, struct isl_basic_map
*context
)
1749 unsigned total_context
;
1752 div_eq
= n_pure_div_eq(bmap
);
1756 if (context
->n_div
> 0)
1757 bmap
= isl_basic_map_align_divs(bmap
, context
);
1759 total_context
= isl_basic_map_total_dim(context
);
1760 bmap
= isl_basic_map_extend_constraints(bmap
, context
->n_eq
, 0);
1761 for (i
= 0; i
< context
->n_eq
; ++i
) {
1763 k
= isl_basic_map_alloc_equality(bmap
);
1764 isl_seq_cpy(bmap
->eq
[k
], context
->eq
[i
], 1 + total_context
);
1765 isl_seq_clr(bmap
->eq
[k
] + 1 + total_context
,
1766 isl_basic_map_total_dim(bmap
) - total_context
);
1768 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1769 bmap
= normalize_divs(bmap
, NULL
);
1770 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1774 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
1775 struct isl_basic_map
*context
)
1777 struct isl_basic_set
*bset
;
1779 if (!bmap
|| !context
)
1782 if (isl_basic_map_is_universe(context
)) {
1783 isl_basic_map_free(context
);
1786 if (isl_basic_map_is_universe(bmap
)) {
1787 isl_basic_map_free(context
);
1790 if (isl_basic_map_fast_is_empty(context
)) {
1791 struct isl_dim
*dim
= isl_dim_copy(bmap
->dim
);
1792 isl_basic_map_free(context
);
1793 isl_basic_map_free(bmap
);
1794 return isl_basic_map_universe(dim
);
1796 if (isl_basic_map_fast_is_empty(bmap
)) {
1797 isl_basic_map_free(context
);
1801 bmap
= isl_basic_map_convex_hull(bmap
);
1802 context
= isl_basic_map_convex_hull(context
);
1805 bmap
= normalize_divs_in_context(bmap
, context
);
1807 context
= isl_basic_map_align_divs(context
, bmap
);
1808 bmap
= isl_basic_map_align_divs(bmap
, context
);
1810 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
1811 isl_basic_map_underlying_set(context
));
1813 return isl_basic_map_overlying_set(bset
, bmap
);
1815 isl_basic_map_free(bmap
);
1816 isl_basic_map_free(context
);
1821 * Assumes context has no implicit divs.
1823 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
1824 __isl_take isl_basic_map
*context
)
1828 if (!map
|| !context
)
1831 if (isl_basic_map_is_universe(context
)) {
1832 isl_basic_map_free(context
);
1835 if (isl_basic_map_fast_is_empty(context
)) {
1836 struct isl_dim
*dim
= isl_dim_copy(map
->dim
);
1837 isl_basic_map_free(context
);
1839 return isl_map_universe(dim
);
1842 context
= isl_basic_map_convex_hull(context
);
1843 map
= isl_map_cow(map
);
1844 if (!map
|| !context
)
1846 isl_assert(map
->ctx
, isl_dim_equal(map
->dim
, context
->dim
), goto error
);
1847 map
= isl_map_compute_divs(map
);
1848 for (i
= 0; i
< map
->n
; ++i
)
1849 context
= isl_basic_map_align_divs(context
, map
->p
[i
]);
1850 for (i
= 0; i
< map
->n
; ++i
) {
1851 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
1852 isl_basic_map_copy(context
));
1856 isl_basic_map_free(context
);
1857 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1861 isl_basic_map_free(context
);
1865 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
1866 __isl_take isl_map
*context
)
1868 return isl_map_gist_basic_map(map
, isl_map_convex_hull(context
));
1871 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
1872 struct isl_basic_set
*context
)
1874 return (struct isl_basic_set
*)isl_basic_map_gist(
1875 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
1878 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
1879 __isl_take isl_basic_set
*context
)
1881 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
1882 (struct isl_basic_map
*)context
);
1885 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
1886 __isl_take isl_set
*context
)
1888 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
1889 (struct isl_map
*)context
);
1892 /* Quick check to see if two basic maps are disjoint.
1893 * In particular, we reduce the equalities and inequalities of
1894 * one basic map in the context of the equalities of the other
1895 * basic map and check if we get a contradiction.
1897 int isl_basic_map_fast_is_disjoint(struct isl_basic_map
*bmap1
,
1898 struct isl_basic_map
*bmap2
)
1900 struct isl_vec
*v
= NULL
;
1905 if (!bmap1
|| !bmap2
)
1907 isl_assert(bmap1
->ctx
, isl_dim_equal(bmap1
->dim
, bmap2
->dim
),
1909 if (bmap1
->n_div
|| bmap2
->n_div
)
1911 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
1914 total
= isl_dim_total(bmap1
->dim
);
1917 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
1920 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
1923 compute_elimination_index(bmap1
, elim
);
1924 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
1926 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
1928 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
1929 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1932 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
1934 reduced
= reduced_using_equalities(v
->block
.data
,
1935 bmap2
->ineq
[i
], bmap1
, elim
);
1936 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1937 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1940 compute_elimination_index(bmap2
, elim
);
1941 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
1943 reduced
= reduced_using_equalities(v
->block
.data
,
1944 bmap1
->ineq
[i
], bmap2
, elim
);
1945 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
1946 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
1962 int isl_basic_set_fast_is_disjoint(struct isl_basic_set
*bset1
,
1963 struct isl_basic_set
*bset2
)
1965 return isl_basic_map_fast_is_disjoint((struct isl_basic_map
*)bset1
,
1966 (struct isl_basic_map
*)bset2
);
1969 int isl_map_fast_is_disjoint(struct isl_map
*map1
, struct isl_map
*map2
)
1976 if (isl_map_fast_is_equal(map1
, map2
))
1979 for (i
= 0; i
< map1
->n
; ++i
) {
1980 for (j
= 0; j
< map2
->n
; ++j
) {
1981 int d
= isl_basic_map_fast_is_disjoint(map1
->p
[i
],
1990 int isl_set_fast_is_disjoint(struct isl_set
*set1
, struct isl_set
*set2
)
1992 return isl_map_fast_is_disjoint((struct isl_map
*)set1
,
1993 (struct isl_map
*)set2
);
1996 /* Check if we can combine a given div with lower bound l and upper
1997 * bound u with some other div and if so return that other div.
1998 * Otherwise return -1.
2000 * We first check that
2001 * - the bounds are opposites of each other (except for the constant
2003 * - the bounds do not reference any other div
2004 * - no div is defined in terms of this div
2006 * Let m be the size of the range allowed on the div by the bounds.
2007 * That is, the bounds are of the form
2009 * e <= a <= e + m - 1
2011 * with e some expression in the other variables.
2012 * We look for another div b such that no third div is defined in terms
2013 * of this second div b and such that in any constraint that contains
2014 * a (except for the given lower and upper bound), also contains b
2015 * with a coefficient that is m times that of b.
2016 * That is, all constraints (execpt for the lower and upper bound)
2019 * e + f (a + m b) >= 0
2021 * If so, we return b so that "a + m b" can be replaced by
2022 * a single div "c = a + m b".
2024 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2025 unsigned div
, unsigned l
, unsigned u
)
2031 if (bmap
->n_div
<= 1)
2033 dim
= isl_dim_total(bmap
->dim
);
2034 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2036 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2037 bmap
->n_div
- div
- 1) != -1)
2039 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2043 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2044 if (isl_int_is_zero(bmap
->div
[i
][0]))
2046 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2050 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2051 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2052 isl_int_sub(bmap
->ineq
[l
][0],
2053 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2054 bmap
= isl_basic_map_copy(bmap
);
2055 bmap
= isl_basic_map_set_to_empty(bmap
);
2056 isl_basic_map_free(bmap
);
2059 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2060 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2065 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2066 if (isl_int_is_zero(bmap
->div
[j
][0]))
2068 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2071 if (j
< bmap
->n_div
)
2073 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2075 if (j
== l
|| j
== u
)
2077 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2079 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2081 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2082 bmap
->ineq
[j
][1 + dim
+ div
],
2084 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2085 bmap
->ineq
[j
][1 + dim
+ i
]);
2086 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2087 bmap
->ineq
[j
][1 + dim
+ div
],
2092 if (j
< bmap
->n_ineq
)
2097 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2098 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2102 /* Given a lower and an upper bound on div i, construct an inequality
2103 * that when nonnegative ensures that this pair of bounds always allows
2104 * for an integer value of the given div.
2105 * The lower bound is inequality l, while the upper bound is inequality u.
2106 * The constructed inequality is stored in ineq.
2107 * g, fl, fu are temporary scalars.
2109 * Let the upper bound be
2113 * and the lower bound
2117 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2120 * - f_u e_l <= f_u f_l g a <= f_l e_u
2122 * Since all variables are integer valued, this is equivalent to
2124 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2126 * If this interval is at least f_u f_l g, then it contains at least
2127 * one integer value for a.
2128 * That is, the test constraint is
2130 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2132 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2133 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
2136 dim
= isl_dim_total(bmap
->dim
);
2138 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
2139 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
2140 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
2141 isl_int_neg(fu
, fu
);
2142 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
2143 1 + dim
+ bmap
->n_div
);
2144 isl_int_add(ineq
[0], ineq
[0], fl
);
2145 isl_int_add(ineq
[0], ineq
[0], fu
);
2146 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2147 isl_int_mul(g
, g
, fl
);
2148 isl_int_mul(g
, g
, fu
);
2149 isl_int_sub(ineq
[0], ineq
[0], g
);
2152 /* Remove more kinds of divs that are not strictly needed.
2153 * In particular, if all pairs of lower and upper bounds on a div
2154 * are such that they allow at least one integer value of the div,
2155 * the we can eliminate the div using Fourier-Motzkin without
2156 * introducing any spurious solutions.
2158 static struct isl_basic_map
*drop_more_redundant_divs(
2159 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2161 struct isl_tab
*tab
= NULL
;
2162 struct isl_vec
*vec
= NULL
;
2174 dim
= isl_dim_total(bmap
->dim
);
2175 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
2179 tab
= isl_tab_from_basic_map(bmap
);
2184 enum isl_lp_result res
;
2186 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2189 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
2195 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2196 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
2198 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2199 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
2201 construct_test_ineq(bmap
, i
, l
, u
,
2202 vec
->el
, g
, fl
, fu
);
2203 res
= isl_tab_min(tab
, vec
->el
,
2204 bmap
->ctx
->one
, &g
, NULL
, 0);
2205 if (res
== isl_lp_error
)
2207 if (res
== isl_lp_empty
) {
2208 bmap
= isl_basic_map_set_to_empty(bmap
);
2211 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
2214 if (u
< bmap
->n_ineq
)
2217 if (l
== bmap
->n_ineq
) {
2237 bmap
= isl_basic_map_remove(bmap
, isl_dim_div
, remove
, 1);
2238 return isl_basic_map_drop_redundant_divs(bmap
);
2241 isl_basic_map_free(bmap
);
2250 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2251 * and the upper bound u, div1 always occurs together with div2 in the form
2252 * (div1 + m div2), where m is the constant range on the variable div1
2253 * allowed by l and u, replace the pair div1 and div2 by a single
2254 * div that is equal to div1 + m div2.
2256 * The new div will appear in the location that contains div2.
2257 * We need to modify all constraints that contain
2258 * div2 = (div - div1) / m
2259 * (If a constraint does not contain div2, it will also not contain div1.)
2260 * If the constraint also contains div1, then we know they appear
2261 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2262 * i.e., the coefficient of div is f.
2264 * Otherwise, we first need to introduce div1 into the constraint.
2273 * A lower bound on div2
2277 * can be replaced by
2279 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2281 * with g = gcd(m,n).
2286 * can be replaced by
2288 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2290 * These constraint are those that we would obtain from eliminating
2291 * div1 using Fourier-Motzkin.
2293 * After all constraints have been modified, we drop the lower and upper
2294 * bound and then drop div1.
2296 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
2297 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
2302 unsigned dim
, total
;
2305 dim
= isl_dim_total(bmap
->dim
);
2306 total
= 1 + dim
+ bmap
->n_div
;
2311 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2312 isl_int_add_ui(m
, m
, 1);
2314 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2315 if (i
== l
|| i
== u
)
2317 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
2319 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
2320 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
2321 isl_int_divexact(a
, m
, b
);
2322 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
2323 if (isl_int_is_pos(b
)) {
2324 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2325 b
, bmap
->ineq
[l
], total
);
2328 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
2329 b
, bmap
->ineq
[u
], total
);
2332 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
2333 bmap
->ineq
[i
][1 + dim
+ div1
]);
2334 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
2341 isl_basic_map_drop_inequality(bmap
, l
);
2342 isl_basic_map_drop_inequality(bmap
, u
);
2344 isl_basic_map_drop_inequality(bmap
, u
);
2345 isl_basic_map_drop_inequality(bmap
, l
);
2347 bmap
= isl_basic_map_drop_div(bmap
, div1
);
2351 /* First check if we can coalesce any pair of divs and
2352 * then continue with dropping more redundant divs.
2354 * We loop over all pairs of lower and upper bounds on a div
2355 * with coefficient 1 and -1, respectively, check if there
2356 * is any other div "c" with which we can coalesce the div
2357 * and if so, perform the coalescing.
2359 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
2360 struct isl_basic_map
*bmap
, int *pairs
, int n
)
2365 dim
= isl_dim_total(bmap
->dim
);
2367 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2370 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
2371 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
2373 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
2376 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
2378 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
2382 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
2383 return isl_basic_map_drop_redundant_divs(bmap
);
2388 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
2391 return drop_more_redundant_divs(bmap
, pairs
, n
);
2394 /* Remove divs that are not strictly needed.
2395 * In particular, if a div only occurs positively (or negatively)
2396 * in constraints, then it can simply be dropped.
2397 * Also, if a div occurs only occurs in two constraints and if moreover
2398 * those two constraints are opposite to each other, except for the constant
2399 * term and if the sum of the constant terms is such that for any value
2400 * of the other values, there is always at least one integer value of the
2401 * div, i.e., if one plus this sum is greater than or equal to
2402 * the (absolute value) of the coefficent of the div in the constraints,
2403 * then we can also simply drop the div.
2405 * If any divs are left after these simple checks then we move on
2406 * to more complicated cases in drop_more_redundant_divs.
2408 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
2409 struct isl_basic_map
*bmap
)
2419 off
= isl_dim_total(bmap
->dim
);
2420 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
2424 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2426 int last_pos
, last_neg
;
2430 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
2431 for (j
= 0; j
< bmap
->n_eq
; ++j
)
2432 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
2438 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2439 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
2443 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
2448 pairs
[i
] = pos
* neg
;
2449 if (pairs
[i
] == 0) {
2450 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
2451 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
2452 isl_basic_map_drop_inequality(bmap
, j
);
2453 bmap
= isl_basic_map_drop_div(bmap
, i
);
2455 return isl_basic_map_drop_redundant_divs(bmap
);
2459 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
2460 bmap
->ineq
[last_neg
] + 1,
2464 isl_int_add(bmap
->ineq
[last_pos
][0],
2465 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2466 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
2467 bmap
->ineq
[last_pos
][0], 1);
2468 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
2469 bmap
->ineq
[last_pos
][1+off
+i
]);
2470 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
2471 bmap
->ineq
[last_pos
][0], 1);
2472 isl_int_sub(bmap
->ineq
[last_pos
][0],
2473 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
2476 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
2481 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
2482 bmap
= isl_basic_map_simplify(bmap
);
2484 return isl_basic_map_drop_redundant_divs(bmap
);
2486 if (last_pos
> last_neg
) {
2487 isl_basic_map_drop_inequality(bmap
, last_pos
);
2488 isl_basic_map_drop_inequality(bmap
, last_neg
);
2490 isl_basic_map_drop_inequality(bmap
, last_neg
);
2491 isl_basic_map_drop_inequality(bmap
, last_pos
);
2493 bmap
= isl_basic_map_drop_div(bmap
, i
);
2495 return isl_basic_map_drop_redundant_divs(bmap
);
2499 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
2505 isl_basic_map_free(bmap
);
2509 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
2510 struct isl_basic_set
*bset
)
2512 return (struct isl_basic_set
*)
2513 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
2516 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
2522 for (i
= 0; i
< map
->n
; ++i
) {
2523 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
2527 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2534 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
2536 return (struct isl_set
*)
2537 isl_map_drop_redundant_divs((struct isl_map
*)set
);