drop isl_map_drop_redundant_divs
[isl.git] / isl_map_simplify.c
blob955e08d8f942ff27b7f0d6f690277f2f02597437
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
33 isl_int *t = bmap->eq[a];
34 bmap->eq[a] = bmap->eq[b];
35 bmap->eq[b] = t;
38 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
40 if (a != b) {
41 isl_int *t = bmap->ineq[a];
42 bmap->ineq[a] = bmap->ineq[b];
43 bmap->ineq[b] = t;
47 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
49 isl_seq_cpy(c, c + n, rem);
50 isl_seq_clr(c + rem, n);
53 /* Drop n dimensions starting at first.
55 * In principle, this frees up some extra variables as the number
56 * of columns remains constant, but we would have to extend
57 * the div array too as the number of rows in this array is assumed
58 * to be equal to extra.
60 struct isl_basic_set *isl_basic_set_drop_dims(
61 struct isl_basic_set *bset, unsigned first, unsigned n)
63 int i;
65 if (!bset)
66 goto error;
68 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
70 if (n == 0 && !isl_space_is_named_or_nested(bset->dim, isl_dim_set))
71 return bset;
73 bset = isl_basic_set_cow(bset);
74 if (!bset)
75 return NULL;
77 for (i = 0; i < bset->n_eq; ++i)
78 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
79 (bset->dim->n_out-first-n)+bset->extra);
81 for (i = 0; i < bset->n_ineq; ++i)
82 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
83 (bset->dim->n_out-first-n)+bset->extra);
85 for (i = 0; i < bset->n_div; ++i)
86 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
87 (bset->dim->n_out-first-n)+bset->extra);
89 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
90 if (!bset->dim)
91 goto error;
93 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
94 bset = isl_basic_set_simplify(bset);
95 return isl_basic_set_finalize(bset);
96 error:
97 isl_basic_set_free(bset);
98 return NULL;
101 /* Move "n" divs starting at "first" to the end of the list of divs.
103 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
104 unsigned first, unsigned n)
106 isl_int **div;
107 int i;
109 if (first + n == bmap->n_div)
110 return bmap;
112 div = isl_alloc_array(bmap->ctx, isl_int *, n);
113 if (!div)
114 goto error;
115 for (i = 0; i < n; ++i)
116 div[i] = bmap->div[first + i];
117 for (i = 0; i < bmap->n_div - first - n; ++i)
118 bmap->div[first + i] = bmap->div[first + n + i];
119 for (i = 0; i < n; ++i)
120 bmap->div[bmap->n_div - n + i] = div[i];
121 free(div);
122 return bmap;
123 error:
124 isl_basic_map_free(bmap);
125 return NULL;
128 /* Drop "n" dimensions of type "type" starting at "first".
130 * In principle, this frees up some extra variables as the number
131 * of columns remains constant, but we would have to extend
132 * the div array too as the number of rows in this array is assumed
133 * to be equal to extra.
135 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
136 enum isl_dim_type type, unsigned first, unsigned n)
138 int i;
139 unsigned dim;
140 unsigned offset;
141 unsigned left;
143 if (!bmap)
144 goto error;
146 dim = isl_basic_map_dim(bmap, type);
147 isl_assert(bmap->ctx, first + n <= dim, goto error);
149 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
150 return bmap;
152 bmap = isl_basic_map_cow(bmap);
153 if (!bmap)
154 return NULL;
156 offset = isl_basic_map_offset(bmap, type) + first;
157 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
158 for (i = 0; i < bmap->n_eq; ++i)
159 constraint_drop_vars(bmap->eq[i]+offset, n, left);
161 for (i = 0; i < bmap->n_ineq; ++i)
162 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
164 for (i = 0; i < bmap->n_div; ++i)
165 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
167 if (type == isl_dim_div) {
168 bmap = move_divs_last(bmap, first, n);
169 if (!bmap)
170 goto error;
171 if (isl_basic_map_free_div(bmap, n) < 0)
172 return isl_basic_map_free(bmap);
173 } else
174 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
175 if (!bmap->dim)
176 goto error;
178 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
179 bmap = isl_basic_map_simplify(bmap);
180 return isl_basic_map_finalize(bmap);
181 error:
182 isl_basic_map_free(bmap);
183 return NULL;
186 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
187 enum isl_dim_type type, unsigned first, unsigned n)
189 return bset_from_bmap(isl_basic_map_drop(bset_to_bmap(bset),
190 type, first, n));
193 struct isl_map *isl_map_drop(struct isl_map *map,
194 enum isl_dim_type type, unsigned first, unsigned n)
196 int i;
198 if (!map)
199 goto error;
201 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
203 if (n == 0 && !isl_space_is_named_or_nested(map->dim, type))
204 return map;
205 map = isl_map_cow(map);
206 if (!map)
207 goto error;
208 map->dim = isl_space_drop_dims(map->dim, type, first, n);
209 if (!map->dim)
210 goto error;
212 for (i = 0; i < map->n; ++i) {
213 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
214 if (!map->p[i])
215 goto error;
217 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
219 return map;
220 error:
221 isl_map_free(map);
222 return NULL;
225 struct isl_set *isl_set_drop(struct isl_set *set,
226 enum isl_dim_type type, unsigned first, unsigned n)
228 return set_from_map(isl_map_drop(set_to_map(set), type, first, n));
232 * We don't cow, as the div is assumed to be redundant.
234 __isl_give isl_basic_map *isl_basic_map_drop_div(
235 __isl_take isl_basic_map *bmap, unsigned div)
237 int i;
238 unsigned pos;
240 if (!bmap)
241 goto error;
243 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
245 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
247 for (i = 0; i < bmap->n_eq; ++i)
248 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
250 for (i = 0; i < bmap->n_ineq; ++i) {
251 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
252 isl_basic_map_drop_inequality(bmap, i);
253 --i;
254 continue;
256 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
259 for (i = 0; i < bmap->n_div; ++i)
260 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
262 if (div != bmap->n_div - 1) {
263 int j;
264 isl_int *t = bmap->div[div];
266 for (j = div; j < bmap->n_div - 1; ++j)
267 bmap->div[j] = bmap->div[j+1];
269 bmap->div[bmap->n_div - 1] = t;
271 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
272 if (isl_basic_map_free_div(bmap, 1) < 0)
273 return isl_basic_map_free(bmap);
275 return bmap;
276 error:
277 isl_basic_map_free(bmap);
278 return NULL;
281 struct isl_basic_map *isl_basic_map_normalize_constraints(
282 struct isl_basic_map *bmap)
284 int i;
285 isl_int gcd;
286 unsigned total = isl_basic_map_total_dim(bmap);
288 if (!bmap)
289 return NULL;
291 isl_int_init(gcd);
292 for (i = bmap->n_eq - 1; i >= 0; --i) {
293 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
294 if (isl_int_is_zero(gcd)) {
295 if (!isl_int_is_zero(bmap->eq[i][0])) {
296 bmap = isl_basic_map_set_to_empty(bmap);
297 break;
299 isl_basic_map_drop_equality(bmap, i);
300 continue;
302 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
303 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
304 if (isl_int_is_one(gcd))
305 continue;
306 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
307 bmap = isl_basic_map_set_to_empty(bmap);
308 break;
310 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
313 for (i = bmap->n_ineq - 1; i >= 0; --i) {
314 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
315 if (isl_int_is_zero(gcd)) {
316 if (isl_int_is_neg(bmap->ineq[i][0])) {
317 bmap = isl_basic_map_set_to_empty(bmap);
318 break;
320 isl_basic_map_drop_inequality(bmap, i);
321 continue;
323 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
324 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
325 if (isl_int_is_one(gcd))
326 continue;
327 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
328 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
330 isl_int_clear(gcd);
332 return bmap;
335 struct isl_basic_set *isl_basic_set_normalize_constraints(
336 struct isl_basic_set *bset)
338 isl_basic_map *bmap = bset_to_bmap(bset);
339 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
342 /* Reduce the coefficient of the variable at position "pos"
343 * in integer division "div", such that it lies in the half-open
344 * interval (1/2,1/2], extracting any excess value from this integer division.
345 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
346 * corresponds to the constant term.
348 * That is, the integer division is of the form
350 * floor((... + (c * d + r) * x_pos + ...)/d)
352 * with -d < 2 * r <= d.
353 * Replace it by
355 * floor((... + r * x_pos + ...)/d) + c * x_pos
357 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
358 * Otherwise, c = floor((c * d + r)/d) + 1.
360 * This is the same normalization that is performed by isl_aff_floor.
362 static __isl_give isl_basic_map *reduce_coefficient_in_div(
363 __isl_take isl_basic_map *bmap, int div, int pos)
365 isl_int shift;
366 int add_one;
368 isl_int_init(shift);
369 isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
370 isl_int_mul_ui(shift, shift, 2);
371 add_one = isl_int_gt(shift, bmap->div[div][0]);
372 isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
373 if (add_one)
374 isl_int_add_ui(shift, shift, 1);
375 isl_int_neg(shift, shift);
376 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
377 isl_int_clear(shift);
379 return bmap;
382 /* Does the coefficient of the variable at position "pos"
383 * in integer division "div" need to be reduced?
384 * That is, does it lie outside the half-open interval (1/2,1/2]?
385 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
386 * 2 * c != d.
388 static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
389 int pos)
391 isl_bool r;
393 if (isl_int_is_zero(bmap->div[div][1 + pos]))
394 return isl_bool_false;
396 isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
397 r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
398 !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
399 isl_int_divexact_ui(bmap->div[div][1 + pos],
400 bmap->div[div][1 + pos], 2);
402 return r;
405 /* Reduce the coefficients (including the constant term) of
406 * integer division "div", if needed.
407 * In particular, make sure all coefficients lie in
408 * the half-open interval (1/2,1/2].
410 static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
411 __isl_take isl_basic_map *bmap, int div)
413 int i;
414 unsigned total = 1 + isl_basic_map_total_dim(bmap);
416 for (i = 0; i < total; ++i) {
417 isl_bool reduce;
419 reduce = needs_reduction(bmap, div, i);
420 if (reduce < 0)
421 return isl_basic_map_free(bmap);
422 if (!reduce)
423 continue;
424 bmap = reduce_coefficient_in_div(bmap, div, i);
425 if (!bmap)
426 break;
429 return bmap;
432 /* Reduce the coefficients (including the constant term) of
433 * the known integer divisions, if needed
434 * In particular, make sure all coefficients lie in
435 * the half-open interval (1/2,1/2].
437 static __isl_give isl_basic_map *reduce_div_coefficients(
438 __isl_take isl_basic_map *bmap)
440 int i;
442 if (!bmap)
443 return NULL;
444 if (bmap->n_div == 0)
445 return bmap;
447 for (i = 0; i < bmap->n_div; ++i) {
448 if (isl_int_is_zero(bmap->div[i][0]))
449 continue;
450 bmap = reduce_div_coefficients_of_div(bmap, i);
451 if (!bmap)
452 break;
455 return bmap;
458 /* Remove any common factor in numerator and denominator of the div expression,
459 * not taking into account the constant term.
460 * That is, if the div is of the form
462 * floor((a + m f(x))/(m d))
464 * then replace it by
466 * floor((floor(a/m) + f(x))/d)
468 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
469 * and can therefore not influence the result of the floor.
471 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
473 unsigned total = isl_basic_map_total_dim(bmap);
474 isl_ctx *ctx = bmap->ctx;
476 if (isl_int_is_zero(bmap->div[div][0]))
477 return;
478 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
479 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
480 if (isl_int_is_one(ctx->normalize_gcd))
481 return;
482 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
483 ctx->normalize_gcd);
484 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
485 ctx->normalize_gcd);
486 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
487 ctx->normalize_gcd, total);
490 /* Remove any common factor in numerator and denominator of a div expression,
491 * not taking into account the constant term.
492 * That is, look for any div of the form
494 * floor((a + m f(x))/(m d))
496 * and replace it by
498 * floor((floor(a/m) + f(x))/d)
500 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
501 * and can therefore not influence the result of the floor.
503 static __isl_give isl_basic_map *normalize_div_expressions(
504 __isl_take isl_basic_map *bmap)
506 int i;
508 if (!bmap)
509 return NULL;
510 if (bmap->n_div == 0)
511 return bmap;
513 for (i = 0; i < bmap->n_div; ++i)
514 normalize_div_expression(bmap, i);
516 return bmap;
519 /* Assumes divs have been ordered if keep_divs is set.
521 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
522 unsigned pos, isl_int *eq, int keep_divs, int *progress)
524 unsigned total;
525 unsigned space_total;
526 int k;
527 int last_div;
529 total = isl_basic_map_total_dim(bmap);
530 space_total = isl_space_dim(bmap->dim, isl_dim_all);
531 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
532 for (k = 0; k < bmap->n_eq; ++k) {
533 if (bmap->eq[k] == eq)
534 continue;
535 if (isl_int_is_zero(bmap->eq[k][1+pos]))
536 continue;
537 if (progress)
538 *progress = 1;
539 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
540 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
543 for (k = 0; k < bmap->n_ineq; ++k) {
544 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
545 continue;
546 if (progress)
547 *progress = 1;
548 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
549 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
550 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
553 for (k = 0; k < bmap->n_div; ++k) {
554 if (isl_int_is_zero(bmap->div[k][0]))
555 continue;
556 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
557 continue;
558 if (progress)
559 *progress = 1;
560 /* We need to be careful about circular definitions,
561 * so for now we just remove the definition of div k
562 * if the equality contains any divs.
563 * If keep_divs is set, then the divs have been ordered
564 * and we can keep the definition as long as the result
565 * is still ordered.
567 if (last_div == -1 || (keep_divs && last_div < k)) {
568 isl_seq_elim(bmap->div[k]+1, eq,
569 1+pos, 1+total, &bmap->div[k][0]);
570 normalize_div_expression(bmap, k);
571 } else
572 isl_seq_clr(bmap->div[k], 1 + total);
573 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
577 /* Assumes divs have been ordered if keep_divs is set.
579 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
580 isl_int *eq, unsigned div, int keep_divs)
582 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
584 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
586 bmap = isl_basic_map_drop_div(bmap, div);
588 return bmap;
591 /* Check if elimination of div "div" using equality "eq" would not
592 * result in a div depending on a later div.
594 static isl_bool ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
595 unsigned div)
597 int k;
598 int last_div;
599 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
600 unsigned pos = space_total + div;
602 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
603 if (last_div < 0 || last_div <= div)
604 return isl_bool_true;
606 for (k = 0; k <= last_div; ++k) {
607 if (isl_int_is_zero(bmap->div[k][0]))
608 continue;
609 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
610 return isl_bool_false;
613 return isl_bool_true;
616 /* Eliminate divs based on equalities
618 static struct isl_basic_map *eliminate_divs_eq(
619 struct isl_basic_map *bmap, int *progress)
621 int d;
622 int i;
623 int modified = 0;
624 unsigned off;
626 bmap = isl_basic_map_order_divs(bmap);
628 if (!bmap)
629 return NULL;
631 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
633 for (d = bmap->n_div - 1; d >= 0 ; --d) {
634 for (i = 0; i < bmap->n_eq; ++i) {
635 isl_bool ok;
637 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
638 !isl_int_is_negone(bmap->eq[i][off + d]))
639 continue;
640 ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
641 if (ok < 0)
642 return isl_basic_map_free(bmap);
643 if (!ok)
644 continue;
645 modified = 1;
646 *progress = 1;
647 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
648 if (isl_basic_map_drop_equality(bmap, i) < 0)
649 return isl_basic_map_free(bmap);
650 break;
653 if (modified)
654 return eliminate_divs_eq(bmap, progress);
655 return bmap;
658 /* Elimininate divs based on inequalities
660 static struct isl_basic_map *eliminate_divs_ineq(
661 struct isl_basic_map *bmap, int *progress)
663 int d;
664 int i;
665 unsigned off;
666 struct isl_ctx *ctx;
668 if (!bmap)
669 return NULL;
671 ctx = bmap->ctx;
672 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
674 for (d = bmap->n_div - 1; d >= 0 ; --d) {
675 for (i = 0; i < bmap->n_eq; ++i)
676 if (!isl_int_is_zero(bmap->eq[i][off + d]))
677 break;
678 if (i < bmap->n_eq)
679 continue;
680 for (i = 0; i < bmap->n_ineq; ++i)
681 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
682 break;
683 if (i < bmap->n_ineq)
684 continue;
685 *progress = 1;
686 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
687 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
688 break;
689 bmap = isl_basic_map_drop_div(bmap, d);
690 if (!bmap)
691 break;
693 return bmap;
696 /* Does the equality constraint at position "eq" in "bmap" involve
697 * any local variables in the range [first, first + n)
698 * that are not marked as having an explicit representation?
700 static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
701 int eq, unsigned first, unsigned n)
703 unsigned o_div;
704 int i;
706 if (!bmap)
707 return isl_bool_error;
709 o_div = isl_basic_map_offset(bmap, isl_dim_div);
710 for (i = 0; i < n; ++i) {
711 isl_bool unknown;
713 if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
714 continue;
715 unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
716 if (unknown < 0)
717 return isl_bool_error;
718 if (unknown)
719 return isl_bool_true;
722 return isl_bool_false;
725 /* The last local variable involved in the equality constraint
726 * at position "eq" in "bmap" is the local variable at position "div".
727 * It can therefore be used to extract an explicit representation
728 * for that variable.
729 * Do so unless the local variable already has an explicit representation or
730 * the explicit representation would involve any other local variables
731 * that in turn do not have an explicit representation.
732 * An equality constraint involving local variables without an explicit
733 * representation can be used in isl_basic_map_drop_redundant_divs
734 * to separate out an independent local variable. Introducing
735 * an explicit representation here would block this transformation,
736 * while the partial explicit representation in itself is not very useful.
737 * Set *progress if anything is changed.
739 * The equality constraint is of the form
741 * f(x) + n e >= 0
743 * with n a positive number. The explicit representation derived from
744 * this constraint is
746 * floor((-f(x))/n)
748 static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
749 int div, int eq, int *progress)
751 unsigned total, o_div;
752 isl_bool involves;
754 if (!bmap)
755 return NULL;
757 if (!isl_int_is_zero(bmap->div[div][0]))
758 return bmap;
760 involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
761 if (involves < 0)
762 return isl_basic_map_free(bmap);
763 if (involves)
764 return bmap;
766 total = isl_basic_map_dim(bmap, isl_dim_all);
767 o_div = isl_basic_map_offset(bmap, isl_dim_div);
768 isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
769 isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
770 isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
771 if (progress)
772 *progress = 1;
773 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
775 return bmap;
778 struct isl_basic_map *isl_basic_map_gauss(
779 struct isl_basic_map *bmap, int *progress)
781 int k;
782 int done;
783 int last_var;
784 unsigned total_var;
785 unsigned total;
787 bmap = isl_basic_map_order_divs(bmap);
789 if (!bmap)
790 return NULL;
792 total = isl_basic_map_total_dim(bmap);
793 total_var = total - bmap->n_div;
795 last_var = total - 1;
796 for (done = 0; done < bmap->n_eq; ++done) {
797 for (; last_var >= 0; --last_var) {
798 for (k = done; k < bmap->n_eq; ++k)
799 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
800 break;
801 if (k < bmap->n_eq)
802 break;
804 if (last_var < 0)
805 break;
806 if (k != done)
807 swap_equality(bmap, k, done);
808 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
809 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
811 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
812 progress);
814 if (last_var >= total_var)
815 bmap = set_div_from_eq(bmap, last_var - total_var,
816 done, progress);
817 if (!bmap)
818 return NULL;
820 if (done == bmap->n_eq)
821 return bmap;
822 for (k = done; k < bmap->n_eq; ++k) {
823 if (isl_int_is_zero(bmap->eq[k][0]))
824 continue;
825 return isl_basic_map_set_to_empty(bmap);
827 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
828 return bmap;
831 struct isl_basic_set *isl_basic_set_gauss(
832 struct isl_basic_set *bset, int *progress)
834 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
835 progress));
839 static unsigned int round_up(unsigned int v)
841 int old_v = v;
843 while (v) {
844 old_v = v;
845 v ^= v & -v;
847 return old_v << 1;
850 /* Hash table of inequalities in a basic map.
851 * "index" is an array of addresses of inequalities in the basic map, some
852 * of which are NULL. The inequalities are hashed on the coefficients
853 * except the constant term.
854 * "size" is the number of elements in the array and is always a power of two
855 * "bits" is the number of bits need to represent an index into the array.
856 * "total" is the total dimension of the basic map.
858 struct isl_constraint_index {
859 unsigned int size;
860 int bits;
861 isl_int ***index;
862 unsigned total;
865 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
867 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
868 __isl_keep isl_basic_map *bmap)
870 isl_ctx *ctx;
872 ci->index = NULL;
873 if (!bmap)
874 return isl_stat_error;
875 ci->total = isl_basic_set_total_dim(bmap);
876 if (bmap->n_ineq == 0)
877 return isl_stat_ok;
878 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
879 ci->bits = ffs(ci->size) - 1;
880 ctx = isl_basic_map_get_ctx(bmap);
881 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
882 if (!ci->index)
883 return isl_stat_error;
885 return isl_stat_ok;
888 /* Free the memory allocated by create_constraint_index.
890 static void constraint_index_free(struct isl_constraint_index *ci)
892 free(ci->index);
895 /* Return the position in ci->index that contains the address of
896 * an inequality that is equal to *ineq up to the constant term,
897 * provided this address is not identical to "ineq".
898 * If there is no such inequality, then return the position where
899 * such an inequality should be inserted.
901 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
903 int h;
904 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
905 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
906 if (ineq != ci->index[h] &&
907 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
908 break;
909 return h;
912 /* Return the position in ci->index that contains the address of
913 * an inequality that is equal to the k'th inequality of "bmap"
914 * up to the constant term, provided it does not point to the very
915 * same inequality.
916 * If there is no such inequality, then return the position where
917 * such an inequality should be inserted.
919 static int hash_index(struct isl_constraint_index *ci,
920 __isl_keep isl_basic_map *bmap, int k)
922 return hash_index_ineq(ci, &bmap->ineq[k]);
925 static int set_hash_index(struct isl_constraint_index *ci,
926 struct isl_basic_set *bset, int k)
928 return hash_index(ci, bset, k);
931 /* Fill in the "ci" data structure with the inequalities of "bset".
933 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
934 __isl_keep isl_basic_set *bset)
936 int k, h;
938 if (create_constraint_index(ci, bset) < 0)
939 return isl_stat_error;
941 for (k = 0; k < bset->n_ineq; ++k) {
942 h = set_hash_index(ci, bset, k);
943 ci->index[h] = &bset->ineq[k];
946 return isl_stat_ok;
949 /* Is the inequality ineq (obviously) redundant with respect
950 * to the constraints in "ci"?
952 * Look for an inequality in "ci" with the same coefficients and then
953 * check if the contant term of "ineq" is greater than or equal
954 * to the constant term of that inequality. If so, "ineq" is clearly
955 * redundant.
957 * Note that hash_index_ineq ignores a stored constraint if it has
958 * the same address as the passed inequality. It is ok to pass
959 * the address of a local variable here since it will never be
960 * the same as the address of a constraint in "ci".
962 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
963 isl_int *ineq)
965 int h;
967 h = hash_index_ineq(ci, &ineq);
968 if (!ci->index[h])
969 return isl_bool_false;
970 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
973 /* If we can eliminate more than one div, then we need to make
974 * sure we do it from last div to first div, in order not to
975 * change the position of the other divs that still need to
976 * be removed.
978 static struct isl_basic_map *remove_duplicate_divs(
979 struct isl_basic_map *bmap, int *progress)
981 unsigned int size;
982 int *index;
983 int *elim_for;
984 int k, l, h;
985 int bits;
986 struct isl_blk eq;
987 unsigned total_var;
988 unsigned total;
989 struct isl_ctx *ctx;
991 bmap = isl_basic_map_order_divs(bmap);
992 if (!bmap || bmap->n_div <= 1)
993 return bmap;
995 total_var = isl_space_dim(bmap->dim, isl_dim_all);
996 total = total_var + bmap->n_div;
998 ctx = bmap->ctx;
999 for (k = bmap->n_div - 1; k >= 0; --k)
1000 if (!isl_int_is_zero(bmap->div[k][0]))
1001 break;
1002 if (k <= 0)
1003 return bmap;
1005 size = round_up(4 * bmap->n_div / 3 - 1);
1006 if (size == 0)
1007 return bmap;
1008 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
1009 bits = ffs(size) - 1;
1010 index = isl_calloc_array(ctx, int, size);
1011 if (!elim_for || !index)
1012 goto out;
1013 eq = isl_blk_alloc(ctx, 1+total);
1014 if (isl_blk_is_error(eq))
1015 goto out;
1017 isl_seq_clr(eq.data, 1+total);
1018 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
1019 for (--k; k >= 0; --k) {
1020 uint32_t hash;
1022 if (isl_int_is_zero(bmap->div[k][0]))
1023 continue;
1025 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
1026 for (h = hash; index[h]; h = (h+1) % size)
1027 if (isl_seq_eq(bmap->div[k],
1028 bmap->div[index[h]-1], 2+total))
1029 break;
1030 if (index[h]) {
1031 *progress = 1;
1032 l = index[h] - 1;
1033 elim_for[l] = k + 1;
1035 index[h] = k+1;
1037 for (l = bmap->n_div - 1; l >= 0; --l) {
1038 if (!elim_for[l])
1039 continue;
1040 k = elim_for[l] - 1;
1041 isl_int_set_si(eq.data[1+total_var+k], -1);
1042 isl_int_set_si(eq.data[1+total_var+l], 1);
1043 bmap = eliminate_div(bmap, eq.data, l, 1);
1044 if (!bmap)
1045 break;
1046 isl_int_set_si(eq.data[1+total_var+k], 0);
1047 isl_int_set_si(eq.data[1+total_var+l], 0);
1050 isl_blk_free(ctx, eq);
1051 out:
1052 free(index);
1053 free(elim_for);
1054 return bmap;
1057 static int n_pure_div_eq(struct isl_basic_map *bmap)
1059 int i, j;
1060 unsigned total;
1062 total = isl_space_dim(bmap->dim, isl_dim_all);
1063 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
1064 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
1065 --j;
1066 if (j < 0)
1067 break;
1068 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
1069 return 0;
1071 return i;
1074 /* Normalize divs that appear in equalities.
1076 * In particular, we assume that bmap contains some equalities
1077 * of the form
1079 * a x = m * e_i
1081 * and we want to replace the set of e_i by a minimal set and
1082 * such that the new e_i have a canonical representation in terms
1083 * of the vector x.
1084 * If any of the equalities involves more than one divs, then
1085 * we currently simply bail out.
1087 * Let us first additionally assume that all equalities involve
1088 * a div. The equalities then express modulo constraints on the
1089 * remaining variables and we can use "parameter compression"
1090 * to find a minimal set of constraints. The result is a transformation
1092 * x = T(x') = x_0 + G x'
1094 * with G a lower-triangular matrix with all elements below the diagonal
1095 * non-negative and smaller than the diagonal element on the same row.
1096 * We first normalize x_0 by making the same property hold in the affine
1097 * T matrix.
1098 * The rows i of G with a 1 on the diagonal do not impose any modulo
1099 * constraint and simply express x_i = x'_i.
1100 * For each of the remaining rows i, we introduce a div and a corresponding
1101 * equality. In particular
1103 * g_ii e_j = x_i - g_i(x')
1105 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1106 * corresponding div (if g_kk != 1).
1108 * If there are any equalities not involving any div, then we
1109 * first apply a variable compression on the variables x:
1111 * x = C x'' x'' = C_2 x
1113 * and perform the above parameter compression on A C instead of on A.
1114 * The resulting compression is then of the form
1116 * x'' = T(x') = x_0 + G x'
1118 * and in constructing the new divs and the corresponding equalities,
1119 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1120 * by the corresponding row from C_2.
1122 static struct isl_basic_map *normalize_divs(
1123 struct isl_basic_map *bmap, int *progress)
1125 int i, j, k;
1126 int total;
1127 int div_eq;
1128 struct isl_mat *B;
1129 struct isl_vec *d;
1130 struct isl_mat *T = NULL;
1131 struct isl_mat *C = NULL;
1132 struct isl_mat *C2 = NULL;
1133 isl_int v;
1134 int *pos = NULL;
1135 int dropped, needed;
1137 if (!bmap)
1138 return NULL;
1140 if (bmap->n_div == 0)
1141 return bmap;
1143 if (bmap->n_eq == 0)
1144 return bmap;
1146 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
1147 return bmap;
1149 total = isl_space_dim(bmap->dim, isl_dim_all);
1150 div_eq = n_pure_div_eq(bmap);
1151 if (div_eq == 0)
1152 return bmap;
1154 if (div_eq < bmap->n_eq) {
1155 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1156 bmap->n_eq - div_eq, 0, 1 + total);
1157 C = isl_mat_variable_compression(B, &C2);
1158 if (!C || !C2)
1159 goto error;
1160 if (C->n_col == 0) {
1161 bmap = isl_basic_map_set_to_empty(bmap);
1162 isl_mat_free(C);
1163 isl_mat_free(C2);
1164 goto done;
1168 d = isl_vec_alloc(bmap->ctx, div_eq);
1169 if (!d)
1170 goto error;
1171 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1172 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
1173 --j;
1174 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
1176 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
1178 if (C) {
1179 B = isl_mat_product(B, C);
1180 C = NULL;
1183 T = isl_mat_parameter_compression(B, d);
1184 if (!T)
1185 goto error;
1186 if (T->n_col == 0) {
1187 bmap = isl_basic_map_set_to_empty(bmap);
1188 isl_mat_free(C2);
1189 isl_mat_free(T);
1190 goto done;
1192 isl_int_init(v);
1193 for (i = 0; i < T->n_row - 1; ++i) {
1194 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1195 if (isl_int_is_zero(v))
1196 continue;
1197 isl_mat_col_submul(T, 0, v, 1 + i);
1199 isl_int_clear(v);
1200 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1201 if (!pos)
1202 goto error;
1203 /* We have to be careful because dropping equalities may reorder them */
1204 dropped = 0;
1205 for (j = bmap->n_div - 1; j >= 0; --j) {
1206 for (i = 0; i < bmap->n_eq; ++i)
1207 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
1208 break;
1209 if (i < bmap->n_eq) {
1210 bmap = isl_basic_map_drop_div(bmap, j);
1211 isl_basic_map_drop_equality(bmap, i);
1212 ++dropped;
1215 pos[0] = 0;
1216 needed = 0;
1217 for (i = 1; i < T->n_row; ++i) {
1218 if (isl_int_is_one(T->row[i][i]))
1219 pos[i] = i;
1220 else
1221 needed++;
1223 if (needed > dropped) {
1224 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1225 needed, needed, 0);
1226 if (!bmap)
1227 goto error;
1229 for (i = 1; i < T->n_row; ++i) {
1230 if (isl_int_is_one(T->row[i][i]))
1231 continue;
1232 k = isl_basic_map_alloc_div(bmap);
1233 pos[i] = 1 + total + k;
1234 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
1235 isl_int_set(bmap->div[k][0], T->row[i][i]);
1236 if (C2)
1237 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
1238 else
1239 isl_int_set_si(bmap->div[k][1 + i], 1);
1240 for (j = 0; j < i; ++j) {
1241 if (isl_int_is_zero(T->row[i][j]))
1242 continue;
1243 if (pos[j] < T->n_row && C2)
1244 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1245 C2->row[pos[j]], 1 + total);
1246 else
1247 isl_int_neg(bmap->div[k][1 + pos[j]],
1248 T->row[i][j]);
1250 j = isl_basic_map_alloc_equality(bmap);
1251 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
1252 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1254 free(pos);
1255 isl_mat_free(C2);
1256 isl_mat_free(T);
1258 if (progress)
1259 *progress = 1;
1260 done:
1261 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1263 return bmap;
1264 error:
1265 free(pos);
1266 isl_mat_free(C);
1267 isl_mat_free(C2);
1268 isl_mat_free(T);
1269 return bmap;
1272 static struct isl_basic_map *set_div_from_lower_bound(
1273 struct isl_basic_map *bmap, int div, int ineq)
1275 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1277 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1278 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1279 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1280 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1281 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1283 return bmap;
1286 /* Check whether it is ok to define a div based on an inequality.
1287 * To avoid the introduction of circular definitions of divs, we
1288 * do not allow such a definition if the resulting expression would refer to
1289 * any other undefined divs or if any known div is defined in
1290 * terms of the unknown div.
1292 static isl_bool ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1293 int div, int ineq)
1295 int j;
1296 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1298 /* Not defined in terms of unknown divs */
1299 for (j = 0; j < bmap->n_div; ++j) {
1300 if (div == j)
1301 continue;
1302 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1303 continue;
1304 if (isl_int_is_zero(bmap->div[j][0]))
1305 return isl_bool_false;
1308 /* No other div defined in terms of this one => avoid loops */
1309 for (j = 0; j < bmap->n_div; ++j) {
1310 if (div == j)
1311 continue;
1312 if (isl_int_is_zero(bmap->div[j][0]))
1313 continue;
1314 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1315 return isl_bool_false;
1318 return isl_bool_true;
1321 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1322 * be a better expression than the current one?
1324 * If we do not have any expression yet, then any expression would be better.
1325 * Otherwise we check if the last variable involved in the inequality
1326 * (disregarding the div that it would define) is in an earlier position
1327 * than the last variable involved in the current div expression.
1329 static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1330 int div, int ineq)
1332 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1333 int last_div;
1334 int last_ineq;
1336 if (isl_int_is_zero(bmap->div[div][0]))
1337 return isl_bool_true;
1339 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1340 bmap->n_div - (div + 1)) >= 0)
1341 return isl_bool_false;
1343 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1344 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1345 total + bmap->n_div);
1347 return last_ineq < last_div;
1350 /* Given two constraints "k" and "l" that are opposite to each other,
1351 * except for the constant term, check if we can use them
1352 * to obtain an expression for one of the hitherto unknown divs or
1353 * a "better" expression for a div for which we already have an expression.
1354 * "sum" is the sum of the constant terms of the constraints.
1355 * If this sum is strictly smaller than the coefficient of one
1356 * of the divs, then this pair can be used define the div.
1357 * To avoid the introduction of circular definitions of divs, we
1358 * do not use the pair if the resulting expression would refer to
1359 * any other undefined divs or if any known div is defined in
1360 * terms of the unknown div.
1362 static struct isl_basic_map *check_for_div_constraints(
1363 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1365 int i;
1366 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1368 for (i = 0; i < bmap->n_div; ++i) {
1369 isl_bool set_div;
1371 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1372 continue;
1373 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1374 continue;
1375 set_div = better_div_constraint(bmap, i, k);
1376 if (set_div >= 0 && set_div)
1377 set_div = ok_to_set_div_from_bound(bmap, i, k);
1378 if (set_div < 0)
1379 return isl_basic_map_free(bmap);
1380 if (!set_div)
1381 break;
1382 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1383 bmap = set_div_from_lower_bound(bmap, i, k);
1384 else
1385 bmap = set_div_from_lower_bound(bmap, i, l);
1386 if (progress)
1387 *progress = 1;
1388 break;
1390 return bmap;
1393 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1394 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1396 struct isl_constraint_index ci;
1397 int k, l, h;
1398 unsigned total = isl_basic_map_total_dim(bmap);
1399 isl_int sum;
1401 if (!bmap || bmap->n_ineq <= 1)
1402 return bmap;
1404 if (create_constraint_index(&ci, bmap) < 0)
1405 return bmap;
1407 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1408 ci.index[h] = &bmap->ineq[0];
1409 for (k = 1; k < bmap->n_ineq; ++k) {
1410 h = hash_index(&ci, bmap, k);
1411 if (!ci.index[h]) {
1412 ci.index[h] = &bmap->ineq[k];
1413 continue;
1415 if (progress)
1416 *progress = 1;
1417 l = ci.index[h] - &bmap->ineq[0];
1418 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1419 swap_inequality(bmap, k, l);
1420 isl_basic_map_drop_inequality(bmap, k);
1421 --k;
1423 isl_int_init(sum);
1424 for (k = 0; k < bmap->n_ineq-1; ++k) {
1425 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1426 h = hash_index(&ci, bmap, k);
1427 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1428 if (!ci.index[h])
1429 continue;
1430 l = ci.index[h] - &bmap->ineq[0];
1431 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1432 if (isl_int_is_pos(sum)) {
1433 if (detect_divs)
1434 bmap = check_for_div_constraints(bmap, k, l,
1435 sum, progress);
1436 continue;
1438 if (isl_int_is_zero(sum)) {
1439 /* We need to break out of the loop after these
1440 * changes since the contents of the hash
1441 * will no longer be valid.
1442 * Plus, we probably we want to regauss first.
1444 if (progress)
1445 *progress = 1;
1446 isl_basic_map_drop_inequality(bmap, l);
1447 isl_basic_map_inequality_to_equality(bmap, k);
1448 } else
1449 bmap = isl_basic_map_set_to_empty(bmap);
1450 break;
1452 isl_int_clear(sum);
1454 constraint_index_free(&ci);
1455 return bmap;
1458 /* Detect all pairs of inequalities that form an equality.
1460 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1461 * Call it repeatedly while it is making progress.
1463 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1464 __isl_take isl_basic_map *bmap, int *progress)
1466 int duplicate;
1468 do {
1469 duplicate = 0;
1470 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1471 &duplicate, 0);
1472 if (progress && duplicate)
1473 *progress = 1;
1474 } while (duplicate);
1476 return bmap;
1479 /* Eliminate knowns divs from constraints where they appear with
1480 * a (positive or negative) unit coefficient.
1482 * That is, replace
1484 * floor(e/m) + f >= 0
1486 * by
1488 * e + m f >= 0
1490 * and
1492 * -floor(e/m) + f >= 0
1494 * by
1496 * -e + m f + m - 1 >= 0
1498 * The first conversion is valid because floor(e/m) >= -f is equivalent
1499 * to e/m >= -f because -f is an integral expression.
1500 * The second conversion follows from the fact that
1502 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1505 * Note that one of the div constraints may have been eliminated
1506 * due to being redundant with respect to the constraint that is
1507 * being modified by this function. The modified constraint may
1508 * no longer imply this div constraint, so we add it back to make
1509 * sure we do not lose any information.
1511 * We skip integral divs, i.e., those with denominator 1, as we would
1512 * risk eliminating the div from the div constraints. We do not need
1513 * to handle those divs here anyway since the div constraints will turn
1514 * out to form an equality and this equality can then be used to eliminate
1515 * the div from all constraints.
1517 static __isl_give isl_basic_map *eliminate_unit_divs(
1518 __isl_take isl_basic_map *bmap, int *progress)
1520 int i, j;
1521 isl_ctx *ctx;
1522 unsigned total;
1524 if (!bmap)
1525 return NULL;
1527 ctx = isl_basic_map_get_ctx(bmap);
1528 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1530 for (i = 0; i < bmap->n_div; ++i) {
1531 if (isl_int_is_zero(bmap->div[i][0]))
1532 continue;
1533 if (isl_int_is_one(bmap->div[i][0]))
1534 continue;
1535 for (j = 0; j < bmap->n_ineq; ++j) {
1536 int s;
1538 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1539 !isl_int_is_negone(bmap->ineq[j][total + i]))
1540 continue;
1542 *progress = 1;
1544 s = isl_int_sgn(bmap->ineq[j][total + i]);
1545 isl_int_set_si(bmap->ineq[j][total + i], 0);
1546 if (s < 0)
1547 isl_seq_combine(bmap->ineq[j],
1548 ctx->negone, bmap->div[i] + 1,
1549 bmap->div[i][0], bmap->ineq[j],
1550 total + bmap->n_div);
1551 else
1552 isl_seq_combine(bmap->ineq[j],
1553 ctx->one, bmap->div[i] + 1,
1554 bmap->div[i][0], bmap->ineq[j],
1555 total + bmap->n_div);
1556 if (s < 0) {
1557 isl_int_add(bmap->ineq[j][0],
1558 bmap->ineq[j][0], bmap->div[i][0]);
1559 isl_int_sub_ui(bmap->ineq[j][0],
1560 bmap->ineq[j][0], 1);
1563 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1564 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1565 return isl_basic_map_free(bmap);
1569 return bmap;
1572 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1574 int progress = 1;
1575 if (!bmap)
1576 return NULL;
1577 while (progress) {
1578 isl_bool empty;
1580 progress = 0;
1581 empty = isl_basic_map_plain_is_empty(bmap);
1582 if (empty < 0)
1583 return isl_basic_map_free(bmap);
1584 if (empty)
1585 break;
1586 bmap = isl_basic_map_normalize_constraints(bmap);
1587 bmap = reduce_div_coefficients(bmap);
1588 bmap = normalize_div_expressions(bmap);
1589 bmap = remove_duplicate_divs(bmap, &progress);
1590 bmap = eliminate_unit_divs(bmap, &progress);
1591 bmap = eliminate_divs_eq(bmap, &progress);
1592 bmap = eliminate_divs_ineq(bmap, &progress);
1593 bmap = isl_basic_map_gauss(bmap, &progress);
1594 /* requires equalities in normal form */
1595 bmap = normalize_divs(bmap, &progress);
1596 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1597 &progress, 1);
1598 if (bmap && progress)
1599 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1601 return bmap;
1604 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1606 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1610 isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1611 isl_int *constraint, unsigned div)
1613 unsigned pos;
1615 if (!bmap)
1616 return isl_bool_error;
1618 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1620 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1621 int neg;
1622 isl_int_sub(bmap->div[div][1],
1623 bmap->div[div][1], bmap->div[div][0]);
1624 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1625 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1626 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1627 isl_int_add(bmap->div[div][1],
1628 bmap->div[div][1], bmap->div[div][0]);
1629 if (!neg)
1630 return isl_bool_false;
1631 if (isl_seq_first_non_zero(constraint+pos+1,
1632 bmap->n_div-div-1) != -1)
1633 return isl_bool_false;
1634 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1635 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1636 return isl_bool_false;
1637 if (isl_seq_first_non_zero(constraint+pos+1,
1638 bmap->n_div-div-1) != -1)
1639 return isl_bool_false;
1640 } else
1641 return isl_bool_false;
1643 return isl_bool_true;
1646 isl_bool isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1647 isl_int *constraint, unsigned div)
1649 return isl_basic_map_is_div_constraint(bset, constraint, div);
1653 /* If the only constraints a div d=floor(f/m)
1654 * appears in are its two defining constraints
1656 * f - m d >=0
1657 * -(f - (m - 1)) + m d >= 0
1659 * then it can safely be removed.
1661 static isl_bool div_is_redundant(struct isl_basic_map *bmap, int div)
1663 int i;
1664 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1666 for (i = 0; i < bmap->n_eq; ++i)
1667 if (!isl_int_is_zero(bmap->eq[i][pos]))
1668 return isl_bool_false;
1670 for (i = 0; i < bmap->n_ineq; ++i) {
1671 isl_bool red;
1673 if (isl_int_is_zero(bmap->ineq[i][pos]))
1674 continue;
1675 red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1676 if (red < 0 || !red)
1677 return red;
1680 for (i = 0; i < bmap->n_div; ++i) {
1681 if (isl_int_is_zero(bmap->div[i][0]))
1682 continue;
1683 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1684 return isl_bool_false;
1687 return isl_bool_true;
1691 * Remove divs that don't occur in any of the constraints or other divs.
1692 * These can arise when dropping constraints from a basic map or
1693 * when the divs of a basic map have been temporarily aligned
1694 * with the divs of another basic map.
1696 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1698 int i;
1700 if (!bmap)
1701 return NULL;
1703 for (i = bmap->n_div-1; i >= 0; --i) {
1704 isl_bool redundant;
1706 redundant = div_is_redundant(bmap, i);
1707 if (redundant < 0)
1708 return isl_basic_map_free(bmap);
1709 if (!redundant)
1710 continue;
1711 bmap = isl_basic_map_drop_div(bmap, i);
1713 return bmap;
1716 /* Mark "bmap" as final, without checking for obviously redundant
1717 * integer divisions. This function should be used when "bmap"
1718 * is known not to involve any such integer divisions.
1720 __isl_give isl_basic_map *isl_basic_map_mark_final(
1721 __isl_take isl_basic_map *bmap)
1723 if (!bmap)
1724 return NULL;
1725 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1726 return bmap;
1729 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1731 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1733 bmap = remove_redundant_divs(bmap);
1734 bmap = isl_basic_map_mark_final(bmap);
1735 return bmap;
1738 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1740 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1743 /* Remove definition of any div that is defined in terms of the given variable.
1744 * The div itself is not removed. Functions such as
1745 * eliminate_divs_ineq depend on the other divs remaining in place.
1747 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1748 int pos)
1750 int i;
1752 if (!bmap)
1753 return NULL;
1755 for (i = 0; i < bmap->n_div; ++i) {
1756 if (isl_int_is_zero(bmap->div[i][0]))
1757 continue;
1758 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1759 continue;
1760 bmap = isl_basic_map_mark_div_unknown(bmap, i);
1761 if (!bmap)
1762 return NULL;
1764 return bmap;
1767 /* Eliminate the specified variables from the constraints using
1768 * Fourier-Motzkin. The variables themselves are not removed.
1770 struct isl_basic_map *isl_basic_map_eliminate_vars(
1771 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1773 int d;
1774 int i, j, k;
1775 unsigned total;
1776 int need_gauss = 0;
1778 if (n == 0)
1779 return bmap;
1780 if (!bmap)
1781 return NULL;
1782 total = isl_basic_map_total_dim(bmap);
1784 bmap = isl_basic_map_cow(bmap);
1785 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1786 bmap = remove_dependent_vars(bmap, d);
1787 if (!bmap)
1788 return NULL;
1790 for (d = pos + n - 1;
1791 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1792 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1793 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1794 int n_lower, n_upper;
1795 if (!bmap)
1796 return NULL;
1797 for (i = 0; i < bmap->n_eq; ++i) {
1798 if (isl_int_is_zero(bmap->eq[i][1+d]))
1799 continue;
1800 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1801 isl_basic_map_drop_equality(bmap, i);
1802 need_gauss = 1;
1803 break;
1805 if (i < bmap->n_eq)
1806 continue;
1807 n_lower = 0;
1808 n_upper = 0;
1809 for (i = 0; i < bmap->n_ineq; ++i) {
1810 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1811 n_lower++;
1812 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1813 n_upper++;
1815 bmap = isl_basic_map_extend_constraints(bmap,
1816 0, n_lower * n_upper);
1817 if (!bmap)
1818 goto error;
1819 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1820 int last;
1821 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1822 continue;
1823 last = -1;
1824 for (j = 0; j < i; ++j) {
1825 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1826 continue;
1827 last = j;
1828 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1829 isl_int_sgn(bmap->ineq[j][1+d]))
1830 continue;
1831 k = isl_basic_map_alloc_inequality(bmap);
1832 if (k < 0)
1833 goto error;
1834 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1835 1+total);
1836 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1837 1+d, 1+total, NULL);
1839 isl_basic_map_drop_inequality(bmap, i);
1840 i = last + 1;
1842 if (n_lower > 0 && n_upper > 0) {
1843 bmap = isl_basic_map_normalize_constraints(bmap);
1844 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1845 NULL, 0);
1846 bmap = isl_basic_map_gauss(bmap, NULL);
1847 bmap = isl_basic_map_remove_redundancies(bmap);
1848 need_gauss = 0;
1849 if (!bmap)
1850 goto error;
1851 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1852 break;
1855 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1856 if (need_gauss)
1857 bmap = isl_basic_map_gauss(bmap, NULL);
1858 return bmap;
1859 error:
1860 isl_basic_map_free(bmap);
1861 return NULL;
1864 struct isl_basic_set *isl_basic_set_eliminate_vars(
1865 struct isl_basic_set *bset, unsigned pos, unsigned n)
1867 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1868 pos, n));
1871 /* Eliminate the specified n dimensions starting at first from the
1872 * constraints, without removing the dimensions from the space.
1873 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1874 * Otherwise, they are projected out and the original space is restored.
1876 __isl_give isl_basic_map *isl_basic_map_eliminate(
1877 __isl_take isl_basic_map *bmap,
1878 enum isl_dim_type type, unsigned first, unsigned n)
1880 isl_space *space;
1882 if (!bmap)
1883 return NULL;
1884 if (n == 0)
1885 return bmap;
1887 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1888 isl_die(bmap->ctx, isl_error_invalid,
1889 "index out of bounds", goto error);
1891 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1892 first += isl_basic_map_offset(bmap, type) - 1;
1893 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1894 return isl_basic_map_finalize(bmap);
1897 space = isl_basic_map_get_space(bmap);
1898 bmap = isl_basic_map_project_out(bmap, type, first, n);
1899 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1900 bmap = isl_basic_map_reset_space(bmap, space);
1901 return bmap;
1902 error:
1903 isl_basic_map_free(bmap);
1904 return NULL;
1907 __isl_give isl_basic_set *isl_basic_set_eliminate(
1908 __isl_take isl_basic_set *bset,
1909 enum isl_dim_type type, unsigned first, unsigned n)
1911 return isl_basic_map_eliminate(bset, type, first, n);
1914 /* Remove all constraints from "bmap" that reference any unknown local
1915 * variables (directly or indirectly).
1917 * Dropping all constraints on a local variable will make it redundant,
1918 * so it will get removed implicitly by
1919 * isl_basic_map_drop_constraints_involving_dims. Some other local
1920 * variables may also end up becoming redundant if they only appear
1921 * in constraints together with the unknown local variable.
1922 * Therefore, start over after calling
1923 * isl_basic_map_drop_constraints_involving_dims.
1925 __isl_give isl_basic_map *isl_basic_map_drop_constraint_involving_unknown_divs(
1926 __isl_take isl_basic_map *bmap)
1928 isl_bool known;
1929 int i, n_div, o_div;
1931 known = isl_basic_map_divs_known(bmap);
1932 if (known < 0)
1933 return isl_basic_map_free(bmap);
1934 if (known)
1935 return bmap;
1937 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1938 o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
1940 for (i = 0; i < n_div; ++i) {
1941 known = isl_basic_map_div_is_known(bmap, i);
1942 if (known < 0)
1943 return isl_basic_map_free(bmap);
1944 if (known)
1945 continue;
1946 bmap = remove_dependent_vars(bmap, o_div + i);
1947 bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
1948 isl_dim_div, i, 1);
1949 if (!bmap)
1950 return NULL;
1951 n_div = isl_basic_map_dim(bmap, isl_dim_div);
1952 i = -1;
1955 return bmap;
1958 /* Remove all constraints from "map" that reference any unknown local
1959 * variables (directly or indirectly).
1961 * Since constraints may get dropped from the basic maps,
1962 * they may no longer be disjoint from each other.
1964 __isl_give isl_map *isl_map_drop_constraint_involving_unknown_divs(
1965 __isl_take isl_map *map)
1967 int i;
1968 isl_bool known;
1970 known = isl_map_divs_known(map);
1971 if (known < 0)
1972 return isl_map_free(map);
1973 if (known)
1974 return map;
1976 map = isl_map_cow(map);
1977 if (!map)
1978 return NULL;
1980 for (i = 0; i < map->n; ++i) {
1981 map->p[i] =
1982 isl_basic_map_drop_constraint_involving_unknown_divs(
1983 map->p[i]);
1984 if (!map->p[i])
1985 return isl_map_free(map);
1988 if (map->n > 1)
1989 ISL_F_CLR(map, ISL_MAP_DISJOINT);
1991 return map;
1994 /* Don't assume equalities are in order, because align_divs
1995 * may have changed the order of the divs.
1997 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1999 int d, i;
2000 unsigned total;
2002 total = isl_space_dim(bmap->dim, isl_dim_all);
2003 for (d = 0; d < total; ++d)
2004 elim[d] = -1;
2005 for (i = 0; i < bmap->n_eq; ++i) {
2006 for (d = total - 1; d >= 0; --d) {
2007 if (isl_int_is_zero(bmap->eq[i][1+d]))
2008 continue;
2009 elim[d] = i;
2010 break;
2015 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
2017 compute_elimination_index(bset_to_bmap(bset), elim);
2020 static int reduced_using_equalities(isl_int *dst, isl_int *src,
2021 struct isl_basic_map *bmap, int *elim)
2023 int d;
2024 int copied = 0;
2025 unsigned total;
2027 total = isl_space_dim(bmap->dim, isl_dim_all);
2028 for (d = total - 1; d >= 0; --d) {
2029 if (isl_int_is_zero(src[1+d]))
2030 continue;
2031 if (elim[d] == -1)
2032 continue;
2033 if (!copied) {
2034 isl_seq_cpy(dst, src, 1 + total);
2035 copied = 1;
2037 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
2039 return copied;
2042 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
2043 struct isl_basic_set *bset, int *elim)
2045 return reduced_using_equalities(dst, src,
2046 bset_to_bmap(bset), elim);
2049 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
2050 struct isl_basic_set *bset, struct isl_basic_set *context)
2052 int i;
2053 int *elim;
2055 if (!bset || !context)
2056 goto error;
2058 if (context->n_eq == 0) {
2059 isl_basic_set_free(context);
2060 return bset;
2063 bset = isl_basic_set_cow(bset);
2064 if (!bset)
2065 goto error;
2067 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
2068 if (!elim)
2069 goto error;
2070 set_compute_elimination_index(context, elim);
2071 for (i = 0; i < bset->n_eq; ++i)
2072 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
2073 context, elim);
2074 for (i = 0; i < bset->n_ineq; ++i)
2075 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
2076 context, elim);
2077 isl_basic_set_free(context);
2078 free(elim);
2079 bset = isl_basic_set_simplify(bset);
2080 bset = isl_basic_set_finalize(bset);
2081 return bset;
2082 error:
2083 isl_basic_set_free(bset);
2084 isl_basic_set_free(context);
2085 return NULL;
2088 /* For each inequality in "ineq" that is a shifted (more relaxed)
2089 * copy of an inequality in "context", mark the corresponding entry
2090 * in "row" with -1.
2091 * If an inequality only has a non-negative constant term, then
2092 * mark it as well.
2094 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
2095 __isl_keep isl_basic_set *context, int *row)
2097 struct isl_constraint_index ci;
2098 int n_ineq;
2099 unsigned total;
2100 int k;
2102 if (!ineq || !context)
2103 return isl_stat_error;
2104 if (context->n_ineq == 0)
2105 return isl_stat_ok;
2106 if (setup_constraint_index(&ci, context) < 0)
2107 return isl_stat_error;
2109 n_ineq = isl_mat_rows(ineq);
2110 total = isl_mat_cols(ineq) - 1;
2111 for (k = 0; k < n_ineq; ++k) {
2112 int l;
2113 isl_bool redundant;
2115 l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
2116 if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
2117 row[k] = -1;
2118 continue;
2120 redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
2121 if (redundant < 0)
2122 goto error;
2123 if (!redundant)
2124 continue;
2125 row[k] = -1;
2127 constraint_index_free(&ci);
2128 return isl_stat_ok;
2129 error:
2130 constraint_index_free(&ci);
2131 return isl_stat_error;
2134 static struct isl_basic_set *remove_shifted_constraints(
2135 struct isl_basic_set *bset, struct isl_basic_set *context)
2137 struct isl_constraint_index ci;
2138 int k;
2140 if (!bset || !context)
2141 return bset;
2143 if (context->n_ineq == 0)
2144 return bset;
2145 if (setup_constraint_index(&ci, context) < 0)
2146 return bset;
2148 for (k = 0; k < bset->n_ineq; ++k) {
2149 isl_bool redundant;
2151 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
2152 if (redundant < 0)
2153 goto error;
2154 if (!redundant)
2155 continue;
2156 bset = isl_basic_set_cow(bset);
2157 if (!bset)
2158 goto error;
2159 isl_basic_set_drop_inequality(bset, k);
2160 --k;
2162 constraint_index_free(&ci);
2163 return bset;
2164 error:
2165 constraint_index_free(&ci);
2166 return bset;
2169 /* Remove constraints from "bmap" that are identical to constraints
2170 * in "context" or that are more relaxed (greater constant term).
2172 * We perform the test for shifted copies on the pure constraints
2173 * in remove_shifted_constraints.
2175 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2176 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2178 isl_basic_set *bset, *bset_context;
2180 if (!bmap || !context)
2181 goto error;
2183 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2184 isl_basic_map_free(context);
2185 return bmap;
2188 context = isl_basic_map_align_divs(context, bmap);
2189 bmap = isl_basic_map_align_divs(bmap, context);
2191 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2192 bset_context = isl_basic_map_underlying_set(context);
2193 bset = remove_shifted_constraints(bset, bset_context);
2194 isl_basic_set_free(bset_context);
2196 bmap = isl_basic_map_overlying_set(bset, bmap);
2198 return bmap;
2199 error:
2200 isl_basic_map_free(bmap);
2201 isl_basic_map_free(context);
2202 return NULL;
2205 /* Does the (linear part of a) constraint "c" involve any of the "len"
2206 * "relevant" dimensions?
2208 static int is_related(isl_int *c, int len, int *relevant)
2210 int i;
2212 for (i = 0; i < len; ++i) {
2213 if (!relevant[i])
2214 continue;
2215 if (!isl_int_is_zero(c[i]))
2216 return 1;
2219 return 0;
2222 /* Drop constraints from "bmap" that do not involve any of
2223 * the dimensions marked "relevant".
2225 static __isl_give isl_basic_map *drop_unrelated_constraints(
2226 __isl_take isl_basic_map *bmap, int *relevant)
2228 int i, dim;
2230 dim = isl_basic_map_dim(bmap, isl_dim_all);
2231 for (i = 0; i < dim; ++i)
2232 if (!relevant[i])
2233 break;
2234 if (i >= dim)
2235 return bmap;
2237 for (i = bmap->n_eq - 1; i >= 0; --i)
2238 if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2239 bmap = isl_basic_map_cow(bmap);
2240 if (isl_basic_map_drop_equality(bmap, i) < 0)
2241 return isl_basic_map_free(bmap);
2244 for (i = bmap->n_ineq - 1; i >= 0; --i)
2245 if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2246 bmap = isl_basic_map_cow(bmap);
2247 if (isl_basic_map_drop_inequality(bmap, i) < 0)
2248 return isl_basic_map_free(bmap);
2251 return bmap;
2254 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2256 * In particular, for any variable involved in the constraint,
2257 * find the actual group id from before and replace the group
2258 * of the corresponding variable by the minimal group of all
2259 * the variables involved in the constraint considered so far
2260 * (if this minimum is smaller) or replace the minimum by this group
2261 * (if the minimum is larger).
2263 * At the end, all the variables in "c" will (indirectly) point
2264 * to the minimal of the groups that they referred to originally.
2266 static void update_groups(int dim, int *group, isl_int *c)
2268 int j;
2269 int min = dim;
2271 for (j = 0; j < dim; ++j) {
2272 if (isl_int_is_zero(c[j]))
2273 continue;
2274 while (group[j] >= 0 && group[group[j]] != group[j])
2275 group[j] = group[group[j]];
2276 if (group[j] == min)
2277 continue;
2278 if (group[j] < min) {
2279 if (min >= 0 && min < dim)
2280 group[min] = group[j];
2281 min = group[j];
2282 } else
2283 group[group[j]] = min;
2287 /* Allocate an array of groups of variables, one for each variable
2288 * in "context", initialized to zero.
2290 static int *alloc_groups(__isl_keep isl_basic_set *context)
2292 isl_ctx *ctx;
2293 int dim;
2295 dim = isl_basic_set_dim(context, isl_dim_set);
2296 ctx = isl_basic_set_get_ctx(context);
2297 return isl_calloc_array(ctx, int, dim);
2300 /* Drop constraints from "bmap" that only involve variables that are
2301 * not related to any of the variables marked with a "-1" in "group".
2303 * We construct groups of variables that collect variables that
2304 * (indirectly) appear in some common constraint of "bmap".
2305 * Each group is identified by the first variable in the group,
2306 * except for the special group of variables that was already identified
2307 * in the input as -1 (or are related to those variables).
2308 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2309 * otherwise the group of i is the group of group[i].
2311 * We first initialize groups for the remaining variables.
2312 * Then we iterate over the constraints of "bmap" and update the
2313 * group of the variables in the constraint by the smallest group.
2314 * Finally, we resolve indirect references to groups by running over
2315 * the variables.
2317 * After computing the groups, we drop constraints that do not involve
2318 * any variables in the -1 group.
2320 __isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2321 __isl_take isl_basic_map *bmap, __isl_take int *group)
2323 int dim;
2324 int i;
2325 int last;
2327 if (!bmap)
2328 return NULL;
2330 dim = isl_basic_map_dim(bmap, isl_dim_all);
2332 last = -1;
2333 for (i = 0; i < dim; ++i)
2334 if (group[i] >= 0)
2335 last = group[i] = i;
2336 if (last < 0) {
2337 free(group);
2338 return bmap;
2341 for (i = 0; i < bmap->n_eq; ++i)
2342 update_groups(dim, group, bmap->eq[i] + 1);
2343 for (i = 0; i < bmap->n_ineq; ++i)
2344 update_groups(dim, group, bmap->ineq[i] + 1);
2346 for (i = 0; i < dim; ++i)
2347 if (group[i] >= 0)
2348 group[i] = group[group[i]];
2350 for (i = 0; i < dim; ++i)
2351 group[i] = group[i] == -1;
2353 bmap = drop_unrelated_constraints(bmap, group);
2355 free(group);
2356 return bmap;
2359 /* Drop constraints from "context" that are irrelevant for computing
2360 * the gist of "bset".
2362 * In particular, drop constraints in variables that are not related
2363 * to any of the variables involved in the constraints of "bset"
2364 * in the sense that there is no sequence of constraints that connects them.
2366 * We first mark all variables that appear in "bset" as belonging
2367 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2369 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2370 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2372 int *group;
2373 int dim;
2374 int i, j;
2376 if (!context || !bset)
2377 return isl_basic_set_free(context);
2379 group = alloc_groups(context);
2381 if (!group)
2382 return isl_basic_set_free(context);
2384 dim = isl_basic_set_dim(bset, isl_dim_set);
2385 for (i = 0; i < dim; ++i) {
2386 for (j = 0; j < bset->n_eq; ++j)
2387 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2388 break;
2389 if (j < bset->n_eq) {
2390 group[i] = -1;
2391 continue;
2393 for (j = 0; j < bset->n_ineq; ++j)
2394 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2395 break;
2396 if (j < bset->n_ineq)
2397 group[i] = -1;
2400 return isl_basic_map_drop_unrelated_constraints(context, group);
2403 /* Drop constraints from "context" that are irrelevant for computing
2404 * the gist of the inequalities "ineq".
2405 * Inequalities in "ineq" for which the corresponding element of row
2406 * is set to -1 have already been marked for removal and should be ignored.
2408 * In particular, drop constraints in variables that are not related
2409 * to any of the variables involved in "ineq"
2410 * in the sense that there is no sequence of constraints that connects them.
2412 * We first mark all variables that appear in "bset" as belonging
2413 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2415 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2416 __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2418 int *group;
2419 int dim;
2420 int i, j, n;
2422 if (!context || !ineq)
2423 return isl_basic_set_free(context);
2425 group = alloc_groups(context);
2427 if (!group)
2428 return isl_basic_set_free(context);
2430 dim = isl_basic_set_dim(context, isl_dim_set);
2431 n = isl_mat_rows(ineq);
2432 for (i = 0; i < dim; ++i) {
2433 for (j = 0; j < n; ++j) {
2434 if (row[j] < 0)
2435 continue;
2436 if (!isl_int_is_zero(ineq->row[j][1 + i]))
2437 break;
2439 if (j < n)
2440 group[i] = -1;
2443 return isl_basic_map_drop_unrelated_constraints(context, group);
2446 /* Do all "n" entries of "row" contain a negative value?
2448 static int all_neg(int *row, int n)
2450 int i;
2452 for (i = 0; i < n; ++i)
2453 if (row[i] >= 0)
2454 return 0;
2456 return 1;
2459 /* Update the inequalities in "bset" based on the information in "row"
2460 * and "tab".
2462 * In particular, the array "row" contains either -1, meaning that
2463 * the corresponding inequality of "bset" is redundant, or the index
2464 * of an inequality in "tab".
2466 * If the row entry is -1, then drop the inequality.
2467 * Otherwise, if the constraint is marked redundant in the tableau,
2468 * then drop the inequality. Similarly, if it is marked as an equality
2469 * in the tableau, then turn the inequality into an equality and
2470 * perform Gaussian elimination.
2472 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2473 __isl_keep int *row, struct isl_tab *tab)
2475 int i;
2476 unsigned n_ineq;
2477 unsigned n_eq;
2478 int found_equality = 0;
2480 if (!bset)
2481 return NULL;
2482 if (tab && tab->empty)
2483 return isl_basic_set_set_to_empty(bset);
2485 n_ineq = bset->n_ineq;
2486 for (i = n_ineq - 1; i >= 0; --i) {
2487 if (row[i] < 0) {
2488 if (isl_basic_set_drop_inequality(bset, i) < 0)
2489 return isl_basic_set_free(bset);
2490 continue;
2492 if (!tab)
2493 continue;
2494 n_eq = tab->n_eq;
2495 if (isl_tab_is_equality(tab, n_eq + row[i])) {
2496 isl_basic_map_inequality_to_equality(bset, i);
2497 found_equality = 1;
2498 } else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2499 if (isl_basic_set_drop_inequality(bset, i) < 0)
2500 return isl_basic_set_free(bset);
2504 if (found_equality)
2505 bset = isl_basic_set_gauss(bset, NULL);
2506 bset = isl_basic_set_finalize(bset);
2507 return bset;
2510 /* Update the inequalities in "bset" based on the information in "row"
2511 * and "tab" and free all arguments (other than "bset").
2513 static __isl_give isl_basic_set *update_ineq_free(
2514 __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2515 __isl_take isl_basic_set *context, __isl_take int *row,
2516 struct isl_tab *tab)
2518 isl_mat_free(ineq);
2519 isl_basic_set_free(context);
2521 bset = update_ineq(bset, row, tab);
2523 free(row);
2524 isl_tab_free(tab);
2525 return bset;
2528 /* Remove all information from bset that is redundant in the context
2529 * of context.
2530 * "ineq" contains the (possibly transformed) inequalities of "bset",
2531 * in the same order.
2532 * The (explicit) equalities of "bset" are assumed to have been taken
2533 * into account by the transformation such that only the inequalities
2534 * are relevant.
2535 * "context" is assumed not to be empty.
2537 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2538 * A value of -1 means that the inequality is obviously redundant and may
2539 * not even appear in "tab".
2541 * We first mark the inequalities of "bset"
2542 * that are obviously redundant with respect to some inequality in "context".
2543 * Then we remove those constraints from "context" that have become
2544 * irrelevant for computing the gist of "bset".
2545 * Note that this removal of constraints cannot be replaced by
2546 * a factorization because factors in "bset" may still be connected
2547 * to each other through constraints in "context".
2549 * If there are any inequalities left, we construct a tableau for
2550 * the context and then add the inequalities of "bset".
2551 * Before adding these inequalities, we freeze all constraints such that
2552 * they won't be considered redundant in terms of the constraints of "bset".
2553 * Then we detect all redundant constraints (among the
2554 * constraints that weren't frozen), first by checking for redundancy in the
2555 * the tableau and then by checking if replacing a constraint by its negation
2556 * would lead to an empty set. This last step is fairly expensive
2557 * and could be optimized by more reuse of the tableau.
2558 * Finally, we update bset according to the results.
2560 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2561 __isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2563 int i, r;
2564 int *row = NULL;
2565 isl_ctx *ctx;
2566 isl_basic_set *combined = NULL;
2567 struct isl_tab *tab = NULL;
2568 unsigned n_eq, context_ineq;
2570 if (!bset || !ineq || !context)
2571 goto error;
2573 if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2574 isl_basic_set_free(context);
2575 isl_mat_free(ineq);
2576 return bset;
2579 ctx = isl_basic_set_get_ctx(context);
2580 row = isl_calloc_array(ctx, int, bset->n_ineq);
2581 if (!row)
2582 goto error;
2584 if (mark_shifted_constraints(ineq, context, row) < 0)
2585 goto error;
2586 if (all_neg(row, bset->n_ineq))
2587 return update_ineq_free(bset, ineq, context, row, NULL);
2589 context = drop_irrelevant_constraints_marked(context, ineq, row);
2590 if (!context)
2591 goto error;
2592 if (isl_basic_set_plain_is_universe(context))
2593 return update_ineq_free(bset, ineq, context, row, NULL);
2595 n_eq = context->n_eq;
2596 context_ineq = context->n_ineq;
2597 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2598 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2599 tab = isl_tab_from_basic_set(combined, 0);
2600 for (i = 0; i < context_ineq; ++i)
2601 if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2602 goto error;
2603 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2604 goto error;
2605 r = context_ineq;
2606 for (i = 0; i < bset->n_ineq; ++i) {
2607 if (row[i] < 0)
2608 continue;
2609 combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2610 if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2611 goto error;
2612 row[i] = r++;
2614 if (isl_tab_detect_implicit_equalities(tab) < 0)
2615 goto error;
2616 if (isl_tab_detect_redundant(tab) < 0)
2617 goto error;
2618 for (i = bset->n_ineq - 1; i >= 0; --i) {
2619 isl_basic_set *test;
2620 int is_empty;
2622 if (row[i] < 0)
2623 continue;
2624 r = row[i];
2625 if (tab->con[n_eq + r].is_redundant)
2626 continue;
2627 test = isl_basic_set_dup(combined);
2628 if (isl_inequality_negate(test, r) < 0)
2629 test = isl_basic_set_free(test);
2630 test = isl_basic_set_update_from_tab(test, tab);
2631 is_empty = isl_basic_set_is_empty(test);
2632 isl_basic_set_free(test);
2633 if (is_empty < 0)
2634 goto error;
2635 if (is_empty)
2636 tab->con[n_eq + r].is_redundant = 1;
2638 bset = update_ineq_free(bset, ineq, context, row, tab);
2639 if (bset) {
2640 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2641 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2644 isl_basic_set_free(combined);
2645 return bset;
2646 error:
2647 free(row);
2648 isl_mat_free(ineq);
2649 isl_tab_free(tab);
2650 isl_basic_set_free(combined);
2651 isl_basic_set_free(context);
2652 isl_basic_set_free(bset);
2653 return NULL;
2656 /* Extract the inequalities of "bset" as an isl_mat.
2658 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2660 unsigned total;
2661 isl_ctx *ctx;
2662 isl_mat *ineq;
2664 if (!bset)
2665 return NULL;
2667 ctx = isl_basic_set_get_ctx(bset);
2668 total = isl_basic_set_total_dim(bset);
2669 ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2670 0, 1 + total);
2672 return ineq;
2675 /* Remove all information from "bset" that is redundant in the context
2676 * of "context", for the case where both "bset" and "context" are
2677 * full-dimensional.
2679 static __isl_give isl_basic_set *uset_gist_uncompressed(
2680 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2682 isl_mat *ineq;
2684 ineq = extract_ineq(bset);
2685 return uset_gist_full(bset, ineq, context);
2688 /* Remove all information from "bset" that is redundant in the context
2689 * of "context", for the case where the combined equalities of
2690 * "bset" and "context" allow for a compression that can be obtained
2691 * by preapplication of "T".
2693 * "bset" itself is not transformed by "T". Instead, the inequalities
2694 * are extracted from "bset" and those are transformed by "T".
2695 * uset_gist_full then determines which of the transformed inequalities
2696 * are redundant with respect to the transformed "context" and removes
2697 * the corresponding inequalities from "bset".
2699 * After preapplying "T" to the inequalities, any common factor is
2700 * removed from the coefficients. If this results in a tightening
2701 * of the constant term, then the same tightening is applied to
2702 * the corresponding untransformed inequality in "bset".
2703 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2705 * g f'(x) + r >= 0
2707 * with 0 <= r < g, then it is equivalent to
2709 * f'(x) >= 0
2711 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2712 * subspace compressed by T since the latter would be transformed to
2714 * g f'(x) >= 0
2716 static __isl_give isl_basic_set *uset_gist_compressed(
2717 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2718 __isl_take isl_mat *T)
2720 isl_ctx *ctx;
2721 isl_mat *ineq;
2722 int i, n_row, n_col;
2723 isl_int rem;
2725 ineq = extract_ineq(bset);
2726 ineq = isl_mat_product(ineq, isl_mat_copy(T));
2727 context = isl_basic_set_preimage(context, T);
2729 if (!ineq || !context)
2730 goto error;
2731 if (isl_basic_set_plain_is_empty(context)) {
2732 isl_mat_free(ineq);
2733 isl_basic_set_free(context);
2734 return isl_basic_set_set_to_empty(bset);
2737 ctx = isl_mat_get_ctx(ineq);
2738 n_row = isl_mat_rows(ineq);
2739 n_col = isl_mat_cols(ineq);
2740 isl_int_init(rem);
2741 for (i = 0; i < n_row; ++i) {
2742 isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2743 if (isl_int_is_zero(ctx->normalize_gcd))
2744 continue;
2745 if (isl_int_is_one(ctx->normalize_gcd))
2746 continue;
2747 isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2748 ctx->normalize_gcd, n_col - 1);
2749 isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2750 isl_int_fdiv_q(ineq->row[i][0],
2751 ineq->row[i][0], ctx->normalize_gcd);
2752 if (isl_int_is_zero(rem))
2753 continue;
2754 bset = isl_basic_set_cow(bset);
2755 if (!bset)
2756 break;
2757 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2759 isl_int_clear(rem);
2761 return uset_gist_full(bset, ineq, context);
2762 error:
2763 isl_mat_free(ineq);
2764 isl_basic_set_free(context);
2765 isl_basic_set_free(bset);
2766 return NULL;
2769 /* Project "bset" onto the variables that are involved in "template".
2771 static __isl_give isl_basic_set *project_onto_involved(
2772 __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2774 int i, n;
2776 if (!bset || !template)
2777 return isl_basic_set_free(bset);
2779 n = isl_basic_set_dim(template, isl_dim_set);
2781 for (i = 0; i < n; ++i) {
2782 isl_bool involved;
2784 involved = isl_basic_set_involves_dims(template,
2785 isl_dim_set, i, 1);
2786 if (involved < 0)
2787 return isl_basic_set_free(bset);
2788 if (involved)
2789 continue;
2790 bset = isl_basic_set_eliminate_vars(bset, i, 1);
2793 return bset;
2796 /* Remove all information from bset that is redundant in the context
2797 * of context. In particular, equalities that are linear combinations
2798 * of those in context are removed. Then the inequalities that are
2799 * redundant in the context of the equalities and inequalities of
2800 * context are removed.
2802 * First of all, we drop those constraints from "context"
2803 * that are irrelevant for computing the gist of "bset".
2804 * Alternatively, we could factorize the intersection of "context" and "bset".
2806 * We first compute the intersection of the integer affine hulls
2807 * of "bset" and "context",
2808 * compute the gist inside this intersection and then reduce
2809 * the constraints with respect to the equalities of the context
2810 * that only involve variables already involved in the input.
2812 * If two constraints are mutually redundant, then uset_gist_full
2813 * will remove the second of those constraints. We therefore first
2814 * sort the constraints so that constraints not involving existentially
2815 * quantified variables are given precedence over those that do.
2816 * We have to perform this sorting before the variable compression,
2817 * because that may effect the order of the variables.
2819 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2820 __isl_take isl_basic_set *context)
2822 isl_mat *eq;
2823 isl_mat *T;
2824 isl_basic_set *aff;
2825 isl_basic_set *aff_context;
2826 unsigned total;
2828 if (!bset || !context)
2829 goto error;
2831 context = drop_irrelevant_constraints(context, bset);
2833 bset = isl_basic_set_detect_equalities(bset);
2834 aff = isl_basic_set_copy(bset);
2835 aff = isl_basic_set_plain_affine_hull(aff);
2836 context = isl_basic_set_detect_equalities(context);
2837 aff_context = isl_basic_set_copy(context);
2838 aff_context = isl_basic_set_plain_affine_hull(aff_context);
2839 aff = isl_basic_set_intersect(aff, aff_context);
2840 if (!aff)
2841 goto error;
2842 if (isl_basic_set_plain_is_empty(aff)) {
2843 isl_basic_set_free(bset);
2844 isl_basic_set_free(context);
2845 return aff;
2847 bset = isl_basic_set_sort_constraints(bset);
2848 if (aff->n_eq == 0) {
2849 isl_basic_set_free(aff);
2850 return uset_gist_uncompressed(bset, context);
2852 total = isl_basic_set_total_dim(bset);
2853 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2854 eq = isl_mat_cow(eq);
2855 T = isl_mat_variable_compression(eq, NULL);
2856 isl_basic_set_free(aff);
2857 if (T && T->n_col == 0) {
2858 isl_mat_free(T);
2859 isl_basic_set_free(context);
2860 return isl_basic_set_set_to_empty(bset);
2863 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2864 aff_context = project_onto_involved(aff_context, bset);
2866 bset = uset_gist_compressed(bset, context, T);
2867 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2869 if (bset) {
2870 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2871 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2874 return bset;
2875 error:
2876 isl_basic_set_free(bset);
2877 isl_basic_set_free(context);
2878 return NULL;
2881 /* Return the number of equality constraints in "bmap" that involve
2882 * local variables. This function assumes that Gaussian elimination
2883 * has been applied to the equality constraints.
2885 static int n_div_eq(__isl_keep isl_basic_map *bmap)
2887 int i;
2888 int total, n_div;
2890 if (!bmap)
2891 return -1;
2893 if (bmap->n_eq == 0)
2894 return 0;
2896 total = isl_basic_map_dim(bmap, isl_dim_all);
2897 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2898 total -= n_div;
2900 for (i = 0; i < bmap->n_eq; ++i)
2901 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
2902 n_div) == -1)
2903 return i;
2905 return bmap->n_eq;
2908 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2909 * The constraints are assumed not to involve any local variables.
2911 static __isl_give isl_basic_map *basic_map_from_equalities(
2912 __isl_take isl_space *space, __isl_take isl_mat *eq)
2914 int i, k;
2915 isl_basic_map *bmap = NULL;
2917 if (!space || !eq)
2918 goto error;
2920 if (1 + isl_space_dim(space, isl_dim_all) != eq->n_col)
2921 isl_die(isl_space_get_ctx(space), isl_error_internal,
2922 "unexpected number of columns", goto error);
2924 bmap = isl_basic_map_alloc_space(isl_space_copy(space),
2925 0, eq->n_row, 0);
2926 for (i = 0; i < eq->n_row; ++i) {
2927 k = isl_basic_map_alloc_equality(bmap);
2928 if (k < 0)
2929 goto error;
2930 isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
2933 isl_space_free(space);
2934 isl_mat_free(eq);
2935 return bmap;
2936 error:
2937 isl_space_free(space);
2938 isl_mat_free(eq);
2939 isl_basic_map_free(bmap);
2940 return NULL;
2943 /* Construct and return a variable compression based on the equality
2944 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2945 * "n1" is the number of (initial) equality constraints in "bmap1"
2946 * that do involve local variables.
2947 * "n2" is the number of (initial) equality constraints in "bmap2"
2948 * that do involve local variables.
2949 * "total" is the total number of other variables.
2950 * This function assumes that Gaussian elimination
2951 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2952 * such that the equality constraints not involving local variables
2953 * are those that start at "n1" or "n2".
2955 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2956 * then simply compute the compression based on the equality constraints
2957 * in the other basic map.
2958 * Otherwise, combine the equality constraints from both into a new
2959 * basic map such that Gaussian elimination can be applied to this combination
2960 * and then construct a variable compression from the resulting
2961 * equality constraints.
2963 static __isl_give isl_mat *combined_variable_compression(
2964 __isl_keep isl_basic_map *bmap1, int n1,
2965 __isl_keep isl_basic_map *bmap2, int n2, int total)
2967 isl_ctx *ctx;
2968 isl_mat *E1, *E2, *V;
2969 isl_basic_map *bmap;
2971 ctx = isl_basic_map_get_ctx(bmap1);
2972 if (bmap1->n_eq == n1) {
2973 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2974 n2, bmap2->n_eq - n2, 0, 1 + total);
2975 return isl_mat_variable_compression(E2, NULL);
2977 if (bmap2->n_eq == n2) {
2978 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2979 n1, bmap1->n_eq - n1, 0, 1 + total);
2980 return isl_mat_variable_compression(E1, NULL);
2982 E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2983 n1, bmap1->n_eq - n1, 0, 1 + total);
2984 E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2985 n2, bmap2->n_eq - n2, 0, 1 + total);
2986 E1 = isl_mat_concat(E1, E2);
2987 bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
2988 bmap = isl_basic_map_gauss(bmap, NULL);
2989 if (!bmap)
2990 return NULL;
2991 E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
2992 V = isl_mat_variable_compression(E1, NULL);
2993 isl_basic_map_free(bmap);
2995 return V;
2998 /* Extract the stride constraints from "bmap", compressed
2999 * with respect to both the stride constraints in "context" and
3000 * the remaining equality constraints in both "bmap" and "context".
3001 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
3002 * "context_n_eq" is the number of (initial) stride constraints in "context".
3004 * Let x be all variables in "bmap" (and "context") other than the local
3005 * variables. First compute a variable compression
3007 * x = V x'
3009 * based on the non-stride equality constraints in "bmap" and "context".
3010 * Consider the stride constraints of "context",
3012 * A(x) + B(y) = 0
3014 * with y the local variables and plug in the variable compression,
3015 * resulting in
3017 * A(V x') + B(y) = 0
3019 * Use these constraints to compute a parameter compression on x'
3021 * x' = T x''
3023 * Now consider the stride constraints of "bmap"
3025 * C(x) + D(y) = 0
3027 * and plug in x = V*T x''.
3028 * That is, return A = [C*V*T D].
3030 static __isl_give isl_mat *extract_compressed_stride_constraints(
3031 __isl_keep isl_basic_map *bmap, int bmap_n_eq,
3032 __isl_keep isl_basic_map *context, int context_n_eq)
3034 int total, n_div;
3035 isl_ctx *ctx;
3036 isl_mat *A, *B, *T, *V;
3038 total = isl_basic_map_dim(context, isl_dim_all);
3039 n_div = isl_basic_map_dim(context, isl_dim_div);
3040 total -= n_div;
3042 ctx = isl_basic_map_get_ctx(bmap);
3044 V = combined_variable_compression(bmap, bmap_n_eq,
3045 context, context_n_eq, total);
3047 A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
3048 B = isl_mat_sub_alloc6(ctx, context->eq,
3049 0, context_n_eq, 1 + total, n_div);
3050 A = isl_mat_product(A, isl_mat_copy(V));
3051 T = isl_mat_parameter_compression_ext(A, B);
3052 T = isl_mat_product(V, T);
3054 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3055 T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
3057 A = isl_mat_sub_alloc6(ctx, bmap->eq,
3058 0, bmap_n_eq, 0, 1 + total + n_div);
3059 A = isl_mat_product(A, T);
3061 return A;
3064 /* Remove the prime factors from *g that have an exponent that
3065 * is strictly smaller than the exponent in "c".
3066 * All exponents in *g are known to be smaller than or equal
3067 * to those in "c".
3069 * That is, if *g is equal to
3071 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3073 * and "c" is equal to
3075 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3077 * then update *g to
3079 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3080 * p_n^{e_n * (e_n = f_n)}
3082 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3083 * neither does the gcd of *g and c / *g.
3084 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3085 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3086 * Dividing *g by this gcd therefore strictly reduces the exponent
3087 * of the prime factors that need to be removed, while leaving the
3088 * other prime factors untouched.
3089 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3090 * removes all undesired factors, without removing any others.
3092 static void remove_incomplete_powers(isl_int *g, isl_int c)
3094 isl_int t;
3096 isl_int_init(t);
3097 for (;;) {
3098 isl_int_divexact(t, c, *g);
3099 isl_int_gcd(t, t, *g);
3100 if (isl_int_is_one(t))
3101 break;
3102 isl_int_divexact(*g, *g, t);
3104 isl_int_clear(t);
3107 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3108 * of the same stride constraints in a compressed space that exploits
3109 * all equalities in the context and the other equalities in "bmap".
3111 * If the stride constraints of "bmap" are of the form
3113 * C(x) + D(y) = 0
3115 * then A is of the form
3117 * B(x') + D(y) = 0
3119 * If any of these constraints involves only a single local variable y,
3120 * then the constraint appears as
3122 * f(x) + m y_i = 0
3124 * in "bmap" and as
3126 * h(x') + m y_i = 0
3128 * in "A".
3130 * Let g be the gcd of m and the coefficients of h.
3131 * Then, in particular, g is a divisor of the coefficients of h and
3133 * f(x) = h(x')
3135 * is known to be a multiple of g.
3136 * If some prime factor in m appears with the same exponent in g,
3137 * then it can be removed from m because f(x) is already known
3138 * to be a multiple of g and therefore in particular of this power
3139 * of the prime factors.
3140 * Prime factors that appear with a smaller exponent in g cannot
3141 * be removed from m.
3142 * Let g' be the divisor of g containing all prime factors that
3143 * appear with the same exponent in m and g, then
3145 * f(x) + m y_i = 0
3147 * can be replaced by
3149 * f(x) + m/g' y_i' = 0
3151 * Note that (if g' != 1) this changes the explicit representation
3152 * of y_i to that of y_i', so the integer division at position i
3153 * is marked unknown and later recomputed by a call to
3154 * isl_basic_map_gauss.
3156 static __isl_give isl_basic_map *reduce_stride_constraints(
3157 __isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
3159 int i;
3160 int total, n_div;
3161 int any = 0;
3162 isl_int gcd;
3164 if (!bmap || !A)
3165 return isl_basic_map_free(bmap);
3167 total = isl_basic_map_dim(bmap, isl_dim_all);
3168 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3169 total -= n_div;
3171 isl_int_init(gcd);
3172 for (i = 0; i < n; ++i) {
3173 int div;
3175 div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
3176 if (div < 0)
3177 isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
3178 "equality constraints modified unexpectedly",
3179 goto error);
3180 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
3181 n_div - div - 1) != -1)
3182 continue;
3183 if (isl_mat_row_gcd(A, i, &gcd) < 0)
3184 goto error;
3185 if (isl_int_is_one(gcd))
3186 continue;
3187 remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
3188 if (isl_int_is_one(gcd))
3189 continue;
3190 isl_int_divexact(bmap->eq[i][1 + total + div],
3191 bmap->eq[i][1 + total + div], gcd);
3192 bmap = isl_basic_map_mark_div_unknown(bmap, div);
3193 if (!bmap)
3194 goto error;
3195 any = 1;
3197 isl_int_clear(gcd);
3199 if (any)
3200 bmap = isl_basic_map_gauss(bmap, NULL);
3202 return bmap;
3203 error:
3204 isl_int_clear(gcd);
3205 isl_basic_map_free(bmap);
3206 return NULL;
3209 /* Simplify the stride constraints in "bmap" based on
3210 * the remaining equality constraints in "bmap" and all equality
3211 * constraints in "context".
3212 * Only do this if both "bmap" and "context" have stride constraints.
3214 * First extract a copy of the stride constraints in "bmap" in a compressed
3215 * space exploiting all the other equality constraints and then
3216 * use this compressed copy to simplify the original stride constraints.
3218 static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
3219 __isl_keep isl_basic_map *context)
3221 int bmap_n_eq, context_n_eq;
3222 isl_mat *A;
3224 if (!bmap || !context)
3225 return isl_basic_map_free(bmap);
3227 bmap_n_eq = n_div_eq(bmap);
3228 context_n_eq = n_div_eq(context);
3230 if (bmap_n_eq < 0 || context_n_eq < 0)
3231 return isl_basic_map_free(bmap);
3232 if (bmap_n_eq == 0 || context_n_eq == 0)
3233 return bmap;
3235 A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3236 context, context_n_eq);
3237 bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3239 isl_mat_free(A);
3241 return bmap;
3244 /* Return a basic map that has the same intersection with "context" as "bmap"
3245 * and that is as "simple" as possible.
3247 * The core computation is performed on the pure constraints.
3248 * When we add back the meaning of the integer divisions, we need
3249 * to (re)introduce the div constraints. If we happen to have
3250 * discovered that some of these integer divisions are equal to
3251 * some affine combination of other variables, then these div
3252 * constraints may end up getting simplified in terms of the equalities,
3253 * resulting in extra inequalities on the other variables that
3254 * may have been removed already or that may not even have been
3255 * part of the input. We try and remove those constraints of
3256 * this form that are most obviously redundant with respect to
3257 * the context. We also remove those div constraints that are
3258 * redundant with respect to the other constraints in the result.
3260 * The stride constraints among the equality constraints in "bmap" are
3261 * also simplified with respecting to the other equality constraints
3262 * in "bmap" and with respect to all equality constraints in "context".
3264 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
3265 struct isl_basic_map *context)
3267 isl_basic_set *bset, *eq;
3268 isl_basic_map *eq_bmap;
3269 unsigned total, n_div, extra, n_eq, n_ineq;
3271 if (!bmap || !context)
3272 goto error;
3274 if (isl_basic_map_plain_is_universe(bmap)) {
3275 isl_basic_map_free(context);
3276 return bmap;
3278 if (isl_basic_map_plain_is_empty(context)) {
3279 isl_space *space = isl_basic_map_get_space(bmap);
3280 isl_basic_map_free(bmap);
3281 isl_basic_map_free(context);
3282 return isl_basic_map_universe(space);
3284 if (isl_basic_map_plain_is_empty(bmap)) {
3285 isl_basic_map_free(context);
3286 return bmap;
3289 bmap = isl_basic_map_remove_redundancies(bmap);
3290 context = isl_basic_map_remove_redundancies(context);
3291 if (!context)
3292 goto error;
3294 context = isl_basic_map_align_divs(context, bmap);
3295 n_div = isl_basic_map_dim(context, isl_dim_div);
3296 total = isl_basic_map_dim(bmap, isl_dim_all);
3297 extra = n_div - isl_basic_map_dim(bmap, isl_dim_div);
3299 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3300 bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3301 bset = uset_gist(bset,
3302 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3303 bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3305 if (!bset || bset->n_eq == 0 || n_div == 0 ||
3306 isl_basic_set_plain_is_empty(bset)) {
3307 isl_basic_map_free(context);
3308 return isl_basic_map_overlying_set(bset, bmap);
3311 n_eq = bset->n_eq;
3312 n_ineq = bset->n_ineq;
3313 eq = isl_basic_set_copy(bset);
3314 eq = isl_basic_set_cow(eq);
3315 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
3316 eq = isl_basic_set_free(eq);
3317 if (isl_basic_set_free_equality(bset, n_eq) < 0)
3318 bset = isl_basic_set_free(bset);
3320 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3321 eq_bmap = gist_strides(eq_bmap, context);
3322 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3323 bmap = isl_basic_map_overlying_set(bset, bmap);
3324 bmap = isl_basic_map_intersect(bmap, eq_bmap);
3325 bmap = isl_basic_map_remove_redundancies(bmap);
3327 return bmap;
3328 error:
3329 isl_basic_map_free(bmap);
3330 isl_basic_map_free(context);
3331 return NULL;
3335 * Assumes context has no implicit divs.
3337 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3338 __isl_take isl_basic_map *context)
3340 int i;
3342 if (!map || !context)
3343 goto error;
3345 if (isl_basic_map_plain_is_empty(context)) {
3346 isl_space *space = isl_map_get_space(map);
3347 isl_map_free(map);
3348 isl_basic_map_free(context);
3349 return isl_map_universe(space);
3352 context = isl_basic_map_remove_redundancies(context);
3353 map = isl_map_cow(map);
3354 if (!map || !context)
3355 goto error;
3356 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
3357 map = isl_map_compute_divs(map);
3358 if (!map)
3359 goto error;
3360 for (i = map->n - 1; i >= 0; --i) {
3361 map->p[i] = isl_basic_map_gist(map->p[i],
3362 isl_basic_map_copy(context));
3363 if (!map->p[i])
3364 goto error;
3365 if (isl_basic_map_plain_is_empty(map->p[i])) {
3366 isl_basic_map_free(map->p[i]);
3367 if (i != map->n - 1)
3368 map->p[i] = map->p[map->n - 1];
3369 map->n--;
3372 isl_basic_map_free(context);
3373 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3374 return map;
3375 error:
3376 isl_map_free(map);
3377 isl_basic_map_free(context);
3378 return NULL;
3381 /* Drop all inequalities from "bmap" that also appear in "context".
3382 * "context" is assumed to have only known local variables and
3383 * the initial local variables of "bmap" are assumed to be the same
3384 * as those of "context".
3385 * The constraints of both "bmap" and "context" are assumed
3386 * to have been sorted using isl_basic_map_sort_constraints.
3388 * Run through the inequality constraints of "bmap" and "context"
3389 * in sorted order.
3390 * If a constraint of "bmap" involves variables not in "context",
3391 * then it cannot appear in "context".
3392 * If a matching constraint is found, it is removed from "bmap".
3394 static __isl_give isl_basic_map *drop_inequalities(
3395 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3397 int i1, i2;
3398 unsigned total, extra;
3400 if (!bmap || !context)
3401 return isl_basic_map_free(bmap);
3403 total = isl_basic_map_total_dim(context);
3404 extra = isl_basic_map_total_dim(bmap) - total;
3406 i1 = bmap->n_ineq - 1;
3407 i2 = context->n_ineq - 1;
3408 while (bmap && i1 >= 0 && i2 >= 0) {
3409 int cmp;
3411 if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3412 extra) != -1) {
3413 --i1;
3414 continue;
3416 cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3417 context->ineq[i2]);
3418 if (cmp < 0) {
3419 --i2;
3420 continue;
3422 if (cmp > 0) {
3423 --i1;
3424 continue;
3426 if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3427 bmap = isl_basic_map_cow(bmap);
3428 if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3429 bmap = isl_basic_map_free(bmap);
3431 --i1;
3432 --i2;
3435 return bmap;
3438 /* Drop all equalities from "bmap" that also appear in "context".
3439 * "context" is assumed to have only known local variables and
3440 * the initial local variables of "bmap" are assumed to be the same
3441 * as those of "context".
3443 * Run through the equality constraints of "bmap" and "context"
3444 * in sorted order.
3445 * If a constraint of "bmap" involves variables not in "context",
3446 * then it cannot appear in "context".
3447 * If a matching constraint is found, it is removed from "bmap".
3449 static __isl_give isl_basic_map *drop_equalities(
3450 __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3452 int i1, i2;
3453 unsigned total, extra;
3455 if (!bmap || !context)
3456 return isl_basic_map_free(bmap);
3458 total = isl_basic_map_total_dim(context);
3459 extra = isl_basic_map_total_dim(bmap) - total;
3461 i1 = bmap->n_eq - 1;
3462 i2 = context->n_eq - 1;
3464 while (bmap && i1 >= 0 && i2 >= 0) {
3465 int last1, last2;
3467 if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3468 extra) != -1)
3469 break;
3470 last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3471 last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3472 if (last1 > last2) {
3473 --i2;
3474 continue;
3476 if (last1 < last2) {
3477 --i1;
3478 continue;
3480 if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3481 bmap = isl_basic_map_cow(bmap);
3482 if (isl_basic_map_drop_equality(bmap, i1) < 0)
3483 bmap = isl_basic_map_free(bmap);
3485 --i1;
3486 --i2;
3489 return bmap;
3492 /* Remove the constraints in "context" from "bmap".
3493 * "context" is assumed to have explicit representations
3494 * for all local variables.
3496 * First align the divs of "bmap" to those of "context" and
3497 * sort the constraints. Then drop all constraints from "bmap"
3498 * that appear in "context".
3500 __isl_give isl_basic_map *isl_basic_map_plain_gist(
3501 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3503 isl_bool done, known;
3505 done = isl_basic_map_plain_is_universe(context);
3506 if (done == isl_bool_false)
3507 done = isl_basic_map_plain_is_universe(bmap);
3508 if (done == isl_bool_false)
3509 done = isl_basic_map_plain_is_empty(context);
3510 if (done == isl_bool_false)
3511 done = isl_basic_map_plain_is_empty(bmap);
3512 if (done < 0)
3513 goto error;
3514 if (done) {
3515 isl_basic_map_free(context);
3516 return bmap;
3518 known = isl_basic_map_divs_known(context);
3519 if (known < 0)
3520 goto error;
3521 if (!known)
3522 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3523 "context has unknown divs", goto error);
3525 bmap = isl_basic_map_align_divs(bmap, context);
3526 bmap = isl_basic_map_gauss(bmap, NULL);
3527 bmap = isl_basic_map_sort_constraints(bmap);
3528 context = isl_basic_map_sort_constraints(context);
3530 bmap = drop_inequalities(bmap, context);
3531 bmap = drop_equalities(bmap, context);
3533 isl_basic_map_free(context);
3534 bmap = isl_basic_map_finalize(bmap);
3535 return bmap;
3536 error:
3537 isl_basic_map_free(bmap);
3538 isl_basic_map_free(context);
3539 return NULL;
3542 /* Replace "map" by the disjunct at position "pos" and free "context".
3544 static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3545 int pos, __isl_take isl_basic_map *context)
3547 isl_basic_map *bmap;
3549 bmap = isl_basic_map_copy(map->p[pos]);
3550 isl_map_free(map);
3551 isl_basic_map_free(context);
3552 return isl_map_from_basic_map(bmap);
3555 /* Remove the constraints in "context" from "map".
3556 * If any of the disjuncts in the result turns out to be the universe,
3557 * then return this universe.
3558 * "context" is assumed to have explicit representations
3559 * for all local variables.
3561 __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3562 __isl_take isl_basic_map *context)
3564 int i;
3565 isl_bool univ, known;
3567 univ = isl_basic_map_plain_is_universe(context);
3568 if (univ < 0)
3569 goto error;
3570 if (univ) {
3571 isl_basic_map_free(context);
3572 return map;
3574 known = isl_basic_map_divs_known(context);
3575 if (known < 0)
3576 goto error;
3577 if (!known)
3578 isl_die(isl_map_get_ctx(map), isl_error_invalid,
3579 "context has unknown divs", goto error);
3581 map = isl_map_cow(map);
3582 if (!map)
3583 goto error;
3584 for (i = 0; i < map->n; ++i) {
3585 map->p[i] = isl_basic_map_plain_gist(map->p[i],
3586 isl_basic_map_copy(context));
3587 univ = isl_basic_map_plain_is_universe(map->p[i]);
3588 if (univ < 0)
3589 goto error;
3590 if (univ && map->n > 1)
3591 return replace_by_disjunct(map, i, context);
3594 isl_basic_map_free(context);
3595 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3596 if (map->n > 1)
3597 ISL_F_CLR(map, ISL_MAP_DISJOINT);
3598 return map;
3599 error:
3600 isl_map_free(map);
3601 isl_basic_map_free(context);
3602 return NULL;
3605 /* Replace "map" by a universe map in the same space and free "drop".
3607 static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3608 __isl_take isl_map *drop)
3610 isl_map *res;
3612 res = isl_map_universe(isl_map_get_space(map));
3613 isl_map_free(map);
3614 isl_map_free(drop);
3615 return res;
3618 /* Return a map that has the same intersection with "context" as "map"
3619 * and that is as "simple" as possible.
3621 * If "map" is already the universe, then we cannot make it any simpler.
3622 * Similarly, if "context" is the universe, then we cannot exploit it
3623 * to simplify "map"
3624 * If "map" and "context" are identical to each other, then we can
3625 * return the corresponding universe.
3627 * If either "map" or "context" consists of multiple disjuncts,
3628 * then check if "context" happens to be a subset of "map",
3629 * in which case all constraints can be removed.
3630 * In case of multiple disjuncts, the standard procedure
3631 * may not be able to detect that all constraints can be removed.
3633 * If none of these cases apply, we have to work a bit harder.
3634 * During this computation, we make use of a single disjunct context,
3635 * so if the original context consists of more than one disjunct
3636 * then we need to approximate the context by a single disjunct set.
3637 * Simply taking the simple hull may drop constraints that are
3638 * only implicitly available in each disjunct. We therefore also
3639 * look for constraints among those defining "map" that are valid
3640 * for the context. These can then be used to simplify away
3641 * the corresponding constraints in "map".
3643 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
3644 __isl_take isl_map *context)
3646 int equal;
3647 int is_universe;
3648 int single_disjunct_map, single_disjunct_context;
3649 isl_bool subset;
3650 isl_basic_map *hull;
3652 is_universe = isl_map_plain_is_universe(map);
3653 if (is_universe >= 0 && !is_universe)
3654 is_universe = isl_map_plain_is_universe(context);
3655 if (is_universe < 0)
3656 goto error;
3657 if (is_universe) {
3658 isl_map_free(context);
3659 return map;
3662 equal = isl_map_plain_is_equal(map, context);
3663 if (equal < 0)
3664 goto error;
3665 if (equal)
3666 return replace_by_universe(map, context);
3668 single_disjunct_map = isl_map_n_basic_map(map) == 1;
3669 single_disjunct_context = isl_map_n_basic_map(context) == 1;
3670 if (!single_disjunct_map || !single_disjunct_context) {
3671 subset = isl_map_is_subset(context, map);
3672 if (subset < 0)
3673 goto error;
3674 if (subset)
3675 return replace_by_universe(map, context);
3678 context = isl_map_compute_divs(context);
3679 if (!context)
3680 goto error;
3681 if (single_disjunct_context) {
3682 hull = isl_map_simple_hull(context);
3683 } else {
3684 isl_ctx *ctx;
3685 isl_map_list *list;
3687 ctx = isl_map_get_ctx(map);
3688 list = isl_map_list_alloc(ctx, 2);
3689 list = isl_map_list_add(list, isl_map_copy(context));
3690 list = isl_map_list_add(list, isl_map_copy(map));
3691 hull = isl_map_unshifted_simple_hull_from_map_list(context,
3692 list);
3694 return isl_map_gist_basic_map(map, hull);
3695 error:
3696 isl_map_free(map);
3697 isl_map_free(context);
3698 return NULL;
3701 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3702 __isl_take isl_map *context)
3704 return isl_map_align_params_map_map_and(map, context, &map_gist);
3707 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
3708 struct isl_basic_set *context)
3710 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3711 bset_to_bmap(context)));
3714 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3715 __isl_take isl_basic_set *context)
3717 return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3718 bset_to_bmap(context)));
3721 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3722 __isl_take isl_basic_set *context)
3724 isl_space *space = isl_set_get_space(set);
3725 isl_basic_set *dom_context = isl_basic_set_universe(space);
3726 dom_context = isl_basic_set_intersect_params(dom_context, context);
3727 return isl_set_gist_basic_set(set, dom_context);
3730 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3731 __isl_take isl_set *context)
3733 return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3736 /* Compute the gist of "bmap" with respect to the constraints "context"
3737 * on the domain.
3739 __isl_give isl_basic_map *isl_basic_map_gist_domain(
3740 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3742 isl_space *space = isl_basic_map_get_space(bmap);
3743 isl_basic_map *bmap_context = isl_basic_map_universe(space);
3745 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3746 return isl_basic_map_gist(bmap, bmap_context);
3749 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3750 __isl_take isl_set *context)
3752 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3753 map_context = isl_map_intersect_domain(map_context, context);
3754 return isl_map_gist(map, map_context);
3757 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3758 __isl_take isl_set *context)
3760 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3761 map_context = isl_map_intersect_range(map_context, context);
3762 return isl_map_gist(map, map_context);
3765 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3766 __isl_take isl_set *context)
3768 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3769 map_context = isl_map_intersect_params(map_context, context);
3770 return isl_map_gist(map, map_context);
3773 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3774 __isl_take isl_set *context)
3776 return isl_map_gist_params(set, context);
3779 /* Quick check to see if two basic maps are disjoint.
3780 * In particular, we reduce the equalities and inequalities of
3781 * one basic map in the context of the equalities of the other
3782 * basic map and check if we get a contradiction.
3784 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3785 __isl_keep isl_basic_map *bmap2)
3787 struct isl_vec *v = NULL;
3788 int *elim = NULL;
3789 unsigned total;
3790 int i;
3792 if (!bmap1 || !bmap2)
3793 return isl_bool_error;
3794 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
3795 return isl_bool_error);
3796 if (bmap1->n_div || bmap2->n_div)
3797 return isl_bool_false;
3798 if (!bmap1->n_eq && !bmap2->n_eq)
3799 return isl_bool_false;
3801 total = isl_space_dim(bmap1->dim, isl_dim_all);
3802 if (total == 0)
3803 return isl_bool_false;
3804 v = isl_vec_alloc(bmap1->ctx, 1 + total);
3805 if (!v)
3806 goto error;
3807 elim = isl_alloc_array(bmap1->ctx, int, total);
3808 if (!elim)
3809 goto error;
3810 compute_elimination_index(bmap1, elim);
3811 for (i = 0; i < bmap2->n_eq; ++i) {
3812 int reduced;
3813 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3814 bmap1, elim);
3815 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3816 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3817 goto disjoint;
3819 for (i = 0; i < bmap2->n_ineq; ++i) {
3820 int reduced;
3821 reduced = reduced_using_equalities(v->block.data,
3822 bmap2->ineq[i], bmap1, elim);
3823 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3824 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3825 goto disjoint;
3827 compute_elimination_index(bmap2, elim);
3828 for (i = 0; i < bmap1->n_ineq; ++i) {
3829 int reduced;
3830 reduced = reduced_using_equalities(v->block.data,
3831 bmap1->ineq[i], bmap2, elim);
3832 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3833 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3834 goto disjoint;
3836 isl_vec_free(v);
3837 free(elim);
3838 return isl_bool_false;
3839 disjoint:
3840 isl_vec_free(v);
3841 free(elim);
3842 return isl_bool_true;
3843 error:
3844 isl_vec_free(v);
3845 free(elim);
3846 return isl_bool_error;
3849 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3850 __isl_keep isl_basic_set *bset2)
3852 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
3853 bset_to_bmap(bset2));
3856 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3858 static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
3859 isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
3860 __isl_keep isl_basic_map *bmap2))
3862 int i, j;
3864 if (!map1 || !map2)
3865 return isl_bool_error;
3867 for (i = 0; i < map1->n; ++i) {
3868 for (j = 0; j < map2->n; ++j) {
3869 isl_bool d = test(map1->p[i], map2->p[j]);
3870 if (d != isl_bool_true)
3871 return d;
3875 return isl_bool_true;
3878 /* Are "map1" and "map2" obviously disjoint, based on information
3879 * that can be derived without looking at the individual basic maps?
3881 * In particular, if one of them is empty or if they live in different spaces
3882 * (ignoring parameters), then they are clearly disjoint.
3884 static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
3885 __isl_keep isl_map *map2)
3887 isl_bool disjoint;
3888 isl_bool match;
3890 if (!map1 || !map2)
3891 return isl_bool_error;
3893 disjoint = isl_map_plain_is_empty(map1);
3894 if (disjoint < 0 || disjoint)
3895 return disjoint;
3897 disjoint = isl_map_plain_is_empty(map2);
3898 if (disjoint < 0 || disjoint)
3899 return disjoint;
3901 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
3902 map2->dim, isl_dim_in);
3903 if (match < 0 || !match)
3904 return match < 0 ? isl_bool_error : isl_bool_true;
3906 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
3907 map2->dim, isl_dim_out);
3908 if (match < 0 || !match)
3909 return match < 0 ? isl_bool_error : isl_bool_true;
3911 return isl_bool_false;
3914 /* Are "map1" and "map2" obviously disjoint?
3916 * If one of them is empty or if they live in different spaces (ignoring
3917 * parameters), then they are clearly disjoint.
3918 * This is checked by isl_map_plain_is_disjoint_global.
3920 * If they have different parameters, then we skip any further tests.
3922 * If they are obviously equal, but not obviously empty, then we will
3923 * not be able to detect if they are disjoint.
3925 * Otherwise we check if each basic map in "map1" is obviously disjoint
3926 * from each basic map in "map2".
3928 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3929 __isl_keep isl_map *map2)
3931 isl_bool disjoint;
3932 isl_bool intersect;
3933 isl_bool match;
3935 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3936 if (disjoint < 0 || disjoint)
3937 return disjoint;
3939 match = isl_space_match(map1->dim, isl_dim_param,
3940 map2->dim, isl_dim_param);
3941 if (match < 0 || !match)
3942 return match < 0 ? isl_bool_error : isl_bool_false;
3944 intersect = isl_map_plain_is_equal(map1, map2);
3945 if (intersect < 0 || intersect)
3946 return intersect < 0 ? isl_bool_error : isl_bool_false;
3948 return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
3951 /* Are "map1" and "map2" disjoint?
3953 * They are disjoint if they are "obviously disjoint" or if one of them
3954 * is empty. Otherwise, they are not disjoint if one of them is universal.
3955 * If the two inputs are (obviously) equal and not empty, then they are
3956 * not disjoint.
3957 * If none of these cases apply, then check if all pairs of basic maps
3958 * are disjoint.
3960 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3962 isl_bool disjoint;
3963 isl_bool intersect;
3965 disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3966 if (disjoint < 0 || disjoint)
3967 return disjoint;
3969 disjoint = isl_map_is_empty(map1);
3970 if (disjoint < 0 || disjoint)
3971 return disjoint;
3973 disjoint = isl_map_is_empty(map2);
3974 if (disjoint < 0 || disjoint)
3975 return disjoint;
3977 intersect = isl_map_plain_is_universe(map1);
3978 if (intersect < 0 || intersect)
3979 return intersect < 0 ? isl_bool_error : isl_bool_false;
3981 intersect = isl_map_plain_is_universe(map2);
3982 if (intersect < 0 || intersect)
3983 return intersect < 0 ? isl_bool_error : isl_bool_false;
3985 intersect = isl_map_plain_is_equal(map1, map2);
3986 if (intersect < 0 || intersect)
3987 return isl_bool_not(intersect);
3989 return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
3992 /* Are "bmap1" and "bmap2" disjoint?
3994 * They are disjoint if they are "obviously disjoint" or if one of them
3995 * is empty. Otherwise, they are not disjoint if one of them is universal.
3996 * If none of these cases apply, we compute the intersection and see if
3997 * the result is empty.
3999 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
4000 __isl_keep isl_basic_map *bmap2)
4002 isl_bool disjoint;
4003 isl_bool intersect;
4004 isl_basic_map *test;
4006 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
4007 if (disjoint < 0 || disjoint)
4008 return disjoint;
4010 disjoint = isl_basic_map_is_empty(bmap1);
4011 if (disjoint < 0 || disjoint)
4012 return disjoint;
4014 disjoint = isl_basic_map_is_empty(bmap2);
4015 if (disjoint < 0 || disjoint)
4016 return disjoint;
4018 intersect = isl_basic_map_plain_is_universe(bmap1);
4019 if (intersect < 0 || intersect)
4020 return intersect < 0 ? isl_bool_error : isl_bool_false;
4022 intersect = isl_basic_map_plain_is_universe(bmap2);
4023 if (intersect < 0 || intersect)
4024 return intersect < 0 ? isl_bool_error : isl_bool_false;
4026 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
4027 isl_basic_map_copy(bmap2));
4028 disjoint = isl_basic_map_is_empty(test);
4029 isl_basic_map_free(test);
4031 return disjoint;
4034 /* Are "bset1" and "bset2" disjoint?
4036 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
4037 __isl_keep isl_basic_set *bset2)
4039 return isl_basic_map_is_disjoint(bset1, bset2);
4042 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
4043 __isl_keep isl_set *set2)
4045 return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
4048 /* Are "set1" and "set2" disjoint?
4050 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
4052 return isl_map_is_disjoint(set1, set2);
4055 /* Is "v" equal to 0, 1 or -1?
4057 static int is_zero_or_one(isl_int v)
4059 return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
4062 /* Check if we can combine a given div with lower bound l and upper
4063 * bound u with some other div and if so return that other div.
4064 * Otherwise return -1.
4066 * We first check that
4067 * - the bounds are opposites of each other (except for the constant
4068 * term)
4069 * - the bounds do not reference any other div
4070 * - no div is defined in terms of this div
4072 * Let m be the size of the range allowed on the div by the bounds.
4073 * That is, the bounds are of the form
4075 * e <= a <= e + m - 1
4077 * with e some expression in the other variables.
4078 * We look for another div b such that no third div is defined in terms
4079 * of this second div b and such that in any constraint that contains
4080 * a (except for the given lower and upper bound), also contains b
4081 * with a coefficient that is m times that of b.
4082 * That is, all constraints (execpt for the lower and upper bound)
4083 * are of the form
4085 * e + f (a + m b) >= 0
4087 * Furthermore, in the constraints that only contain b, the coefficient
4088 * of b should be equal to 1 or -1.
4089 * If so, we return b so that "a + m b" can be replaced by
4090 * a single div "c = a + m b".
4092 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
4093 unsigned div, unsigned l, unsigned u)
4095 int i, j;
4096 unsigned dim;
4097 int coalesce = -1;
4099 if (bmap->n_div <= 1)
4100 return -1;
4101 dim = isl_space_dim(bmap->dim, isl_dim_all);
4102 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
4103 return -1;
4104 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
4105 bmap->n_div - div - 1) != -1)
4106 return -1;
4107 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
4108 dim + bmap->n_div))
4109 return -1;
4111 for (i = 0; i < bmap->n_div; ++i) {
4112 if (isl_int_is_zero(bmap->div[i][0]))
4113 continue;
4114 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
4115 return -1;
4118 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4119 if (isl_int_is_neg(bmap->ineq[l][0])) {
4120 isl_int_sub(bmap->ineq[l][0],
4121 bmap->ineq[l][0], bmap->ineq[u][0]);
4122 bmap = isl_basic_map_copy(bmap);
4123 bmap = isl_basic_map_set_to_empty(bmap);
4124 isl_basic_map_free(bmap);
4125 return -1;
4127 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4128 for (i = 0; i < bmap->n_div; ++i) {
4129 if (i == div)
4130 continue;
4131 if (!pairs[i])
4132 continue;
4133 for (j = 0; j < bmap->n_div; ++j) {
4134 if (isl_int_is_zero(bmap->div[j][0]))
4135 continue;
4136 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
4137 break;
4139 if (j < bmap->n_div)
4140 continue;
4141 for (j = 0; j < bmap->n_ineq; ++j) {
4142 int valid;
4143 if (j == l || j == u)
4144 continue;
4145 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div])) {
4146 if (is_zero_or_one(bmap->ineq[j][1 + dim + i]))
4147 continue;
4148 break;
4150 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
4151 break;
4152 isl_int_mul(bmap->ineq[j][1 + dim + div],
4153 bmap->ineq[j][1 + dim + div],
4154 bmap->ineq[l][0]);
4155 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
4156 bmap->ineq[j][1 + dim + i]);
4157 isl_int_divexact(bmap->ineq[j][1 + dim + div],
4158 bmap->ineq[j][1 + dim + div],
4159 bmap->ineq[l][0]);
4160 if (!valid)
4161 break;
4163 if (j < bmap->n_ineq)
4164 continue;
4165 coalesce = i;
4166 break;
4168 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4169 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4170 return coalesce;
4173 /* Internal data structure used during the construction and/or evaluation of
4174 * an inequality that ensures that a pair of bounds always allows
4175 * for an integer value.
4177 * "tab" is the tableau in which the inequality is evaluated. It may
4178 * be NULL until it is actually needed.
4179 * "v" contains the inequality coefficients.
4180 * "g", "fl" and "fu" are temporary scalars used during the construction and
4181 * evaluation.
4183 struct test_ineq_data {
4184 struct isl_tab *tab;
4185 isl_vec *v;
4186 isl_int g;
4187 isl_int fl;
4188 isl_int fu;
4191 /* Free all the memory allocated by the fields of "data".
4193 static void test_ineq_data_clear(struct test_ineq_data *data)
4195 isl_tab_free(data->tab);
4196 isl_vec_free(data->v);
4197 isl_int_clear(data->g);
4198 isl_int_clear(data->fl);
4199 isl_int_clear(data->fu);
4202 /* Is the inequality stored in data->v satisfied by "bmap"?
4203 * That is, does it only attain non-negative values?
4204 * data->tab is a tableau corresponding to "bmap".
4206 static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4207 struct test_ineq_data *data)
4209 isl_ctx *ctx;
4210 enum isl_lp_result res;
4212 ctx = isl_basic_map_get_ctx(bmap);
4213 if (!data->tab)
4214 data->tab = isl_tab_from_basic_map(bmap, 0);
4215 res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4216 if (res == isl_lp_error)
4217 return isl_bool_error;
4218 return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4221 /* Given a lower and an upper bound on div i, do they always allow
4222 * for an integer value of the given div?
4223 * Determine this property by constructing an inequality
4224 * such that the property is guaranteed when the inequality is nonnegative.
4225 * The lower bound is inequality l, while the upper bound is inequality u.
4226 * The constructed inequality is stored in data->v.
4228 * Let the upper bound be
4230 * -n_u a + e_u >= 0
4232 * and the lower bound
4234 * n_l a + e_l >= 0
4236 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4237 * We have
4239 * - f_u e_l <= f_u f_l g a <= f_l e_u
4241 * Since all variables are integer valued, this is equivalent to
4243 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4245 * If this interval is at least f_u f_l g, then it contains at least
4246 * one integer value for a.
4247 * That is, the test constraint is
4249 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4251 * or
4253 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4255 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4256 * then the constraint can be scaled down by a factor g',
4257 * with the constant term replaced by
4258 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4259 * Note that the result of applying Fourier-Motzkin to this pair
4260 * of constraints is
4262 * f_l e_u + f_u e_l >= 0
4264 * If the constant term of the scaled down version of this constraint,
4265 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4266 * term of the scaled down test constraint, then the test constraint
4267 * is known to hold and no explicit evaluation is required.
4268 * This is essentially the Omega test.
4270 * If the test constraint consists of only a constant term, then
4271 * it is sufficient to look at the sign of this constant term.
4273 static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4274 int l, int u, struct test_ineq_data *data)
4276 unsigned offset, n_div;
4277 offset = isl_basic_map_offset(bmap, isl_dim_div);
4278 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4280 isl_int_gcd(data->g,
4281 bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4282 isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4283 isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4284 isl_int_neg(data->fu, data->fu);
4285 isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4286 data->fu, bmap->ineq[l], offset + n_div);
4287 isl_int_mul(data->g, data->g, data->fl);
4288 isl_int_mul(data->g, data->g, data->fu);
4289 isl_int_sub(data->g, data->g, data->fl);
4290 isl_int_sub(data->g, data->g, data->fu);
4291 isl_int_add_ui(data->g, data->g, 1);
4292 isl_int_sub(data->fl, data->v->el[0], data->g);
4294 isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4295 if (isl_int_is_zero(data->g))
4296 return isl_int_is_nonneg(data->fl);
4297 if (isl_int_is_one(data->g)) {
4298 isl_int_set(data->v->el[0], data->fl);
4299 return test_ineq_is_satisfied(bmap, data);
4301 isl_int_fdiv_q(data->fl, data->fl, data->g);
4302 isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4303 if (isl_int_eq(data->fl, data->v->el[0]))
4304 return isl_bool_true;
4305 isl_int_set(data->v->el[0], data->fl);
4306 isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4307 offset - 1 + n_div);
4309 return test_ineq_is_satisfied(bmap, data);
4312 /* Remove more kinds of divs that are not strictly needed.
4313 * In particular, if all pairs of lower and upper bounds on a div
4314 * are such that they allow at least one integer value of the div,
4315 * then we can eliminate the div using Fourier-Motzkin without
4316 * introducing any spurious solutions.
4318 * If at least one of the two constraints has a unit coefficient for the div,
4319 * then the presence of such a value is guaranteed so there is no need to check.
4320 * In particular, the value attained by the bound with unit coefficient
4321 * can serve as this intermediate value.
4323 static struct isl_basic_map *drop_more_redundant_divs(
4324 struct isl_basic_map *bmap, int *pairs, int n)
4326 isl_ctx *ctx;
4327 struct test_ineq_data data = { NULL, NULL };
4328 unsigned off, n_div;
4329 int remove = -1;
4331 isl_int_init(data.g);
4332 isl_int_init(data.fl);
4333 isl_int_init(data.fu);
4335 if (!bmap)
4336 goto error;
4338 ctx = isl_basic_map_get_ctx(bmap);
4339 off = isl_basic_map_offset(bmap, isl_dim_div);
4340 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4341 data.v = isl_vec_alloc(ctx, off + n_div);
4342 if (!data.v)
4343 goto error;
4345 while (n > 0) {
4346 int i, l, u;
4347 int best = -1;
4348 isl_bool has_int;
4350 for (i = 0; i < n_div; ++i) {
4351 if (!pairs[i])
4352 continue;
4353 if (best >= 0 && pairs[best] <= pairs[i])
4354 continue;
4355 best = i;
4358 i = best;
4359 for (l = 0; l < bmap->n_ineq; ++l) {
4360 if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4361 continue;
4362 if (isl_int_is_one(bmap->ineq[l][off + i]))
4363 continue;
4364 for (u = 0; u < bmap->n_ineq; ++u) {
4365 if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4366 continue;
4367 if (isl_int_is_negone(bmap->ineq[u][off + i]))
4368 continue;
4369 has_int = int_between_bounds(bmap, i, l, u,
4370 &data);
4371 if (has_int < 0)
4372 goto error;
4373 if (data.tab && data.tab->empty)
4374 break;
4375 if (!has_int)
4376 break;
4378 if (u < bmap->n_ineq)
4379 break;
4381 if (data.tab && data.tab->empty) {
4382 bmap = isl_basic_map_set_to_empty(bmap);
4383 break;
4385 if (l == bmap->n_ineq) {
4386 remove = i;
4387 break;
4389 pairs[i] = 0;
4390 --n;
4393 test_ineq_data_clear(&data);
4395 free(pairs);
4397 if (remove < 0)
4398 return bmap;
4400 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4401 return isl_basic_map_drop_redundant_divs(bmap);
4402 error:
4403 free(pairs);
4404 isl_basic_map_free(bmap);
4405 test_ineq_data_clear(&data);
4406 return NULL;
4409 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4410 * and the upper bound u, div1 always occurs together with div2 in the form
4411 * (div1 + m div2), where m is the constant range on the variable div1
4412 * allowed by l and u, replace the pair div1 and div2 by a single
4413 * div that is equal to div1 + m div2.
4415 * The new div will appear in the location that contains div2.
4416 * We need to modify all constraints that contain
4417 * div2 = (div - div1) / m
4418 * The coefficient of div2 is known to be equal to 1 or -1.
4419 * (If a constraint does not contain div2, it will also not contain div1.)
4420 * If the constraint also contains div1, then we know they appear
4421 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4422 * i.e., the coefficient of div is f.
4424 * Otherwise, we first need to introduce div1 into the constraint.
4425 * Let the l be
4427 * div1 + f >=0
4429 * and u
4431 * -div1 + f' >= 0
4433 * A lower bound on div2
4435 * div2 + t >= 0
4437 * can be replaced by
4439 * m div2 + div1 + m t + f >= 0
4441 * An upper bound
4443 * -div2 + t >= 0
4445 * can be replaced by
4447 * -(m div2 + div1) + m t + f' >= 0
4449 * These constraint are those that we would obtain from eliminating
4450 * div1 using Fourier-Motzkin.
4452 * After all constraints have been modified, we drop the lower and upper
4453 * bound and then drop div1.
4455 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
4456 unsigned div1, unsigned div2, unsigned l, unsigned u)
4458 isl_ctx *ctx;
4459 isl_int m;
4460 unsigned dim, total;
4461 int i;
4463 ctx = isl_basic_map_get_ctx(bmap);
4465 dim = isl_space_dim(bmap->dim, isl_dim_all);
4466 total = 1 + dim + bmap->n_div;
4468 isl_int_init(m);
4469 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4470 isl_int_add_ui(m, m, 1);
4472 for (i = 0; i < bmap->n_ineq; ++i) {
4473 if (i == l || i == u)
4474 continue;
4475 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
4476 continue;
4477 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
4478 if (isl_int_is_pos(bmap->ineq[i][1 + dim + div2]))
4479 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4480 ctx->one, bmap->ineq[l], total);
4481 else
4482 isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4483 ctx->one, bmap->ineq[u], total);
4485 isl_int_set(bmap->ineq[i][1 + dim + div2],
4486 bmap->ineq[i][1 + dim + div1]);
4487 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
4490 isl_int_clear(m);
4491 if (l > u) {
4492 isl_basic_map_drop_inequality(bmap, l);
4493 isl_basic_map_drop_inequality(bmap, u);
4494 } else {
4495 isl_basic_map_drop_inequality(bmap, u);
4496 isl_basic_map_drop_inequality(bmap, l);
4498 bmap = isl_basic_map_drop_div(bmap, div1);
4499 return bmap;
4502 /* First check if we can coalesce any pair of divs and
4503 * then continue with dropping more redundant divs.
4505 * We loop over all pairs of lower and upper bounds on a div
4506 * with coefficient 1 and -1, respectively, check if there
4507 * is any other div "c" with which we can coalesce the div
4508 * and if so, perform the coalescing.
4510 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
4511 struct isl_basic_map *bmap, int *pairs, int n)
4513 int i, l, u;
4514 unsigned dim;
4516 dim = isl_space_dim(bmap->dim, isl_dim_all);
4518 for (i = 0; i < bmap->n_div; ++i) {
4519 if (!pairs[i])
4520 continue;
4521 for (l = 0; l < bmap->n_ineq; ++l) {
4522 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
4523 continue;
4524 for (u = 0; u < bmap->n_ineq; ++u) {
4525 int c;
4527 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
4528 continue;
4529 c = div_find_coalesce(bmap, pairs, i, l, u);
4530 if (c < 0)
4531 continue;
4532 free(pairs);
4533 bmap = coalesce_divs(bmap, i, c, l, u);
4534 return isl_basic_map_drop_redundant_divs(bmap);
4539 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4540 free(pairs);
4541 return bmap;
4544 return drop_more_redundant_divs(bmap, pairs, n);
4547 /* Are the "n" coefficients starting at "first" of inequality constraints
4548 * "i" and "j" of "bmap" equal to each other?
4550 static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4551 int first, int n)
4553 return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4556 /* Are the "n" coefficients starting at "first" of inequality constraints
4557 * "i" and "j" of "bmap" opposite to each other?
4559 static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4560 int first, int n)
4562 return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4565 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4566 * apart from the constant term?
4568 static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4570 unsigned total;
4572 total = isl_basic_map_dim(bmap, isl_dim_all);
4573 return is_opposite_part(bmap, i, j, 1, total);
4576 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4577 * apart from the constant term and the coefficient at position "pos"?
4579 static int is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4580 int pos)
4582 unsigned total;
4584 total = isl_basic_map_dim(bmap, isl_dim_all);
4585 return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4586 is_parallel_part(bmap, i, j, pos + 1, total - pos);
4589 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4590 * apart from the constant term and the coefficient at position "pos"?
4592 static int is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4593 int pos)
4595 unsigned total;
4597 total = isl_basic_map_dim(bmap, isl_dim_all);
4598 return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4599 is_opposite_part(bmap, i, j, pos + 1, total - pos);
4602 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4603 * been modified, simplying it if "simplify" is set.
4604 * Free the temporary data structure "pairs" that was associated
4605 * to the old version of "bmap".
4607 static __isl_give isl_basic_map *drop_redundant_divs_again(
4608 __isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4610 if (simplify)
4611 bmap = isl_basic_map_simplify(bmap);
4612 free(pairs);
4613 return isl_basic_map_drop_redundant_divs(bmap);
4616 /* Is "div" the single unknown existentially quantified variable
4617 * in inequality constraint "ineq" of "bmap"?
4618 * "div" is known to have a non-zero coefficient in "ineq".
4620 static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4621 int div)
4623 int i;
4624 unsigned n_div, o_div;
4625 isl_bool known;
4627 known = isl_basic_map_div_is_known(bmap, div);
4628 if (known < 0 || known)
4629 return isl_bool_not(known);
4630 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4631 if (n_div == 1)
4632 return isl_bool_true;
4633 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4634 for (i = 0; i < n_div; ++i) {
4635 isl_bool known;
4637 if (i == div)
4638 continue;
4639 if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4640 continue;
4641 known = isl_basic_map_div_is_known(bmap, i);
4642 if (known < 0 || !known)
4643 return known;
4646 return isl_bool_true;
4649 /* Does integer division "div" have coefficient 1 in inequality constraint
4650 * "ineq" of "map"?
4652 static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4654 unsigned o_div;
4656 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4657 if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4658 return isl_bool_true;
4660 return isl_bool_false;
4663 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4664 * then try and drop redundant divs again,
4665 * freeing the temporary data structure "pairs" that was associated
4666 * to the old version of "bmap".
4668 static __isl_give isl_basic_map *set_eq_and_try_again(
4669 __isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4671 bmap = isl_basic_map_cow(bmap);
4672 isl_basic_map_inequality_to_equality(bmap, ineq);
4673 return drop_redundant_divs_again(bmap, pairs, 1);
4676 /* Drop the integer division at position "div", along with the two
4677 * inequality constraints "ineq1" and "ineq2" in which it appears
4678 * from "bmap" and then try and drop redundant divs again,
4679 * freeing the temporary data structure "pairs" that was associated
4680 * to the old version of "bmap".
4682 static __isl_give isl_basic_map *drop_div_and_try_again(
4683 __isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4684 __isl_take int *pairs)
4686 if (ineq1 > ineq2) {
4687 isl_basic_map_drop_inequality(bmap, ineq1);
4688 isl_basic_map_drop_inequality(bmap, ineq2);
4689 } else {
4690 isl_basic_map_drop_inequality(bmap, ineq2);
4691 isl_basic_map_drop_inequality(bmap, ineq1);
4693 bmap = isl_basic_map_drop_div(bmap, div);
4694 return drop_redundant_divs_again(bmap, pairs, 0);
4697 /* Given two inequality constraints
4699 * f(x) + n d + c >= 0, (ineq)
4701 * with d the variable at position "pos", and
4703 * f(x) + c0 >= 0, (lower)
4705 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4706 * determined by the first constraint.
4707 * That is, store
4709 * ceil((c0 - c)/n)
4711 * in *l.
4713 static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4714 int ineq, int lower, int pos, isl_int *l)
4716 isl_int_neg(*l, bmap->ineq[ineq][0]);
4717 isl_int_add(*l, *l, bmap->ineq[lower][0]);
4718 isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4721 /* Given two inequality constraints
4723 * f(x) + n d + c >= 0, (ineq)
4725 * with d the variable at position "pos", and
4727 * -f(x) - c0 >= 0, (upper)
4729 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4730 * determined by the first constraint.
4731 * That is, store
4733 * ceil((-c1 - c)/n)
4735 * in *u.
4737 static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4738 int ineq, int upper, int pos, isl_int *u)
4740 isl_int_neg(*u, bmap->ineq[ineq][0]);
4741 isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4742 isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4745 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4746 * does the corresponding lower bound have a fixed value in "bmap"?
4748 * In particular, "ineq" is of the form
4750 * f(x) + n d + c >= 0
4752 * with n > 0, c the constant term and
4753 * d the existentially quantified variable "div".
4754 * That is, the lower bound is
4756 * ceil((-f(x) - c)/n)
4758 * Look for a pair of constraints
4760 * f(x) + c0 >= 0
4761 * -f(x) + c1 >= 0
4763 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4764 * That is, check that
4766 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4768 * If so, return the index of inequality f(x) + c0 >= 0.
4769 * Otherwise, return -1.
4771 static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4773 int i;
4774 int lower = -1, upper = -1;
4775 unsigned o_div;
4776 isl_int l, u;
4777 int equal;
4779 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4780 for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
4781 if (i == ineq)
4782 continue;
4783 if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
4784 continue;
4785 if (lower < 0 &&
4786 is_parallel_except(bmap, ineq, i, o_div + div)) {
4787 lower = i;
4788 continue;
4790 if (upper < 0 &&
4791 is_opposite_except(bmap, ineq, i, o_div + div)) {
4792 upper = i;
4796 if (lower < 0 || upper < 0)
4797 return -1;
4799 isl_int_init(l);
4800 isl_int_init(u);
4802 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
4803 lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
4805 equal = isl_int_eq(l, u);
4807 isl_int_clear(l);
4808 isl_int_clear(u);
4810 return equal ? lower : -1;
4813 /* Given a lower bound constraint "ineq" on the existentially quantified
4814 * variable "div", such that the corresponding lower bound has
4815 * a fixed value in "bmap", assign this fixed value to the variable and
4816 * then try and drop redundant divs again,
4817 * freeing the temporary data structure "pairs" that was associated
4818 * to the old version of "bmap".
4819 * "lower" determines the constant value for the lower bound.
4821 * In particular, "ineq" is of the form
4823 * f(x) + n d + c >= 0,
4825 * while "lower" is of the form
4827 * f(x) + c0 >= 0
4829 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4830 * is ceil((c0 - c)/n).
4832 static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
4833 int div, int ineq, int lower, int *pairs)
4835 isl_int c;
4836 unsigned o_div;
4838 isl_int_init(c);
4840 o_div = isl_basic_map_offset(bmap, isl_dim_div);
4841 lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
4842 bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
4843 free(pairs);
4845 isl_int_clear(c);
4847 return isl_basic_map_drop_redundant_divs(bmap);
4850 /* Remove divs that are not strictly needed based on the inequality
4851 * constraints.
4852 * In particular, if a div only occurs positively (or negatively)
4853 * in constraints, then it can simply be dropped.
4854 * Also, if a div occurs in only two constraints and if moreover
4855 * those two constraints are opposite to each other, except for the constant
4856 * term and if the sum of the constant terms is such that for any value
4857 * of the other values, there is always at least one integer value of the
4858 * div, i.e., if one plus this sum is greater than or equal to
4859 * the (absolute value) of the coefficient of the div in the constraints,
4860 * then we can also simply drop the div.
4862 * If an existentially quantified variable does not have an explicit
4863 * representation, appears in only a single lower bound that does not
4864 * involve any other such existentially quantified variables and appears
4865 * in this lower bound with coefficient 1,
4866 * then fix the variable to the value of the lower bound. That is,
4867 * turn the inequality into an equality.
4868 * If for any value of the other variables, there is any value
4869 * for the existentially quantified variable satisfying the constraints,
4870 * then this lower bound also satisfies the constraints.
4871 * It is therefore safe to pick this lower bound.
4873 * The same reasoning holds even if the coefficient is not one.
4874 * However, fixing the variable to the value of the lower bound may
4875 * in general introduce an extra integer division, in which case
4876 * it may be better to pick another value.
4877 * If this integer division has a known constant value, then plugging
4878 * in this constant value removes the existentially quantified variable
4879 * completely. In particular, if the lower bound is of the form
4880 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4881 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4882 * then the existentially quantified variable can be assigned this
4883 * shared value.
4885 * We skip divs that appear in equalities or in the definition of other divs.
4886 * Divs that appear in the definition of other divs usually occur in at least
4887 * 4 constraints, but the constraints may have been simplified.
4889 * If any divs are left after these simple checks then we move on
4890 * to more complicated cases in drop_more_redundant_divs.
4892 static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
4893 __isl_take isl_basic_map *bmap)
4895 int i, j;
4896 unsigned off;
4897 int *pairs = NULL;
4898 int n = 0;
4900 if (!bmap)
4901 goto error;
4902 if (bmap->n_div == 0)
4903 return bmap;
4905 off = isl_space_dim(bmap->dim, isl_dim_all);
4906 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
4907 if (!pairs)
4908 goto error;
4910 for (i = 0; i < bmap->n_div; ++i) {
4911 int pos, neg;
4912 int last_pos, last_neg;
4913 int redundant;
4914 int defined;
4915 isl_bool opp, set_div;
4917 defined = !isl_int_is_zero(bmap->div[i][0]);
4918 for (j = i; j < bmap->n_div; ++j)
4919 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
4920 break;
4921 if (j < bmap->n_div)
4922 continue;
4923 for (j = 0; j < bmap->n_eq; ++j)
4924 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
4925 break;
4926 if (j < bmap->n_eq)
4927 continue;
4928 ++n;
4929 pos = neg = 0;
4930 for (j = 0; j < bmap->n_ineq; ++j) {
4931 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
4932 last_pos = j;
4933 ++pos;
4935 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
4936 last_neg = j;
4937 ++neg;
4940 pairs[i] = pos * neg;
4941 if (pairs[i] == 0) {
4942 for (j = bmap->n_ineq - 1; j >= 0; --j)
4943 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
4944 isl_basic_map_drop_inequality(bmap, j);
4945 bmap = isl_basic_map_drop_div(bmap, i);
4946 return drop_redundant_divs_again(bmap, pairs, 0);
4948 if (pairs[i] != 1)
4949 opp = isl_bool_false;
4950 else
4951 opp = is_opposite(bmap, last_pos, last_neg);
4952 if (opp < 0)
4953 goto error;
4954 if (!opp) {
4955 int lower;
4956 isl_bool single, one;
4958 if (pos != 1)
4959 continue;
4960 single = single_unknown(bmap, last_pos, i);
4961 if (single < 0)
4962 goto error;
4963 if (!single)
4964 continue;
4965 one = has_coef_one(bmap, i, last_pos);
4966 if (one < 0)
4967 goto error;
4968 if (one)
4969 return set_eq_and_try_again(bmap, last_pos,
4970 pairs);
4971 lower = lower_bound_is_cst(bmap, i, last_pos);
4972 if (lower >= 0)
4973 return fix_cst_lower(bmap, i, last_pos, lower,
4974 pairs);
4975 continue;
4978 isl_int_add(bmap->ineq[last_pos][0],
4979 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
4980 isl_int_add_ui(bmap->ineq[last_pos][0],
4981 bmap->ineq[last_pos][0], 1);
4982 redundant = isl_int_ge(bmap->ineq[last_pos][0],
4983 bmap->ineq[last_pos][1+off+i]);
4984 isl_int_sub_ui(bmap->ineq[last_pos][0],
4985 bmap->ineq[last_pos][0], 1);
4986 isl_int_sub(bmap->ineq[last_pos][0],
4987 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
4988 if (redundant)
4989 return drop_div_and_try_again(bmap, i,
4990 last_pos, last_neg, pairs);
4991 if (defined)
4992 set_div = isl_bool_false;
4993 else
4994 set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
4995 if (set_div < 0)
4996 return isl_basic_map_free(bmap);
4997 if (set_div) {
4998 bmap = set_div_from_lower_bound(bmap, i, last_pos);
4999 return drop_redundant_divs_again(bmap, pairs, 1);
5001 pairs[i] = 0;
5002 --n;
5005 if (n > 0)
5006 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
5008 free(pairs);
5009 return bmap;
5010 error:
5011 free(pairs);
5012 isl_basic_map_free(bmap);
5013 return NULL;
5016 /* Consider the coefficients at "c" as a row vector and replace
5017 * them with their product with "T". "T" is assumed to be a square matrix.
5019 static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
5021 int n;
5022 isl_ctx *ctx;
5023 isl_vec *v;
5025 if (!T)
5026 return isl_stat_error;
5027 n = isl_mat_rows(T);
5028 if (isl_seq_first_non_zero(c, n) == -1)
5029 return isl_stat_ok;
5030 ctx = isl_mat_get_ctx(T);
5031 v = isl_vec_alloc(ctx, n);
5032 if (!v)
5033 return isl_stat_error;
5034 isl_seq_swp_or_cpy(v->el, c, n);
5035 v = isl_vec_mat_product(v, isl_mat_copy(T));
5036 if (!v)
5037 return isl_stat_error;
5038 isl_seq_swp_or_cpy(c, v->el, n);
5039 isl_vec_free(v);
5041 return isl_stat_ok;
5044 /* Plug in T for the variables in "bmap" starting at "pos".
5045 * T is a linear unimodular matrix, i.e., without constant term.
5047 static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
5048 __isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
5050 int i;
5051 unsigned n, total;
5053 bmap = isl_basic_map_cow(bmap);
5054 if (!bmap || !T)
5055 goto error;
5057 n = isl_mat_cols(T);
5058 if (n != isl_mat_rows(T))
5059 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5060 "expecting square matrix", goto error);
5062 total = isl_basic_map_dim(bmap, isl_dim_all);
5063 if (pos + n > total || pos + n < pos)
5064 isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5065 "invalid range", goto error);
5067 for (i = 0; i < bmap->n_eq; ++i)
5068 if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
5069 goto error;
5070 for (i = 0; i < bmap->n_ineq; ++i)
5071 if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
5072 goto error;
5073 for (i = 0; i < bmap->n_div; ++i) {
5074 if (isl_basic_map_div_is_marked_unknown(bmap, i))
5075 continue;
5076 if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
5077 goto error;
5080 isl_mat_free(T);
5081 return bmap;
5082 error:
5083 isl_basic_map_free(bmap);
5084 isl_mat_free(T);
5085 return NULL;
5088 /* Remove divs that are not strictly needed.
5090 * First look for an equality constraint involving two or more
5091 * existentially quantified variables without an explicit
5092 * representation. Replace the combination that appears
5093 * in the equality constraint by a single existentially quantified
5094 * variable such that the equality can be used to derive
5095 * an explicit representation for the variable.
5096 * If there are no more such equality constraints, then continue
5097 * with isl_basic_map_drop_redundant_divs_ineq.
5099 * In particular, if the equality constraint is of the form
5101 * f(x) + \sum_i c_i a_i = 0
5103 * with a_i existentially quantified variable without explicit
5104 * representation, then apply a transformation on the existentially
5105 * quantified variables to turn the constraint into
5107 * f(x) + g a_1' = 0
5109 * with g the gcd of the c_i.
5110 * In order to easily identify which existentially quantified variables
5111 * have a complete explicit representation, i.e., without being defined
5112 * in terms of other existentially quantified variables without
5113 * an explicit representation, the existentially quantified variables
5114 * are first sorted.
5116 * The variable transformation is computed by extending the row
5117 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5119 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5120 * [a_2'] [ a_2 ]
5121 * ... = U ....
5122 * [a_n'] [ a_n ]
5124 * with [c_1/g ... c_n/g] representing the first row of U.
5125 * The inverse of U is then plugged into the original constraints.
5126 * The call to isl_basic_map_simplify makes sure the explicit
5127 * representation for a_1' is extracted from the equality constraint.
5129 __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
5130 __isl_take isl_basic_map *bmap)
5132 int first;
5133 int i;
5134 unsigned o_div, n_div;
5135 int l;
5136 isl_ctx *ctx;
5137 isl_mat *T;
5139 if (!bmap)
5140 return NULL;
5141 if (isl_basic_map_divs_known(bmap))
5142 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5143 if (bmap->n_eq == 0)
5144 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5145 bmap = isl_basic_map_sort_divs(bmap);
5146 if (!bmap)
5147 return NULL;
5149 first = isl_basic_map_first_unknown_div(bmap);
5150 if (first < 0)
5151 return isl_basic_map_free(bmap);
5153 o_div = isl_basic_map_offset(bmap, isl_dim_div);
5154 n_div = isl_basic_map_dim(bmap, isl_dim_div);
5156 for (i = 0; i < bmap->n_eq; ++i) {
5157 l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
5158 n_div - (first));
5159 if (l < 0)
5160 continue;
5161 l += first;
5162 if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
5163 n_div - (l + 1)) == -1)
5164 continue;
5165 break;
5167 if (i >= bmap->n_eq)
5168 return isl_basic_map_drop_redundant_divs_ineq(bmap);
5170 ctx = isl_basic_map_get_ctx(bmap);
5171 T = isl_mat_alloc(ctx, n_div - l, n_div - l);
5172 if (!T)
5173 return isl_basic_map_free(bmap);
5174 isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
5175 T = isl_mat_normalize_row(T, 0);
5176 T = isl_mat_unimodular_complete(T, 1);
5177 T = isl_mat_right_inverse(T);
5179 for (i = l; i < n_div; ++i)
5180 bmap = isl_basic_map_mark_div_unknown(bmap, i);
5181 bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
5182 bmap = isl_basic_map_simplify(bmap);
5184 return isl_basic_map_drop_redundant_divs(bmap);
5187 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
5188 struct isl_basic_set *bset)
5190 isl_basic_map *bmap = bset_to_bmap(bset);
5191 return bset_from_bmap(isl_basic_map_drop_redundant_divs(bmap));
5194 /* Does "bmap" satisfy any equality that involves more than 2 variables
5195 * and/or has coefficients different from -1 and 1?
5197 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5199 int i;
5200 unsigned total;
5202 total = isl_basic_map_dim(bmap, isl_dim_all);
5204 for (i = 0; i < bmap->n_eq; ++i) {
5205 int j, k;
5207 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5208 if (j < 0)
5209 continue;
5210 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5211 !isl_int_is_negone(bmap->eq[i][1 + j]))
5212 return 1;
5214 j += 1;
5215 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5216 if (k < 0)
5217 continue;
5218 j += k;
5219 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5220 !isl_int_is_negone(bmap->eq[i][1 + j]))
5221 return 1;
5223 j += 1;
5224 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5225 if (k >= 0)
5226 return 1;
5229 return 0;
5232 /* Remove any common factor g from the constraint coefficients in "v".
5233 * The constant term is stored in the first position and is replaced
5234 * by floor(c/g). If any common factor is removed and if this results
5235 * in a tightening of the constraint, then set *tightened.
5237 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5238 int *tightened)
5240 isl_ctx *ctx;
5242 if (!v)
5243 return NULL;
5244 ctx = isl_vec_get_ctx(v);
5245 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5246 if (isl_int_is_zero(ctx->normalize_gcd))
5247 return v;
5248 if (isl_int_is_one(ctx->normalize_gcd))
5249 return v;
5250 v = isl_vec_cow(v);
5251 if (!v)
5252 return NULL;
5253 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5254 *tightened = 1;
5255 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5256 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5257 v->size - 1);
5258 return v;
5261 /* If "bmap" is an integer set that satisfies any equality involving
5262 * more than 2 variables and/or has coefficients different from -1 and 1,
5263 * then use variable compression to reduce the coefficients by removing
5264 * any (hidden) common factor.
5265 * In particular, apply the variable compression to each constraint,
5266 * factor out any common factor in the non-constant coefficients and
5267 * then apply the inverse of the compression.
5268 * At the end, we mark the basic map as having reduced constants.
5269 * If this flag is still set on the next invocation of this function,
5270 * then we skip the computation.
5272 * Removing a common factor may result in a tightening of some of
5273 * the constraints. If this happens, then we may end up with two
5274 * opposite inequalities that can be replaced by an equality.
5275 * We therefore call isl_basic_map_detect_inequality_pairs,
5276 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5277 * and isl_basic_map_gauss if such a pair was found.
5279 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5280 __isl_take isl_basic_map *bmap)
5282 unsigned total;
5283 isl_ctx *ctx;
5284 isl_vec *v;
5285 isl_mat *eq, *T, *T2;
5286 int i;
5287 int tightened;
5289 if (!bmap)
5290 return NULL;
5291 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5292 return bmap;
5293 if (isl_basic_map_is_rational(bmap))
5294 return bmap;
5295 if (bmap->n_eq == 0)
5296 return bmap;
5297 if (!has_multiple_var_equality(bmap))
5298 return bmap;
5300 total = isl_basic_map_dim(bmap, isl_dim_all);
5301 ctx = isl_basic_map_get_ctx(bmap);
5302 v = isl_vec_alloc(ctx, 1 + total);
5303 if (!v)
5304 return isl_basic_map_free(bmap);
5306 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
5307 T = isl_mat_variable_compression(eq, &T2);
5308 if (!T || !T2)
5309 goto error;
5310 if (T->n_col == 0) {
5311 isl_mat_free(T);
5312 isl_mat_free(T2);
5313 isl_vec_free(v);
5314 return isl_basic_map_set_to_empty(bmap);
5317 tightened = 0;
5318 for (i = 0; i < bmap->n_ineq; ++i) {
5319 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
5320 v = isl_vec_mat_product(v, isl_mat_copy(T));
5321 v = normalize_constraint(v, &tightened);
5322 v = isl_vec_mat_product(v, isl_mat_copy(T2));
5323 if (!v)
5324 goto error;
5325 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
5328 isl_mat_free(T);
5329 isl_mat_free(T2);
5330 isl_vec_free(v);
5332 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5334 if (tightened) {
5335 int progress = 0;
5337 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5338 if (progress) {
5339 bmap = eliminate_divs_eq(bmap, &progress);
5340 bmap = isl_basic_map_gauss(bmap, NULL);
5344 return bmap;
5345 error:
5346 isl_mat_free(T);
5347 isl_mat_free(T2);
5348 isl_vec_free(v);
5349 return isl_basic_map_free(bmap);
5352 /* Shift the integer division at position "div" of "bmap"
5353 * by "shift" times the variable at position "pos".
5354 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5355 * corresponds to the constant term.
5357 * That is, if the integer division has the form
5359 * floor(f(x)/d)
5361 * then replace it by
5363 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5365 __isl_give isl_basic_map *isl_basic_map_shift_div(
5366 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5368 int i;
5369 unsigned total;
5371 if (isl_int_is_zero(shift))
5372 return bmap;
5373 if (!bmap)
5374 return NULL;
5376 total = isl_basic_map_dim(bmap, isl_dim_all);
5377 total -= isl_basic_map_dim(bmap, isl_dim_div);
5379 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5381 for (i = 0; i < bmap->n_eq; ++i) {
5382 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5383 continue;
5384 isl_int_submul(bmap->eq[i][pos],
5385 shift, bmap->eq[i][1 + total + div]);
5387 for (i = 0; i < bmap->n_ineq; ++i) {
5388 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5389 continue;
5390 isl_int_submul(bmap->ineq[i][pos],
5391 shift, bmap->ineq[i][1 + total + div]);
5393 for (i = 0; i < bmap->n_div; ++i) {
5394 if (isl_int_is_zero(bmap->div[i][0]))
5395 continue;
5396 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5397 continue;
5398 isl_int_submul(bmap->div[i][1 + pos],
5399 shift, bmap->div[i][1 + 1 + total + div]);
5402 return bmap;