2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_morph.h>
17 #include <isl_vertices_private.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
25 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
26 __isl_take isl_vertices
*vertices
);
28 __isl_give isl_vertices
*isl_vertices_copy(__isl_keep isl_vertices
*vertices
)
37 void isl_vertices_free(__isl_take isl_vertices
*vertices
)
44 if (--vertices
->ref
> 0)
47 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
48 isl_basic_set_free(vertices
->v
[i
].vertex
);
49 isl_basic_set_free(vertices
->v
[i
].dom
);
53 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
54 free(vertices
->c
[i
].vertices
);
55 isl_basic_set_free(vertices
->c
[i
].dom
);
59 isl_basic_set_free(vertices
->bset
);
63 struct isl_vertex_list
{
65 struct isl_vertex_list
*next
;
68 static void free_vertex_list(struct isl_vertex_list
*list
)
70 struct isl_vertex_list
*next
;
72 for (; list
; list
= next
) {
74 isl_basic_set_free(list
->v
.vertex
);
75 isl_basic_set_free(list
->v
.dom
);
80 static __isl_give isl_vertices
*vertices_from_list(__isl_keep isl_basic_set
*bset
,
81 int n_vertices
, struct isl_vertex_list
*list
)
84 struct isl_vertex_list
*next
;
85 isl_vertices
*vertices
;
87 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
91 vertices
->bset
= isl_basic_set_copy(bset
);
92 vertices
->v
= isl_alloc_array(bset
->ctx
, struct isl_vertex
, n_vertices
);
93 if (n_vertices
&& !vertices
->v
)
95 vertices
->n_vertices
= n_vertices
;
97 for (i
= 0; list
; list
= next
, i
++) {
99 vertices
->v
[i
] = list
->v
;
105 isl_vertices_free(vertices
);
106 free_vertex_list(list
);
110 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
112 static int add_vertex(struct isl_vertex_list
**list
,
113 __isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
117 struct isl_vertex_list
*v
= NULL
;
119 if (isl_tab_detect_implicit_equalities(tab
) < 0)
122 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
123 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
125 v
= isl_calloc_type(tab
->mat
->ctx
, struct isl_vertex_list
);
129 v
->v
.vertex
= isl_basic_set_copy(bset
);
130 v
->v
.vertex
= isl_basic_set_cow(v
->v
.vertex
);
131 v
->v
.vertex
= isl_basic_set_update_from_tab(v
->v
.vertex
, tab
);
132 v
->v
.vertex
= isl_basic_set_simplify(v
->v
.vertex
);
133 v
->v
.vertex
= isl_basic_set_finalize(v
->v
.vertex
);
136 isl_assert(bset
->ctx
, v
->v
.vertex
->n_eq
>= nvar
, goto error
);
137 v
->v
.dom
= isl_basic_set_copy(v
->v
.vertex
);
138 v
->v
.dom
= isl_basic_set_params(v
->v
.dom
);
151 /* Compute the parametric vertices and the chamber decomposition
152 * of an empty parametric polytope.
154 static __isl_give isl_vertices
*vertices_empty(__isl_keep isl_basic_set
*bset
)
156 isl_vertices
*vertices
;
162 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
164 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
167 vertices
->bset
= isl_basic_set_copy(bset
);
170 vertices
->n_vertices
= 0;
171 vertices
->n_chambers
= 0;
176 /* Compute the parametric vertices and the chamber decomposition
177 * of the parametric polytope defined using the same constraints
178 * as "bset" in the 0D case.
179 * There is exactly one 0D vertex and a single chamber containing
182 static __isl_give isl_vertices
*vertices_0D(__isl_keep isl_basic_set
*bset
)
184 isl_vertices
*vertices
;
190 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
192 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
196 vertices
->bset
= isl_basic_set_copy(bset
);
198 vertices
->v
= isl_calloc_array(bset
->ctx
, struct isl_vertex
, 1);
201 vertices
->n_vertices
= 1;
202 vertices
->v
[0].vertex
= isl_basic_set_copy(bset
);
203 vertices
->v
[0].dom
= isl_basic_set_params(isl_basic_set_copy(bset
));
204 if (!vertices
->v
[0].vertex
|| !vertices
->v
[0].dom
)
207 vertices
->c
= isl_calloc_array(bset
->ctx
, struct isl_chamber
, 1);
210 vertices
->n_chambers
= 1;
211 vertices
->c
[0].n_vertices
= 1;
212 vertices
->c
[0].vertices
= isl_calloc_array(bset
->ctx
, int, 1);
213 if (!vertices
->c
[0].vertices
)
215 vertices
->c
[0].dom
= isl_basic_set_copy(vertices
->v
[0].dom
);
216 if (!vertices
->c
[0].dom
)
221 isl_vertices_free(vertices
);
225 static int isl_mat_rank(__isl_keep isl_mat
*mat
)
230 H
= isl_mat_left_hermite(isl_mat_copy(mat
), 0, NULL
, NULL
);
234 for (col
= 0; col
< H
->n_col
; ++col
) {
235 for (row
= 0; row
< H
->n_row
; ++row
)
236 if (!isl_int_is_zero(H
->row
[row
][col
]))
247 /* Is the row pointed to by "f" linearly independent of the "n" first
250 static int is_independent(__isl_keep isl_mat
*facets
, int n
, isl_int
*f
)
254 if (isl_seq_first_non_zero(f
, facets
->n_col
) < 0)
257 isl_seq_cpy(facets
->row
[n
], f
, facets
->n_col
);
258 facets
->n_row
= n
+ 1;
259 rank
= isl_mat_rank(facets
);
263 return rank
== n
+ 1;
266 /* Check whether we can select constraint "level", given the current selection
267 * reflected by facets in "tab", the rows of "facets" and the earlier
268 * "selected" elements of "selection".
270 * If the constraint is (strictly) redundant in the tableau, selecting it would
271 * result in an empty tableau, so it can't be selected.
272 * If the set variable part of the constraint is not linearly indepedent
273 * of the set variable parts of the already selected constraints,
274 * the constraint cannot be selected.
275 * If selecting the constraint results in an empty tableau, the constraint
276 * cannot be selected.
277 * Finally, if selecting the constraint results in some explicitly
278 * deselected constraints turning into equalities, then the corresponding
279 * vertices have already been generated, so the constraint cannot be selected.
281 static int can_select(__isl_keep isl_basic_set
*bset
, int level
,
282 struct isl_tab
*tab
, __isl_keep isl_mat
*facets
, int selected
,
288 struct isl_tab_undo
*snap
;
290 if (isl_tab_is_redundant(tab
, level
))
293 ovar
= isl_space_offset(bset
->dim
, isl_dim_set
);
295 indep
= is_independent(facets
, selected
, bset
->ineq
[level
] + 1 + ovar
);
301 snap
= isl_tab_snap(tab
);
302 if (isl_tab_select_facet(tab
, level
) < 0)
306 if (isl_tab_rollback(tab
, snap
) < 0)
311 for (i
= 0; i
< level
; ++i
) {
314 if (selection
[i
] != DESELECTED
)
317 if (isl_tab_is_equality(tab
, i
))
319 else if (isl_tab_is_redundant(tab
, i
))
322 sgn
= isl_tab_sign_of_max(tab
, i
);
326 if (isl_tab_rollback(tab
, snap
) < 0)
335 /* Compute the parametric vertices and the chamber decomposition
336 * of a parametric polytope that is not full-dimensional.
338 * Simply map the parametric polytope to a lower dimensional space
339 * and map the resulting vertices back.
341 static __isl_give isl_vertices
*lower_dim_vertices(
342 __isl_keep isl_basic_set
*bset
)
345 isl_vertices
*vertices
;
347 bset
= isl_basic_set_copy(bset
);
348 morph
= isl_basic_set_full_compression(bset
);
349 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
351 vertices
= isl_basic_set_compute_vertices(bset
);
352 isl_basic_set_free(bset
);
354 morph
= isl_morph_inverse(morph
);
356 vertices
= isl_morph_vertices(morph
, vertices
);
361 /* Compute the parametric vertices and the chamber decomposition
362 * of the parametric polytope defined using the same constraints
363 * as "bset". "bset" is assumed to have no existentially quantified
366 * The vertices themselves are computed in a fairly simplistic way.
367 * We simply run through all combinations of d constraints,
368 * with d the number of set variables, and check if those d constraints
369 * define a vertex. To avoid the generation of duplicate vertices,
370 * which we may happen if a vertex is defined by more that d constraints,
371 * we make sure we only generate the vertex for the d constraints with
374 * We set up a tableau and keep track of which facets have been
375 * selected. The tableau is marked strict_redundant so that we can be
376 * sure that any constraint that is marked redundant (and that is not
377 * also marked zero) is not an equality.
378 * If a constraint is marked DESELECTED, it means the constraint was
379 * SELECTED before (in combination with the same selection of earlier
380 * constraints). If such a deselected constraint turns out to be an
381 * equality, then any vertex that may still be found with the current
382 * selection has already been generated when the constraint was selected.
383 * A constraint is marked UNSELECTED when there is no way selecting
384 * the constraint could lead to a vertex (in combination with the current
385 * selection of earlier constraints).
387 * The set variable coefficients of the selected constraints are stored
388 * in the facets matrix.
390 __isl_give isl_vertices
*isl_basic_set_compute_vertices(
391 __isl_keep isl_basic_set
*bset
)
397 int *selection
= NULL
;
399 struct isl_tab_undo
**snap
= NULL
;
400 isl_mat
*facets
= NULL
;
401 struct isl_vertex_list
*list
= NULL
;
403 isl_vertices
*vertices
;
408 if (isl_basic_set_plain_is_empty(bset
))
409 return vertices_empty(bset
);
412 return lower_dim_vertices(bset
);
414 isl_assert(bset
->ctx
, isl_basic_set_dim(bset
, isl_dim_div
) == 0,
417 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
418 return vertices_0D(bset
);
420 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
422 bset
= isl_basic_set_copy(bset
);
423 bset
= isl_basic_set_set_rational(bset
);
427 tab
= isl_tab_from_basic_set(bset
, 0);
430 tab
->strict_redundant
= 1;
433 vertices
= vertices_empty(bset
);
434 isl_basic_set_free(bset
);
439 selection
= isl_alloc_array(bset
->ctx
, int, bset
->n_ineq
);
440 snap
= isl_alloc_array(bset
->ctx
, struct isl_tab_undo
*, bset
->n_ineq
);
441 facets
= isl_mat_alloc(bset
->ctx
, nvar
, nvar
);
442 if ((bset
->n_ineq
&& (!selection
|| !snap
)) || !facets
)
450 if (level
>= bset
->n_ineq
||
451 (!init
&& selection
[level
] != SELECTED
)) {
458 snap
[level
] = isl_tab_snap(tab
);
459 ok
= can_select(bset
, level
, tab
, facets
, selected
,
464 selection
[level
] = SELECTED
;
467 selection
[level
] = UNSELECTED
;
469 selection
[level
] = DESELECTED
;
471 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
474 if (selected
== nvar
) {
475 if (tab
->n_dead
== nvar
) {
476 if (add_vertex(&list
, bset
, tab
) < 0)
487 isl_mat_free(facets
);
493 vertices
= vertices_from_list(bset
, n_vertices
, list
);
495 vertices
= compute_chambers(bset
, vertices
);
499 free_vertex_list(list
);
500 isl_mat_free(facets
);
504 isl_basic_set_free(bset
);
508 struct isl_chamber_list
{
509 struct isl_chamber c
;
510 struct isl_chamber_list
*next
;
513 static void free_chamber_list(struct isl_chamber_list
*list
)
515 struct isl_chamber_list
*next
;
517 for (; list
; list
= next
) {
519 isl_basic_set_free(list
->c
.dom
);
520 free(list
->c
.vertices
);
525 /* Check whether the basic set "bset" is a superset of the basic set described
526 * by "tab", i.e., check whether all constraints of "bset" are redundant.
528 static int bset_covers_tab(__isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
535 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
536 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, bset
->ineq
[i
]);
538 case isl_ineq_error
: return -1;
539 case isl_ineq_redundant
: continue;
547 static __isl_give isl_vertices
*vertices_add_chambers(
548 __isl_take isl_vertices
*vertices
, int n_chambers
,
549 struct isl_chamber_list
*list
)
553 struct isl_chamber_list
*next
;
555 ctx
= isl_vertices_get_ctx(vertices
);
556 vertices
->c
= isl_alloc_array(ctx
, struct isl_chamber
, n_chambers
);
559 vertices
->n_chambers
= n_chambers
;
561 for (i
= 0; list
; list
= next
, i
++) {
563 vertices
->c
[i
] = list
->c
;
569 isl_vertices_free(vertices
);
570 free_chamber_list(list
);
574 /* Can "tab" be intersected with "bset" without resulting in
575 * a lower-dimensional set.
577 static int can_intersect(struct isl_tab
*tab
, __isl_keep isl_basic_set
*bset
)
580 struct isl_tab_undo
*snap
;
582 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
585 snap
= isl_tab_snap(tab
);
587 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
588 if (isl_tab_ineq_type(tab
, bset
->ineq
[i
]) == isl_ineq_redundant
)
590 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
594 if (isl_tab_detect_implicit_equalities(tab
) < 0)
597 if (isl_tab_rollback(tab
, snap
) < 0)
605 static int add_chamber(struct isl_chamber_list
**list
,
606 __isl_keep isl_vertices
*vertices
, struct isl_tab
*tab
, int *selection
)
611 struct isl_tab_undo
*snap
;
612 struct isl_chamber_list
*c
= NULL
;
614 for (i
= 0; i
< vertices
->n_vertices
; ++i
)
618 snap
= isl_tab_snap(tab
);
620 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
621 tab
->con
[i
].frozen
= 0;
624 if (isl_tab_detect_redundant(tab
) < 0)
627 c
= isl_calloc_type(tab
->mat
->ctx
, struct isl_chamber_list
);
630 c
->c
.vertices
= isl_alloc_array(tab
->mat
->ctx
, int, n_vertices
);
631 if (n_vertices
&& !c
->c
.vertices
)
633 c
->c
.dom
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
634 c
->c
.dom
= isl_basic_set_set_rational(c
->c
.dom
);
635 c
->c
.dom
= isl_basic_set_cow(c
->c
.dom
);
636 c
->c
.dom
= isl_basic_set_update_from_tab(c
->c
.dom
, tab
);
637 c
->c
.dom
= isl_basic_set_simplify(c
->c
.dom
);
638 c
->c
.dom
= isl_basic_set_finalize(c
->c
.dom
);
642 c
->c
.n_vertices
= n_vertices
;
644 for (i
= 0, j
= 0; i
< vertices
->n_vertices
; ++i
)
646 c
->c
.vertices
[j
] = i
;
653 for (i
= 0; i
< n_frozen
; ++i
)
654 tab
->con
[i
].frozen
= 1;
656 if (isl_tab_rollback(tab
, snap
) < 0)
661 free_chamber_list(c
);
665 struct isl_facet_todo
{
666 struct isl_tab
*tab
; /* A tableau representation of the facet */
667 isl_basic_set
*bset
; /* A normalized basic set representation */
668 isl_vec
*constraint
; /* Constraint pointing to the other side */
669 struct isl_facet_todo
*next
;
672 static void free_todo(struct isl_facet_todo
*todo
)
675 struct isl_facet_todo
*next
= todo
->next
;
677 isl_tab_free(todo
->tab
);
678 isl_basic_set_free(todo
->bset
);
679 isl_vec_free(todo
->constraint
);
686 static struct isl_facet_todo
*create_todo(struct isl_tab
*tab
, int con
)
690 struct isl_tab_undo
*snap
;
691 struct isl_facet_todo
*todo
;
693 snap
= isl_tab_snap(tab
);
695 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
696 tab
->con
[i
].frozen
= 0;
699 if (isl_tab_detect_redundant(tab
) < 0)
702 todo
= isl_calloc_type(tab
->mat
->ctx
, struct isl_facet_todo
);
706 todo
->constraint
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
707 if (!todo
->constraint
)
709 isl_seq_neg(todo
->constraint
->el
, tab
->bmap
->ineq
[con
], 1 + tab
->n_var
);
710 todo
->bset
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
711 todo
->bset
= isl_basic_set_set_rational(todo
->bset
);
712 todo
->bset
= isl_basic_set_cow(todo
->bset
);
713 todo
->bset
= isl_basic_set_update_from_tab(todo
->bset
, tab
);
714 todo
->bset
= isl_basic_set_simplify(todo
->bset
);
715 todo
->bset
= isl_basic_set_sort_constraints(todo
->bset
);
718 ISL_F_SET(todo
->bset
, ISL_BASIC_SET_NORMALIZED
);
719 todo
->tab
= isl_tab_dup(tab
);
723 for (i
= 0; i
< n_frozen
; ++i
)
724 tab
->con
[i
].frozen
= 1;
726 if (isl_tab_rollback(tab
, snap
) < 0)
735 /* Create todo items for all interior facets of the chamber represented
736 * by "tab" and collect them in "next".
738 static int init_todo(struct isl_facet_todo
**next
, struct isl_tab
*tab
)
741 struct isl_tab_undo
*snap
;
742 struct isl_facet_todo
*todo
;
744 snap
= isl_tab_snap(tab
);
746 for (i
= 0; i
< tab
->n_con
; ++i
) {
747 if (tab
->con
[i
].frozen
)
749 if (tab
->con
[i
].is_redundant
)
752 if (isl_tab_select_facet(tab
, i
) < 0)
755 todo
= create_todo(tab
, i
);
762 if (isl_tab_rollback(tab
, snap
) < 0)
769 /* Does the linked list contain a todo item that is the opposite of "todo".
770 * If so, return 1 and remove the opposite todo item.
772 static int has_opposite(struct isl_facet_todo
*todo
,
773 struct isl_facet_todo
**list
)
775 for (; *list
; list
= &(*list
)->next
) {
777 eq
= isl_basic_set_plain_is_equal(todo
->bset
, (*list
)->bset
);
792 /* Create todo items for all interior facets of the chamber represented
793 * by "tab" and collect them in first->next, taking care to cancel
794 * opposite todo items.
796 static int update_todo(struct isl_facet_todo
*first
, struct isl_tab
*tab
)
799 struct isl_tab_undo
*snap
;
800 struct isl_facet_todo
*todo
;
802 snap
= isl_tab_snap(tab
);
804 for (i
= 0; i
< tab
->n_con
; ++i
) {
807 if (tab
->con
[i
].frozen
)
809 if (tab
->con
[i
].is_redundant
)
812 if (isl_tab_select_facet(tab
, i
) < 0)
815 todo
= create_todo(tab
, i
);
819 drop
= has_opposite(todo
, &first
->next
);
826 todo
->next
= first
->next
;
830 if (isl_tab_rollback(tab
, snap
) < 0)
837 /* Compute the chamber decomposition of the parametric polytope respresented
838 * by "bset" given the parametric vertices and their activity domains.
840 * We are only interested in full-dimensional chambers.
841 * Each of these chambers is the intersection of the activity domains of
842 * one or more vertices and the union of all chambers is equal to the
843 * projection of the entire parametric polytope onto the parameter space.
845 * We first create an initial chamber by intersecting as many activity
846 * domains as possible without ending up with an empty or lower-dimensional
847 * set. As a minor optimization, we only consider those activity domains
848 * that contain some arbitrary point.
850 * For each of interior facets of the chamber, we construct a todo item,
851 * containing the facet and a constraint containing the other side of the facet,
852 * for constructing the chamber on the other side.
853 * While their are any todo items left, we pick a todo item and
854 * create the required chamber by intersecting all activity domains
855 * that contain the facet and have a full-dimensional intersection with
856 * the other side of the facet. For each of the interior facets, we
857 * again create todo items, taking care to cancel opposite todo items.
859 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
860 __isl_take isl_vertices
*vertices
)
864 isl_vec
*sample
= NULL
;
865 struct isl_tab
*tab
= NULL
;
866 struct isl_tab_undo
*snap
;
867 int *selection
= NULL
;
869 struct isl_chamber_list
*list
= NULL
;
870 struct isl_facet_todo
*todo
= NULL
;
872 if (!bset
|| !vertices
)
875 ctx
= isl_vertices_get_ctx(vertices
);
876 selection
= isl_alloc_array(ctx
, int, vertices
->n_vertices
);
877 if (vertices
->n_vertices
&& !selection
)
880 bset
= isl_basic_set_params(bset
);
882 tab
= isl_tab_from_basic_set(bset
, 1);
885 for (i
= 0; i
< bset
->n_ineq
; ++i
)
886 if (isl_tab_freeze_constraint(tab
, i
) < 0)
888 isl_basic_set_free(bset
);
890 snap
= isl_tab_snap(tab
);
892 sample
= isl_tab_get_sample_value(tab
);
894 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
895 selection
[i
] = isl_basic_set_contains(vertices
->v
[i
].dom
, sample
);
896 if (selection
[i
] < 0)
900 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
901 if (selection
[i
] < 0)
905 if (isl_tab_detect_redundant(tab
) < 0)
908 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
912 if (init_todo(&todo
, tab
) < 0)
916 struct isl_facet_todo
*next
;
918 if (isl_tab_rollback(tab
, snap
) < 0)
921 if (isl_tab_add_ineq(tab
, todo
->constraint
->el
) < 0)
923 if (isl_tab_freeze_constraint(tab
, tab
->n_con
- 1) < 0)
926 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
927 selection
[i
] = bset_covers_tab(vertices
->v
[i
].dom
,
929 if (selection
[i
] < 0)
933 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
934 if (selection
[i
] < 0)
938 if (isl_tab_detect_redundant(tab
) < 0)
941 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
945 if (update_todo(todo
, tab
) < 0)
954 isl_vec_free(sample
);
959 vertices
= vertices_add_chambers(vertices
, n_chambers
, list
);
961 for (i
= 0; vertices
&& i
< vertices
->n_vertices
; ++i
) {
962 isl_basic_set_free(vertices
->v
[i
].dom
);
963 vertices
->v
[i
].dom
= NULL
;
968 free_chamber_list(list
);
970 isl_vec_free(sample
);
974 isl_basic_set_free(bset
);
975 isl_vertices_free(vertices
);
979 isl_ctx
*isl_vertex_get_ctx(__isl_keep isl_vertex
*vertex
)
981 return vertex
? isl_vertices_get_ctx(vertex
->vertices
) : NULL
;
984 int isl_vertex_get_id(__isl_keep isl_vertex
*vertex
)
986 return vertex
? vertex
->id
: -1;
989 __isl_give isl_basic_set
*isl_vertex_get_domain(__isl_keep isl_vertex
*vertex
)
991 struct isl_vertex
*v
;
996 v
= &vertex
->vertices
->v
[vertex
->id
];
998 v
->dom
= isl_basic_set_copy(v
->vertex
);
999 v
->dom
= isl_basic_set_params(v
->dom
);
1002 return isl_basic_set_copy(v
->dom
);
1005 __isl_give isl_basic_set
*isl_vertex_get_expr(__isl_keep isl_vertex
*vertex
)
1007 struct isl_vertex
*v
;
1012 v
= &vertex
->vertices
->v
[vertex
->id
];
1014 return isl_basic_set_copy(v
->vertex
);
1017 static __isl_give isl_vertex
*isl_vertex_alloc(__isl_take isl_vertices
*vertices
,
1026 ctx
= isl_vertices_get_ctx(vertices
);
1027 vertex
= isl_alloc_type(ctx
, isl_vertex
);
1031 vertex
->vertices
= vertices
;
1036 isl_vertices_free(vertices
);
1040 void isl_vertex_free(__isl_take isl_vertex
*vertex
)
1044 isl_vertices_free(vertex
->vertices
);
1048 __isl_give isl_basic_set
*isl_basic_set_set_integral(__isl_take isl_basic_set
*bset
)
1053 if (!ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
1056 bset
= isl_basic_set_cow(bset
);
1060 ISL_F_CLR(bset
, ISL_BASIC_MAP_RATIONAL
);
1062 return isl_basic_set_finalize(bset
);
1065 isl_ctx
*isl_cell_get_ctx(__isl_keep isl_cell
*cell
)
1067 return cell
? cell
->dom
->ctx
: NULL
;
1070 __isl_give isl_basic_set
*isl_cell_get_domain(__isl_keep isl_cell
*cell
)
1072 return cell
? isl_basic_set_copy(cell
->dom
) : NULL
;
1075 static __isl_give isl_cell
*isl_cell_alloc(__isl_take isl_vertices
*vertices
,
1076 __isl_take isl_basic_set
*dom
, int id
)
1079 isl_cell
*cell
= NULL
;
1081 if (!vertices
|| !dom
)
1084 cell
= isl_calloc_type(dom
->ctx
, isl_cell
);
1088 cell
->n_vertices
= vertices
->c
[id
].n_vertices
;
1089 cell
->ids
= isl_alloc_array(dom
->ctx
, int, cell
->n_vertices
);
1090 if (cell
->n_vertices
&& !cell
->ids
)
1092 for (i
= 0; i
< cell
->n_vertices
; ++i
)
1093 cell
->ids
[i
] = vertices
->c
[id
].vertices
[i
];
1094 cell
->vertices
= vertices
;
1099 isl_cell_free(cell
);
1100 isl_vertices_free(vertices
);
1101 isl_basic_set_free(dom
);
1105 void isl_cell_free(__isl_take isl_cell
*cell
)
1110 isl_vertices_free(cell
->vertices
);
1112 isl_basic_set_free(cell
->dom
);
1116 /* Create a tableau of the cone obtained by first homogenizing the given
1117 * polytope and then making all inequalities strict by setting the
1118 * constant term to -1.
1120 static struct isl_tab
*tab_for_shifted_cone(__isl_keep isl_basic_set
*bset
)
1124 struct isl_tab
*tab
;
1128 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_ineq
+ 1,
1129 1 + isl_basic_set_total_dim(bset
), 0);
1132 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
1133 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_EMPTY
)) {
1134 if (isl_tab_mark_empty(tab
) < 0)
1139 c
= isl_vec_alloc(bset
->ctx
, 1 + 1 + isl_basic_set_total_dim(bset
));
1143 isl_int_set_si(c
->el
[0], 0);
1144 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1145 isl_seq_cpy(c
->el
+ 1, bset
->eq
[i
], c
->size
- 1);
1146 if (isl_tab_add_eq(tab
, c
->el
) < 0)
1150 isl_int_set_si(c
->el
[0], -1);
1151 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1152 isl_seq_cpy(c
->el
+ 1, bset
->ineq
[i
], c
->size
- 1);
1153 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1161 isl_seq_clr(c
->el
+ 1, c
->size
- 1);
1162 isl_int_set_si(c
->el
[1], 1);
1163 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1174 /* Compute an interior point of "bset" by selecting an interior
1175 * point in homogeneous space and projecting the point back down.
1177 static __isl_give isl_vec
*isl_basic_set_interior_point(
1178 __isl_keep isl_basic_set
*bset
)
1181 struct isl_tab
*tab
;
1183 tab
= tab_for_shifted_cone(bset
);
1184 vec
= isl_tab_get_sample_value(tab
);
1189 isl_seq_cpy(vec
->el
, vec
->el
+ 1, vec
->size
- 1);
1195 /* Call "fn" on all chambers of the parametric polytope with the shared
1196 * facets of neighboring chambers only appearing in one of the chambers.
1198 * We pick an interior point from one of the chambers and then make
1199 * all constraints that do not satisfy this point strict.
1201 int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices
*vertices
,
1202 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1212 if (vertices
->n_chambers
== 0)
1215 if (vertices
->n_chambers
== 1) {
1216 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[0].dom
);
1217 dom
= isl_basic_set_set_integral(dom
);
1218 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, 0);
1221 return fn(cell
, user
);
1224 vec
= isl_basic_set_interior_point(vertices
->c
[0].dom
);
1230 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1232 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1233 dom
= isl_basic_set_cow(dom
);
1236 for (j
= 0; i
&& j
< dom
->n_ineq
; ++j
) {
1237 isl_seq_inner_product(vec
->el
, dom
->ineq
[j
], vec
->size
,
1239 if (!isl_int_is_neg(v
))
1241 isl_int_sub_ui(dom
->ineq
[j
][0], dom
->ineq
[j
][0], 1);
1243 dom
= isl_basic_set_set_integral(dom
);
1244 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1262 int isl_vertices_foreach_cell(__isl_keep isl_vertices
*vertices
,
1263 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1271 if (vertices
->n_chambers
== 0)
1274 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1276 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1278 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1290 int isl_vertices_foreach_vertex(__isl_keep isl_vertices
*vertices
,
1291 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1299 if (vertices
->n_vertices
== 0)
1302 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1305 vertex
= isl_vertex_alloc(isl_vertices_copy(vertices
), i
);
1309 r
= fn(vertex
, user
);
1317 int isl_cell_foreach_vertex(__isl_keep isl_cell
*cell
,
1318 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1326 if (cell
->n_vertices
== 0)
1329 for (i
= 0; i
< cell
->n_vertices
; ++i
) {
1332 vertex
= isl_vertex_alloc(isl_vertices_copy(cell
->vertices
),
1337 r
= fn(vertex
, user
);
1345 isl_ctx
*isl_vertices_get_ctx(__isl_keep isl_vertices
*vertices
)
1347 return vertices
? vertices
->bset
->ctx
: NULL
;
1350 int isl_vertices_get_n_vertices(__isl_keep isl_vertices
*vertices
)
1352 return vertices
? vertices
->n_vertices
: -1;
1355 __isl_give isl_vertices
*isl_morph_vertices(__isl_take isl_morph
*morph
,
1356 __isl_take isl_vertices
*vertices
)
1359 isl_morph
*param_morph
= NULL
;
1361 if (!morph
|| !vertices
)
1364 isl_assert(vertices
->bset
->ctx
, vertices
->ref
== 1, goto error
);
1366 param_morph
= isl_morph_copy(morph
);
1367 param_morph
= isl_morph_dom_params(param_morph
);
1368 param_morph
= isl_morph_ran_params(param_morph
);
1370 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1371 vertices
->v
[i
].dom
= isl_morph_basic_set(
1372 isl_morph_copy(param_morph
), vertices
->v
[i
].dom
);
1373 vertices
->v
[i
].vertex
= isl_morph_basic_set(
1374 isl_morph_copy(morph
), vertices
->v
[i
].vertex
);
1375 if (!vertices
->v
[i
].vertex
)
1379 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1380 vertices
->c
[i
].dom
= isl_morph_basic_set(
1381 isl_morph_copy(param_morph
), vertices
->c
[i
].dom
);
1382 if (!vertices
->c
[i
].dom
)
1386 isl_morph_free(param_morph
);
1387 isl_morph_free(morph
);
1390 isl_morph_free(param_morph
);
1391 isl_morph_free(morph
);
1392 isl_vertices_free(vertices
);
1396 /* Construct a simplex isl_cell spanned by the vertices with indices in
1397 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1399 static int call_on_simplex(__isl_keep isl_cell
*cell
,
1400 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1401 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1405 struct isl_cell
*simplex
;
1407 ctx
= isl_cell_get_ctx(cell
);
1409 simplex
= isl_calloc_type(ctx
, struct isl_cell
);
1412 simplex
->vertices
= isl_vertices_copy(cell
->vertices
);
1413 if (!simplex
->vertices
)
1415 simplex
->dom
= isl_basic_set_copy(cell
->dom
);
1418 simplex
->n_vertices
= n_simplex
+ n_other
;
1419 simplex
->ids
= isl_alloc_array(ctx
, int, simplex
->n_vertices
);
1423 for (i
= 0; i
< n_simplex
; ++i
)
1424 simplex
->ids
[i
] = simplex_ids
[i
];
1425 for (i
= 0; i
< n_other
; ++i
)
1426 simplex
->ids
[n_simplex
+ i
] = other_ids
[i
];
1428 return fn(simplex
, user
);
1430 isl_cell_free(simplex
);
1434 /* Check whether the parametric vertex described by "vertex"
1435 * lies on the facet corresponding to constraint "facet" of "bset".
1436 * The isl_vec "v" is a temporary vector than can be used by this function.
1438 * We eliminate the variables from the facet constraint using the
1439 * equalities defining the vertex and check if the result is identical
1442 * It would probably be better to keep track of the constraints defining
1443 * a vertex during the vertex construction so that we could simply look
1446 static int vertex_on_facet(__isl_keep isl_basic_set
*vertex
,
1447 __isl_keep isl_basic_set
*bset
, int facet
, __isl_keep isl_vec
*v
)
1452 isl_seq_cpy(v
->el
, bset
->ineq
[facet
], v
->size
);
1455 for (i
= 0; i
< vertex
->n_eq
; ++i
) {
1456 int k
= isl_seq_last_non_zero(vertex
->eq
[i
], v
->size
);
1457 isl_seq_elim(v
->el
, vertex
->eq
[i
], k
, v
->size
, &m
);
1461 return isl_seq_first_non_zero(v
->el
, v
->size
) == -1;
1464 /* Triangulate the polytope spanned by the vertices with ids
1465 * in "simplex_ids" and "other_ids" and call "fn" on each of
1466 * the resulting simplices.
1467 * If the input polytope is already a simplex, we simply call "fn".
1468 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1469 * Then we consider each facet of "bset" that does not contain the point
1470 * we just picked, but does contain some of the other points in "other_ids"
1471 * and call ourselves recursively on the polytope spanned by the new
1472 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1474 static int triangulate(__isl_keep isl_cell
*cell
, __isl_keep isl_vec
*v
,
1475 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1476 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1482 isl_basic_set
*vertex
;
1483 isl_basic_set
*bset
;
1485 ctx
= isl_cell_get_ctx(cell
);
1486 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1487 nparam
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_param
);
1489 if (n_simplex
+ n_other
== d
+ 1)
1490 return call_on_simplex(cell
, simplex_ids
, n_simplex
,
1491 other_ids
, n_other
, fn
, user
);
1493 simplex_ids
[n_simplex
] = other_ids
[0];
1494 vertex
= cell
->vertices
->v
[other_ids
[0]].vertex
;
1495 bset
= cell
->vertices
->bset
;
1497 ids
= isl_alloc_array(ctx
, int, n_other
- 1);
1498 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1499 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + nparam
, d
) == -1)
1501 if (vertex_on_facet(vertex
, bset
, i
, v
))
1504 for (j
= 1, k
= 0; j
< n_other
; ++j
) {
1506 ov
= cell
->vertices
->v
[other_ids
[j
]].vertex
;
1507 if (vertex_on_facet(ov
, bset
, i
, v
))
1508 ids
[k
++] = other_ids
[j
];
1513 if (triangulate(cell
, v
, simplex_ids
, n_simplex
+ 1,
1514 ids
, k
, fn
, user
) < 0)
1525 /* Triangulate the given cell and call "fn" on each of the resulting
1528 int isl_cell_foreach_simplex(__isl_take isl_cell
*cell
,
1529 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1535 int *simplex_ids
= NULL
;
1540 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1541 total
= isl_basic_set_total_dim(cell
->vertices
->bset
);
1543 if (cell
->n_vertices
== d
+ 1)
1544 return fn(cell
, user
);
1546 ctx
= isl_cell_get_ctx(cell
);
1547 simplex_ids
= isl_alloc_array(ctx
, int, d
+ 1);
1551 v
= isl_vec_alloc(ctx
, 1 + total
);
1555 r
= triangulate(cell
, v
, simplex_ids
, 0,
1556 cell
->ids
, cell
->n_vertices
, fn
, user
);
1561 isl_cell_free(cell
);
1567 isl_cell_free(cell
);