1 [P1, P2] -> { s0[In_1, P2, In_3, In_4, In_5, In_6] -> [In_1, P2, In_3, In_4, In_5, In_6] : (exists (e0 = [(8 + 4In_1 + 16In_3 + In_5)/9], e1 = [(12 - 4P1 + 9e0)/16], e2 = [(-2In_1 - 2In_3 + In_5)/3], e3 = [(-5P2 - 2In_4 + In_6)/9]: 3e2 = -2In_1 - 2In_3 + In_5 and 9e3 = -5P2 - 2In_4 + In_6 and P1 >= 0 and In_1 >= 1 + P1 and In_1 <= 3 and P2 >= 0 and P2 <= 3 and In_6 >= 0 and In_6 <= 3 and In_5 >= 0 and In_5 <= 3 and In_5 >= 1 - 4In_1 - 16In_3 and In_5 <= 126 - 4In_1 - 16In_3 and In_6 <= 126 - 4P2 - 16In_4 and 16e1 <= -4P1 + 9e0 and 2In_6 <= P2 + 4In_4 and 9e0 <= 3 + 4In_1 + 16In_3 + In_5 and 9e0 >= 4In_1 + 16In_3 + In_5 and 16e1 >= -3 - 4P1 + 9e0)) or (exists (e0 = [(8 + 4In_1 + 16In_3 + In_5)/9], e1 = [(12 - 4P1 + 9e0)/16], e2 = [(-2In_1 - 2In_3 + In_5)/3], e3 = [(-5P2 - 2In_4 + In_6)/9]: 3e2 = -2In_1 - 2In_3 + In_5 and 9e3 = -5P2 - 2In_4 + In_6 and In_1 >= 0 and In_1 <= -1 + P1 and P1 <= 3 and In_6 >= 0 and In_6 <= 3 and In_6 <= 1 + 2In_4 and P2 >= 0 and P2 <= 3 and In_5 >= 0 and In_5 <= 3 and In_5 >= 1 - 4In_1 - 16In_3 and In_5 <= 126 - 4In_1 - 16In_3 and In_6 <= 126 - 4P2 - 16In_4 and 16e1 <= -4P1 + 9e0 and 9e0 <= 3 + 4In_1 + 16In_3 + In_5 and 9e0 >= 4In_1 + 16In_3 + In_5 and 16e1 >= -3 - 4P1 + 9e0)) }
3 [P1, P2] -> { [i0, i1, i2, i3, i4, i5] -> atomic[o0] : o0 <= 4; [i0, i1, i2, i3, i4, i5] -> separate[o0] : o0 >= 5 }