2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 #include <isl_ctx_private.h>
13 #include <isl_mat_private.h>
14 #include <isl_vec_private.h>
15 #include "isl_map_private.h"
18 #include <isl_config.h>
21 * The implementation of tableaus in this file was inspired by Section 8
22 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
23 * prover for program checking".
26 struct isl_tab
*isl_tab_alloc(struct isl_ctx
*ctx
,
27 unsigned n_row
, unsigned n_var
, unsigned M
)
33 tab
= isl_calloc_type(ctx
, struct isl_tab
);
36 tab
->mat
= isl_mat_alloc(ctx
, n_row
, off
+ n_var
);
39 tab
->var
= isl_alloc_array(ctx
, struct isl_tab_var
, n_var
);
40 if (n_var
&& !tab
->var
)
42 tab
->con
= isl_alloc_array(ctx
, struct isl_tab_var
, n_row
);
43 if (n_row
&& !tab
->con
)
45 tab
->col_var
= isl_alloc_array(ctx
, int, n_var
);
46 if (n_var
&& !tab
->col_var
)
48 tab
->row_var
= isl_alloc_array(ctx
, int, n_row
);
49 if (n_row
&& !tab
->row_var
)
51 for (i
= 0; i
< n_var
; ++i
) {
52 tab
->var
[i
].index
= i
;
53 tab
->var
[i
].is_row
= 0;
54 tab
->var
[i
].is_nonneg
= 0;
55 tab
->var
[i
].is_zero
= 0;
56 tab
->var
[i
].is_redundant
= 0;
57 tab
->var
[i
].frozen
= 0;
58 tab
->var
[i
].negated
= 0;
72 tab
->strict_redundant
= 0;
79 tab
->bottom
.type
= isl_tab_undo_bottom
;
80 tab
->bottom
.next
= NULL
;
81 tab
->top
= &tab
->bottom
;
93 isl_ctx
*isl_tab_get_ctx(struct isl_tab
*tab
)
95 return tab
? isl_mat_get_ctx(tab
->mat
) : NULL
;
98 int isl_tab_extend_cons(struct isl_tab
*tab
, unsigned n_new
)
107 if (tab
->max_con
< tab
->n_con
+ n_new
) {
108 struct isl_tab_var
*con
;
110 con
= isl_realloc_array(tab
->mat
->ctx
, tab
->con
,
111 struct isl_tab_var
, tab
->max_con
+ n_new
);
115 tab
->max_con
+= n_new
;
117 if (tab
->mat
->n_row
< tab
->n_row
+ n_new
) {
120 tab
->mat
= isl_mat_extend(tab
->mat
,
121 tab
->n_row
+ n_new
, off
+ tab
->n_col
);
124 row_var
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_var
,
125 int, tab
->mat
->n_row
);
128 tab
->row_var
= row_var
;
130 enum isl_tab_row_sign
*s
;
131 s
= isl_realloc_array(tab
->mat
->ctx
, tab
->row_sign
,
132 enum isl_tab_row_sign
, tab
->mat
->n_row
);
141 /* Make room for at least n_new extra variables.
142 * Return -1 if anything went wrong.
144 int isl_tab_extend_vars(struct isl_tab
*tab
, unsigned n_new
)
146 struct isl_tab_var
*var
;
147 unsigned off
= 2 + tab
->M
;
149 if (tab
->max_var
< tab
->n_var
+ n_new
) {
150 var
= isl_realloc_array(tab
->mat
->ctx
, tab
->var
,
151 struct isl_tab_var
, tab
->n_var
+ n_new
);
155 tab
->max_var
+= n_new
;
158 if (tab
->mat
->n_col
< off
+ tab
->n_col
+ n_new
) {
161 tab
->mat
= isl_mat_extend(tab
->mat
,
162 tab
->mat
->n_row
, off
+ tab
->n_col
+ n_new
);
165 p
= isl_realloc_array(tab
->mat
->ctx
, tab
->col_var
,
166 int, tab
->n_col
+ n_new
);
175 static void free_undo_record(struct isl_tab_undo
*undo
)
177 switch (undo
->type
) {
178 case isl_tab_undo_saved_basis
:
179 free(undo
->u
.col_var
);
186 static void free_undo(struct isl_tab
*tab
)
188 struct isl_tab_undo
*undo
, *next
;
190 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
192 free_undo_record(undo
);
197 void isl_tab_free(struct isl_tab
*tab
)
202 isl_mat_free(tab
->mat
);
203 isl_vec_free(tab
->dual
);
204 isl_basic_map_free(tab
->bmap
);
210 isl_mat_free(tab
->samples
);
211 free(tab
->sample_index
);
212 isl_mat_free(tab
->basis
);
216 struct isl_tab
*isl_tab_dup(struct isl_tab
*tab
)
226 dup
= isl_calloc_type(tab
->mat
->ctx
, struct isl_tab
);
229 dup
->mat
= isl_mat_dup(tab
->mat
);
232 dup
->var
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_var
);
233 if (tab
->max_var
&& !dup
->var
)
235 for (i
= 0; i
< tab
->n_var
; ++i
)
236 dup
->var
[i
] = tab
->var
[i
];
237 dup
->con
= isl_alloc_array(tab
->mat
->ctx
, struct isl_tab_var
, tab
->max_con
);
238 if (tab
->max_con
&& !dup
->con
)
240 for (i
= 0; i
< tab
->n_con
; ++i
)
241 dup
->con
[i
] = tab
->con
[i
];
242 dup
->col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_col
- off
);
243 if ((tab
->mat
->n_col
- off
) && !dup
->col_var
)
245 for (i
= 0; i
< tab
->n_col
; ++i
)
246 dup
->col_var
[i
] = tab
->col_var
[i
];
247 dup
->row_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->mat
->n_row
);
248 if (tab
->mat
->n_row
&& !dup
->row_var
)
250 for (i
= 0; i
< tab
->n_row
; ++i
)
251 dup
->row_var
[i
] = tab
->row_var
[i
];
253 dup
->row_sign
= isl_alloc_array(tab
->mat
->ctx
, enum isl_tab_row_sign
,
255 if (tab
->mat
->n_row
&& !dup
->row_sign
)
257 for (i
= 0; i
< tab
->n_row
; ++i
)
258 dup
->row_sign
[i
] = tab
->row_sign
[i
];
261 dup
->samples
= isl_mat_dup(tab
->samples
);
264 dup
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int,
265 tab
->samples
->n_row
);
266 if (tab
->samples
->n_row
&& !dup
->sample_index
)
268 dup
->n_sample
= tab
->n_sample
;
269 dup
->n_outside
= tab
->n_outside
;
271 dup
->n_row
= tab
->n_row
;
272 dup
->n_con
= tab
->n_con
;
273 dup
->n_eq
= tab
->n_eq
;
274 dup
->max_con
= tab
->max_con
;
275 dup
->n_col
= tab
->n_col
;
276 dup
->n_var
= tab
->n_var
;
277 dup
->max_var
= tab
->max_var
;
278 dup
->n_param
= tab
->n_param
;
279 dup
->n_div
= tab
->n_div
;
280 dup
->n_dead
= tab
->n_dead
;
281 dup
->n_redundant
= tab
->n_redundant
;
282 dup
->rational
= tab
->rational
;
283 dup
->empty
= tab
->empty
;
284 dup
->strict_redundant
= 0;
288 tab
->cone
= tab
->cone
;
289 dup
->bottom
.type
= isl_tab_undo_bottom
;
290 dup
->bottom
.next
= NULL
;
291 dup
->top
= &dup
->bottom
;
293 dup
->n_zero
= tab
->n_zero
;
294 dup
->n_unbounded
= tab
->n_unbounded
;
295 dup
->basis
= isl_mat_dup(tab
->basis
);
303 /* Construct the coefficient matrix of the product tableau
305 * mat{1,2} is the coefficient matrix of tableau {1,2}
306 * row{1,2} is the number of rows in tableau {1,2}
307 * col{1,2} is the number of columns in tableau {1,2}
308 * off is the offset to the coefficient column (skipping the
309 * denominator, the constant term and the big parameter if any)
310 * r{1,2} is the number of redundant rows in tableau {1,2}
311 * d{1,2} is the number of dead columns in tableau {1,2}
313 * The order of the rows and columns in the result is as explained
314 * in isl_tab_product.
316 static struct isl_mat
*tab_mat_product(struct isl_mat
*mat1
,
317 struct isl_mat
*mat2
, unsigned row1
, unsigned row2
,
318 unsigned col1
, unsigned col2
,
319 unsigned off
, unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
322 struct isl_mat
*prod
;
325 prod
= isl_mat_alloc(mat1
->ctx
, mat1
->n_row
+ mat2
->n_row
,
331 for (i
= 0; i
< r1
; ++i
) {
332 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[i
], off
+ d1
);
333 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
334 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
335 mat1
->row
[i
] + off
+ d1
, col1
- d1
);
336 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
340 for (i
= 0; i
< r2
; ++i
) {
341 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[i
], off
);
342 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
343 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
344 mat2
->row
[i
] + off
, d2
);
345 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
346 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
347 mat2
->row
[i
] + off
+ d2
, col2
- d2
);
351 for (i
= 0; i
< row1
- r1
; ++i
) {
352 isl_seq_cpy(prod
->row
[n
+ i
], mat1
->row
[r1
+ i
], off
+ d1
);
353 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
, d2
);
354 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
+ d2
,
355 mat1
->row
[r1
+ i
] + off
+ d1
, col1
- d1
);
356 isl_seq_clr(prod
->row
[n
+ i
] + off
+ col1
+ d1
, col2
- d2
);
360 for (i
= 0; i
< row2
- r2
; ++i
) {
361 isl_seq_cpy(prod
->row
[n
+ i
], mat2
->row
[r2
+ i
], off
);
362 isl_seq_clr(prod
->row
[n
+ i
] + off
, d1
);
363 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ d1
,
364 mat2
->row
[r2
+ i
] + off
, d2
);
365 isl_seq_clr(prod
->row
[n
+ i
] + off
+ d1
+ d2
, col1
- d1
);
366 isl_seq_cpy(prod
->row
[n
+ i
] + off
+ col1
+ d1
,
367 mat2
->row
[r2
+ i
] + off
+ d2
, col2
- d2
);
373 /* Update the row or column index of a variable that corresponds
374 * to a variable in the first input tableau.
376 static void update_index1(struct isl_tab_var
*var
,
377 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
379 if (var
->index
== -1)
381 if (var
->is_row
&& var
->index
>= r1
)
383 if (!var
->is_row
&& var
->index
>= d1
)
387 /* Update the row or column index of a variable that corresponds
388 * to a variable in the second input tableau.
390 static void update_index2(struct isl_tab_var
*var
,
391 unsigned row1
, unsigned col1
,
392 unsigned r1
, unsigned r2
, unsigned d1
, unsigned d2
)
394 if (var
->index
== -1)
409 /* Create a tableau that represents the Cartesian product of the sets
410 * represented by tableaus tab1 and tab2.
411 * The order of the rows in the product is
412 * - redundant rows of tab1
413 * - redundant rows of tab2
414 * - non-redundant rows of tab1
415 * - non-redundant rows of tab2
416 * The order of the columns is
419 * - coefficient of big parameter, if any
420 * - dead columns of tab1
421 * - dead columns of tab2
422 * - live columns of tab1
423 * - live columns of tab2
424 * The order of the variables and the constraints is a concatenation
425 * of order in the two input tableaus.
427 struct isl_tab
*isl_tab_product(struct isl_tab
*tab1
, struct isl_tab
*tab2
)
430 struct isl_tab
*prod
;
432 unsigned r1
, r2
, d1
, d2
;
437 isl_assert(tab1
->mat
->ctx
, tab1
->M
== tab2
->M
, return NULL
);
438 isl_assert(tab1
->mat
->ctx
, tab1
->rational
== tab2
->rational
, return NULL
);
439 isl_assert(tab1
->mat
->ctx
, tab1
->cone
== tab2
->cone
, return NULL
);
440 isl_assert(tab1
->mat
->ctx
, !tab1
->row_sign
, return NULL
);
441 isl_assert(tab1
->mat
->ctx
, !tab2
->row_sign
, return NULL
);
442 isl_assert(tab1
->mat
->ctx
, tab1
->n_param
== 0, return NULL
);
443 isl_assert(tab1
->mat
->ctx
, tab2
->n_param
== 0, return NULL
);
444 isl_assert(tab1
->mat
->ctx
, tab1
->n_div
== 0, return NULL
);
445 isl_assert(tab1
->mat
->ctx
, tab2
->n_div
== 0, return NULL
);
448 r1
= tab1
->n_redundant
;
449 r2
= tab2
->n_redundant
;
452 prod
= isl_calloc_type(tab1
->mat
->ctx
, struct isl_tab
);
455 prod
->mat
= tab_mat_product(tab1
->mat
, tab2
->mat
,
456 tab1
->n_row
, tab2
->n_row
,
457 tab1
->n_col
, tab2
->n_col
, off
, r1
, r2
, d1
, d2
);
460 prod
->var
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
461 tab1
->max_var
+ tab2
->max_var
);
462 if ((tab1
->max_var
+ tab2
->max_var
) && !prod
->var
)
464 for (i
= 0; i
< tab1
->n_var
; ++i
) {
465 prod
->var
[i
] = tab1
->var
[i
];
466 update_index1(&prod
->var
[i
], r1
, r2
, d1
, d2
);
468 for (i
= 0; i
< tab2
->n_var
; ++i
) {
469 prod
->var
[tab1
->n_var
+ i
] = tab2
->var
[i
];
470 update_index2(&prod
->var
[tab1
->n_var
+ i
],
471 tab1
->n_row
, tab1
->n_col
,
474 prod
->con
= isl_alloc_array(tab1
->mat
->ctx
, struct isl_tab_var
,
475 tab1
->max_con
+ tab2
->max_con
);
476 if ((tab1
->max_con
+ tab2
->max_con
) && !prod
->con
)
478 for (i
= 0; i
< tab1
->n_con
; ++i
) {
479 prod
->con
[i
] = tab1
->con
[i
];
480 update_index1(&prod
->con
[i
], r1
, r2
, d1
, d2
);
482 for (i
= 0; i
< tab2
->n_con
; ++i
) {
483 prod
->con
[tab1
->n_con
+ i
] = tab2
->con
[i
];
484 update_index2(&prod
->con
[tab1
->n_con
+ i
],
485 tab1
->n_row
, tab1
->n_col
,
488 prod
->col_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
489 tab1
->n_col
+ tab2
->n_col
);
490 if ((tab1
->n_col
+ tab2
->n_col
) && !prod
->col_var
)
492 for (i
= 0; i
< tab1
->n_col
; ++i
) {
493 int pos
= i
< d1
? i
: i
+ d2
;
494 prod
->col_var
[pos
] = tab1
->col_var
[i
];
496 for (i
= 0; i
< tab2
->n_col
; ++i
) {
497 int pos
= i
< d2
? d1
+ i
: tab1
->n_col
+ i
;
498 int t
= tab2
->col_var
[i
];
503 prod
->col_var
[pos
] = t
;
505 prod
->row_var
= isl_alloc_array(tab1
->mat
->ctx
, int,
506 tab1
->mat
->n_row
+ tab2
->mat
->n_row
);
507 if ((tab1
->mat
->n_row
+ tab2
->mat
->n_row
) && !prod
->row_var
)
509 for (i
= 0; i
< tab1
->n_row
; ++i
) {
510 int pos
= i
< r1
? i
: i
+ r2
;
511 prod
->row_var
[pos
] = tab1
->row_var
[i
];
513 for (i
= 0; i
< tab2
->n_row
; ++i
) {
514 int pos
= i
< r2
? r1
+ i
: tab1
->n_row
+ i
;
515 int t
= tab2
->row_var
[i
];
520 prod
->row_var
[pos
] = t
;
522 prod
->samples
= NULL
;
523 prod
->sample_index
= NULL
;
524 prod
->n_row
= tab1
->n_row
+ tab2
->n_row
;
525 prod
->n_con
= tab1
->n_con
+ tab2
->n_con
;
527 prod
->max_con
= tab1
->max_con
+ tab2
->max_con
;
528 prod
->n_col
= tab1
->n_col
+ tab2
->n_col
;
529 prod
->n_var
= tab1
->n_var
+ tab2
->n_var
;
530 prod
->max_var
= tab1
->max_var
+ tab2
->max_var
;
533 prod
->n_dead
= tab1
->n_dead
+ tab2
->n_dead
;
534 prod
->n_redundant
= tab1
->n_redundant
+ tab2
->n_redundant
;
535 prod
->rational
= tab1
->rational
;
536 prod
->empty
= tab1
->empty
|| tab2
->empty
;
537 prod
->strict_redundant
= tab1
->strict_redundant
|| tab2
->strict_redundant
;
541 prod
->cone
= tab1
->cone
;
542 prod
->bottom
.type
= isl_tab_undo_bottom
;
543 prod
->bottom
.next
= NULL
;
544 prod
->top
= &prod
->bottom
;
547 prod
->n_unbounded
= 0;
556 static struct isl_tab_var
*var_from_index(struct isl_tab
*tab
, int i
)
561 return &tab
->con
[~i
];
564 struct isl_tab_var
*isl_tab_var_from_row(struct isl_tab
*tab
, int i
)
566 return var_from_index(tab
, tab
->row_var
[i
]);
569 static struct isl_tab_var
*var_from_col(struct isl_tab
*tab
, int i
)
571 return var_from_index(tab
, tab
->col_var
[i
]);
574 /* Check if there are any upper bounds on column variable "var",
575 * i.e., non-negative rows where var appears with a negative coefficient.
576 * Return 1 if there are no such bounds.
578 static int max_is_manifestly_unbounded(struct isl_tab
*tab
,
579 struct isl_tab_var
*var
)
582 unsigned off
= 2 + tab
->M
;
586 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
587 if (!isl_int_is_neg(tab
->mat
->row
[i
][off
+ var
->index
]))
589 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
595 /* Check if there are any lower bounds on column variable "var",
596 * i.e., non-negative rows where var appears with a positive coefficient.
597 * Return 1 if there are no such bounds.
599 static int min_is_manifestly_unbounded(struct isl_tab
*tab
,
600 struct isl_tab_var
*var
)
603 unsigned off
= 2 + tab
->M
;
607 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
608 if (!isl_int_is_pos(tab
->mat
->row
[i
][off
+ var
->index
]))
610 if (isl_tab_var_from_row(tab
, i
)->is_nonneg
)
616 static int row_cmp(struct isl_tab
*tab
, int r1
, int r2
, int c
, isl_int t
)
618 unsigned off
= 2 + tab
->M
;
622 isl_int_mul(t
, tab
->mat
->row
[r1
][2], tab
->mat
->row
[r2
][off
+c
]);
623 isl_int_submul(t
, tab
->mat
->row
[r2
][2], tab
->mat
->row
[r1
][off
+c
]);
628 isl_int_mul(t
, tab
->mat
->row
[r1
][1], tab
->mat
->row
[r2
][off
+ c
]);
629 isl_int_submul(t
, tab
->mat
->row
[r2
][1], tab
->mat
->row
[r1
][off
+ c
]);
630 return isl_int_sgn(t
);
633 /* Given the index of a column "c", return the index of a row
634 * that can be used to pivot the column in, with either an increase
635 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
636 * If "var" is not NULL, then the row returned will be different from
637 * the one associated with "var".
639 * Each row in the tableau is of the form
641 * x_r = a_r0 + \sum_i a_ri x_i
643 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
644 * impose any limit on the increase or decrease in the value of x_c
645 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
646 * for the row with the smallest (most stringent) such bound.
647 * Note that the common denominator of each row drops out of the fraction.
648 * To check if row j has a smaller bound than row r, i.e.,
649 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
650 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
651 * where -sign(a_jc) is equal to "sgn".
653 static int pivot_row(struct isl_tab
*tab
,
654 struct isl_tab_var
*var
, int sgn
, int c
)
658 unsigned off
= 2 + tab
->M
;
662 for (j
= tab
->n_redundant
; j
< tab
->n_row
; ++j
) {
663 if (var
&& j
== var
->index
)
665 if (!isl_tab_var_from_row(tab
, j
)->is_nonneg
)
667 if (sgn
* isl_int_sgn(tab
->mat
->row
[j
][off
+ c
]) >= 0)
673 tsgn
= sgn
* row_cmp(tab
, r
, j
, c
, t
);
674 if (tsgn
< 0 || (tsgn
== 0 &&
675 tab
->row_var
[j
] < tab
->row_var
[r
]))
682 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
683 * (sgn < 0) the value of row variable var.
684 * If not NULL, then skip_var is a row variable that should be ignored
685 * while looking for a pivot row. It is usually equal to var.
687 * As the given row in the tableau is of the form
689 * x_r = a_r0 + \sum_i a_ri x_i
691 * we need to find a column such that the sign of a_ri is equal to "sgn"
692 * (such that an increase in x_i will have the desired effect) or a
693 * column with a variable that may attain negative values.
694 * If a_ri is positive, then we need to move x_i in the same direction
695 * to obtain the desired effect. Otherwise, x_i has to move in the
696 * opposite direction.
698 static void find_pivot(struct isl_tab
*tab
,
699 struct isl_tab_var
*var
, struct isl_tab_var
*skip_var
,
700 int sgn
, int *row
, int *col
)
707 isl_assert(tab
->mat
->ctx
, var
->is_row
, return);
708 tr
= tab
->mat
->row
[var
->index
] + 2 + tab
->M
;
711 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
712 if (isl_int_is_zero(tr
[j
]))
714 if (isl_int_sgn(tr
[j
]) != sgn
&&
715 var_from_col(tab
, j
)->is_nonneg
)
717 if (c
< 0 || tab
->col_var
[j
] < tab
->col_var
[c
])
723 sgn
*= isl_int_sgn(tr
[c
]);
724 r
= pivot_row(tab
, skip_var
, sgn
, c
);
725 *row
= r
< 0 ? var
->index
: r
;
729 /* Return 1 if row "row" represents an obviously redundant inequality.
731 * - it represents an inequality or a variable
732 * - that is the sum of a non-negative sample value and a positive
733 * combination of zero or more non-negative constraints.
735 int isl_tab_row_is_redundant(struct isl_tab
*tab
, int row
)
738 unsigned off
= 2 + tab
->M
;
740 if (tab
->row_var
[row
] < 0 && !isl_tab_var_from_row(tab
, row
)->is_nonneg
)
743 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
745 if (tab
->strict_redundant
&& isl_int_is_zero(tab
->mat
->row
[row
][1]))
747 if (tab
->M
&& isl_int_is_neg(tab
->mat
->row
[row
][2]))
750 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
751 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ i
]))
753 if (tab
->col_var
[i
] >= 0)
755 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ i
]))
757 if (!var_from_col(tab
, i
)->is_nonneg
)
763 static void swap_rows(struct isl_tab
*tab
, int row1
, int row2
)
766 enum isl_tab_row_sign s
;
768 t
= tab
->row_var
[row1
];
769 tab
->row_var
[row1
] = tab
->row_var
[row2
];
770 tab
->row_var
[row2
] = t
;
771 isl_tab_var_from_row(tab
, row1
)->index
= row1
;
772 isl_tab_var_from_row(tab
, row2
)->index
= row2
;
773 tab
->mat
= isl_mat_swap_rows(tab
->mat
, row1
, row2
);
777 s
= tab
->row_sign
[row1
];
778 tab
->row_sign
[row1
] = tab
->row_sign
[row2
];
779 tab
->row_sign
[row2
] = s
;
782 static int push_union(struct isl_tab
*tab
,
783 enum isl_tab_undo_type type
, union isl_tab_undo_val u
) WARN_UNUSED
;
784 static int push_union(struct isl_tab
*tab
,
785 enum isl_tab_undo_type type
, union isl_tab_undo_val u
)
787 struct isl_tab_undo
*undo
;
794 undo
= isl_alloc_type(tab
->mat
->ctx
, struct isl_tab_undo
);
799 undo
->next
= tab
->top
;
805 int isl_tab_push_var(struct isl_tab
*tab
,
806 enum isl_tab_undo_type type
, struct isl_tab_var
*var
)
808 union isl_tab_undo_val u
;
810 u
.var_index
= tab
->row_var
[var
->index
];
812 u
.var_index
= tab
->col_var
[var
->index
];
813 return push_union(tab
, type
, u
);
816 int isl_tab_push(struct isl_tab
*tab
, enum isl_tab_undo_type type
)
818 union isl_tab_undo_val u
= { 0 };
819 return push_union(tab
, type
, u
);
822 /* Push a record on the undo stack describing the current basic
823 * variables, so that the this state can be restored during rollback.
825 int isl_tab_push_basis(struct isl_tab
*tab
)
828 union isl_tab_undo_val u
;
830 u
.col_var
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
831 if (tab
->n_col
&& !u
.col_var
)
833 for (i
= 0; i
< tab
->n_col
; ++i
)
834 u
.col_var
[i
] = tab
->col_var
[i
];
835 return push_union(tab
, isl_tab_undo_saved_basis
, u
);
838 int isl_tab_push_callback(struct isl_tab
*tab
, struct isl_tab_callback
*callback
)
840 union isl_tab_undo_val u
;
841 u
.callback
= callback
;
842 return push_union(tab
, isl_tab_undo_callback
, u
);
845 struct isl_tab
*isl_tab_init_samples(struct isl_tab
*tab
)
852 tab
->samples
= isl_mat_alloc(tab
->mat
->ctx
, 1, 1 + tab
->n_var
);
855 tab
->sample_index
= isl_alloc_array(tab
->mat
->ctx
, int, 1);
856 if (!tab
->sample_index
)
864 int isl_tab_add_sample(struct isl_tab
*tab
, __isl_take isl_vec
*sample
)
869 if (tab
->n_sample
+ 1 > tab
->samples
->n_row
) {
870 int *t
= isl_realloc_array(tab
->mat
->ctx
,
871 tab
->sample_index
, int, tab
->n_sample
+ 1);
874 tab
->sample_index
= t
;
877 tab
->samples
= isl_mat_extend(tab
->samples
,
878 tab
->n_sample
+ 1, tab
->samples
->n_col
);
882 isl_seq_cpy(tab
->samples
->row
[tab
->n_sample
], sample
->el
, sample
->size
);
883 isl_vec_free(sample
);
884 tab
->sample_index
[tab
->n_sample
] = tab
->n_sample
;
889 isl_vec_free(sample
);
893 struct isl_tab
*isl_tab_drop_sample(struct isl_tab
*tab
, int s
)
895 if (s
!= tab
->n_outside
) {
896 int t
= tab
->sample_index
[tab
->n_outside
];
897 tab
->sample_index
[tab
->n_outside
] = tab
->sample_index
[s
];
898 tab
->sample_index
[s
] = t
;
899 isl_mat_swap_rows(tab
->samples
, tab
->n_outside
, s
);
902 if (isl_tab_push(tab
, isl_tab_undo_drop_sample
) < 0) {
910 /* Record the current number of samples so that we can remove newer
911 * samples during a rollback.
913 int isl_tab_save_samples(struct isl_tab
*tab
)
915 union isl_tab_undo_val u
;
921 return push_union(tab
, isl_tab_undo_saved_samples
, u
);
924 /* Mark row with index "row" as being redundant.
925 * If we may need to undo the operation or if the row represents
926 * a variable of the original problem, the row is kept,
927 * but no longer considered when looking for a pivot row.
928 * Otherwise, the row is simply removed.
930 * The row may be interchanged with some other row. If it
931 * is interchanged with a later row, return 1. Otherwise return 0.
932 * If the rows are checked in order in the calling function,
933 * then a return value of 1 means that the row with the given
934 * row number may now contain a different row that hasn't been checked yet.
936 int isl_tab_mark_redundant(struct isl_tab
*tab
, int row
)
938 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, row
);
939 var
->is_redundant
= 1;
940 isl_assert(tab
->mat
->ctx
, row
>= tab
->n_redundant
, return -1);
941 if (tab
->preserve
|| tab
->need_undo
|| tab
->row_var
[row
] >= 0) {
942 if (tab
->row_var
[row
] >= 0 && !var
->is_nonneg
) {
944 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, var
) < 0)
947 if (row
!= tab
->n_redundant
)
948 swap_rows(tab
, row
, tab
->n_redundant
);
950 return isl_tab_push_var(tab
, isl_tab_undo_redundant
, var
);
952 if (row
!= tab
->n_row
- 1)
953 swap_rows(tab
, row
, tab
->n_row
- 1);
954 isl_tab_var_from_row(tab
, tab
->n_row
- 1)->index
= -1;
960 int isl_tab_mark_empty(struct isl_tab
*tab
)
964 if (!tab
->empty
&& tab
->need_undo
)
965 if (isl_tab_push(tab
, isl_tab_undo_empty
) < 0)
971 int isl_tab_freeze_constraint(struct isl_tab
*tab
, int con
)
973 struct isl_tab_var
*var
;
978 var
= &tab
->con
[con
];
986 return isl_tab_push_var(tab
, isl_tab_undo_freeze
, var
);
991 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
992 * the original sign of the pivot element.
993 * We only keep track of row signs during PILP solving and in this case
994 * we only pivot a row with negative sign (meaning the value is always
995 * non-positive) using a positive pivot element.
997 * For each row j, the new value of the parametric constant is equal to
999 * a_j0 - a_jc a_r0/a_rc
1001 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1002 * a_r0 is the parametric constant of the pivot row and a_jc is the
1003 * pivot column entry of the row j.
1004 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1005 * remains the same if a_jc has the same sign as the row j or if
1006 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1008 static void update_row_sign(struct isl_tab
*tab
, int row
, int col
, int row_sgn
)
1011 struct isl_mat
*mat
= tab
->mat
;
1012 unsigned off
= 2 + tab
->M
;
1017 if (tab
->row_sign
[row
] == 0)
1019 isl_assert(mat
->ctx
, row_sgn
> 0, return);
1020 isl_assert(mat
->ctx
, tab
->row_sign
[row
] == isl_tab_row_neg
, return);
1021 tab
->row_sign
[row
] = isl_tab_row_pos
;
1022 for (i
= 0; i
< tab
->n_row
; ++i
) {
1026 s
= isl_int_sgn(mat
->row
[i
][off
+ col
]);
1029 if (!tab
->row_sign
[i
])
1031 if (s
< 0 && tab
->row_sign
[i
] == isl_tab_row_neg
)
1033 if (s
> 0 && tab
->row_sign
[i
] == isl_tab_row_pos
)
1035 tab
->row_sign
[i
] = isl_tab_row_unknown
;
1039 /* Given a row number "row" and a column number "col", pivot the tableau
1040 * such that the associated variables are interchanged.
1041 * The given row in the tableau expresses
1043 * x_r = a_r0 + \sum_i a_ri x_i
1047 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1049 * Substituting this equality into the other rows
1051 * x_j = a_j0 + \sum_i a_ji x_i
1053 * with a_jc \ne 0, we obtain
1055 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1062 * where i is any other column and j is any other row,
1063 * is therefore transformed into
1065 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1066 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1068 * The transformation is performed along the following steps
1070 * d_r/n_rc n_ri/n_rc
1073 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1076 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1077 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1079 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1080 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1082 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1083 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1085 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1086 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1089 int isl_tab_pivot(struct isl_tab
*tab
, int row
, int col
)
1095 struct isl_mat
*mat
= tab
->mat
;
1096 struct isl_tab_var
*var
;
1097 unsigned off
= 2 + tab
->M
;
1099 ctx
= isl_tab_get_ctx(tab
);
1100 if (isl_ctx_next_operation(ctx
) < 0)
1103 isl_int_swap(mat
->row
[row
][0], mat
->row
[row
][off
+ col
]);
1104 sgn
= isl_int_sgn(mat
->row
[row
][0]);
1106 isl_int_neg(mat
->row
[row
][0], mat
->row
[row
][0]);
1107 isl_int_neg(mat
->row
[row
][off
+ col
], mat
->row
[row
][off
+ col
]);
1109 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1110 if (j
== off
- 1 + col
)
1112 isl_int_neg(mat
->row
[row
][1 + j
], mat
->row
[row
][1 + j
]);
1114 if (!isl_int_is_one(mat
->row
[row
][0]))
1115 isl_seq_normalize(mat
->ctx
, mat
->row
[row
], off
+ tab
->n_col
);
1116 for (i
= 0; i
< tab
->n_row
; ++i
) {
1119 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1121 isl_int_mul(mat
->row
[i
][0], mat
->row
[i
][0], mat
->row
[row
][0]);
1122 for (j
= 0; j
< off
- 1 + tab
->n_col
; ++j
) {
1123 if (j
== off
- 1 + col
)
1125 isl_int_mul(mat
->row
[i
][1 + j
],
1126 mat
->row
[i
][1 + j
], mat
->row
[row
][0]);
1127 isl_int_addmul(mat
->row
[i
][1 + j
],
1128 mat
->row
[i
][off
+ col
], mat
->row
[row
][1 + j
]);
1130 isl_int_mul(mat
->row
[i
][off
+ col
],
1131 mat
->row
[i
][off
+ col
], mat
->row
[row
][off
+ col
]);
1132 if (!isl_int_is_one(mat
->row
[i
][0]))
1133 isl_seq_normalize(mat
->ctx
, mat
->row
[i
], off
+ tab
->n_col
);
1135 t
= tab
->row_var
[row
];
1136 tab
->row_var
[row
] = tab
->col_var
[col
];
1137 tab
->col_var
[col
] = t
;
1138 var
= isl_tab_var_from_row(tab
, row
);
1141 var
= var_from_col(tab
, col
);
1144 update_row_sign(tab
, row
, col
, sgn
);
1147 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1148 if (isl_int_is_zero(mat
->row
[i
][off
+ col
]))
1150 if (!isl_tab_var_from_row(tab
, i
)->frozen
&&
1151 isl_tab_row_is_redundant(tab
, i
)) {
1152 int redo
= isl_tab_mark_redundant(tab
, i
);
1162 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1163 * or down (sgn < 0) to a row. The variable is assumed not to be
1164 * unbounded in the specified direction.
1165 * If sgn = 0, then the variable is unbounded in both directions,
1166 * and we pivot with any row we can find.
1168 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
) WARN_UNUSED
;
1169 static int to_row(struct isl_tab
*tab
, struct isl_tab_var
*var
, int sign
)
1172 unsigned off
= 2 + tab
->M
;
1178 for (r
= tab
->n_redundant
; r
< tab
->n_row
; ++r
)
1179 if (!isl_int_is_zero(tab
->mat
->row
[r
][off
+var
->index
]))
1181 isl_assert(tab
->mat
->ctx
, r
< tab
->n_row
, return -1);
1183 r
= pivot_row(tab
, NULL
, sign
, var
->index
);
1184 isl_assert(tab
->mat
->ctx
, r
>= 0, return -1);
1187 return isl_tab_pivot(tab
, r
, var
->index
);
1190 /* Check whether all variables that are marked as non-negative
1191 * also have a non-negative sample value. This function is not
1192 * called from the current code but is useful during debugging.
1194 static void check_table(struct isl_tab
*tab
) __attribute__ ((unused
));
1195 static void check_table(struct isl_tab
*tab
)
1201 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
1202 struct isl_tab_var
*var
;
1203 var
= isl_tab_var_from_row(tab
, i
);
1204 if (!var
->is_nonneg
)
1207 isl_assert(tab
->mat
->ctx
,
1208 !isl_int_is_neg(tab
->mat
->row
[i
][2]), abort());
1209 if (isl_int_is_pos(tab
->mat
->row
[i
][2]))
1212 isl_assert(tab
->mat
->ctx
, !isl_int_is_neg(tab
->mat
->row
[i
][1]),
1217 /* Return the sign of the maximal value of "var".
1218 * If the sign is not negative, then on return from this function,
1219 * the sample value will also be non-negative.
1221 * If "var" is manifestly unbounded wrt positive values, we are done.
1222 * Otherwise, we pivot the variable up to a row if needed
1223 * Then we continue pivoting down until either
1224 * - no more down pivots can be performed
1225 * - the sample value is positive
1226 * - the variable is pivoted into a manifestly unbounded column
1228 static int sign_of_max(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1232 if (max_is_manifestly_unbounded(tab
, var
))
1234 if (to_row(tab
, var
, 1) < 0)
1236 while (!isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1237 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1239 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1240 if (isl_tab_pivot(tab
, row
, col
) < 0)
1242 if (!var
->is_row
) /* manifestly unbounded */
1248 int isl_tab_sign_of_max(struct isl_tab
*tab
, int con
)
1250 struct isl_tab_var
*var
;
1255 var
= &tab
->con
[con
];
1256 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -2);
1257 isl_assert(tab
->mat
->ctx
, !var
->is_zero
, return -2);
1259 return sign_of_max(tab
, var
);
1262 static int row_is_neg(struct isl_tab
*tab
, int row
)
1265 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1266 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1268 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1270 return isl_int_is_neg(tab
->mat
->row
[row
][1]);
1273 static int row_sgn(struct isl_tab
*tab
, int row
)
1276 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1277 if (!isl_int_is_zero(tab
->mat
->row
[row
][2]))
1278 return isl_int_sgn(tab
->mat
->row
[row
][2]);
1280 return isl_int_sgn(tab
->mat
->row
[row
][1]);
1283 /* Perform pivots until the row variable "var" has a non-negative
1284 * sample value or until no more upward pivots can be performed.
1285 * Return the sign of the sample value after the pivots have been
1288 static int restore_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1292 while (row_is_neg(tab
, var
->index
)) {
1293 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1296 if (isl_tab_pivot(tab
, row
, col
) < 0)
1298 if (!var
->is_row
) /* manifestly unbounded */
1301 return row_sgn(tab
, var
->index
);
1304 /* Perform pivots until we are sure that the row variable "var"
1305 * can attain non-negative values. After return from this
1306 * function, "var" is still a row variable, but its sample
1307 * value may not be non-negative, even if the function returns 1.
1309 static int at_least_zero(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1313 while (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1314 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1317 if (row
== var
->index
) /* manifestly unbounded */
1319 if (isl_tab_pivot(tab
, row
, col
) < 0)
1322 return !isl_int_is_neg(tab
->mat
->row
[var
->index
][1]);
1325 /* Return a negative value if "var" can attain negative values.
1326 * Return a non-negative value otherwise.
1328 * If "var" is manifestly unbounded wrt negative values, we are done.
1329 * Otherwise, if var is in a column, we can pivot it down to a row.
1330 * Then we continue pivoting down until either
1331 * - the pivot would result in a manifestly unbounded column
1332 * => we don't perform the pivot, but simply return -1
1333 * - no more down pivots can be performed
1334 * - the sample value is negative
1335 * If the sample value becomes negative and the variable is supposed
1336 * to be nonnegative, then we undo the last pivot.
1337 * However, if the last pivot has made the pivoting variable
1338 * obviously redundant, then it may have moved to another row.
1339 * In that case we look for upward pivots until we reach a non-negative
1342 static int sign_of_min(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1345 struct isl_tab_var
*pivot_var
= NULL
;
1347 if (min_is_manifestly_unbounded(tab
, var
))
1351 row
= pivot_row(tab
, NULL
, -1, col
);
1352 pivot_var
= var_from_col(tab
, col
);
1353 if (isl_tab_pivot(tab
, row
, col
) < 0)
1355 if (var
->is_redundant
)
1357 if (isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1358 if (var
->is_nonneg
) {
1359 if (!pivot_var
->is_redundant
&&
1360 pivot_var
->index
== row
) {
1361 if (isl_tab_pivot(tab
, row
, col
) < 0)
1364 if (restore_row(tab
, var
) < -1)
1370 if (var
->is_redundant
)
1372 while (!isl_int_is_neg(tab
->mat
->row
[var
->index
][1])) {
1373 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1374 if (row
== var
->index
)
1377 return isl_int_sgn(tab
->mat
->row
[var
->index
][1]);
1378 pivot_var
= var_from_col(tab
, col
);
1379 if (isl_tab_pivot(tab
, row
, col
) < 0)
1381 if (var
->is_redundant
)
1384 if (pivot_var
&& var
->is_nonneg
) {
1385 /* pivot back to non-negative value */
1386 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
) {
1387 if (isl_tab_pivot(tab
, row
, col
) < 0)
1390 if (restore_row(tab
, var
) < -1)
1396 static int row_at_most_neg_one(struct isl_tab
*tab
, int row
)
1399 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1401 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1404 return isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
1405 isl_int_abs_ge(tab
->mat
->row
[row
][1],
1406 tab
->mat
->row
[row
][0]);
1409 /* Return 1 if "var" can attain values <= -1.
1410 * Return 0 otherwise.
1412 * The sample value of "var" is assumed to be non-negative when the
1413 * the function is called. If 1 is returned then the constraint
1414 * is not redundant and the sample value is made non-negative again before
1415 * the function returns.
1417 int isl_tab_min_at_most_neg_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1420 struct isl_tab_var
*pivot_var
;
1422 if (min_is_manifestly_unbounded(tab
, var
))
1426 row
= pivot_row(tab
, NULL
, -1, col
);
1427 pivot_var
= var_from_col(tab
, col
);
1428 if (isl_tab_pivot(tab
, row
, col
) < 0)
1430 if (var
->is_redundant
)
1432 if (row_at_most_neg_one(tab
, var
->index
)) {
1433 if (var
->is_nonneg
) {
1434 if (!pivot_var
->is_redundant
&&
1435 pivot_var
->index
== row
) {
1436 if (isl_tab_pivot(tab
, row
, col
) < 0)
1439 if (restore_row(tab
, var
) < -1)
1445 if (var
->is_redundant
)
1448 find_pivot(tab
, var
, var
, -1, &row
, &col
);
1449 if (row
== var
->index
) {
1450 if (restore_row(tab
, var
) < -1)
1456 pivot_var
= var_from_col(tab
, col
);
1457 if (isl_tab_pivot(tab
, row
, col
) < 0)
1459 if (var
->is_redundant
)
1461 } while (!row_at_most_neg_one(tab
, var
->index
));
1462 if (var
->is_nonneg
) {
1463 /* pivot back to non-negative value */
1464 if (!pivot_var
->is_redundant
&& pivot_var
->index
== row
)
1465 if (isl_tab_pivot(tab
, row
, col
) < 0)
1467 if (restore_row(tab
, var
) < -1)
1473 /* Return 1 if "var" can attain values >= 1.
1474 * Return 0 otherwise.
1476 static int at_least_one(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1481 if (max_is_manifestly_unbounded(tab
, var
))
1483 if (to_row(tab
, var
, 1) < 0)
1485 r
= tab
->mat
->row
[var
->index
];
1486 while (isl_int_lt(r
[1], r
[0])) {
1487 find_pivot(tab
, var
, var
, 1, &row
, &col
);
1489 return isl_int_ge(r
[1], r
[0]);
1490 if (row
== var
->index
) /* manifestly unbounded */
1492 if (isl_tab_pivot(tab
, row
, col
) < 0)
1498 static void swap_cols(struct isl_tab
*tab
, int col1
, int col2
)
1501 unsigned off
= 2 + tab
->M
;
1502 t
= tab
->col_var
[col1
];
1503 tab
->col_var
[col1
] = tab
->col_var
[col2
];
1504 tab
->col_var
[col2
] = t
;
1505 var_from_col(tab
, col1
)->index
= col1
;
1506 var_from_col(tab
, col2
)->index
= col2
;
1507 tab
->mat
= isl_mat_swap_cols(tab
->mat
, off
+ col1
, off
+ col2
);
1510 /* Mark column with index "col" as representing a zero variable.
1511 * If we may need to undo the operation the column is kept,
1512 * but no longer considered.
1513 * Otherwise, the column is simply removed.
1515 * The column may be interchanged with some other column. If it
1516 * is interchanged with a later column, return 1. Otherwise return 0.
1517 * If the columns are checked in order in the calling function,
1518 * then a return value of 1 means that the column with the given
1519 * column number may now contain a different column that
1520 * hasn't been checked yet.
1522 int isl_tab_kill_col(struct isl_tab
*tab
, int col
)
1524 var_from_col(tab
, col
)->is_zero
= 1;
1525 if (tab
->need_undo
) {
1526 if (isl_tab_push_var(tab
, isl_tab_undo_zero
,
1527 var_from_col(tab
, col
)) < 0)
1529 if (col
!= tab
->n_dead
)
1530 swap_cols(tab
, col
, tab
->n_dead
);
1534 if (col
!= tab
->n_col
- 1)
1535 swap_cols(tab
, col
, tab
->n_col
- 1);
1536 var_from_col(tab
, tab
->n_col
- 1)->index
= -1;
1542 static int row_is_manifestly_non_integral(struct isl_tab
*tab
, int row
)
1544 unsigned off
= 2 + tab
->M
;
1546 if (tab
->M
&& !isl_int_eq(tab
->mat
->row
[row
][2],
1547 tab
->mat
->row
[row
][0]))
1549 if (isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1550 tab
->n_col
- tab
->n_dead
) != -1)
1553 return !isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1554 tab
->mat
->row
[row
][0]);
1557 /* For integer tableaus, check if any of the coordinates are stuck
1558 * at a non-integral value.
1560 static int tab_is_manifestly_empty(struct isl_tab
*tab
)
1569 for (i
= 0; i
< tab
->n_var
; ++i
) {
1570 if (!tab
->var
[i
].is_row
)
1572 if (row_is_manifestly_non_integral(tab
, tab
->var
[i
].index
))
1579 /* Row variable "var" is non-negative and cannot attain any values
1580 * larger than zero. This means that the coefficients of the unrestricted
1581 * column variables are zero and that the coefficients of the non-negative
1582 * column variables are zero or negative.
1583 * Each of the non-negative variables with a negative coefficient can
1584 * then also be written as the negative sum of non-negative variables
1585 * and must therefore also be zero.
1587 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1588 static int close_row(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1591 struct isl_mat
*mat
= tab
->mat
;
1592 unsigned off
= 2 + tab
->M
;
1594 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
1597 if (isl_tab_push_var(tab
, isl_tab_undo_zero
, var
) < 0)
1599 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1601 if (isl_int_is_zero(mat
->row
[var
->index
][off
+ j
]))
1603 isl_assert(tab
->mat
->ctx
,
1604 isl_int_is_neg(mat
->row
[var
->index
][off
+ j
]), return -1);
1605 recheck
= isl_tab_kill_col(tab
, j
);
1611 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
1613 if (tab_is_manifestly_empty(tab
) && isl_tab_mark_empty(tab
) < 0)
1618 /* Add a constraint to the tableau and allocate a row for it.
1619 * Return the index into the constraint array "con".
1621 int isl_tab_allocate_con(struct isl_tab
*tab
)
1625 isl_assert(tab
->mat
->ctx
, tab
->n_row
< tab
->mat
->n_row
, return -1);
1626 isl_assert(tab
->mat
->ctx
, tab
->n_con
< tab
->max_con
, return -1);
1629 tab
->con
[r
].index
= tab
->n_row
;
1630 tab
->con
[r
].is_row
= 1;
1631 tab
->con
[r
].is_nonneg
= 0;
1632 tab
->con
[r
].is_zero
= 0;
1633 tab
->con
[r
].is_redundant
= 0;
1634 tab
->con
[r
].frozen
= 0;
1635 tab
->con
[r
].negated
= 0;
1636 tab
->row_var
[tab
->n_row
] = ~r
;
1640 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
1646 /* Add a variable to the tableau and allocate a column for it.
1647 * Return the index into the variable array "var".
1649 int isl_tab_allocate_var(struct isl_tab
*tab
)
1653 unsigned off
= 2 + tab
->M
;
1655 isl_assert(tab
->mat
->ctx
, tab
->n_col
< tab
->mat
->n_col
, return -1);
1656 isl_assert(tab
->mat
->ctx
, tab
->n_var
< tab
->max_var
, return -1);
1659 tab
->var
[r
].index
= tab
->n_col
;
1660 tab
->var
[r
].is_row
= 0;
1661 tab
->var
[r
].is_nonneg
= 0;
1662 tab
->var
[r
].is_zero
= 0;
1663 tab
->var
[r
].is_redundant
= 0;
1664 tab
->var
[r
].frozen
= 0;
1665 tab
->var
[r
].negated
= 0;
1666 tab
->col_var
[tab
->n_col
] = r
;
1668 for (i
= 0; i
< tab
->n_row
; ++i
)
1669 isl_int_set_si(tab
->mat
->row
[i
][off
+ tab
->n_col
], 0);
1673 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->var
[r
]) < 0)
1679 /* Add a row to the tableau. The row is given as an affine combination
1680 * of the original variables and needs to be expressed in terms of the
1683 * We add each term in turn.
1684 * If r = n/d_r is the current sum and we need to add k x, then
1685 * if x is a column variable, we increase the numerator of
1686 * this column by k d_r
1687 * if x = f/d_x is a row variable, then the new representation of r is
1689 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1690 * --- + --- = ------------------- = -------------------
1691 * d_r d_r d_r d_x/g m
1693 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1695 * If tab->M is set, then, internally, each variable x is represented
1696 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1698 int isl_tab_add_row(struct isl_tab
*tab
, isl_int
*line
)
1704 unsigned off
= 2 + tab
->M
;
1706 r
= isl_tab_allocate_con(tab
);
1712 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1713 isl_int_set_si(row
[0], 1);
1714 isl_int_set(row
[1], line
[0]);
1715 isl_seq_clr(row
+ 2, tab
->M
+ tab
->n_col
);
1716 for (i
= 0; i
< tab
->n_var
; ++i
) {
1717 if (tab
->var
[i
].is_zero
)
1719 if (tab
->var
[i
].is_row
) {
1721 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1722 isl_int_swap(a
, row
[0]);
1723 isl_int_divexact(a
, row
[0], a
);
1725 row
[0], tab
->mat
->row
[tab
->var
[i
].index
][0]);
1726 isl_int_mul(b
, b
, line
[1 + i
]);
1727 isl_seq_combine(row
+ 1, a
, row
+ 1,
1728 b
, tab
->mat
->row
[tab
->var
[i
].index
] + 1,
1729 1 + tab
->M
+ tab
->n_col
);
1731 isl_int_addmul(row
[off
+ tab
->var
[i
].index
],
1732 line
[1 + i
], row
[0]);
1733 if (tab
->M
&& i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
1734 isl_int_submul(row
[2], line
[1 + i
], row
[0]);
1736 isl_seq_normalize(tab
->mat
->ctx
, row
, off
+ tab
->n_col
);
1741 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_unknown
;
1746 static int drop_row(struct isl_tab
*tab
, int row
)
1748 isl_assert(tab
->mat
->ctx
, ~tab
->row_var
[row
] == tab
->n_con
- 1, return -1);
1749 if (row
!= tab
->n_row
- 1)
1750 swap_rows(tab
, row
, tab
->n_row
- 1);
1756 static int drop_col(struct isl_tab
*tab
, int col
)
1758 isl_assert(tab
->mat
->ctx
, tab
->col_var
[col
] == tab
->n_var
- 1, return -1);
1759 if (col
!= tab
->n_col
- 1)
1760 swap_cols(tab
, col
, tab
->n_col
- 1);
1766 /* Add inequality "ineq" and check if it conflicts with the
1767 * previously added constraints or if it is obviously redundant.
1769 int isl_tab_add_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1778 struct isl_basic_map
*bmap
= tab
->bmap
;
1780 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, return -1);
1781 isl_assert(tab
->mat
->ctx
,
1782 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, return -1);
1783 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1784 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1791 isl_int_swap(ineq
[0], cst
);
1793 r
= isl_tab_add_row(tab
, ineq
);
1795 isl_int_swap(ineq
[0], cst
);
1800 tab
->con
[r
].is_nonneg
= 1;
1801 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1803 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1804 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1809 sgn
= restore_row(tab
, &tab
->con
[r
]);
1813 return isl_tab_mark_empty(tab
);
1814 if (tab
->con
[r
].is_row
&& isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1815 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1820 /* Pivot a non-negative variable down until it reaches the value zero
1821 * and then pivot the variable into a column position.
1823 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
1824 static int to_col(struct isl_tab
*tab
, struct isl_tab_var
*var
)
1828 unsigned off
= 2 + tab
->M
;
1833 while (isl_int_is_pos(tab
->mat
->row
[var
->index
][1])) {
1834 find_pivot(tab
, var
, NULL
, -1, &row
, &col
);
1835 isl_assert(tab
->mat
->ctx
, row
!= -1, return -1);
1836 if (isl_tab_pivot(tab
, row
, col
) < 0)
1842 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
)
1843 if (!isl_int_is_zero(tab
->mat
->row
[var
->index
][off
+ i
]))
1846 isl_assert(tab
->mat
->ctx
, i
< tab
->n_col
, return -1);
1847 if (isl_tab_pivot(tab
, var
->index
, i
) < 0)
1853 /* We assume Gaussian elimination has been performed on the equalities.
1854 * The equalities can therefore never conflict.
1855 * Adding the equalities is currently only really useful for a later call
1856 * to isl_tab_ineq_type.
1858 static struct isl_tab
*add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1865 r
= isl_tab_add_row(tab
, eq
);
1869 r
= tab
->con
[r
].index
;
1870 i
= isl_seq_first_non_zero(tab
->mat
->row
[r
] + 2 + tab
->M
+ tab
->n_dead
,
1871 tab
->n_col
- tab
->n_dead
);
1872 isl_assert(tab
->mat
->ctx
, i
>= 0, goto error
);
1874 if (isl_tab_pivot(tab
, r
, i
) < 0)
1876 if (isl_tab_kill_col(tab
, i
) < 0)
1886 static int row_is_manifestly_zero(struct isl_tab
*tab
, int row
)
1888 unsigned off
= 2 + tab
->M
;
1890 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]))
1892 if (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))
1894 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1895 tab
->n_col
- tab
->n_dead
) == -1;
1898 /* Add an equality that is known to be valid for the given tableau.
1900 int isl_tab_add_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1902 struct isl_tab_var
*var
;
1907 r
= isl_tab_add_row(tab
, eq
);
1913 if (row_is_manifestly_zero(tab
, r
)) {
1915 if (isl_tab_mark_redundant(tab
, r
) < 0)
1920 if (isl_int_is_neg(tab
->mat
->row
[r
][1])) {
1921 isl_seq_neg(tab
->mat
->row
[r
] + 1, tab
->mat
->row
[r
] + 1,
1926 if (to_col(tab
, var
) < 0)
1929 if (isl_tab_kill_col(tab
, var
->index
) < 0)
1935 static int add_zero_row(struct isl_tab
*tab
)
1940 r
= isl_tab_allocate_con(tab
);
1944 row
= tab
->mat
->row
[tab
->con
[r
].index
];
1945 isl_seq_clr(row
+ 1, 1 + tab
->M
+ tab
->n_col
);
1946 isl_int_set_si(row
[0], 1);
1951 /* Add equality "eq" and check if it conflicts with the
1952 * previously added constraints or if it is obviously redundant.
1954 int isl_tab_add_eq(struct isl_tab
*tab
, isl_int
*eq
)
1956 struct isl_tab_undo
*snap
= NULL
;
1957 struct isl_tab_var
*var
;
1965 isl_assert(tab
->mat
->ctx
, !tab
->M
, return -1);
1968 snap
= isl_tab_snap(tab
);
1972 isl_int_swap(eq
[0], cst
);
1974 r
= isl_tab_add_row(tab
, eq
);
1976 isl_int_swap(eq
[0], cst
);
1984 if (row_is_manifestly_zero(tab
, row
)) {
1986 if (isl_tab_rollback(tab
, snap
) < 0)
1994 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1995 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1997 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1998 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1999 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
2000 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
2004 if (add_zero_row(tab
) < 0)
2008 sgn
= isl_int_sgn(tab
->mat
->row
[row
][1]);
2011 isl_seq_neg(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
2018 sgn
= sign_of_max(tab
, var
);
2022 if (isl_tab_mark_empty(tab
) < 0)
2029 if (to_col(tab
, var
) < 0)
2032 if (isl_tab_kill_col(tab
, var
->index
) < 0)
2038 /* Construct and return an inequality that expresses an upper bound
2040 * In particular, if the div is given by
2044 * then the inequality expresses
2048 static struct isl_vec
*ineq_for_div(struct isl_basic_map
*bmap
, unsigned div
)
2052 struct isl_vec
*ineq
;
2057 total
= isl_basic_map_total_dim(bmap
);
2058 div_pos
= 1 + total
- bmap
->n_div
+ div
;
2060 ineq
= isl_vec_alloc(bmap
->ctx
, 1 + total
);
2064 isl_seq_cpy(ineq
->el
, bmap
->div
[div
] + 1, 1 + total
);
2065 isl_int_neg(ineq
->el
[div_pos
], bmap
->div
[div
][0]);
2069 /* For a div d = floor(f/m), add the constraints
2072 * -(f-(m-1)) + m d >= 0
2074 * Note that the second constraint is the negation of
2078 * If add_ineq is not NULL, then this function is used
2079 * instead of isl_tab_add_ineq to effectively add the inequalities.
2081 static int add_div_constraints(struct isl_tab
*tab
, unsigned div
,
2082 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2086 struct isl_vec
*ineq
;
2088 total
= isl_basic_map_total_dim(tab
->bmap
);
2089 div_pos
= 1 + total
- tab
->bmap
->n_div
+ div
;
2091 ineq
= ineq_for_div(tab
->bmap
, div
);
2096 if (add_ineq(user
, ineq
->el
) < 0)
2099 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2103 isl_seq_neg(ineq
->el
, tab
->bmap
->div
[div
] + 1, 1 + total
);
2104 isl_int_set(ineq
->el
[div_pos
], tab
->bmap
->div
[div
][0]);
2105 isl_int_add(ineq
->el
[0], ineq
->el
[0], ineq
->el
[div_pos
]);
2106 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
2109 if (add_ineq(user
, ineq
->el
) < 0)
2112 if (isl_tab_add_ineq(tab
, ineq
->el
) < 0)
2124 /* Check whether the div described by "div" is obviously non-negative.
2125 * If we are using a big parameter, then we will encode the div
2126 * as div' = M + div, which is always non-negative.
2127 * Otherwise, we check whether div is a non-negative affine combination
2128 * of non-negative variables.
2130 static int div_is_nonneg(struct isl_tab
*tab
, __isl_keep isl_vec
*div
)
2137 if (isl_int_is_neg(div
->el
[1]))
2140 for (i
= 0; i
< tab
->n_var
; ++i
) {
2141 if (isl_int_is_neg(div
->el
[2 + i
]))
2143 if (isl_int_is_zero(div
->el
[2 + i
]))
2145 if (!tab
->var
[i
].is_nonneg
)
2152 /* Add an extra div, prescribed by "div" to the tableau and
2153 * the associated bmap (which is assumed to be non-NULL).
2155 * If add_ineq is not NULL, then this function is used instead
2156 * of isl_tab_add_ineq to add the div constraints.
2157 * This complication is needed because the code in isl_tab_pip
2158 * wants to perform some extra processing when an inequality
2159 * is added to the tableau.
2161 int isl_tab_add_div(struct isl_tab
*tab
, __isl_keep isl_vec
*div
,
2162 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
2171 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
2173 nonneg
= div_is_nonneg(tab
, div
);
2175 if (isl_tab_extend_cons(tab
, 3) < 0)
2177 if (isl_tab_extend_vars(tab
, 1) < 0)
2179 r
= isl_tab_allocate_var(tab
);
2184 tab
->var
[r
].is_nonneg
= 1;
2186 tab
->bmap
= isl_basic_map_extend_space(tab
->bmap
,
2187 isl_basic_map_get_space(tab
->bmap
), 1, 0, 2);
2188 k
= isl_basic_map_alloc_div(tab
->bmap
);
2191 isl_seq_cpy(tab
->bmap
->div
[k
], div
->el
, div
->size
);
2192 if (isl_tab_push(tab
, isl_tab_undo_bmap_div
) < 0)
2195 if (add_div_constraints(tab
, k
, add_ineq
, user
) < 0)
2201 /* If "track" is set, then we want to keep track of all constraints in tab
2202 * in its bmap field. This field is initialized from a copy of "bmap",
2203 * so we need to make sure that all constraints in "bmap" also appear
2204 * in the constructed tab.
2206 __isl_give
struct isl_tab
*isl_tab_from_basic_map(
2207 __isl_keep isl_basic_map
*bmap
, int track
)
2210 struct isl_tab
*tab
;
2214 tab
= isl_tab_alloc(bmap
->ctx
,
2215 isl_basic_map_total_dim(bmap
) + bmap
->n_ineq
+ 1,
2216 isl_basic_map_total_dim(bmap
), 0);
2219 tab
->preserve
= track
;
2220 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2221 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2222 if (isl_tab_mark_empty(tab
) < 0)
2226 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2227 tab
= add_eq(tab
, bmap
->eq
[i
]);
2231 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2232 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
2238 if (track
&& isl_tab_track_bmap(tab
, isl_basic_map_copy(bmap
)) < 0)
2246 __isl_give
struct isl_tab
*isl_tab_from_basic_set(
2247 __isl_keep isl_basic_set
*bset
, int track
)
2249 return isl_tab_from_basic_map(bset
, track
);
2252 /* Construct a tableau corresponding to the recession cone of "bset".
2254 struct isl_tab
*isl_tab_from_recession_cone(__isl_keep isl_basic_set
*bset
,
2259 struct isl_tab
*tab
;
2260 unsigned offset
= 0;
2265 offset
= isl_basic_set_dim(bset
, isl_dim_param
);
2266 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_eq
+ bset
->n_ineq
,
2267 isl_basic_set_total_dim(bset
) - offset
, 0);
2270 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
2274 for (i
= 0; i
< bset
->n_eq
; ++i
) {
2275 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2277 if (isl_tab_add_eq(tab
, bset
->eq
[i
] + offset
) < 0)
2280 tab
= add_eq(tab
, bset
->eq
[i
]);
2281 isl_int_swap(bset
->eq
[i
][offset
], cst
);
2285 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2287 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2288 r
= isl_tab_add_row(tab
, bset
->ineq
[i
] + offset
);
2289 isl_int_swap(bset
->ineq
[i
][offset
], cst
);
2292 tab
->con
[r
].is_nonneg
= 1;
2293 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2305 /* Assuming "tab" is the tableau of a cone, check if the cone is
2306 * bounded, i.e., if it is empty or only contains the origin.
2308 int isl_tab_cone_is_bounded(struct isl_tab
*tab
)
2316 if (tab
->n_dead
== tab
->n_col
)
2320 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2321 struct isl_tab_var
*var
;
2323 var
= isl_tab_var_from_row(tab
, i
);
2324 if (!var
->is_nonneg
)
2326 sgn
= sign_of_max(tab
, var
);
2331 if (close_row(tab
, var
) < 0)
2335 if (tab
->n_dead
== tab
->n_col
)
2337 if (i
== tab
->n_row
)
2342 int isl_tab_sample_is_integer(struct isl_tab
*tab
)
2349 for (i
= 0; i
< tab
->n_var
; ++i
) {
2351 if (!tab
->var
[i
].is_row
)
2353 row
= tab
->var
[i
].index
;
2354 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
2355 tab
->mat
->row
[row
][0]))
2361 static struct isl_vec
*extract_integer_sample(struct isl_tab
*tab
)
2364 struct isl_vec
*vec
;
2366 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2370 isl_int_set_si(vec
->block
.data
[0], 1);
2371 for (i
= 0; i
< tab
->n_var
; ++i
) {
2372 if (!tab
->var
[i
].is_row
)
2373 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2375 int row
= tab
->var
[i
].index
;
2376 isl_int_divexact(vec
->block
.data
[1 + i
],
2377 tab
->mat
->row
[row
][1], tab
->mat
->row
[row
][0]);
2384 struct isl_vec
*isl_tab_get_sample_value(struct isl_tab
*tab
)
2387 struct isl_vec
*vec
;
2393 vec
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
2399 isl_int_set_si(vec
->block
.data
[0], 1);
2400 for (i
= 0; i
< tab
->n_var
; ++i
) {
2402 if (!tab
->var
[i
].is_row
) {
2403 isl_int_set_si(vec
->block
.data
[1 + i
], 0);
2406 row
= tab
->var
[i
].index
;
2407 isl_int_gcd(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2408 isl_int_divexact(m
, tab
->mat
->row
[row
][0], m
);
2409 isl_seq_scale(vec
->block
.data
, vec
->block
.data
, m
, 1 + i
);
2410 isl_int_divexact(m
, vec
->block
.data
[0], tab
->mat
->row
[row
][0]);
2411 isl_int_mul(vec
->block
.data
[1 + i
], m
, tab
->mat
->row
[row
][1]);
2413 vec
= isl_vec_normalize(vec
);
2419 /* Update "bmap" based on the results of the tableau "tab".
2420 * In particular, implicit equalities are made explicit, redundant constraints
2421 * are removed and if the sample value happens to be integer, it is stored
2422 * in "bmap" (unless "bmap" already had an integer sample).
2424 * The tableau is assumed to have been created from "bmap" using
2425 * isl_tab_from_basic_map.
2427 struct isl_basic_map
*isl_basic_map_update_from_tab(struct isl_basic_map
*bmap
,
2428 struct isl_tab
*tab
)
2440 bmap
= isl_basic_map_set_to_empty(bmap
);
2442 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2443 if (isl_tab_is_equality(tab
, n_eq
+ i
))
2444 isl_basic_map_inequality_to_equality(bmap
, i
);
2445 else if (isl_tab_is_redundant(tab
, n_eq
+ i
))
2446 isl_basic_map_drop_inequality(bmap
, i
);
2448 if (bmap
->n_eq
!= n_eq
)
2449 isl_basic_map_gauss(bmap
, NULL
);
2450 if (!tab
->rational
&&
2451 !bmap
->sample
&& isl_tab_sample_is_integer(tab
))
2452 bmap
->sample
= extract_integer_sample(tab
);
2456 struct isl_basic_set
*isl_basic_set_update_from_tab(struct isl_basic_set
*bset
,
2457 struct isl_tab
*tab
)
2459 return (struct isl_basic_set
*)isl_basic_map_update_from_tab(
2460 (struct isl_basic_map
*)bset
, tab
);
2463 /* Given a non-negative variable "var", add a new non-negative variable
2464 * that is the opposite of "var", ensuring that var can only attain the
2466 * If var = n/d is a row variable, then the new variable = -n/d.
2467 * If var is a column variables, then the new variable = -var.
2468 * If the new variable cannot attain non-negative values, then
2469 * the resulting tableau is empty.
2470 * Otherwise, we know the value will be zero and we close the row.
2472 static int cut_to_hyperplane(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2477 unsigned off
= 2 + tab
->M
;
2481 isl_assert(tab
->mat
->ctx
, !var
->is_redundant
, return -1);
2482 isl_assert(tab
->mat
->ctx
, var
->is_nonneg
, return -1);
2484 if (isl_tab_extend_cons(tab
, 1) < 0)
2488 tab
->con
[r
].index
= tab
->n_row
;
2489 tab
->con
[r
].is_row
= 1;
2490 tab
->con
[r
].is_nonneg
= 0;
2491 tab
->con
[r
].is_zero
= 0;
2492 tab
->con
[r
].is_redundant
= 0;
2493 tab
->con
[r
].frozen
= 0;
2494 tab
->con
[r
].negated
= 0;
2495 tab
->row_var
[tab
->n_row
] = ~r
;
2496 row
= tab
->mat
->row
[tab
->n_row
];
2499 isl_int_set(row
[0], tab
->mat
->row
[var
->index
][0]);
2500 isl_seq_neg(row
+ 1,
2501 tab
->mat
->row
[var
->index
] + 1, 1 + tab
->n_col
);
2503 isl_int_set_si(row
[0], 1);
2504 isl_seq_clr(row
+ 1, 1 + tab
->n_col
);
2505 isl_int_set_si(row
[off
+ var
->index
], -1);
2510 if (isl_tab_push_var(tab
, isl_tab_undo_allocate
, &tab
->con
[r
]) < 0)
2513 sgn
= sign_of_max(tab
, &tab
->con
[r
]);
2517 if (isl_tab_mark_empty(tab
) < 0)
2521 tab
->con
[r
].is_nonneg
= 1;
2522 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2525 if (close_row(tab
, &tab
->con
[r
]) < 0)
2531 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2532 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2533 * by r' = r + 1 >= 0.
2534 * If r is a row variable, we simply increase the constant term by one
2535 * (taking into account the denominator).
2536 * If r is a column variable, then we need to modify each row that
2537 * refers to r = r' - 1 by substituting this equality, effectively
2538 * subtracting the coefficient of the column from the constant.
2539 * We should only do this if the minimum is manifestly unbounded,
2540 * however. Otherwise, we may end up with negative sample values
2541 * for non-negative variables.
2542 * So, if r is a column variable with a minimum that is not
2543 * manifestly unbounded, then we need to move it to a row.
2544 * However, the sample value of this row may be negative,
2545 * even after the relaxation, so we need to restore it.
2546 * We therefore prefer to pivot a column up to a row, if possible.
2548 struct isl_tab
*isl_tab_relax(struct isl_tab
*tab
, int con
)
2550 struct isl_tab_var
*var
;
2551 unsigned off
= 2 + tab
->M
;
2556 var
= &tab
->con
[con
];
2558 if (var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_redundant
))
2559 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2560 "cannot relax redundant constraint", goto error
);
2561 if (!var
->is_row
&& (var
->index
< 0 || var
->index
< tab
->n_dead
))
2562 isl_die(tab
->mat
->ctx
, isl_error_invalid
,
2563 "cannot relax dead constraint", goto error
);
2565 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
2566 if (to_row(tab
, var
, 1) < 0)
2568 if (!var
->is_row
&& !min_is_manifestly_unbounded(tab
, var
))
2569 if (to_row(tab
, var
, -1) < 0)
2573 isl_int_add(tab
->mat
->row
[var
->index
][1],
2574 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
2575 if (restore_row(tab
, var
) < 0)
2580 for (i
= 0; i
< tab
->n_row
; ++i
) {
2581 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
2583 isl_int_sub(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
2584 tab
->mat
->row
[i
][off
+ var
->index
]);
2589 if (isl_tab_push_var(tab
, isl_tab_undo_relax
, var
) < 0)
2598 /* Remove the sign constraint from constraint "con".
2600 * If the constraint variable was originally marked non-negative,
2601 * then we make sure we mark it non-negative again during rollback.
2603 int isl_tab_unrestrict(struct isl_tab
*tab
, int con
)
2605 struct isl_tab_var
*var
;
2610 var
= &tab
->con
[con
];
2611 if (!var
->is_nonneg
)
2615 if (isl_tab_push_var(tab
, isl_tab_undo_unrestrict
, var
) < 0)
2621 int isl_tab_select_facet(struct isl_tab
*tab
, int con
)
2626 return cut_to_hyperplane(tab
, &tab
->con
[con
]);
2629 static int may_be_equality(struct isl_tab
*tab
, int row
)
2631 return tab
->rational
? isl_int_is_zero(tab
->mat
->row
[row
][1])
2632 : isl_int_lt(tab
->mat
->row
[row
][1],
2633 tab
->mat
->row
[row
][0]);
2636 /* Check for (near) equalities among the constraints.
2637 * A constraint is an equality if it is non-negative and if
2638 * its maximal value is either
2639 * - zero (in case of rational tableaus), or
2640 * - strictly less than 1 (in case of integer tableaus)
2642 * We first mark all non-redundant and non-dead variables that
2643 * are not frozen and not obviously not an equality.
2644 * Then we iterate over all marked variables if they can attain
2645 * any values larger than zero or at least one.
2646 * If the maximal value is zero, we mark any column variables
2647 * that appear in the row as being zero and mark the row as being redundant.
2648 * Otherwise, if the maximal value is strictly less than one (and the
2649 * tableau is integer), then we restrict the value to being zero
2650 * by adding an opposite non-negative variable.
2652 int isl_tab_detect_implicit_equalities(struct isl_tab
*tab
)
2661 if (tab
->n_dead
== tab
->n_col
)
2665 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2666 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2667 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2668 may_be_equality(tab
, i
);
2672 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2673 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2674 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2679 struct isl_tab_var
*var
;
2681 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2682 var
= isl_tab_var_from_row(tab
, i
);
2686 if (i
== tab
->n_row
) {
2687 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2688 var
= var_from_col(tab
, i
);
2692 if (i
== tab
->n_col
)
2697 sgn
= sign_of_max(tab
, var
);
2701 if (close_row(tab
, var
) < 0)
2703 } else if (!tab
->rational
&& !at_least_one(tab
, var
)) {
2704 if (cut_to_hyperplane(tab
, var
) < 0)
2706 return isl_tab_detect_implicit_equalities(tab
);
2708 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2709 var
= isl_tab_var_from_row(tab
, i
);
2712 if (may_be_equality(tab
, i
))
2722 /* Update the element of row_var or col_var that corresponds to
2723 * constraint tab->con[i] to a move from position "old" to position "i".
2725 static int update_con_after_move(struct isl_tab
*tab
, int i
, int old
)
2730 index
= tab
->con
[i
].index
;
2733 p
= tab
->con
[i
].is_row
? tab
->row_var
: tab
->col_var
;
2734 if (p
[index
] != ~old
)
2735 isl_die(tab
->mat
->ctx
, isl_error_internal
,
2736 "broken internal state", return -1);
2742 /* Rotate the "n" constraints starting at "first" to the right,
2743 * putting the last constraint in the position of the first constraint.
2745 static int rotate_constraints(struct isl_tab
*tab
, int first
, int n
)
2748 struct isl_tab_var var
;
2753 last
= first
+ n
- 1;
2754 var
= tab
->con
[last
];
2755 for (i
= last
; i
> first
; --i
) {
2756 tab
->con
[i
] = tab
->con
[i
- 1];
2757 if (update_con_after_move(tab
, i
, i
- 1) < 0)
2760 tab
->con
[first
] = var
;
2761 if (update_con_after_move(tab
, first
, last
) < 0)
2767 /* Make the equalities that are implicit in "bmap" but that have been
2768 * detected in the corresponding "tab" explicit in "bmap" and update
2769 * "tab" to reflect the new order of the constraints.
2771 * In particular, if inequality i is an implicit equality then
2772 * isl_basic_map_inequality_to_equality will move the inequality
2773 * in front of the other equality and it will move the last inequality
2774 * in the position of inequality i.
2775 * In the tableau, the inequalities of "bmap" are stored after the equalities
2776 * and so the original order
2778 * E E E E E A A A I B B B B L
2782 * I E E E E E A A A L B B B B
2784 * where I is the implicit equality, the E are equalities,
2785 * the A inequalities before I, the B inequalities after I and
2786 * L the last inequality.
2787 * We therefore need to rotate to the right two sets of constraints,
2788 * those up to and including I and those after I.
2790 * If "tab" contains any constraints that are not in "bmap" then they
2791 * appear after those in "bmap" and they should be left untouched.
2793 * Note that this function leaves "bmap" in a temporary state
2794 * as it does not call isl_basic_map_gauss. Calling this function
2795 * is the responsibility of the caller.
2797 __isl_give isl_basic_map
*isl_tab_make_equalities_explicit(struct isl_tab
*tab
,
2798 __isl_take isl_basic_map
*bmap
)
2803 return isl_basic_map_free(bmap
);
2807 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
2808 if (!isl_tab_is_equality(tab
, bmap
->n_eq
+ i
))
2810 isl_basic_map_inequality_to_equality(bmap
, i
);
2811 if (rotate_constraints(tab
, 0, tab
->n_eq
+ i
+ 1) < 0)
2812 return isl_basic_map_free(bmap
);
2813 if (rotate_constraints(tab
, tab
->n_eq
+ i
+ 1,
2814 bmap
->n_ineq
- i
) < 0)
2815 return isl_basic_map_free(bmap
);
2822 static int con_is_redundant(struct isl_tab
*tab
, struct isl_tab_var
*var
)
2826 if (tab
->rational
) {
2827 int sgn
= sign_of_min(tab
, var
);
2832 int irred
= isl_tab_min_at_most_neg_one(tab
, var
);
2839 /* Check for (near) redundant constraints.
2840 * A constraint is redundant if it is non-negative and if
2841 * its minimal value (temporarily ignoring the non-negativity) is either
2842 * - zero (in case of rational tableaus), or
2843 * - strictly larger than -1 (in case of integer tableaus)
2845 * We first mark all non-redundant and non-dead variables that
2846 * are not frozen and not obviously negatively unbounded.
2847 * Then we iterate over all marked variables if they can attain
2848 * any values smaller than zero or at most negative one.
2849 * If not, we mark the row as being redundant (assuming it hasn't
2850 * been detected as being obviously redundant in the mean time).
2852 int isl_tab_detect_redundant(struct isl_tab
*tab
)
2861 if (tab
->n_redundant
== tab
->n_row
)
2865 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2866 struct isl_tab_var
*var
= isl_tab_var_from_row(tab
, i
);
2867 var
->marked
= !var
->frozen
&& var
->is_nonneg
;
2871 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2872 struct isl_tab_var
*var
= var_from_col(tab
, i
);
2873 var
->marked
= !var
->frozen
&& var
->is_nonneg
&&
2874 !min_is_manifestly_unbounded(tab
, var
);
2879 struct isl_tab_var
*var
;
2881 for (i
= tab
->n_redundant
; i
< tab
->n_row
; ++i
) {
2882 var
= isl_tab_var_from_row(tab
, i
);
2886 if (i
== tab
->n_row
) {
2887 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2888 var
= var_from_col(tab
, i
);
2892 if (i
== tab
->n_col
)
2897 red
= con_is_redundant(tab
, var
);
2900 if (red
&& !var
->is_redundant
)
2901 if (isl_tab_mark_redundant(tab
, var
->index
) < 0)
2903 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
2904 var
= var_from_col(tab
, i
);
2907 if (!min_is_manifestly_unbounded(tab
, var
))
2917 int isl_tab_is_equality(struct isl_tab
*tab
, int con
)
2924 if (tab
->con
[con
].is_zero
)
2926 if (tab
->con
[con
].is_redundant
)
2928 if (!tab
->con
[con
].is_row
)
2929 return tab
->con
[con
].index
< tab
->n_dead
;
2931 row
= tab
->con
[con
].index
;
2934 return isl_int_is_zero(tab
->mat
->row
[row
][1]) &&
2935 (!tab
->M
|| isl_int_is_zero(tab
->mat
->row
[row
][2])) &&
2936 isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
2937 tab
->n_col
- tab
->n_dead
) == -1;
2940 /* Return the minimal value of the affine expression "f" with denominator
2941 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2942 * the expression cannot attain arbitrarily small values.
2943 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2944 * The return value reflects the nature of the result (empty, unbounded,
2945 * minimal value returned in *opt).
2947 enum isl_lp_result
isl_tab_min(struct isl_tab
*tab
,
2948 isl_int
*f
, isl_int denom
, isl_int
*opt
, isl_int
*opt_denom
,
2952 enum isl_lp_result res
= isl_lp_ok
;
2953 struct isl_tab_var
*var
;
2954 struct isl_tab_undo
*snap
;
2957 return isl_lp_error
;
2960 return isl_lp_empty
;
2962 snap
= isl_tab_snap(tab
);
2963 r
= isl_tab_add_row(tab
, f
);
2965 return isl_lp_error
;
2969 find_pivot(tab
, var
, var
, -1, &row
, &col
);
2970 if (row
== var
->index
) {
2971 res
= isl_lp_unbounded
;
2976 if (isl_tab_pivot(tab
, row
, col
) < 0)
2977 return isl_lp_error
;
2979 isl_int_mul(tab
->mat
->row
[var
->index
][0],
2980 tab
->mat
->row
[var
->index
][0], denom
);
2981 if (ISL_FL_ISSET(flags
, ISL_TAB_SAVE_DUAL
)) {
2984 isl_vec_free(tab
->dual
);
2985 tab
->dual
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_con
);
2987 return isl_lp_error
;
2988 isl_int_set(tab
->dual
->el
[0], tab
->mat
->row
[var
->index
][0]);
2989 for (i
= 0; i
< tab
->n_con
; ++i
) {
2991 if (tab
->con
[i
].is_row
) {
2992 isl_int_set_si(tab
->dual
->el
[1 + i
], 0);
2995 pos
= 2 + tab
->M
+ tab
->con
[i
].index
;
2996 if (tab
->con
[i
].negated
)
2997 isl_int_neg(tab
->dual
->el
[1 + i
],
2998 tab
->mat
->row
[var
->index
][pos
]);
3000 isl_int_set(tab
->dual
->el
[1 + i
],
3001 tab
->mat
->row
[var
->index
][pos
]);
3004 if (opt
&& res
== isl_lp_ok
) {
3006 isl_int_set(*opt
, tab
->mat
->row
[var
->index
][1]);
3007 isl_int_set(*opt_denom
, tab
->mat
->row
[var
->index
][0]);
3009 isl_int_cdiv_q(*opt
, tab
->mat
->row
[var
->index
][1],
3010 tab
->mat
->row
[var
->index
][0]);
3012 if (isl_tab_rollback(tab
, snap
) < 0)
3013 return isl_lp_error
;
3017 int isl_tab_is_redundant(struct isl_tab
*tab
, int con
)
3021 if (tab
->con
[con
].is_zero
)
3023 if (tab
->con
[con
].is_redundant
)
3025 return tab
->con
[con
].is_row
&& tab
->con
[con
].index
< tab
->n_redundant
;
3028 /* Take a snapshot of the tableau that can be restored by s call to
3031 struct isl_tab_undo
*isl_tab_snap(struct isl_tab
*tab
)
3039 /* Undo the operation performed by isl_tab_relax.
3041 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
) WARN_UNUSED
;
3042 static int unrelax(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3044 unsigned off
= 2 + tab
->M
;
3046 if (!var
->is_row
&& !max_is_manifestly_unbounded(tab
, var
))
3047 if (to_row(tab
, var
, 1) < 0)
3051 isl_int_sub(tab
->mat
->row
[var
->index
][1],
3052 tab
->mat
->row
[var
->index
][1], tab
->mat
->row
[var
->index
][0]);
3053 if (var
->is_nonneg
) {
3054 int sgn
= restore_row(tab
, var
);
3055 isl_assert(tab
->mat
->ctx
, sgn
>= 0, return -1);
3060 for (i
= 0; i
< tab
->n_row
; ++i
) {
3061 if (isl_int_is_zero(tab
->mat
->row
[i
][off
+ var
->index
]))
3063 isl_int_add(tab
->mat
->row
[i
][1], tab
->mat
->row
[i
][1],
3064 tab
->mat
->row
[i
][off
+ var
->index
]);
3072 /* Undo the operation performed by isl_tab_unrestrict.
3074 * In particular, mark the variable as being non-negative and make
3075 * sure the sample value respects this constraint.
3077 static int ununrestrict(struct isl_tab
*tab
, struct isl_tab_var
*var
)
3081 if (var
->is_row
&& restore_row(tab
, var
) < -1)
3087 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3088 static int perform_undo_var(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3090 struct isl_tab_var
*var
= var_from_index(tab
, undo
->u
.var_index
);
3091 switch (undo
->type
) {
3092 case isl_tab_undo_nonneg
:
3095 case isl_tab_undo_redundant
:
3096 var
->is_redundant
= 0;
3098 restore_row(tab
, isl_tab_var_from_row(tab
, tab
->n_redundant
));
3100 case isl_tab_undo_freeze
:
3103 case isl_tab_undo_zero
:
3108 case isl_tab_undo_allocate
:
3109 if (undo
->u
.var_index
>= 0) {
3110 isl_assert(tab
->mat
->ctx
, !var
->is_row
, return -1);
3111 drop_col(tab
, var
->index
);
3115 if (!max_is_manifestly_unbounded(tab
, var
)) {
3116 if (to_row(tab
, var
, 1) < 0)
3118 } else if (!min_is_manifestly_unbounded(tab
, var
)) {
3119 if (to_row(tab
, var
, -1) < 0)
3122 if (to_row(tab
, var
, 0) < 0)
3125 drop_row(tab
, var
->index
);
3127 case isl_tab_undo_relax
:
3128 return unrelax(tab
, var
);
3129 case isl_tab_undo_unrestrict
:
3130 return ununrestrict(tab
, var
);
3132 isl_die(tab
->mat
->ctx
, isl_error_internal
,
3133 "perform_undo_var called on invalid undo record",
3140 /* Restore the tableau to the state where the basic variables
3141 * are those in "col_var".
3142 * We first construct a list of variables that are currently in
3143 * the basis, but shouldn't. Then we iterate over all variables
3144 * that should be in the basis and for each one that is currently
3145 * not in the basis, we exchange it with one of the elements of the
3146 * list constructed before.
3147 * We can always find an appropriate variable to pivot with because
3148 * the current basis is mapped to the old basis by a non-singular
3149 * matrix and so we can never end up with a zero row.
3151 static int restore_basis(struct isl_tab
*tab
, int *col_var
)
3155 int *extra
= NULL
; /* current columns that contain bad stuff */
3156 unsigned off
= 2 + tab
->M
;
3158 extra
= isl_alloc_array(tab
->mat
->ctx
, int, tab
->n_col
);
3159 if (tab
->n_col
&& !extra
)
3161 for (i
= 0; i
< tab
->n_col
; ++i
) {
3162 for (j
= 0; j
< tab
->n_col
; ++j
)
3163 if (tab
->col_var
[i
] == col_var
[j
])
3167 extra
[n_extra
++] = i
;
3169 for (i
= 0; i
< tab
->n_col
&& n_extra
> 0; ++i
) {
3170 struct isl_tab_var
*var
;
3173 for (j
= 0; j
< tab
->n_col
; ++j
)
3174 if (col_var
[i
] == tab
->col_var
[j
])
3178 var
= var_from_index(tab
, col_var
[i
]);
3180 for (j
= 0; j
< n_extra
; ++j
)
3181 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+extra
[j
]]))
3183 isl_assert(tab
->mat
->ctx
, j
< n_extra
, goto error
);
3184 if (isl_tab_pivot(tab
, row
, extra
[j
]) < 0)
3186 extra
[j
] = extra
[--n_extra
];
3196 /* Remove all samples with index n or greater, i.e., those samples
3197 * that were added since we saved this number of samples in
3198 * isl_tab_save_samples.
3200 static void drop_samples_since(struct isl_tab
*tab
, int n
)
3204 for (i
= tab
->n_sample
- 1; i
>= 0 && tab
->n_sample
> n
; --i
) {
3205 if (tab
->sample_index
[i
] < n
)
3208 if (i
!= tab
->n_sample
- 1) {
3209 int t
= tab
->sample_index
[tab
->n_sample
-1];
3210 tab
->sample_index
[tab
->n_sample
-1] = tab
->sample_index
[i
];
3211 tab
->sample_index
[i
] = t
;
3212 isl_mat_swap_rows(tab
->samples
, tab
->n_sample
-1, i
);
3218 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
) WARN_UNUSED
;
3219 static int perform_undo(struct isl_tab
*tab
, struct isl_tab_undo
*undo
)
3221 switch (undo
->type
) {
3222 case isl_tab_undo_empty
:
3225 case isl_tab_undo_nonneg
:
3226 case isl_tab_undo_redundant
:
3227 case isl_tab_undo_freeze
:
3228 case isl_tab_undo_zero
:
3229 case isl_tab_undo_allocate
:
3230 case isl_tab_undo_relax
:
3231 case isl_tab_undo_unrestrict
:
3232 return perform_undo_var(tab
, undo
);
3233 case isl_tab_undo_bmap_eq
:
3234 return isl_basic_map_free_equality(tab
->bmap
, 1);
3235 case isl_tab_undo_bmap_ineq
:
3236 return isl_basic_map_free_inequality(tab
->bmap
, 1);
3237 case isl_tab_undo_bmap_div
:
3238 if (isl_basic_map_free_div(tab
->bmap
, 1) < 0)
3241 tab
->samples
->n_col
--;
3243 case isl_tab_undo_saved_basis
:
3244 if (restore_basis(tab
, undo
->u
.col_var
) < 0)
3247 case isl_tab_undo_drop_sample
:
3250 case isl_tab_undo_saved_samples
:
3251 drop_samples_since(tab
, undo
->u
.n
);
3253 case isl_tab_undo_callback
:
3254 return undo
->u
.callback
->run(undo
->u
.callback
);
3256 isl_assert(tab
->mat
->ctx
, 0, return -1);
3261 /* Return the tableau to the state it was in when the snapshot "snap"
3264 int isl_tab_rollback(struct isl_tab
*tab
, struct isl_tab_undo
*snap
)
3266 struct isl_tab_undo
*undo
, *next
;
3272 for (undo
= tab
->top
; undo
&& undo
!= &tab
->bottom
; undo
= next
) {
3276 if (perform_undo(tab
, undo
) < 0) {
3282 free_undo_record(undo
);
3291 /* The given row "row" represents an inequality violated by all
3292 * points in the tableau. Check for some special cases of such
3293 * separating constraints.
3294 * In particular, if the row has been reduced to the constant -1,
3295 * then we know the inequality is adjacent (but opposite) to
3296 * an equality in the tableau.
3297 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3298 * of the tableau and c a positive constant, then the inequality
3299 * is adjacent (but opposite) to the inequality r'.
3301 static enum isl_ineq_type
separation_type(struct isl_tab
*tab
, unsigned row
)
3304 unsigned off
= 2 + tab
->M
;
3307 return isl_ineq_separate
;
3309 if (!isl_int_is_one(tab
->mat
->row
[row
][0]))
3310 return isl_ineq_separate
;
3312 pos
= isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
3313 tab
->n_col
- tab
->n_dead
);
3315 if (isl_int_is_negone(tab
->mat
->row
[row
][1]))
3316 return isl_ineq_adj_eq
;
3318 return isl_ineq_separate
;
3321 if (!isl_int_eq(tab
->mat
->row
[row
][1],
3322 tab
->mat
->row
[row
][off
+ tab
->n_dead
+ pos
]))
3323 return isl_ineq_separate
;
3325 pos
= isl_seq_first_non_zero(
3326 tab
->mat
->row
[row
] + off
+ tab
->n_dead
+ pos
+ 1,
3327 tab
->n_col
- tab
->n_dead
- pos
- 1);
3329 return pos
== -1 ? isl_ineq_adj_ineq
: isl_ineq_separate
;
3332 /* Check the effect of inequality "ineq" on the tableau "tab".
3334 * isl_ineq_redundant: satisfied by all points in the tableau
3335 * isl_ineq_separate: satisfied by no point in the tableau
3336 * isl_ineq_cut: satisfied by some by not all points
3337 * isl_ineq_adj_eq: adjacent to an equality
3338 * isl_ineq_adj_ineq: adjacent to an inequality.
3340 enum isl_ineq_type
isl_tab_ineq_type(struct isl_tab
*tab
, isl_int
*ineq
)
3342 enum isl_ineq_type type
= isl_ineq_error
;
3343 struct isl_tab_undo
*snap
= NULL
;
3348 return isl_ineq_error
;
3350 if (isl_tab_extend_cons(tab
, 1) < 0)
3351 return isl_ineq_error
;
3353 snap
= isl_tab_snap(tab
);
3355 con
= isl_tab_add_row(tab
, ineq
);
3359 row
= tab
->con
[con
].index
;
3360 if (isl_tab_row_is_redundant(tab
, row
))
3361 type
= isl_ineq_redundant
;
3362 else if (isl_int_is_neg(tab
->mat
->row
[row
][1]) &&
3364 isl_int_abs_ge(tab
->mat
->row
[row
][1],
3365 tab
->mat
->row
[row
][0]))) {
3366 int nonneg
= at_least_zero(tab
, &tab
->con
[con
]);
3370 type
= isl_ineq_cut
;
3372 type
= separation_type(tab
, row
);
3374 int red
= con_is_redundant(tab
, &tab
->con
[con
]);
3378 type
= isl_ineq_cut
;
3380 type
= isl_ineq_redundant
;
3383 if (isl_tab_rollback(tab
, snap
))
3384 return isl_ineq_error
;
3387 return isl_ineq_error
;
3390 int isl_tab_track_bmap(struct isl_tab
*tab
, __isl_take isl_basic_map
*bmap
)
3392 bmap
= isl_basic_map_cow(bmap
);
3397 bmap
= isl_basic_map_set_to_empty(bmap
);
3404 isl_assert(tab
->mat
->ctx
, tab
->n_eq
== bmap
->n_eq
, goto error
);
3405 isl_assert(tab
->mat
->ctx
,
3406 tab
->n_con
== bmap
->n_eq
+ bmap
->n_ineq
, goto error
);
3412 isl_basic_map_free(bmap
);
3416 int isl_tab_track_bset(struct isl_tab
*tab
, __isl_take isl_basic_set
*bset
)
3418 return isl_tab_track_bmap(tab
, (isl_basic_map
*)bset
);
3421 __isl_keep isl_basic_set
*isl_tab_peek_bset(struct isl_tab
*tab
)
3426 return (isl_basic_set
*)tab
->bmap
;
3429 static void isl_tab_print_internal(__isl_keep
struct isl_tab
*tab
,
3430 FILE *out
, int indent
)
3436 fprintf(out
, "%*snull tab\n", indent
, "");
3439 fprintf(out
, "%*sn_redundant: %d, n_dead: %d", indent
, "",
3440 tab
->n_redundant
, tab
->n_dead
);
3442 fprintf(out
, ", rational");
3444 fprintf(out
, ", empty");
3446 fprintf(out
, "%*s[", indent
, "");
3447 for (i
= 0; i
< tab
->n_var
; ++i
) {
3449 fprintf(out
, (i
== tab
->n_param
||
3450 i
== tab
->n_var
- tab
->n_div
) ? "; "
3452 fprintf(out
, "%c%d%s", tab
->var
[i
].is_row
? 'r' : 'c',
3454 tab
->var
[i
].is_zero
? " [=0]" :
3455 tab
->var
[i
].is_redundant
? " [R]" : "");
3457 fprintf(out
, "]\n");
3458 fprintf(out
, "%*s[", indent
, "");
3459 for (i
= 0; i
< tab
->n_con
; ++i
) {
3462 fprintf(out
, "%c%d%s", tab
->con
[i
].is_row
? 'r' : 'c',
3464 tab
->con
[i
].is_zero
? " [=0]" :
3465 tab
->con
[i
].is_redundant
? " [R]" : "");
3467 fprintf(out
, "]\n");
3468 fprintf(out
, "%*s[", indent
, "");
3469 for (i
= 0; i
< tab
->n_row
; ++i
) {
3470 const char *sign
= "";
3473 if (tab
->row_sign
) {
3474 if (tab
->row_sign
[i
] == isl_tab_row_unknown
)
3476 else if (tab
->row_sign
[i
] == isl_tab_row_neg
)
3478 else if (tab
->row_sign
[i
] == isl_tab_row_pos
)
3483 fprintf(out
, "r%d: %d%s%s", i
, tab
->row_var
[i
],
3484 isl_tab_var_from_row(tab
, i
)->is_nonneg
? " [>=0]" : "", sign
);
3486 fprintf(out
, "]\n");
3487 fprintf(out
, "%*s[", indent
, "");
3488 for (i
= 0; i
< tab
->n_col
; ++i
) {
3491 fprintf(out
, "c%d: %d%s", i
, tab
->col_var
[i
],
3492 var_from_col(tab
, i
)->is_nonneg
? " [>=0]" : "");
3494 fprintf(out
, "]\n");
3495 r
= tab
->mat
->n_row
;
3496 tab
->mat
->n_row
= tab
->n_row
;
3497 c
= tab
->mat
->n_col
;
3498 tab
->mat
->n_col
= 2 + tab
->M
+ tab
->n_col
;
3499 isl_mat_print_internal(tab
->mat
, out
, indent
);
3500 tab
->mat
->n_row
= r
;
3501 tab
->mat
->n_col
= c
;
3503 isl_basic_map_print_internal(tab
->bmap
, out
, indent
);
3506 void isl_tab_dump(__isl_keep
struct isl_tab
*tab
)
3508 isl_tab_print_internal(tab
, stderr
, 0);