2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
12 #include <isl_aff_private.h>
16 #include <isl_space_private.h>
17 #include <isl_morph.h>
18 #include <isl_vertices_private.h>
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
26 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
27 __isl_take isl_vertices
*vertices
);
29 __isl_give isl_vertices
*isl_vertices_copy(__isl_keep isl_vertices
*vertices
)
38 void isl_vertices_free(__isl_take isl_vertices
*vertices
)
45 if (--vertices
->ref
> 0)
48 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
49 isl_basic_set_free(vertices
->v
[i
].vertex
);
50 isl_basic_set_free(vertices
->v
[i
].dom
);
54 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
55 free(vertices
->c
[i
].vertices
);
56 isl_basic_set_free(vertices
->c
[i
].dom
);
60 isl_basic_set_free(vertices
->bset
);
64 struct isl_vertex_list
{
66 struct isl_vertex_list
*next
;
69 static void free_vertex_list(struct isl_vertex_list
*list
)
71 struct isl_vertex_list
*next
;
73 for (; list
; list
= next
) {
75 isl_basic_set_free(list
->v
.vertex
);
76 isl_basic_set_free(list
->v
.dom
);
81 static __isl_give isl_vertices
*vertices_from_list(__isl_keep isl_basic_set
*bset
,
82 int n_vertices
, struct isl_vertex_list
*list
)
85 struct isl_vertex_list
*next
;
86 isl_vertices
*vertices
;
88 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
92 vertices
->bset
= isl_basic_set_copy(bset
);
93 vertices
->v
= isl_alloc_array(bset
->ctx
, struct isl_vertex
, n_vertices
);
94 if (n_vertices
&& !vertices
->v
)
96 vertices
->n_vertices
= n_vertices
;
98 for (i
= 0; list
; list
= next
, i
++) {
100 vertices
->v
[i
] = list
->v
;
106 isl_vertices_free(vertices
);
107 free_vertex_list(list
);
111 /* Prepend a vertex to the linked list "list" based on the equalities in "tab".
113 static int add_vertex(struct isl_vertex_list
**list
,
114 __isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
118 struct isl_vertex_list
*v
= NULL
;
120 if (isl_tab_detect_implicit_equalities(tab
) < 0)
123 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
124 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
126 v
= isl_calloc_type(tab
->mat
->ctx
, struct isl_vertex_list
);
130 v
->v
.vertex
= isl_basic_set_copy(bset
);
131 v
->v
.vertex
= isl_basic_set_cow(v
->v
.vertex
);
132 v
->v
.vertex
= isl_basic_set_update_from_tab(v
->v
.vertex
, tab
);
133 v
->v
.vertex
= isl_basic_set_simplify(v
->v
.vertex
);
134 v
->v
.vertex
= isl_basic_set_finalize(v
->v
.vertex
);
137 isl_assert(bset
->ctx
, v
->v
.vertex
->n_eq
>= nvar
, goto error
);
138 v
->v
.dom
= isl_basic_set_copy(v
->v
.vertex
);
139 v
->v
.dom
= isl_basic_set_params(v
->v
.dom
);
152 /* Compute the parametric vertices and the chamber decomposition
153 * of an empty parametric polytope.
155 static __isl_give isl_vertices
*vertices_empty(__isl_keep isl_basic_set
*bset
)
157 isl_vertices
*vertices
;
163 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
165 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
168 vertices
->bset
= isl_basic_set_copy(bset
);
171 vertices
->n_vertices
= 0;
172 vertices
->n_chambers
= 0;
177 /* Compute the parametric vertices and the chamber decomposition
178 * of the parametric polytope defined using the same constraints
179 * as "bset" in the 0D case.
180 * There is exactly one 0D vertex and a single chamber containing
183 static __isl_give isl_vertices
*vertices_0D(__isl_keep isl_basic_set
*bset
)
185 isl_vertices
*vertices
;
191 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
193 vertices
= isl_calloc_type(bset
->ctx
, isl_vertices
);
197 vertices
->bset
= isl_basic_set_copy(bset
);
199 vertices
->v
= isl_calloc_array(bset
->ctx
, struct isl_vertex
, 1);
202 vertices
->n_vertices
= 1;
203 vertices
->v
[0].vertex
= isl_basic_set_copy(bset
);
204 vertices
->v
[0].dom
= isl_basic_set_params(isl_basic_set_copy(bset
));
205 if (!vertices
->v
[0].vertex
|| !vertices
->v
[0].dom
)
208 vertices
->c
= isl_calloc_array(bset
->ctx
, struct isl_chamber
, 1);
211 vertices
->n_chambers
= 1;
212 vertices
->c
[0].n_vertices
= 1;
213 vertices
->c
[0].vertices
= isl_calloc_array(bset
->ctx
, int, 1);
214 if (!vertices
->c
[0].vertices
)
216 vertices
->c
[0].dom
= isl_basic_set_copy(vertices
->v
[0].dom
);
217 if (!vertices
->c
[0].dom
)
222 isl_vertices_free(vertices
);
226 static int isl_mat_rank(__isl_keep isl_mat
*mat
)
231 H
= isl_mat_left_hermite(isl_mat_copy(mat
), 0, NULL
, NULL
);
235 for (col
= 0; col
< H
->n_col
; ++col
) {
236 for (row
= 0; row
< H
->n_row
; ++row
)
237 if (!isl_int_is_zero(H
->row
[row
][col
]))
248 /* Is the row pointed to by "f" linearly independent of the "n" first
251 static int is_independent(__isl_keep isl_mat
*facets
, int n
, isl_int
*f
)
255 if (isl_seq_first_non_zero(f
, facets
->n_col
) < 0)
258 isl_seq_cpy(facets
->row
[n
], f
, facets
->n_col
);
259 facets
->n_row
= n
+ 1;
260 rank
= isl_mat_rank(facets
);
264 return rank
== n
+ 1;
267 /* Check whether we can select constraint "level", given the current selection
268 * reflected by facets in "tab", the rows of "facets" and the earlier
269 * "selected" elements of "selection".
271 * If the constraint is (strictly) redundant in the tableau, selecting it would
272 * result in an empty tableau, so it can't be selected.
273 * If the set variable part of the constraint is not linearly indepedent
274 * of the set variable parts of the already selected constraints,
275 * the constraint cannot be selected.
276 * If selecting the constraint results in an empty tableau, the constraint
277 * cannot be selected.
278 * Finally, if selecting the constraint results in some explicitly
279 * deselected constraints turning into equalities, then the corresponding
280 * vertices have already been generated, so the constraint cannot be selected.
282 static int can_select(__isl_keep isl_basic_set
*bset
, int level
,
283 struct isl_tab
*tab
, __isl_keep isl_mat
*facets
, int selected
,
289 struct isl_tab_undo
*snap
;
291 if (isl_tab_is_redundant(tab
, level
))
294 ovar
= isl_space_offset(bset
->dim
, isl_dim_set
);
296 indep
= is_independent(facets
, selected
, bset
->ineq
[level
] + 1 + ovar
);
302 snap
= isl_tab_snap(tab
);
303 if (isl_tab_select_facet(tab
, level
) < 0)
307 if (isl_tab_rollback(tab
, snap
) < 0)
312 for (i
= 0; i
< level
; ++i
) {
315 if (selection
[i
] != DESELECTED
)
318 if (isl_tab_is_equality(tab
, i
))
320 else if (isl_tab_is_redundant(tab
, i
))
323 sgn
= isl_tab_sign_of_max(tab
, i
);
327 if (isl_tab_rollback(tab
, snap
) < 0)
336 /* Compute the parametric vertices and the chamber decomposition
337 * of a parametric polytope that is not full-dimensional.
339 * Simply map the parametric polytope to a lower dimensional space
340 * and map the resulting vertices back.
342 static __isl_give isl_vertices
*lower_dim_vertices(
343 __isl_keep isl_basic_set
*bset
)
346 isl_vertices
*vertices
;
348 bset
= isl_basic_set_copy(bset
);
349 morph
= isl_basic_set_full_compression(bset
);
350 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
352 vertices
= isl_basic_set_compute_vertices(bset
);
353 isl_basic_set_free(bset
);
355 morph
= isl_morph_inverse(morph
);
357 vertices
= isl_morph_vertices(morph
, vertices
);
362 /* Compute the parametric vertices and the chamber decomposition
363 * of the parametric polytope defined using the same constraints
364 * as "bset". "bset" is assumed to have no existentially quantified
367 * The vertices themselves are computed in a fairly simplistic way.
368 * We simply run through all combinations of d constraints,
369 * with d the number of set variables, and check if those d constraints
370 * define a vertex. To avoid the generation of duplicate vertices,
371 * which we may happen if a vertex is defined by more that d constraints,
372 * we make sure we only generate the vertex for the d constraints with
375 * We set up a tableau and keep track of which facets have been
376 * selected. The tableau is marked strict_redundant so that we can be
377 * sure that any constraint that is marked redundant (and that is not
378 * also marked zero) is not an equality.
379 * If a constraint is marked DESELECTED, it means the constraint was
380 * SELECTED before (in combination with the same selection of earlier
381 * constraints). If such a deselected constraint turns out to be an
382 * equality, then any vertex that may still be found with the current
383 * selection has already been generated when the constraint was selected.
384 * A constraint is marked UNSELECTED when there is no way selecting
385 * the constraint could lead to a vertex (in combination with the current
386 * selection of earlier constraints).
388 * The set variable coefficients of the selected constraints are stored
389 * in the facets matrix.
391 __isl_give isl_vertices
*isl_basic_set_compute_vertices(
392 __isl_keep isl_basic_set
*bset
)
398 int *selection
= NULL
;
400 struct isl_tab_undo
**snap
= NULL
;
401 isl_mat
*facets
= NULL
;
402 struct isl_vertex_list
*list
= NULL
;
404 isl_vertices
*vertices
;
409 if (isl_basic_set_plain_is_empty(bset
))
410 return vertices_empty(bset
);
413 return lower_dim_vertices(bset
);
415 isl_assert(bset
->ctx
, isl_basic_set_dim(bset
, isl_dim_div
) == 0,
418 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
419 return vertices_0D(bset
);
421 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
423 bset
= isl_basic_set_copy(bset
);
424 bset
= isl_basic_set_set_rational(bset
);
428 tab
= isl_tab_from_basic_set(bset
, 0);
431 tab
->strict_redundant
= 1;
434 vertices
= vertices_empty(bset
);
435 isl_basic_set_free(bset
);
440 selection
= isl_alloc_array(bset
->ctx
, int, bset
->n_ineq
);
441 snap
= isl_alloc_array(bset
->ctx
, struct isl_tab_undo
*, bset
->n_ineq
);
442 facets
= isl_mat_alloc(bset
->ctx
, nvar
, nvar
);
443 if ((bset
->n_ineq
&& (!selection
|| !snap
)) || !facets
)
451 if (level
>= bset
->n_ineq
||
452 (!init
&& selection
[level
] != SELECTED
)) {
459 snap
[level
] = isl_tab_snap(tab
);
460 ok
= can_select(bset
, level
, tab
, facets
, selected
,
465 selection
[level
] = SELECTED
;
468 selection
[level
] = UNSELECTED
;
470 selection
[level
] = DESELECTED
;
472 if (isl_tab_rollback(tab
, snap
[level
]) < 0)
475 if (selected
== nvar
) {
476 if (tab
->n_dead
== nvar
) {
477 if (add_vertex(&list
, bset
, tab
) < 0)
488 isl_mat_free(facets
);
494 vertices
= vertices_from_list(bset
, n_vertices
, list
);
496 vertices
= compute_chambers(bset
, vertices
);
500 free_vertex_list(list
);
501 isl_mat_free(facets
);
505 isl_basic_set_free(bset
);
509 struct isl_chamber_list
{
510 struct isl_chamber c
;
511 struct isl_chamber_list
*next
;
514 static void free_chamber_list(struct isl_chamber_list
*list
)
516 struct isl_chamber_list
*next
;
518 for (; list
; list
= next
) {
520 isl_basic_set_free(list
->c
.dom
);
521 free(list
->c
.vertices
);
526 /* Check whether the basic set "bset" is a superset of the basic set described
527 * by "tab", i.e., check whether all constraints of "bset" are redundant.
529 static int bset_covers_tab(__isl_keep isl_basic_set
*bset
, struct isl_tab
*tab
)
536 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
537 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, bset
->ineq
[i
]);
539 case isl_ineq_error
: return -1;
540 case isl_ineq_redundant
: continue;
548 static __isl_give isl_vertices
*vertices_add_chambers(
549 __isl_take isl_vertices
*vertices
, int n_chambers
,
550 struct isl_chamber_list
*list
)
554 struct isl_chamber_list
*next
;
556 ctx
= isl_vertices_get_ctx(vertices
);
557 vertices
->c
= isl_alloc_array(ctx
, struct isl_chamber
, n_chambers
);
560 vertices
->n_chambers
= n_chambers
;
562 for (i
= 0; list
; list
= next
, i
++) {
564 vertices
->c
[i
] = list
->c
;
570 isl_vertices_free(vertices
);
571 free_chamber_list(list
);
575 /* Can "tab" be intersected with "bset" without resulting in
576 * a lower-dimensional set.
578 static int can_intersect(struct isl_tab
*tab
, __isl_keep isl_basic_set
*bset
)
581 struct isl_tab_undo
*snap
;
583 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
586 snap
= isl_tab_snap(tab
);
588 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
589 if (isl_tab_ineq_type(tab
, bset
->ineq
[i
]) == isl_ineq_redundant
)
591 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
595 if (isl_tab_detect_implicit_equalities(tab
) < 0)
598 if (isl_tab_rollback(tab
, snap
) < 0)
606 static int add_chamber(struct isl_chamber_list
**list
,
607 __isl_keep isl_vertices
*vertices
, struct isl_tab
*tab
, int *selection
)
612 struct isl_tab_undo
*snap
;
613 struct isl_chamber_list
*c
= NULL
;
615 for (i
= 0; i
< vertices
->n_vertices
; ++i
)
619 snap
= isl_tab_snap(tab
);
621 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
622 tab
->con
[i
].frozen
= 0;
625 if (isl_tab_detect_redundant(tab
) < 0)
628 c
= isl_calloc_type(tab
->mat
->ctx
, struct isl_chamber_list
);
631 c
->c
.vertices
= isl_alloc_array(tab
->mat
->ctx
, int, n_vertices
);
632 if (n_vertices
&& !c
->c
.vertices
)
634 c
->c
.dom
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
635 c
->c
.dom
= isl_basic_set_set_rational(c
->c
.dom
);
636 c
->c
.dom
= isl_basic_set_cow(c
->c
.dom
);
637 c
->c
.dom
= isl_basic_set_update_from_tab(c
->c
.dom
, tab
);
638 c
->c
.dom
= isl_basic_set_simplify(c
->c
.dom
);
639 c
->c
.dom
= isl_basic_set_finalize(c
->c
.dom
);
643 c
->c
.n_vertices
= n_vertices
;
645 for (i
= 0, j
= 0; i
< vertices
->n_vertices
; ++i
)
647 c
->c
.vertices
[j
] = i
;
654 for (i
= 0; i
< n_frozen
; ++i
)
655 tab
->con
[i
].frozen
= 1;
657 if (isl_tab_rollback(tab
, snap
) < 0)
662 free_chamber_list(c
);
666 struct isl_facet_todo
{
667 struct isl_tab
*tab
; /* A tableau representation of the facet */
668 isl_basic_set
*bset
; /* A normalized basic set representation */
669 isl_vec
*constraint
; /* Constraint pointing to the other side */
670 struct isl_facet_todo
*next
;
673 static void free_todo(struct isl_facet_todo
*todo
)
676 struct isl_facet_todo
*next
= todo
->next
;
678 isl_tab_free(todo
->tab
);
679 isl_basic_set_free(todo
->bset
);
680 isl_vec_free(todo
->constraint
);
687 static struct isl_facet_todo
*create_todo(struct isl_tab
*tab
, int con
)
691 struct isl_tab_undo
*snap
;
692 struct isl_facet_todo
*todo
;
694 snap
= isl_tab_snap(tab
);
696 for (i
= 0; i
< tab
->n_con
&& tab
->con
[i
].frozen
; ++i
)
697 tab
->con
[i
].frozen
= 0;
700 if (isl_tab_detect_redundant(tab
) < 0)
703 todo
= isl_calloc_type(tab
->mat
->ctx
, struct isl_facet_todo
);
707 todo
->constraint
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
708 if (!todo
->constraint
)
710 isl_seq_neg(todo
->constraint
->el
, tab
->bmap
->ineq
[con
], 1 + tab
->n_var
);
711 todo
->bset
= isl_basic_set_from_basic_map(isl_basic_map_copy(tab
->bmap
));
712 todo
->bset
= isl_basic_set_set_rational(todo
->bset
);
713 todo
->bset
= isl_basic_set_cow(todo
->bset
);
714 todo
->bset
= isl_basic_set_update_from_tab(todo
->bset
, tab
);
715 todo
->bset
= isl_basic_set_simplify(todo
->bset
);
716 todo
->bset
= isl_basic_set_sort_constraints(todo
->bset
);
719 ISL_F_SET(todo
->bset
, ISL_BASIC_SET_NORMALIZED
);
720 todo
->tab
= isl_tab_dup(tab
);
724 for (i
= 0; i
< n_frozen
; ++i
)
725 tab
->con
[i
].frozen
= 1;
727 if (isl_tab_rollback(tab
, snap
) < 0)
736 /* Create todo items for all interior facets of the chamber represented
737 * by "tab" and collect them in "next".
739 static int init_todo(struct isl_facet_todo
**next
, struct isl_tab
*tab
)
742 struct isl_tab_undo
*snap
;
743 struct isl_facet_todo
*todo
;
745 snap
= isl_tab_snap(tab
);
747 for (i
= 0; i
< tab
->n_con
; ++i
) {
748 if (tab
->con
[i
].frozen
)
750 if (tab
->con
[i
].is_redundant
)
753 if (isl_tab_select_facet(tab
, i
) < 0)
756 todo
= create_todo(tab
, i
);
763 if (isl_tab_rollback(tab
, snap
) < 0)
770 /* Does the linked list contain a todo item that is the opposite of "todo".
771 * If so, return 1 and remove the opposite todo item.
773 static int has_opposite(struct isl_facet_todo
*todo
,
774 struct isl_facet_todo
**list
)
776 for (; *list
; list
= &(*list
)->next
) {
778 eq
= isl_basic_set_plain_is_equal(todo
->bset
, (*list
)->bset
);
793 /* Create todo items for all interior facets of the chamber represented
794 * by "tab" and collect them in first->next, taking care to cancel
795 * opposite todo items.
797 static int update_todo(struct isl_facet_todo
*first
, struct isl_tab
*tab
)
800 struct isl_tab_undo
*snap
;
801 struct isl_facet_todo
*todo
;
803 snap
= isl_tab_snap(tab
);
805 for (i
= 0; i
< tab
->n_con
; ++i
) {
808 if (tab
->con
[i
].frozen
)
810 if (tab
->con
[i
].is_redundant
)
813 if (isl_tab_select_facet(tab
, i
) < 0)
816 todo
= create_todo(tab
, i
);
820 drop
= has_opposite(todo
, &first
->next
);
827 todo
->next
= first
->next
;
831 if (isl_tab_rollback(tab
, snap
) < 0)
838 /* Compute the chamber decomposition of the parametric polytope respresented
839 * by "bset" given the parametric vertices and their activity domains.
841 * We are only interested in full-dimensional chambers.
842 * Each of these chambers is the intersection of the activity domains of
843 * one or more vertices and the union of all chambers is equal to the
844 * projection of the entire parametric polytope onto the parameter space.
846 * We first create an initial chamber by intersecting as many activity
847 * domains as possible without ending up with an empty or lower-dimensional
848 * set. As a minor optimization, we only consider those activity domains
849 * that contain some arbitrary point.
851 * For each of interior facets of the chamber, we construct a todo item,
852 * containing the facet and a constraint containing the other side of the facet,
853 * for constructing the chamber on the other side.
854 * While their are any todo items left, we pick a todo item and
855 * create the required chamber by intersecting all activity domains
856 * that contain the facet and have a full-dimensional intersection with
857 * the other side of the facet. For each of the interior facets, we
858 * again create todo items, taking care to cancel opposite todo items.
860 static __isl_give isl_vertices
*compute_chambers(__isl_take isl_basic_set
*bset
,
861 __isl_take isl_vertices
*vertices
)
865 isl_vec
*sample
= NULL
;
866 struct isl_tab
*tab
= NULL
;
867 struct isl_tab_undo
*snap
;
868 int *selection
= NULL
;
870 struct isl_chamber_list
*list
= NULL
;
871 struct isl_facet_todo
*todo
= NULL
;
873 if (!bset
|| !vertices
)
876 ctx
= isl_vertices_get_ctx(vertices
);
877 selection
= isl_alloc_array(ctx
, int, vertices
->n_vertices
);
878 if (vertices
->n_vertices
&& !selection
)
881 bset
= isl_basic_set_params(bset
);
883 tab
= isl_tab_from_basic_set(bset
, 1);
886 for (i
= 0; i
< bset
->n_ineq
; ++i
)
887 if (isl_tab_freeze_constraint(tab
, i
) < 0)
889 isl_basic_set_free(bset
);
891 snap
= isl_tab_snap(tab
);
893 sample
= isl_tab_get_sample_value(tab
);
895 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
896 selection
[i
] = isl_basic_set_contains(vertices
->v
[i
].dom
, sample
);
897 if (selection
[i
] < 0)
901 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
902 if (selection
[i
] < 0)
906 if (isl_tab_detect_redundant(tab
) < 0)
909 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
913 if (init_todo(&todo
, tab
) < 0)
917 struct isl_facet_todo
*next
;
919 if (isl_tab_rollback(tab
, snap
) < 0)
922 if (isl_tab_add_ineq(tab
, todo
->constraint
->el
) < 0)
924 if (isl_tab_freeze_constraint(tab
, tab
->n_con
- 1) < 0)
927 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
928 selection
[i
] = bset_covers_tab(vertices
->v
[i
].dom
,
930 if (selection
[i
] < 0)
934 selection
[i
] = can_intersect(tab
, vertices
->v
[i
].dom
);
935 if (selection
[i
] < 0)
939 if (isl_tab_detect_redundant(tab
) < 0)
942 if (add_chamber(&list
, vertices
, tab
, selection
) < 0)
946 if (update_todo(todo
, tab
) < 0)
955 isl_vec_free(sample
);
960 vertices
= vertices_add_chambers(vertices
, n_chambers
, list
);
962 for (i
= 0; vertices
&& i
< vertices
->n_vertices
; ++i
) {
963 isl_basic_set_free(vertices
->v
[i
].dom
);
964 vertices
->v
[i
].dom
= NULL
;
969 free_chamber_list(list
);
971 isl_vec_free(sample
);
975 isl_basic_set_free(bset
);
976 isl_vertices_free(vertices
);
980 isl_ctx
*isl_vertex_get_ctx(__isl_keep isl_vertex
*vertex
)
982 return vertex
? isl_vertices_get_ctx(vertex
->vertices
) : NULL
;
985 int isl_vertex_get_id(__isl_keep isl_vertex
*vertex
)
987 return vertex
? vertex
->id
: -1;
990 __isl_give isl_basic_set
*isl_basic_set_set_integral(__isl_take isl_basic_set
*bset
)
995 if (!ISL_F_ISSET(bset
, ISL_BASIC_MAP_RATIONAL
))
998 bset
= isl_basic_set_cow(bset
);
1002 ISL_F_CLR(bset
, ISL_BASIC_MAP_RATIONAL
);
1004 return isl_basic_set_finalize(bset
);
1007 /* Return the activity domain of the vertex "vertex".
1009 __isl_give isl_basic_set
*isl_vertex_get_domain(__isl_keep isl_vertex
*vertex
)
1011 struct isl_vertex
*v
;
1016 v
= &vertex
->vertices
->v
[vertex
->id
];
1018 v
->dom
= isl_basic_set_copy(v
->vertex
);
1019 v
->dom
= isl_basic_set_params(v
->dom
);
1020 v
->dom
= isl_basic_set_set_integral(v
->dom
);
1023 return isl_basic_set_copy(v
->dom
);
1026 /* Return a multiple quasi-affine expression describing the vertex "vertex"
1027 * in terms of the parameters,
1029 __isl_give isl_multi_aff
*isl_vertex_get_expr(__isl_keep isl_vertex
*vertex
)
1031 struct isl_vertex
*v
;
1032 isl_basic_set
*bset
;
1037 v
= &vertex
->vertices
->v
[vertex
->id
];
1039 bset
= isl_basic_set_copy(v
->vertex
);
1040 return isl_multi_aff_from_basic_set_equalities(bset
);
1043 static __isl_give isl_vertex
*isl_vertex_alloc(__isl_take isl_vertices
*vertices
,
1052 ctx
= isl_vertices_get_ctx(vertices
);
1053 vertex
= isl_alloc_type(ctx
, isl_vertex
);
1057 vertex
->vertices
= vertices
;
1062 isl_vertices_free(vertices
);
1066 void isl_vertex_free(__isl_take isl_vertex
*vertex
)
1070 isl_vertices_free(vertex
->vertices
);
1074 isl_ctx
*isl_cell_get_ctx(__isl_keep isl_cell
*cell
)
1076 return cell
? cell
->dom
->ctx
: NULL
;
1079 __isl_give isl_basic_set
*isl_cell_get_domain(__isl_keep isl_cell
*cell
)
1081 return cell
? isl_basic_set_copy(cell
->dom
) : NULL
;
1084 static __isl_give isl_cell
*isl_cell_alloc(__isl_take isl_vertices
*vertices
,
1085 __isl_take isl_basic_set
*dom
, int id
)
1088 isl_cell
*cell
= NULL
;
1090 if (!vertices
|| !dom
)
1093 cell
= isl_calloc_type(dom
->ctx
, isl_cell
);
1097 cell
->n_vertices
= vertices
->c
[id
].n_vertices
;
1098 cell
->ids
= isl_alloc_array(dom
->ctx
, int, cell
->n_vertices
);
1099 if (cell
->n_vertices
&& !cell
->ids
)
1101 for (i
= 0; i
< cell
->n_vertices
; ++i
)
1102 cell
->ids
[i
] = vertices
->c
[id
].vertices
[i
];
1103 cell
->vertices
= vertices
;
1108 isl_cell_free(cell
);
1109 isl_vertices_free(vertices
);
1110 isl_basic_set_free(dom
);
1114 void isl_cell_free(__isl_take isl_cell
*cell
)
1119 isl_vertices_free(cell
->vertices
);
1121 isl_basic_set_free(cell
->dom
);
1125 /* Create a tableau of the cone obtained by first homogenizing the given
1126 * polytope and then making all inequalities strict by setting the
1127 * constant term to -1.
1129 static struct isl_tab
*tab_for_shifted_cone(__isl_keep isl_basic_set
*bset
)
1133 struct isl_tab
*tab
;
1137 tab
= isl_tab_alloc(bset
->ctx
, bset
->n_ineq
+ 1,
1138 1 + isl_basic_set_total_dim(bset
), 0);
1141 tab
->rational
= ISL_F_ISSET(bset
, ISL_BASIC_SET_RATIONAL
);
1142 if (ISL_F_ISSET(bset
, ISL_BASIC_MAP_EMPTY
)) {
1143 if (isl_tab_mark_empty(tab
) < 0)
1148 c
= isl_vec_alloc(bset
->ctx
, 1 + 1 + isl_basic_set_total_dim(bset
));
1152 isl_int_set_si(c
->el
[0], 0);
1153 for (i
= 0; i
< bset
->n_eq
; ++i
) {
1154 isl_seq_cpy(c
->el
+ 1, bset
->eq
[i
], c
->size
- 1);
1155 if (isl_tab_add_eq(tab
, c
->el
) < 0)
1159 isl_int_set_si(c
->el
[0], -1);
1160 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1161 isl_seq_cpy(c
->el
+ 1, bset
->ineq
[i
], c
->size
- 1);
1162 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1170 isl_seq_clr(c
->el
+ 1, c
->size
- 1);
1171 isl_int_set_si(c
->el
[1], 1);
1172 if (isl_tab_add_ineq(tab
, c
->el
) < 0)
1183 /* Compute an interior point of "bset" by selecting an interior
1184 * point in homogeneous space and projecting the point back down.
1186 static __isl_give isl_vec
*isl_basic_set_interior_point(
1187 __isl_keep isl_basic_set
*bset
)
1190 struct isl_tab
*tab
;
1192 tab
= tab_for_shifted_cone(bset
);
1193 vec
= isl_tab_get_sample_value(tab
);
1198 isl_seq_cpy(vec
->el
, vec
->el
+ 1, vec
->size
- 1);
1204 /* Call "fn" on all chambers of the parametric polytope with the shared
1205 * facets of neighboring chambers only appearing in one of the chambers.
1207 * We pick an interior point from one of the chambers and then make
1208 * all constraints that do not satisfy this point strict.
1210 int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices
*vertices
,
1211 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1221 if (vertices
->n_chambers
== 0)
1224 if (vertices
->n_chambers
== 1) {
1225 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[0].dom
);
1226 dom
= isl_basic_set_set_integral(dom
);
1227 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, 0);
1230 return fn(cell
, user
);
1233 vec
= isl_basic_set_interior_point(vertices
->c
[0].dom
);
1239 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1241 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1242 dom
= isl_basic_set_cow(dom
);
1245 for (j
= 0; i
&& j
< dom
->n_ineq
; ++j
) {
1246 isl_seq_inner_product(vec
->el
, dom
->ineq
[j
], vec
->size
,
1248 if (!isl_int_is_neg(v
))
1250 isl_int_sub_ui(dom
->ineq
[j
][0], dom
->ineq
[j
][0], 1);
1252 dom
= isl_basic_set_set_integral(dom
);
1253 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1271 int isl_vertices_foreach_cell(__isl_keep isl_vertices
*vertices
,
1272 int (*fn
)(__isl_take isl_cell
*cell
, void *user
), void *user
)
1280 if (vertices
->n_chambers
== 0)
1283 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1285 isl_basic_set
*dom
= isl_basic_set_copy(vertices
->c
[i
].dom
);
1287 cell
= isl_cell_alloc(isl_vertices_copy(vertices
), dom
, i
);
1299 int isl_vertices_foreach_vertex(__isl_keep isl_vertices
*vertices
,
1300 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1308 if (vertices
->n_vertices
== 0)
1311 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1314 vertex
= isl_vertex_alloc(isl_vertices_copy(vertices
), i
);
1318 r
= fn(vertex
, user
);
1326 int isl_cell_foreach_vertex(__isl_keep isl_cell
*cell
,
1327 int (*fn
)(__isl_take isl_vertex
*vertex
, void *user
), void *user
)
1335 if (cell
->n_vertices
== 0)
1338 for (i
= 0; i
< cell
->n_vertices
; ++i
) {
1341 vertex
= isl_vertex_alloc(isl_vertices_copy(cell
->vertices
),
1346 r
= fn(vertex
, user
);
1354 isl_ctx
*isl_vertices_get_ctx(__isl_keep isl_vertices
*vertices
)
1356 return vertices
? vertices
->bset
->ctx
: NULL
;
1359 int isl_vertices_get_n_vertices(__isl_keep isl_vertices
*vertices
)
1361 return vertices
? vertices
->n_vertices
: -1;
1364 __isl_give isl_vertices
*isl_morph_vertices(__isl_take isl_morph
*morph
,
1365 __isl_take isl_vertices
*vertices
)
1368 isl_morph
*param_morph
= NULL
;
1370 if (!morph
|| !vertices
)
1373 isl_assert(vertices
->bset
->ctx
, vertices
->ref
== 1, goto error
);
1375 param_morph
= isl_morph_copy(morph
);
1376 param_morph
= isl_morph_dom_params(param_morph
);
1377 param_morph
= isl_morph_ran_params(param_morph
);
1379 for (i
= 0; i
< vertices
->n_vertices
; ++i
) {
1380 vertices
->v
[i
].dom
= isl_morph_basic_set(
1381 isl_morph_copy(param_morph
), vertices
->v
[i
].dom
);
1382 vertices
->v
[i
].vertex
= isl_morph_basic_set(
1383 isl_morph_copy(morph
), vertices
->v
[i
].vertex
);
1384 if (!vertices
->v
[i
].vertex
)
1388 for (i
= 0; i
< vertices
->n_chambers
; ++i
) {
1389 vertices
->c
[i
].dom
= isl_morph_basic_set(
1390 isl_morph_copy(param_morph
), vertices
->c
[i
].dom
);
1391 if (!vertices
->c
[i
].dom
)
1395 isl_morph_free(param_morph
);
1396 isl_morph_free(morph
);
1399 isl_morph_free(param_morph
);
1400 isl_morph_free(morph
);
1401 isl_vertices_free(vertices
);
1405 /* Construct a simplex isl_cell spanned by the vertices with indices in
1406 * "simplex_ids" and "other_ids" and call "fn" on this isl_cell.
1408 static int call_on_simplex(__isl_keep isl_cell
*cell
,
1409 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1410 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1414 struct isl_cell
*simplex
;
1416 ctx
= isl_cell_get_ctx(cell
);
1418 simplex
= isl_calloc_type(ctx
, struct isl_cell
);
1421 simplex
->vertices
= isl_vertices_copy(cell
->vertices
);
1422 if (!simplex
->vertices
)
1424 simplex
->dom
= isl_basic_set_copy(cell
->dom
);
1427 simplex
->n_vertices
= n_simplex
+ n_other
;
1428 simplex
->ids
= isl_alloc_array(ctx
, int, simplex
->n_vertices
);
1432 for (i
= 0; i
< n_simplex
; ++i
)
1433 simplex
->ids
[i
] = simplex_ids
[i
];
1434 for (i
= 0; i
< n_other
; ++i
)
1435 simplex
->ids
[n_simplex
+ i
] = other_ids
[i
];
1437 return fn(simplex
, user
);
1439 isl_cell_free(simplex
);
1443 /* Check whether the parametric vertex described by "vertex"
1444 * lies on the facet corresponding to constraint "facet" of "bset".
1445 * The isl_vec "v" is a temporary vector than can be used by this function.
1447 * We eliminate the variables from the facet constraint using the
1448 * equalities defining the vertex and check if the result is identical
1451 * It would probably be better to keep track of the constraints defining
1452 * a vertex during the vertex construction so that we could simply look
1455 static int vertex_on_facet(__isl_keep isl_basic_set
*vertex
,
1456 __isl_keep isl_basic_set
*bset
, int facet
, __isl_keep isl_vec
*v
)
1461 isl_seq_cpy(v
->el
, bset
->ineq
[facet
], v
->size
);
1464 for (i
= 0; i
< vertex
->n_eq
; ++i
) {
1465 int k
= isl_seq_last_non_zero(vertex
->eq
[i
], v
->size
);
1466 isl_seq_elim(v
->el
, vertex
->eq
[i
], k
, v
->size
, &m
);
1470 return isl_seq_first_non_zero(v
->el
, v
->size
) == -1;
1473 /* Triangulate the polytope spanned by the vertices with ids
1474 * in "simplex_ids" and "other_ids" and call "fn" on each of
1475 * the resulting simplices.
1476 * If the input polytope is already a simplex, we simply call "fn".
1477 * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids".
1478 * Then we consider each facet of "bset" that does not contain the point
1479 * we just picked, but does contain some of the other points in "other_ids"
1480 * and call ourselves recursively on the polytope spanned by the new
1481 * "simplex_ids" and those points in "other_ids" that lie on the facet.
1483 static int triangulate(__isl_keep isl_cell
*cell
, __isl_keep isl_vec
*v
,
1484 int *simplex_ids
, int n_simplex
, int *other_ids
, int n_other
,
1485 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1491 isl_basic_set
*vertex
;
1492 isl_basic_set
*bset
;
1494 ctx
= isl_cell_get_ctx(cell
);
1495 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1496 nparam
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_param
);
1498 if (n_simplex
+ n_other
== d
+ 1)
1499 return call_on_simplex(cell
, simplex_ids
, n_simplex
,
1500 other_ids
, n_other
, fn
, user
);
1502 simplex_ids
[n_simplex
] = other_ids
[0];
1503 vertex
= cell
->vertices
->v
[other_ids
[0]].vertex
;
1504 bset
= cell
->vertices
->bset
;
1506 ids
= isl_alloc_array(ctx
, int, n_other
- 1);
1507 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
1508 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + nparam
, d
) == -1)
1510 if (vertex_on_facet(vertex
, bset
, i
, v
))
1513 for (j
= 1, k
= 0; j
< n_other
; ++j
) {
1515 ov
= cell
->vertices
->v
[other_ids
[j
]].vertex
;
1516 if (vertex_on_facet(ov
, bset
, i
, v
))
1517 ids
[k
++] = other_ids
[j
];
1522 if (triangulate(cell
, v
, simplex_ids
, n_simplex
+ 1,
1523 ids
, k
, fn
, user
) < 0)
1534 /* Triangulate the given cell and call "fn" on each of the resulting
1537 int isl_cell_foreach_simplex(__isl_take isl_cell
*cell
,
1538 int (*fn
)(__isl_take isl_cell
*simplex
, void *user
), void *user
)
1544 int *simplex_ids
= NULL
;
1549 d
= isl_basic_set_dim(cell
->vertices
->bset
, isl_dim_set
);
1550 total
= isl_basic_set_total_dim(cell
->vertices
->bset
);
1552 if (cell
->n_vertices
== d
+ 1)
1553 return fn(cell
, user
);
1555 ctx
= isl_cell_get_ctx(cell
);
1556 simplex_ids
= isl_alloc_array(ctx
, int, d
+ 1);
1560 v
= isl_vec_alloc(ctx
, 1 + total
);
1564 r
= triangulate(cell
, v
, simplex_ids
, 0,
1565 cell
->ids
, cell
->n_vertices
, fn
, user
);
1570 isl_cell_free(cell
);
1576 isl_cell_free(cell
);