2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
13 #include <isl_space_private.h>
17 * Let C be a cone and define
19 * C' := { y | forall x in C : y x >= 0 }
21 * C' contains the coefficients of all linear constraints
22 * that are valid for C.
23 * Furthermore, C'' = C.
25 * If C is defined as { x | A x >= 0 }
26 * then any element in C' must be a non-negative combination
27 * of the rows of A, i.e., y = t A with t >= 0. That is,
29 * C' = { y | exists t >= 0 : y = t A }
31 * If any of the rows in A actually represents an equality, then
32 * also negative combinations of this row are allowed and so the
33 * non-negativity constraint on the corresponding element of t
36 * A polyhedron P = { x | b + A x >= 0 } can be represented
37 * in homogeneous coordinates by the cone
38 * C = { [z,x] | b z + A x >= and z >= 0 }
39 * The valid linear constraints on C correspond to the valid affine
41 * This is essentially Farkas' lemma.
45 * [ w y ] = [t_0 t] [ b A ]
49 * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
52 * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
54 * In practice, we introduce an extra variable (w), shifting all
55 * other variables to the right, and an extra inequality
56 * (w - t b >= 0) corresponding to the positivity constraint on
57 * the homogeneous coordinate.
59 * When going back from coefficients to solutions, we immediately
60 * plug in 1 for z, which corresponds to shifting all variables
61 * to the left, with the leftmost ending up in the constant position.
64 /* Add the given prefix to all named isl_dim_set dimensions in "dim".
66 static __isl_give isl_space
*isl_space_prefix(__isl_take isl_space
*dim
,
72 size_t prefix_len
= strlen(prefix
);
77 ctx
= isl_space_get_ctx(dim
);
78 nvar
= isl_space_dim(dim
, isl_dim_set
);
80 for (i
= 0; i
< nvar
; ++i
) {
84 name
= isl_space_get_dim_name(dim
, isl_dim_set
, i
);
88 prefix_name
= isl_alloc_array(ctx
, char,
89 prefix_len
+ strlen(name
) + 1);
92 memcpy(prefix_name
, prefix
, prefix_len
);
93 strcpy(prefix_name
+ prefix_len
, name
);
95 dim
= isl_space_set_dim_name(dim
, isl_dim_set
, i
, prefix_name
);
105 /* Given a dimension specification of the solutions space, construct
106 * a dimension specification for the space of coefficients.
108 * In particular transform
114 * { coefficients[[cst, params] -> S] }
116 * and prefix each dimension name with "c_".
118 static __isl_give isl_space
*isl_space_coefficients(__isl_take isl_space
*dim
)
120 isl_space
*dim_param
;
124 nvar
= isl_space_dim(dim
, isl_dim_set
);
125 nparam
= isl_space_dim(dim
, isl_dim_param
);
126 dim_param
= isl_space_copy(dim
);
127 dim_param
= isl_space_drop_dims(dim_param
, isl_dim_set
, 0, nvar
);
128 dim_param
= isl_space_move_dims(dim_param
, isl_dim_set
, 0,
129 isl_dim_param
, 0, nparam
);
130 dim_param
= isl_space_prefix(dim_param
, "c_");
131 dim_param
= isl_space_insert_dims(dim_param
, isl_dim_set
, 0, 1);
132 dim_param
= isl_space_set_dim_name(dim_param
, isl_dim_set
, 0, "c_cst");
133 dim
= isl_space_drop_dims(dim
, isl_dim_param
, 0, nparam
);
134 dim
= isl_space_prefix(dim
, "c_");
135 dim
= isl_space_join(isl_space_from_domain(dim_param
),
136 isl_space_from_range(dim
));
137 dim
= isl_space_wrap(dim
);
138 dim
= isl_space_set_tuple_name(dim
, isl_dim_set
, "coefficients");
143 /* Drop the given prefix from all named dimensions of type "type" in "dim".
145 static __isl_give isl_space
*isl_space_unprefix(__isl_take isl_space
*dim
,
146 enum isl_dim_type type
, const char *prefix
)
150 size_t prefix_len
= strlen(prefix
);
152 n
= isl_space_dim(dim
, type
);
154 for (i
= 0; i
< n
; ++i
) {
157 name
= isl_space_get_dim_name(dim
, type
, i
);
160 if (strncmp(name
, prefix
, prefix_len
))
163 dim
= isl_space_set_dim_name(dim
, type
, i
, name
+ prefix_len
);
169 /* Given a dimension specification of the space of coefficients, construct
170 * a dimension specification for the space of solutions.
172 * In particular transform
174 * { coefficients[[cst, params] -> S] }
180 * and drop the "c_" prefix from the dimension names.
182 static __isl_give isl_space
*isl_space_solutions(__isl_take isl_space
*dim
)
186 dim
= isl_space_unwrap(dim
);
187 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, 1);
188 dim
= isl_space_unprefix(dim
, isl_dim_in
, "c_");
189 dim
= isl_space_unprefix(dim
, isl_dim_out
, "c_");
190 nparam
= isl_space_dim(dim
, isl_dim_in
);
191 dim
= isl_space_move_dims(dim
, isl_dim_param
, 0, isl_dim_in
, 0, nparam
);
192 dim
= isl_space_range(dim
);
197 /* Return the rational universe basic set in the given space.
199 static __isl_give isl_basic_set
*rational_universe(__isl_take isl_space
*space
)
203 bset
= isl_basic_set_universe(space
);
204 bset
= isl_basic_set_set_rational(bset
);
209 /* Compute the dual of "bset" by applying Farkas' lemma.
210 * As explained above, we add an extra dimension to represent
211 * the coefficient of the constant term when going from solutions
212 * to coefficients (shift == 1) and we drop the extra dimension when going
213 * in the opposite direction (shift == -1). "dim" is the space in which
214 * the dual should be created.
216 * If "bset" is (obviously) empty, then the way this emptiness
217 * is represented by the constraints does not allow for the application
218 * of the standard farkas algorithm. We therefore handle this case
219 * specifically and return the universe basic set.
221 static __isl_give isl_basic_set
*farkas(__isl_take isl_space
*space
,
222 __isl_take isl_basic_set
*bset
, int shift
)
225 isl_basic_set
*dual
= NULL
;
228 if (isl_basic_set_plain_is_empty(bset
)) {
229 isl_basic_set_free(bset
);
230 return rational_universe(space
);
233 total
= isl_basic_set_total_dim(bset
);
235 dual
= isl_basic_set_alloc_space(space
, bset
->n_eq
+ bset
->n_ineq
,
236 total
, bset
->n_ineq
+ (shift
> 0));
237 dual
= isl_basic_set_set_rational(dual
);
239 for (i
= 0; i
< bset
->n_eq
+ bset
->n_ineq
; ++i
) {
240 k
= isl_basic_set_alloc_div(dual
);
243 isl_int_set_si(dual
->div
[k
][0], 0);
246 for (i
= 0; i
< total
; ++i
) {
247 k
= isl_basic_set_alloc_equality(dual
);
250 isl_seq_clr(dual
->eq
[k
], 1 + shift
+ total
);
251 isl_int_set_si(dual
->eq
[k
][1 + shift
+ i
], -1);
252 for (j
= 0; j
< bset
->n_eq
; ++j
)
253 isl_int_set(dual
->eq
[k
][1 + shift
+ total
+ j
],
255 for (j
= 0; j
< bset
->n_ineq
; ++j
)
256 isl_int_set(dual
->eq
[k
][1 + shift
+ total
+ bset
->n_eq
+ j
],
257 bset
->ineq
[j
][1 + i
]);
260 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
261 k
= isl_basic_set_alloc_inequality(dual
);
264 isl_seq_clr(dual
->ineq
[k
],
265 1 + shift
+ total
+ bset
->n_eq
+ bset
->n_ineq
);
266 isl_int_set_si(dual
->ineq
[k
][1 + shift
+ total
+ bset
->n_eq
+ i
], 1);
270 k
= isl_basic_set_alloc_inequality(dual
);
273 isl_seq_clr(dual
->ineq
[k
], 2 + total
);
274 isl_int_set_si(dual
->ineq
[k
][1], 1);
275 for (j
= 0; j
< bset
->n_eq
; ++j
)
276 isl_int_neg(dual
->ineq
[k
][2 + total
+ j
],
278 for (j
= 0; j
< bset
->n_ineq
; ++j
)
279 isl_int_neg(dual
->ineq
[k
][2 + total
+ bset
->n_eq
+ j
],
283 dual
= isl_basic_set_remove_divs(dual
);
284 isl_basic_set_simplify(dual
);
285 isl_basic_set_finalize(dual
);
287 isl_basic_set_free(bset
);
290 isl_basic_set_free(bset
);
291 isl_basic_set_free(dual
);
295 /* Construct a basic set containing the tuples of coefficients of all
296 * valid affine constraints on the given basic set.
298 __isl_give isl_basic_set
*isl_basic_set_coefficients(
299 __isl_take isl_basic_set
*bset
)
306 isl_die(bset
->ctx
, isl_error_invalid
,
307 "input set not allowed to have local variables",
310 dim
= isl_basic_set_get_space(bset
);
311 dim
= isl_space_coefficients(dim
);
313 return farkas(dim
, bset
, 1);
315 isl_basic_set_free(bset
);
319 /* Construct a basic set containing the elements that satisfy all
320 * affine constraints whose coefficient tuples are
321 * contained in the given basic set.
323 __isl_give isl_basic_set
*isl_basic_set_solutions(
324 __isl_take isl_basic_set
*bset
)
331 isl_die(bset
->ctx
, isl_error_invalid
,
332 "input set not allowed to have local variables",
335 dim
= isl_basic_set_get_space(bset
);
336 dim
= isl_space_solutions(dim
);
338 return farkas(dim
, bset
, -1);
340 isl_basic_set_free(bset
);
344 /* Construct a basic set containing the tuples of coefficients of all
345 * valid affine constraints on the given set.
347 __isl_give isl_basic_set
*isl_set_coefficients(__isl_take isl_set
*set
)
350 isl_basic_set
*coeff
;
355 isl_space
*space
= isl_set_get_space(set
);
356 space
= isl_space_coefficients(space
);
358 return rational_universe(space
);
361 coeff
= isl_basic_set_coefficients(isl_basic_set_copy(set
->p
[0]));
363 for (i
= 1; i
< set
->n
; ++i
) {
364 isl_basic_set
*bset
, *coeff_i
;
365 bset
= isl_basic_set_copy(set
->p
[i
]);
366 coeff_i
= isl_basic_set_coefficients(bset
);
367 coeff
= isl_basic_set_intersect(coeff
, coeff_i
);
374 /* Construct a basic set containing the elements that satisfy all
375 * affine constraints whose coefficient tuples are
376 * contained in the given set.
378 __isl_give isl_basic_set
*isl_set_solutions(__isl_take isl_set
*set
)
386 isl_space
*space
= isl_set_get_space(set
);
387 space
= isl_space_solutions(space
);
389 return rational_universe(space
);
392 sol
= isl_basic_set_solutions(isl_basic_set_copy(set
->p
[0]));
394 for (i
= 1; i
< set
->n
; ++i
) {
395 isl_basic_set
*bset
, *sol_i
;
396 bset
= isl_basic_set_copy(set
->p
[i
]);
397 sol_i
= isl_basic_set_solutions(bset
);
398 sol
= isl_basic_set_intersect(sol
, sol_i
);