add bound_test.sh to distribution
[isl.git] / isl_convex_hull.c
blob28958381339d98f2a2be3c7757f61630d45e6cfb
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 tab = isl_tab_detect_implicit_equalities(tab);
107 if (isl_tab_detect_redundant(tab) < 0)
108 goto error;
109 bmap = isl_basic_map_update_from_tab(bmap, tab);
110 isl_tab_free(tab);
111 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
113 return bmap;
114 error:
115 isl_tab_free(tab);
116 isl_basic_map_free(bmap);
117 return NULL;
120 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
122 return (struct isl_basic_set *)
123 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
132 int first;
133 int j;
134 isl_int opt;
135 isl_int opt_denom;
137 isl_int_init(opt);
138 isl_int_init(opt_denom);
139 first = 1;
140 for (j = 0; j < set->n; ++j) {
141 enum isl_lp_result res;
143 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
144 continue;
146 res = isl_basic_set_solve_lp(set->p[j],
147 0, c, set->ctx->one, &opt, &opt_denom, NULL);
148 if (res == isl_lp_unbounded)
149 break;
150 if (res == isl_lp_error)
151 goto error;
152 if (res == isl_lp_empty) {
153 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
154 if (!set->p[j])
155 goto error;
156 continue;
158 if (first || isl_int_is_neg(opt)) {
159 if (!isl_int_is_one(opt_denom))
160 isl_seq_scale(c, c, opt_denom, len);
161 isl_int_sub(c[0], c[0], opt);
163 first = 0;
165 isl_int_clear(opt);
166 isl_int_clear(opt_denom);
167 return j >= set->n;
168 error:
169 isl_int_clear(opt);
170 isl_int_clear(opt_denom);
171 return -1;
174 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
176 if (!bset)
177 return NULL;
179 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
180 return bset;
182 bset = isl_basic_set_cow(bset);
183 if (!bset)
184 return NULL;
186 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
188 return isl_basic_set_finalize(bset);
191 static struct isl_set *isl_set_set_rational(struct isl_set *set)
193 int i;
195 set = isl_set_cow(set);
196 if (!set)
197 return NULL;
198 for (i = 0; i < set->n; ++i) {
199 set->p[i] = isl_basic_set_set_rational(set->p[i]);
200 if (!set->p[i])
201 goto error;
203 return set;
204 error:
205 isl_set_free(set);
206 return NULL;
209 static struct isl_basic_set *isl_basic_set_add_equality(
210 struct isl_basic_set *bset, isl_int *c)
212 int i;
213 unsigned dim;
215 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
216 return bset;
218 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
219 isl_assert(bset->ctx, bset->n_div == 0, goto error);
220 dim = isl_basic_set_n_dim(bset);
221 bset = isl_basic_set_cow(bset);
222 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
223 i = isl_basic_set_alloc_equality(bset);
224 if (i < 0)
225 goto error;
226 isl_seq_cpy(bset->eq[i], c, 1 + dim);
227 return bset;
228 error:
229 isl_basic_set_free(bset);
230 return NULL;
233 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
235 int i;
237 set = isl_set_cow(set);
238 if (!set)
239 return NULL;
240 for (i = 0; i < set->n; ++i) {
241 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
242 if (!set->p[i])
243 goto error;
245 return set;
246 error:
247 isl_set_free(set);
248 return NULL;
251 /* Given a union of basic sets, construct the constraints for wrapping
252 * a facet around one of its ridges.
253 * In particular, if each of n the d-dimensional basic sets i in "set"
254 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
255 * and is defined by the constraints
256 * [ 1 ]
257 * A_i [ x ] >= 0
259 * then the resulting set is of dimension n*(1+d) and has as constraints
261 * [ a_i ]
262 * A_i [ x_i ] >= 0
264 * a_i >= 0
266 * \sum_i x_{i,1} = 1
268 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
270 struct isl_basic_set *lp;
271 unsigned n_eq;
272 unsigned n_ineq;
273 int i, j, k;
274 unsigned dim, lp_dim;
276 if (!set)
277 return NULL;
279 dim = 1 + isl_set_n_dim(set);
280 n_eq = 1;
281 n_ineq = set->n;
282 for (i = 0; i < set->n; ++i) {
283 n_eq += set->p[i]->n_eq;
284 n_ineq += set->p[i]->n_ineq;
286 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
287 if (!lp)
288 return NULL;
289 lp_dim = isl_basic_set_n_dim(lp);
290 k = isl_basic_set_alloc_equality(lp);
291 isl_int_set_si(lp->eq[k][0], -1);
292 for (i = 0; i < set->n; ++i) {
293 isl_int_set_si(lp->eq[k][1+dim*i], 0);
294 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
295 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
297 for (i = 0; i < set->n; ++i) {
298 k = isl_basic_set_alloc_inequality(lp);
299 isl_seq_clr(lp->ineq[k], 1+lp_dim);
300 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
302 for (j = 0; j < set->p[i]->n_eq; ++j) {
303 k = isl_basic_set_alloc_equality(lp);
304 isl_seq_clr(lp->eq[k], 1+dim*i);
305 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
306 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
309 for (j = 0; j < set->p[i]->n_ineq; ++j) {
310 k = isl_basic_set_alloc_inequality(lp);
311 isl_seq_clr(lp->ineq[k], 1+dim*i);
312 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
313 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
316 return lp;
319 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
320 * of that facet, compute the other facet of the convex hull that contains
321 * the ridge.
323 * We first transform the set such that the facet constraint becomes
325 * x_1 >= 0
327 * I.e., the facet lies in
329 * x_1 = 0
331 * and on that facet, the constraint that defines the ridge is
333 * x_2 >= 0
335 * (This transformation is not strictly needed, all that is needed is
336 * that the ridge contains the origin.)
338 * Since the ridge contains the origin, the cone of the convex hull
339 * will be of the form
341 * x_1 >= 0
342 * x_2 >= a x_1
344 * with this second constraint defining the new facet.
345 * The constant a is obtained by settting x_1 in the cone of the
346 * convex hull to 1 and minimizing x_2.
347 * Now, each element in the cone of the convex hull is the sum
348 * of elements in the cones of the basic sets.
349 * If a_i is the dilation factor of basic set i, then the problem
350 * we need to solve is
352 * min \sum_i x_{i,2}
353 * st
354 * \sum_i x_{i,1} = 1
355 * a_i >= 0
356 * [ a_i ]
357 * A [ x_i ] >= 0
359 * with
360 * [ 1 ]
361 * A_i [ x_i ] >= 0
363 * the constraints of each (transformed) basic set.
364 * If a = n/d, then the constraint defining the new facet (in the transformed
365 * space) is
367 * -n x_1 + d x_2 >= 0
369 * In the original space, we need to take the same combination of the
370 * corresponding constraints "facet" and "ridge".
372 * If a = -infty = "-1/0", then we just return the original facet constraint.
373 * This means that the facet is unbounded, but has a bounded intersection
374 * with the union of sets.
376 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
377 isl_int *facet, isl_int *ridge)
379 int i;
380 struct isl_mat *T = NULL;
381 struct isl_basic_set *lp = NULL;
382 struct isl_vec *obj;
383 enum isl_lp_result res;
384 isl_int num, den;
385 unsigned dim;
387 set = isl_set_copy(set);
388 set = isl_set_set_rational(set);
390 dim = 1 + isl_set_n_dim(set);
391 T = isl_mat_alloc(set->ctx, 3, dim);
392 if (!T)
393 goto error;
394 isl_int_set_si(T->row[0][0], 1);
395 isl_seq_clr(T->row[0]+1, dim - 1);
396 isl_seq_cpy(T->row[1], facet, dim);
397 isl_seq_cpy(T->row[2], ridge, dim);
398 T = isl_mat_right_inverse(T);
399 set = isl_set_preimage(set, T);
400 T = NULL;
401 if (!set)
402 goto error;
403 lp = wrap_constraints(set);
404 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
405 if (!obj)
406 goto error;
407 isl_int_set_si(obj->block.data[0], 0);
408 for (i = 0; i < set->n; ++i) {
409 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
410 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
411 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
413 isl_int_init(num);
414 isl_int_init(den);
415 res = isl_basic_set_solve_lp(lp, 0,
416 obj->block.data, set->ctx->one, &num, &den, NULL);
417 if (res == isl_lp_ok) {
418 isl_int_neg(num, num);
419 isl_seq_combine(facet, num, facet, den, ridge, dim);
421 isl_int_clear(num);
422 isl_int_clear(den);
423 isl_vec_free(obj);
424 isl_basic_set_free(lp);
425 isl_set_free(set);
426 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
427 return NULL);
428 return facet;
429 error:
430 isl_basic_set_free(lp);
431 isl_mat_free(T);
432 isl_set_free(set);
433 return NULL;
436 /* Compute the constraint of a facet of "set".
438 * We first compute the intersection with a bounding constraint
439 * that is orthogonal to one of the coordinate axes.
440 * If the affine hull of this intersection has only one equality,
441 * we have found a facet.
442 * Otherwise, we wrap the current bounding constraint around
443 * one of the equalities of the face (one that is not equal to
444 * the current bounding constraint).
445 * This process continues until we have found a facet.
446 * The dimension of the intersection increases by at least
447 * one on each iteration, so termination is guaranteed.
449 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
451 struct isl_set *slice = NULL;
452 struct isl_basic_set *face = NULL;
453 int i;
454 unsigned dim = isl_set_n_dim(set);
455 int is_bound;
456 isl_mat *bounds;
458 isl_assert(set->ctx, set->n > 0, goto error);
459 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
460 if (!bounds)
461 return NULL;
463 isl_seq_clr(bounds->row[0], dim);
464 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
465 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
466 isl_assert(set->ctx, is_bound == 1, goto error);
467 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
468 bounds->n_row = 1;
470 for (;;) {
471 slice = isl_set_copy(set);
472 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
473 face = isl_set_affine_hull(slice);
474 if (!face)
475 goto error;
476 if (face->n_eq == 1) {
477 isl_basic_set_free(face);
478 break;
480 for (i = 0; i < face->n_eq; ++i)
481 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
482 !isl_seq_is_neg(bounds->row[0],
483 face->eq[i], 1 + dim))
484 break;
485 isl_assert(set->ctx, i < face->n_eq, goto error);
486 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
487 goto error;
488 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
489 isl_basic_set_free(face);
492 return bounds;
493 error:
494 isl_basic_set_free(face);
495 isl_mat_free(bounds);
496 return NULL;
499 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
500 * compute a hyperplane description of the facet, i.e., compute the facets
501 * of the facet.
503 * We compute an affine transformation that transforms the constraint
505 * [ 1 ]
506 * c [ x ] = 0
508 * to the constraint
510 * z_1 = 0
512 * by computing the right inverse U of a matrix that starts with the rows
514 * [ 1 0 ]
515 * [ c ]
517 * Then
518 * [ 1 ] [ 1 ]
519 * [ x ] = U [ z ]
520 * and
521 * [ 1 ] [ 1 ]
522 * [ z ] = Q [ x ]
524 * with Q = U^{-1}
525 * Since z_1 is zero, we can drop this variable as well as the corresponding
526 * column of U to obtain
528 * [ 1 ] [ 1 ]
529 * [ x ] = U' [ z' ]
530 * and
531 * [ 1 ] [ 1 ]
532 * [ z' ] = Q' [ x ]
534 * with Q' equal to Q, but without the corresponding row.
535 * After computing the facets of the facet in the z' space,
536 * we convert them back to the x space through Q.
538 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
540 struct isl_mat *m, *U, *Q;
541 struct isl_basic_set *facet = NULL;
542 struct isl_ctx *ctx;
543 unsigned dim;
545 ctx = set->ctx;
546 set = isl_set_copy(set);
547 dim = isl_set_n_dim(set);
548 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
549 if (!m)
550 goto error;
551 isl_int_set_si(m->row[0][0], 1);
552 isl_seq_clr(m->row[0]+1, dim);
553 isl_seq_cpy(m->row[1], c, 1+dim);
554 U = isl_mat_right_inverse(m);
555 Q = isl_mat_right_inverse(isl_mat_copy(U));
556 U = isl_mat_drop_cols(U, 1, 1);
557 Q = isl_mat_drop_rows(Q, 1, 1);
558 set = isl_set_preimage(set, U);
559 facet = uset_convex_hull_wrap_bounded(set);
560 facet = isl_basic_set_preimage(facet, Q);
561 isl_assert(ctx, facet->n_eq == 0, goto error);
562 return facet;
563 error:
564 isl_basic_set_free(facet);
565 isl_set_free(set);
566 return NULL;
569 /* Given an initial facet constraint, compute the remaining facets.
570 * We do this by running through all facets found so far and computing
571 * the adjacent facets through wrapping, adding those facets that we
572 * hadn't already found before.
574 * For each facet we have found so far, we first compute its facets
575 * in the resulting convex hull. That is, we compute the ridges
576 * of the resulting convex hull contained in the facet.
577 * We also compute the corresponding facet in the current approximation
578 * of the convex hull. There is no need to wrap around the ridges
579 * in this facet since that would result in a facet that is already
580 * present in the current approximation.
582 * This function can still be significantly optimized by checking which of
583 * the facets of the basic sets are also facets of the convex hull and
584 * using all the facets so far to help in constructing the facets of the
585 * facets
586 * and/or
587 * using the technique in section "3.1 Ridge Generation" of
588 * "Extended Convex Hull" by Fukuda et al.
590 static struct isl_basic_set *extend(struct isl_basic_set *hull,
591 struct isl_set *set)
593 int i, j, f;
594 int k;
595 struct isl_basic_set *facet = NULL;
596 struct isl_basic_set *hull_facet = NULL;
597 unsigned dim;
599 if (!hull)
600 return NULL;
602 isl_assert(set->ctx, set->n > 0, goto error);
604 dim = isl_set_n_dim(set);
606 for (i = 0; i < hull->n_ineq; ++i) {
607 facet = compute_facet(set, hull->ineq[i]);
608 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
609 facet = isl_basic_set_gauss(facet, NULL);
610 facet = isl_basic_set_normalize_constraints(facet);
611 hull_facet = isl_basic_set_copy(hull);
612 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
613 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
614 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
615 if (!facet)
616 goto error;
617 hull = isl_basic_set_cow(hull);
618 hull = isl_basic_set_extend_dim(hull,
619 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
620 for (j = 0; j < facet->n_ineq; ++j) {
621 for (f = 0; f < hull_facet->n_ineq; ++f)
622 if (isl_seq_eq(facet->ineq[j],
623 hull_facet->ineq[f], 1 + dim))
624 break;
625 if (f < hull_facet->n_ineq)
626 continue;
627 k = isl_basic_set_alloc_inequality(hull);
628 if (k < 0)
629 goto error;
630 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
631 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
632 goto error;
634 isl_basic_set_free(hull_facet);
635 isl_basic_set_free(facet);
637 hull = isl_basic_set_simplify(hull);
638 hull = isl_basic_set_finalize(hull);
639 return hull;
640 error:
641 isl_basic_set_free(hull_facet);
642 isl_basic_set_free(facet);
643 isl_basic_set_free(hull);
644 return NULL;
647 /* Special case for computing the convex hull of a one dimensional set.
648 * We simply collect the lower and upper bounds of each basic set
649 * and the biggest of those.
651 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
653 struct isl_mat *c = NULL;
654 isl_int *lower = NULL;
655 isl_int *upper = NULL;
656 int i, j, k;
657 isl_int a, b;
658 struct isl_basic_set *hull;
660 for (i = 0; i < set->n; ++i) {
661 set->p[i] = isl_basic_set_simplify(set->p[i]);
662 if (!set->p[i])
663 goto error;
665 set = isl_set_remove_empty_parts(set);
666 if (!set)
667 goto error;
668 isl_assert(set->ctx, set->n > 0, goto error);
669 c = isl_mat_alloc(set->ctx, 2, 2);
670 if (!c)
671 goto error;
673 if (set->p[0]->n_eq > 0) {
674 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
675 lower = c->row[0];
676 upper = c->row[1];
677 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
678 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
679 isl_seq_neg(upper, set->p[0]->eq[0], 2);
680 } else {
681 isl_seq_neg(lower, set->p[0]->eq[0], 2);
682 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
684 } else {
685 for (j = 0; j < set->p[0]->n_ineq; ++j) {
686 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
687 lower = c->row[0];
688 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
689 } else {
690 upper = c->row[1];
691 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
696 isl_int_init(a);
697 isl_int_init(b);
698 for (i = 0; i < set->n; ++i) {
699 struct isl_basic_set *bset = set->p[i];
700 int has_lower = 0;
701 int has_upper = 0;
703 for (j = 0; j < bset->n_eq; ++j) {
704 has_lower = 1;
705 has_upper = 1;
706 if (lower) {
707 isl_int_mul(a, lower[0], bset->eq[j][1]);
708 isl_int_mul(b, lower[1], bset->eq[j][0]);
709 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
710 isl_seq_cpy(lower, bset->eq[j], 2);
711 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
712 isl_seq_neg(lower, bset->eq[j], 2);
714 if (upper) {
715 isl_int_mul(a, upper[0], bset->eq[j][1]);
716 isl_int_mul(b, upper[1], bset->eq[j][0]);
717 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
718 isl_seq_neg(upper, bset->eq[j], 2);
719 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
720 isl_seq_cpy(upper, bset->eq[j], 2);
723 for (j = 0; j < bset->n_ineq; ++j) {
724 if (isl_int_is_pos(bset->ineq[j][1]))
725 has_lower = 1;
726 if (isl_int_is_neg(bset->ineq[j][1]))
727 has_upper = 1;
728 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
729 isl_int_mul(a, lower[0], bset->ineq[j][1]);
730 isl_int_mul(b, lower[1], bset->ineq[j][0]);
731 if (isl_int_lt(a, b))
732 isl_seq_cpy(lower, bset->ineq[j], 2);
734 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
735 isl_int_mul(a, upper[0], bset->ineq[j][1]);
736 isl_int_mul(b, upper[1], bset->ineq[j][0]);
737 if (isl_int_gt(a, b))
738 isl_seq_cpy(upper, bset->ineq[j], 2);
741 if (!has_lower)
742 lower = NULL;
743 if (!has_upper)
744 upper = NULL;
746 isl_int_clear(a);
747 isl_int_clear(b);
749 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
750 hull = isl_basic_set_set_rational(hull);
751 if (!hull)
752 goto error;
753 if (lower) {
754 k = isl_basic_set_alloc_inequality(hull);
755 isl_seq_cpy(hull->ineq[k], lower, 2);
757 if (upper) {
758 k = isl_basic_set_alloc_inequality(hull);
759 isl_seq_cpy(hull->ineq[k], upper, 2);
761 hull = isl_basic_set_finalize(hull);
762 isl_set_free(set);
763 isl_mat_free(c);
764 return hull;
765 error:
766 isl_set_free(set);
767 isl_mat_free(c);
768 return NULL;
771 /* Project out final n dimensions using Fourier-Motzkin */
772 static struct isl_set *set_project_out(struct isl_ctx *ctx,
773 struct isl_set *set, unsigned n)
775 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
778 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
780 struct isl_basic_set *convex_hull;
782 if (!set)
783 return NULL;
785 if (isl_set_is_empty(set))
786 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
787 else
788 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
789 isl_set_free(set);
790 return convex_hull;
793 /* Compute the convex hull of a pair of basic sets without any parameters or
794 * integer divisions using Fourier-Motzkin elimination.
795 * The convex hull is the set of all points that can be written as
796 * the sum of points from both basic sets (in homogeneous coordinates).
797 * We set up the constraints in a space with dimensions for each of
798 * the three sets and then project out the dimensions corresponding
799 * to the two original basic sets, retaining only those corresponding
800 * to the convex hull.
802 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
803 struct isl_basic_set *bset2)
805 int i, j, k;
806 struct isl_basic_set *bset[2];
807 struct isl_basic_set *hull = NULL;
808 unsigned dim;
810 if (!bset1 || !bset2)
811 goto error;
813 dim = isl_basic_set_n_dim(bset1);
814 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
815 1 + dim + bset1->n_eq + bset2->n_eq,
816 2 + bset1->n_ineq + bset2->n_ineq);
817 bset[0] = bset1;
818 bset[1] = bset2;
819 for (i = 0; i < 2; ++i) {
820 for (j = 0; j < bset[i]->n_eq; ++j) {
821 k = isl_basic_set_alloc_equality(hull);
822 if (k < 0)
823 goto error;
824 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
825 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
826 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
827 1+dim);
829 for (j = 0; j < bset[i]->n_ineq; ++j) {
830 k = isl_basic_set_alloc_inequality(hull);
831 if (k < 0)
832 goto error;
833 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
834 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
835 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
836 bset[i]->ineq[j], 1+dim);
838 k = isl_basic_set_alloc_inequality(hull);
839 if (k < 0)
840 goto error;
841 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
842 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
844 for (j = 0; j < 1+dim; ++j) {
845 k = isl_basic_set_alloc_equality(hull);
846 if (k < 0)
847 goto error;
848 isl_seq_clr(hull->eq[k], 1+2+3*dim);
849 isl_int_set_si(hull->eq[k][j], -1);
850 isl_int_set_si(hull->eq[k][1+dim+j], 1);
851 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
853 hull = isl_basic_set_set_rational(hull);
854 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
855 hull = isl_basic_set_convex_hull(hull);
856 isl_basic_set_free(bset1);
857 isl_basic_set_free(bset2);
858 return hull;
859 error:
860 isl_basic_set_free(bset1);
861 isl_basic_set_free(bset2);
862 isl_basic_set_free(hull);
863 return NULL;
866 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
868 struct isl_tab *tab;
869 int bounded;
871 if (!bset)
872 return -1;
873 if (isl_basic_set_fast_is_empty(bset))
874 return 1;
876 tab = isl_tab_from_recession_cone(bset);
877 bounded = isl_tab_cone_is_bounded(tab);
878 isl_tab_free(tab);
879 return bounded;
882 int isl_set_is_bounded(__isl_keep isl_set *set)
884 int i;
886 for (i = 0; i < set->n; ++i) {
887 int bounded = isl_basic_set_is_bounded(set->p[i]);
888 if (!bounded || bounded < 0)
889 return bounded;
891 return 1;
894 /* Compute the lineality space of the convex hull of bset1 and bset2.
896 * We first compute the intersection of the recession cone of bset1
897 * with the negative of the recession cone of bset2 and then compute
898 * the linear hull of the resulting cone.
900 static struct isl_basic_set *induced_lineality_space(
901 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
903 int i, k;
904 struct isl_basic_set *lin = NULL;
905 unsigned dim;
907 if (!bset1 || !bset2)
908 goto error;
910 dim = isl_basic_set_total_dim(bset1);
911 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
912 bset1->n_eq + bset2->n_eq,
913 bset1->n_ineq + bset2->n_ineq);
914 lin = isl_basic_set_set_rational(lin);
915 if (!lin)
916 goto error;
917 for (i = 0; i < bset1->n_eq; ++i) {
918 k = isl_basic_set_alloc_equality(lin);
919 if (k < 0)
920 goto error;
921 isl_int_set_si(lin->eq[k][0], 0);
922 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
924 for (i = 0; i < bset1->n_ineq; ++i) {
925 k = isl_basic_set_alloc_inequality(lin);
926 if (k < 0)
927 goto error;
928 isl_int_set_si(lin->ineq[k][0], 0);
929 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
931 for (i = 0; i < bset2->n_eq; ++i) {
932 k = isl_basic_set_alloc_equality(lin);
933 if (k < 0)
934 goto error;
935 isl_int_set_si(lin->eq[k][0], 0);
936 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
938 for (i = 0; i < bset2->n_ineq; ++i) {
939 k = isl_basic_set_alloc_inequality(lin);
940 if (k < 0)
941 goto error;
942 isl_int_set_si(lin->ineq[k][0], 0);
943 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
946 isl_basic_set_free(bset1);
947 isl_basic_set_free(bset2);
948 return isl_basic_set_affine_hull(lin);
949 error:
950 isl_basic_set_free(lin);
951 isl_basic_set_free(bset1);
952 isl_basic_set_free(bset2);
953 return NULL;
956 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
958 /* Given a set and a linear space "lin" of dimension n > 0,
959 * project the linear space from the set, compute the convex hull
960 * and then map the set back to the original space.
962 * Let
964 * M x = 0
966 * describe the linear space. We first compute the Hermite normal
967 * form H = M U of M = H Q, to obtain
969 * H Q x = 0
971 * The last n rows of H will be zero, so the last n variables of x' = Q x
972 * are the one we want to project out. We do this by transforming each
973 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
974 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
975 * we transform the hull back to the original space as A' Q_1 x >= b',
976 * with Q_1 all but the last n rows of Q.
978 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
979 struct isl_basic_set *lin)
981 unsigned total = isl_basic_set_total_dim(lin);
982 unsigned lin_dim;
983 struct isl_basic_set *hull;
984 struct isl_mat *M, *U, *Q;
986 if (!set || !lin)
987 goto error;
988 lin_dim = total - lin->n_eq;
989 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
990 M = isl_mat_left_hermite(M, 0, &U, &Q);
991 if (!M)
992 goto error;
993 isl_mat_free(M);
994 isl_basic_set_free(lin);
996 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
998 U = isl_mat_lin_to_aff(U);
999 Q = isl_mat_lin_to_aff(Q);
1001 set = isl_set_preimage(set, U);
1002 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1003 hull = uset_convex_hull(set);
1004 hull = isl_basic_set_preimage(hull, Q);
1006 return hull;
1007 error:
1008 isl_basic_set_free(lin);
1009 isl_set_free(set);
1010 return NULL;
1013 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1014 * set up an LP for solving
1016 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1018 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1019 * The next \alpha{ij} correspond to the equalities and come in pairs.
1020 * The final \alpha{ij} correspond to the inequalities.
1022 static struct isl_basic_set *valid_direction_lp(
1023 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1025 struct isl_dim *dim;
1026 struct isl_basic_set *lp;
1027 unsigned d;
1028 int n;
1029 int i, j, k;
1031 if (!bset1 || !bset2)
1032 goto error;
1033 d = 1 + isl_basic_set_total_dim(bset1);
1034 n = 2 +
1035 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1036 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1037 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1038 if (!lp)
1039 goto error;
1040 for (i = 0; i < n; ++i) {
1041 k = isl_basic_set_alloc_inequality(lp);
1042 if (k < 0)
1043 goto error;
1044 isl_seq_clr(lp->ineq[k] + 1, n);
1045 isl_int_set_si(lp->ineq[k][0], -1);
1046 isl_int_set_si(lp->ineq[k][1 + i], 1);
1048 for (i = 0; i < d; ++i) {
1049 k = isl_basic_set_alloc_equality(lp);
1050 if (k < 0)
1051 goto error;
1052 n = 0;
1053 isl_int_set_si(lp->eq[k][n++], 0);
1054 /* positivity constraint 1 >= 0 */
1055 isl_int_set_si(lp->eq[k][n++], i == 0);
1056 for (j = 0; j < bset1->n_eq; ++j) {
1057 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1058 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1060 for (j = 0; j < bset1->n_ineq; ++j)
1061 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1062 /* positivity constraint 1 >= 0 */
1063 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1064 for (j = 0; j < bset2->n_eq; ++j) {
1065 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1066 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1068 for (j = 0; j < bset2->n_ineq; ++j)
1069 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1071 lp = isl_basic_set_gauss(lp, NULL);
1072 isl_basic_set_free(bset1);
1073 isl_basic_set_free(bset2);
1074 return lp;
1075 error:
1076 isl_basic_set_free(bset1);
1077 isl_basic_set_free(bset2);
1078 return NULL;
1081 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1082 * for all rays in the homogeneous space of the two cones that correspond
1083 * to the input polyhedra bset1 and bset2.
1085 * We compute s as a vector that satisfies
1087 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1089 * with h_{ij} the normals of the facets of polyhedron i
1090 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1091 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1092 * We first set up an LP with as variables the \alpha{ij}.
1093 * In this formulation, for each polyhedron i,
1094 * the first constraint is the positivity constraint, followed by pairs
1095 * of variables for the equalities, followed by variables for the inequalities.
1096 * We then simply pick a feasible solution and compute s using (*).
1098 * Note that we simply pick any valid direction and make no attempt
1099 * to pick a "good" or even the "best" valid direction.
1101 static struct isl_vec *valid_direction(
1102 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1104 struct isl_basic_set *lp;
1105 struct isl_tab *tab;
1106 struct isl_vec *sample = NULL;
1107 struct isl_vec *dir;
1108 unsigned d;
1109 int i;
1110 int n;
1112 if (!bset1 || !bset2)
1113 goto error;
1114 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1115 isl_basic_set_copy(bset2));
1116 tab = isl_tab_from_basic_set(lp);
1117 sample = isl_tab_get_sample_value(tab);
1118 isl_tab_free(tab);
1119 isl_basic_set_free(lp);
1120 if (!sample)
1121 goto error;
1122 d = isl_basic_set_total_dim(bset1);
1123 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1124 if (!dir)
1125 goto error;
1126 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1127 n = 1;
1128 /* positivity constraint 1 >= 0 */
1129 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1130 for (i = 0; i < bset1->n_eq; ++i) {
1131 isl_int_sub(sample->block.data[n],
1132 sample->block.data[n], sample->block.data[n+1]);
1133 isl_seq_combine(dir->block.data,
1134 bset1->ctx->one, dir->block.data,
1135 sample->block.data[n], bset1->eq[i], 1 + d);
1137 n += 2;
1139 for (i = 0; i < bset1->n_ineq; ++i)
1140 isl_seq_combine(dir->block.data,
1141 bset1->ctx->one, dir->block.data,
1142 sample->block.data[n++], bset1->ineq[i], 1 + d);
1143 isl_vec_free(sample);
1144 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1145 isl_basic_set_free(bset1);
1146 isl_basic_set_free(bset2);
1147 return dir;
1148 error:
1149 isl_vec_free(sample);
1150 isl_basic_set_free(bset1);
1151 isl_basic_set_free(bset2);
1152 return NULL;
1155 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1156 * compute b_i' + A_i' x' >= 0, with
1158 * [ b_i A_i ] [ y' ] [ y' ]
1159 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1161 * In particular, add the "positivity constraint" and then perform
1162 * the mapping.
1164 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1165 struct isl_mat *T)
1167 int k;
1169 if (!bset)
1170 goto error;
1171 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1172 k = isl_basic_set_alloc_inequality(bset);
1173 if (k < 0)
1174 goto error;
1175 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1176 isl_int_set_si(bset->ineq[k][0], 1);
1177 bset = isl_basic_set_preimage(bset, T);
1178 return bset;
1179 error:
1180 isl_mat_free(T);
1181 isl_basic_set_free(bset);
1182 return NULL;
1185 /* Compute the convex hull of a pair of basic sets without any parameters or
1186 * integer divisions, where the convex hull is known to be pointed,
1187 * but the basic sets may be unbounded.
1189 * We turn this problem into the computation of a convex hull of a pair
1190 * _bounded_ polyhedra by "changing the direction of the homogeneous
1191 * dimension". This idea is due to Matthias Koeppe.
1193 * Consider the cones in homogeneous space that correspond to the
1194 * input polyhedra. The rays of these cones are also rays of the
1195 * polyhedra if the coordinate that corresponds to the homogeneous
1196 * dimension is zero. That is, if the inner product of the rays
1197 * with the homogeneous direction is zero.
1198 * The cones in the homogeneous space can also be considered to
1199 * correspond to other pairs of polyhedra by chosing a different
1200 * homogeneous direction. To ensure that both of these polyhedra
1201 * are bounded, we need to make sure that all rays of the cones
1202 * correspond to vertices and not to rays.
1203 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1204 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1205 * The vector s is computed in valid_direction.
1207 * Note that we need to consider _all_ rays of the cones and not just
1208 * the rays that correspond to rays in the polyhedra. If we were to
1209 * only consider those rays and turn them into vertices, then we
1210 * may inadvertently turn some vertices into rays.
1212 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1213 * We therefore transform the two polyhedra such that the selected
1214 * direction is mapped onto this standard direction and then proceed
1215 * with the normal computation.
1216 * Let S be a non-singular square matrix with s as its first row,
1217 * then we want to map the polyhedra to the space
1219 * [ y' ] [ y ] [ y ] [ y' ]
1220 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1222 * We take S to be the unimodular completion of s to limit the growth
1223 * of the coefficients in the following computations.
1225 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1226 * We first move to the homogeneous dimension
1228 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1229 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1231 * Then we change directoin
1233 * [ b_i A_i ] [ y' ] [ y' ]
1234 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1236 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1237 * resulting in b' + A' x' >= 0, which we then convert back
1239 * [ y ] [ y ]
1240 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1242 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1244 static struct isl_basic_set *convex_hull_pair_pointed(
1245 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1247 struct isl_ctx *ctx = NULL;
1248 struct isl_vec *dir = NULL;
1249 struct isl_mat *T = NULL;
1250 struct isl_mat *T2 = NULL;
1251 struct isl_basic_set *hull;
1252 struct isl_set *set;
1254 if (!bset1 || !bset2)
1255 goto error;
1256 ctx = bset1->ctx;
1257 dir = valid_direction(isl_basic_set_copy(bset1),
1258 isl_basic_set_copy(bset2));
1259 if (!dir)
1260 goto error;
1261 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1262 if (!T)
1263 goto error;
1264 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1265 T = isl_mat_unimodular_complete(T, 1);
1266 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1268 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1269 bset2 = homogeneous_map(bset2, T2);
1270 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1271 set = isl_set_add_basic_set(set, bset1);
1272 set = isl_set_add_basic_set(set, bset2);
1273 hull = uset_convex_hull(set);
1274 hull = isl_basic_set_preimage(hull, T);
1276 isl_vec_free(dir);
1278 return hull;
1279 error:
1280 isl_vec_free(dir);
1281 isl_basic_set_free(bset1);
1282 isl_basic_set_free(bset2);
1283 return NULL;
1286 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1287 static struct isl_basic_set *modulo_affine_hull(
1288 struct isl_set *set, struct isl_basic_set *affine_hull);
1290 /* Compute the convex hull of a pair of basic sets without any parameters or
1291 * integer divisions.
1293 * This function is called from uset_convex_hull_unbounded, which
1294 * means that the complete convex hull is unbounded. Some pairs
1295 * of basic sets may still be bounded, though.
1296 * They may even lie inside a lower dimensional space, in which
1297 * case they need to be handled inside their affine hull since
1298 * the main algorithm assumes that the result is full-dimensional.
1300 * If the convex hull of the two basic sets would have a non-trivial
1301 * lineality space, we first project out this lineality space.
1303 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1304 struct isl_basic_set *bset2)
1306 isl_basic_set *lin, *aff;
1307 int bounded1, bounded2;
1309 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1310 isl_basic_set_copy(bset2)));
1311 if (!aff)
1312 goto error;
1313 if (aff->n_eq != 0)
1314 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1315 isl_basic_set_free(aff);
1317 bounded1 = isl_basic_set_is_bounded(bset1);
1318 bounded2 = isl_basic_set_is_bounded(bset2);
1320 if (bounded1 < 0 || bounded2 < 0)
1321 goto error;
1323 if (bounded1 && bounded2)
1324 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1326 if (bounded1 || bounded2)
1327 return convex_hull_pair_pointed(bset1, bset2);
1329 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1330 isl_basic_set_copy(bset2));
1331 if (!lin)
1332 goto error;
1333 if (isl_basic_set_is_universe(lin)) {
1334 isl_basic_set_free(bset1);
1335 isl_basic_set_free(bset2);
1336 return lin;
1338 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1339 struct isl_set *set;
1340 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1341 set = isl_set_add_basic_set(set, bset1);
1342 set = isl_set_add_basic_set(set, bset2);
1343 return modulo_lineality(set, lin);
1345 isl_basic_set_free(lin);
1347 return convex_hull_pair_pointed(bset1, bset2);
1348 error:
1349 isl_basic_set_free(bset1);
1350 isl_basic_set_free(bset2);
1351 return NULL;
1354 /* Compute the lineality space of a basic set.
1355 * We currently do not allow the basic set to have any divs.
1356 * We basically just drop the constants and turn every inequality
1357 * into an equality.
1359 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1361 int i, k;
1362 struct isl_basic_set *lin = NULL;
1363 unsigned dim;
1365 if (!bset)
1366 goto error;
1367 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1368 dim = isl_basic_set_total_dim(bset);
1370 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1371 if (!lin)
1372 goto error;
1373 for (i = 0; i < bset->n_eq; ++i) {
1374 k = isl_basic_set_alloc_equality(lin);
1375 if (k < 0)
1376 goto error;
1377 isl_int_set_si(lin->eq[k][0], 0);
1378 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1380 lin = isl_basic_set_gauss(lin, NULL);
1381 if (!lin)
1382 goto error;
1383 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1384 k = isl_basic_set_alloc_equality(lin);
1385 if (k < 0)
1386 goto error;
1387 isl_int_set_si(lin->eq[k][0], 0);
1388 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1389 lin = isl_basic_set_gauss(lin, NULL);
1390 if (!lin)
1391 goto error;
1393 isl_basic_set_free(bset);
1394 return lin;
1395 error:
1396 isl_basic_set_free(lin);
1397 isl_basic_set_free(bset);
1398 return NULL;
1401 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1402 * "underlying" set "set".
1404 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1406 int i;
1407 struct isl_set *lin = NULL;
1409 if (!set)
1410 return NULL;
1411 if (set->n == 0) {
1412 struct isl_dim *dim = isl_set_get_dim(set);
1413 isl_set_free(set);
1414 return isl_basic_set_empty(dim);
1417 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1418 for (i = 0; i < set->n; ++i)
1419 lin = isl_set_add_basic_set(lin,
1420 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1421 isl_set_free(set);
1422 return isl_set_affine_hull(lin);
1425 /* Compute the convex hull of a set without any parameters or
1426 * integer divisions.
1427 * In each step, we combined two basic sets until only one
1428 * basic set is left.
1429 * The input basic sets are assumed not to have a non-trivial
1430 * lineality space. If any of the intermediate results has
1431 * a non-trivial lineality space, it is projected out.
1433 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1435 struct isl_basic_set *convex_hull = NULL;
1437 convex_hull = isl_set_copy_basic_set(set);
1438 set = isl_set_drop_basic_set(set, convex_hull);
1439 if (!set)
1440 goto error;
1441 while (set->n > 0) {
1442 struct isl_basic_set *t;
1443 t = isl_set_copy_basic_set(set);
1444 if (!t)
1445 goto error;
1446 set = isl_set_drop_basic_set(set, t);
1447 if (!set)
1448 goto error;
1449 convex_hull = convex_hull_pair(convex_hull, t);
1450 if (set->n == 0)
1451 break;
1452 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1453 if (!t)
1454 goto error;
1455 if (isl_basic_set_is_universe(t)) {
1456 isl_basic_set_free(convex_hull);
1457 convex_hull = t;
1458 break;
1460 if (t->n_eq < isl_basic_set_total_dim(t)) {
1461 set = isl_set_add_basic_set(set, convex_hull);
1462 return modulo_lineality(set, t);
1464 isl_basic_set_free(t);
1466 isl_set_free(set);
1467 return convex_hull;
1468 error:
1469 isl_set_free(set);
1470 isl_basic_set_free(convex_hull);
1471 return NULL;
1474 /* Compute an initial hull for wrapping containing a single initial
1475 * facet.
1476 * This function assumes that the given set is bounded.
1478 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1479 struct isl_set *set)
1481 struct isl_mat *bounds = NULL;
1482 unsigned dim;
1483 int k;
1485 if (!hull)
1486 goto error;
1487 bounds = initial_facet_constraint(set);
1488 if (!bounds)
1489 goto error;
1490 k = isl_basic_set_alloc_inequality(hull);
1491 if (k < 0)
1492 goto error;
1493 dim = isl_set_n_dim(set);
1494 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1495 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1496 isl_mat_free(bounds);
1498 return hull;
1499 error:
1500 isl_basic_set_free(hull);
1501 isl_mat_free(bounds);
1502 return NULL;
1505 struct max_constraint {
1506 struct isl_mat *c;
1507 int count;
1508 int ineq;
1511 static int max_constraint_equal(const void *entry, const void *val)
1513 struct max_constraint *a = (struct max_constraint *)entry;
1514 isl_int *b = (isl_int *)val;
1516 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1519 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1520 isl_int *con, unsigned len, int n, int ineq)
1522 struct isl_hash_table_entry *entry;
1523 struct max_constraint *c;
1524 uint32_t c_hash;
1526 c_hash = isl_seq_get_hash(con + 1, len);
1527 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1528 con + 1, 0);
1529 if (!entry)
1530 return;
1531 c = entry->data;
1532 if (c->count < n) {
1533 isl_hash_table_remove(ctx, table, entry);
1534 return;
1536 c->count++;
1537 if (isl_int_gt(c->c->row[0][0], con[0]))
1538 return;
1539 if (isl_int_eq(c->c->row[0][0], con[0])) {
1540 if (ineq)
1541 c->ineq = ineq;
1542 return;
1544 c->c = isl_mat_cow(c->c);
1545 isl_int_set(c->c->row[0][0], con[0]);
1546 c->ineq = ineq;
1549 /* Check whether the constraint hash table "table" constains the constraint
1550 * "con".
1552 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1553 isl_int *con, unsigned len, int n)
1555 struct isl_hash_table_entry *entry;
1556 struct max_constraint *c;
1557 uint32_t c_hash;
1559 c_hash = isl_seq_get_hash(con + 1, len);
1560 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1561 con + 1, 0);
1562 if (!entry)
1563 return 0;
1564 c = entry->data;
1565 if (c->count < n)
1566 return 0;
1567 return isl_int_eq(c->c->row[0][0], con[0]);
1570 /* Check for inequality constraints of a basic set without equalities
1571 * such that the same or more stringent copies of the constraint appear
1572 * in all of the basic sets. Such constraints are necessarily facet
1573 * constraints of the convex hull.
1575 * If the resulting basic set is by chance identical to one of
1576 * the basic sets in "set", then we know that this basic set contains
1577 * all other basic sets and is therefore the convex hull of set.
1578 * In this case we set *is_hull to 1.
1580 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1581 struct isl_set *set, int *is_hull)
1583 int i, j, s, n;
1584 int min_constraints;
1585 int best;
1586 struct max_constraint *constraints = NULL;
1587 struct isl_hash_table *table = NULL;
1588 unsigned total;
1590 *is_hull = 0;
1592 for (i = 0; i < set->n; ++i)
1593 if (set->p[i]->n_eq == 0)
1594 break;
1595 if (i >= set->n)
1596 return hull;
1597 min_constraints = set->p[i]->n_ineq;
1598 best = i;
1599 for (i = best + 1; i < set->n; ++i) {
1600 if (set->p[i]->n_eq != 0)
1601 continue;
1602 if (set->p[i]->n_ineq >= min_constraints)
1603 continue;
1604 min_constraints = set->p[i]->n_ineq;
1605 best = i;
1607 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1608 min_constraints);
1609 if (!constraints)
1610 return hull;
1611 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1612 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1613 goto error;
1615 total = isl_dim_total(set->dim);
1616 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1617 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1618 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1619 if (!constraints[i].c)
1620 goto error;
1621 constraints[i].ineq = 1;
1623 for (i = 0; i < min_constraints; ++i) {
1624 struct isl_hash_table_entry *entry;
1625 uint32_t c_hash;
1626 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1627 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1628 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1629 if (!entry)
1630 goto error;
1631 isl_assert(hull->ctx, !entry->data, goto error);
1632 entry->data = &constraints[i];
1635 n = 0;
1636 for (s = 0; s < set->n; ++s) {
1637 if (s == best)
1638 continue;
1640 for (i = 0; i < set->p[s]->n_eq; ++i) {
1641 isl_int *eq = set->p[s]->eq[i];
1642 for (j = 0; j < 2; ++j) {
1643 isl_seq_neg(eq, eq, 1 + total);
1644 update_constraint(hull->ctx, table,
1645 eq, total, n, 0);
1648 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1649 isl_int *ineq = set->p[s]->ineq[i];
1650 update_constraint(hull->ctx, table, ineq, total, n,
1651 set->p[s]->n_eq == 0);
1653 ++n;
1656 for (i = 0; i < min_constraints; ++i) {
1657 if (constraints[i].count < n)
1658 continue;
1659 if (!constraints[i].ineq)
1660 continue;
1661 j = isl_basic_set_alloc_inequality(hull);
1662 if (j < 0)
1663 goto error;
1664 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1667 for (s = 0; s < set->n; ++s) {
1668 if (set->p[s]->n_eq)
1669 continue;
1670 if (set->p[s]->n_ineq != hull->n_ineq)
1671 continue;
1672 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1673 isl_int *ineq = set->p[s]->ineq[i];
1674 if (!has_constraint(hull->ctx, table, ineq, total, n))
1675 break;
1677 if (i == set->p[s]->n_ineq)
1678 *is_hull = 1;
1681 isl_hash_table_clear(table);
1682 for (i = 0; i < min_constraints; ++i)
1683 isl_mat_free(constraints[i].c);
1684 free(constraints);
1685 free(table);
1686 return hull;
1687 error:
1688 isl_hash_table_clear(table);
1689 free(table);
1690 if (constraints)
1691 for (i = 0; i < min_constraints; ++i)
1692 isl_mat_free(constraints[i].c);
1693 free(constraints);
1694 return hull;
1697 /* Create a template for the convex hull of "set" and fill it up
1698 * obvious facet constraints, if any. If the result happens to
1699 * be the convex hull of "set" then *is_hull is set to 1.
1701 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1703 struct isl_basic_set *hull;
1704 unsigned n_ineq;
1705 int i;
1707 n_ineq = 1;
1708 for (i = 0; i < set->n; ++i) {
1709 n_ineq += set->p[i]->n_eq;
1710 n_ineq += set->p[i]->n_ineq;
1712 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1713 hull = isl_basic_set_set_rational(hull);
1714 if (!hull)
1715 return NULL;
1716 return common_constraints(hull, set, is_hull);
1719 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1721 struct isl_basic_set *hull;
1722 int is_hull;
1724 hull = proto_hull(set, &is_hull);
1725 if (hull && !is_hull) {
1726 if (hull->n_ineq == 0)
1727 hull = initial_hull(hull, set);
1728 hull = extend(hull, set);
1730 isl_set_free(set);
1732 return hull;
1735 /* Compute the convex hull of a set without any parameters or
1736 * integer divisions. Depending on whether the set is bounded,
1737 * we pass control to the wrapping based convex hull or
1738 * the Fourier-Motzkin elimination based convex hull.
1739 * We also handle a few special cases before checking the boundedness.
1741 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1743 struct isl_basic_set *convex_hull = NULL;
1744 struct isl_basic_set *lin;
1746 if (isl_set_n_dim(set) == 0)
1747 return convex_hull_0d(set);
1749 set = isl_set_coalesce(set);
1750 set = isl_set_set_rational(set);
1752 if (!set)
1753 goto error;
1754 if (!set)
1755 return NULL;
1756 if (set->n == 1) {
1757 convex_hull = isl_basic_set_copy(set->p[0]);
1758 isl_set_free(set);
1759 return convex_hull;
1761 if (isl_set_n_dim(set) == 1)
1762 return convex_hull_1d(set);
1764 if (isl_set_is_bounded(set))
1765 return uset_convex_hull_wrap(set);
1767 lin = uset_combined_lineality_space(isl_set_copy(set));
1768 if (!lin)
1769 goto error;
1770 if (isl_basic_set_is_universe(lin)) {
1771 isl_set_free(set);
1772 return lin;
1774 if (lin->n_eq < isl_basic_set_total_dim(lin))
1775 return modulo_lineality(set, lin);
1776 isl_basic_set_free(lin);
1778 return uset_convex_hull_unbounded(set);
1779 error:
1780 isl_set_free(set);
1781 isl_basic_set_free(convex_hull);
1782 return NULL;
1785 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1786 * without parameters or divs and where the convex hull of set is
1787 * known to be full-dimensional.
1789 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1791 struct isl_basic_set *convex_hull = NULL;
1793 if (isl_set_n_dim(set) == 0) {
1794 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1795 isl_set_free(set);
1796 convex_hull = isl_basic_set_set_rational(convex_hull);
1797 return convex_hull;
1800 set = isl_set_set_rational(set);
1802 if (!set)
1803 goto error;
1804 set = isl_set_coalesce(set);
1805 if (!set)
1806 goto error;
1807 if (set->n == 1) {
1808 convex_hull = isl_basic_set_copy(set->p[0]);
1809 isl_set_free(set);
1810 return convex_hull;
1812 if (isl_set_n_dim(set) == 1)
1813 return convex_hull_1d(set);
1815 return uset_convex_hull_wrap(set);
1816 error:
1817 isl_set_free(set);
1818 return NULL;
1821 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1822 * We first remove the equalities (transforming the set), compute the
1823 * convex hull of the transformed set and then add the equalities back
1824 * (after performing the inverse transformation.
1826 static struct isl_basic_set *modulo_affine_hull(
1827 struct isl_set *set, struct isl_basic_set *affine_hull)
1829 struct isl_mat *T;
1830 struct isl_mat *T2;
1831 struct isl_basic_set *dummy;
1832 struct isl_basic_set *convex_hull;
1834 dummy = isl_basic_set_remove_equalities(
1835 isl_basic_set_copy(affine_hull), &T, &T2);
1836 if (!dummy)
1837 goto error;
1838 isl_basic_set_free(dummy);
1839 set = isl_set_preimage(set, T);
1840 convex_hull = uset_convex_hull(set);
1841 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1842 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1843 return convex_hull;
1844 error:
1845 isl_basic_set_free(affine_hull);
1846 isl_set_free(set);
1847 return NULL;
1850 /* Compute the convex hull of a map.
1852 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1853 * specifically, the wrapping of facets to obtain new facets.
1855 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1857 struct isl_basic_set *bset;
1858 struct isl_basic_map *model = NULL;
1859 struct isl_basic_set *affine_hull = NULL;
1860 struct isl_basic_map *convex_hull = NULL;
1861 struct isl_set *set = NULL;
1862 struct isl_ctx *ctx;
1864 if (!map)
1865 goto error;
1867 ctx = map->ctx;
1868 if (map->n == 0) {
1869 convex_hull = isl_basic_map_empty_like_map(map);
1870 isl_map_free(map);
1871 return convex_hull;
1874 map = isl_map_detect_equalities(map);
1875 map = isl_map_align_divs(map);
1876 model = isl_basic_map_copy(map->p[0]);
1877 set = isl_map_underlying_set(map);
1878 if (!set)
1879 goto error;
1881 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1882 if (!affine_hull)
1883 goto error;
1884 if (affine_hull->n_eq != 0)
1885 bset = modulo_affine_hull(set, affine_hull);
1886 else {
1887 isl_basic_set_free(affine_hull);
1888 bset = uset_convex_hull(set);
1891 convex_hull = isl_basic_map_overlying_set(bset, model);
1893 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1894 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1895 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1896 return convex_hull;
1897 error:
1898 isl_set_free(set);
1899 isl_basic_map_free(model);
1900 return NULL;
1903 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1905 return (struct isl_basic_set *)
1906 isl_map_convex_hull((struct isl_map *)set);
1909 struct sh_data_entry {
1910 struct isl_hash_table *table;
1911 struct isl_tab *tab;
1914 /* Holds the data needed during the simple hull computation.
1915 * In particular,
1916 * n the number of basic sets in the original set
1917 * hull_table a hash table of already computed constraints
1918 * in the simple hull
1919 * p for each basic set,
1920 * table a hash table of the constraints
1921 * tab the tableau corresponding to the basic set
1923 struct sh_data {
1924 struct isl_ctx *ctx;
1925 unsigned n;
1926 struct isl_hash_table *hull_table;
1927 struct sh_data_entry p[1];
1930 static void sh_data_free(struct sh_data *data)
1932 int i;
1934 if (!data)
1935 return;
1936 isl_hash_table_free(data->ctx, data->hull_table);
1937 for (i = 0; i < data->n; ++i) {
1938 isl_hash_table_free(data->ctx, data->p[i].table);
1939 isl_tab_free(data->p[i].tab);
1941 free(data);
1944 struct ineq_cmp_data {
1945 unsigned len;
1946 isl_int *p;
1949 static int has_ineq(const void *entry, const void *val)
1951 isl_int *row = (isl_int *)entry;
1952 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1954 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1955 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1958 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1959 isl_int *ineq, unsigned len)
1961 uint32_t c_hash;
1962 struct ineq_cmp_data v;
1963 struct isl_hash_table_entry *entry;
1965 v.len = len;
1966 v.p = ineq;
1967 c_hash = isl_seq_get_hash(ineq + 1, len);
1968 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1969 if (!entry)
1970 return - 1;
1971 entry->data = ineq;
1972 return 0;
1975 /* Fill hash table "table" with the constraints of "bset".
1976 * Equalities are added as two inequalities.
1977 * The value in the hash table is a pointer to the (in)equality of "bset".
1979 static int hash_basic_set(struct isl_hash_table *table,
1980 struct isl_basic_set *bset)
1982 int i, j;
1983 unsigned dim = isl_basic_set_total_dim(bset);
1985 for (i = 0; i < bset->n_eq; ++i) {
1986 for (j = 0; j < 2; ++j) {
1987 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1988 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1989 return -1;
1992 for (i = 0; i < bset->n_ineq; ++i) {
1993 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1994 return -1;
1996 return 0;
1999 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2001 struct sh_data *data;
2002 int i;
2004 data = isl_calloc(set->ctx, struct sh_data,
2005 sizeof(struct sh_data) +
2006 (set->n - 1) * sizeof(struct sh_data_entry));
2007 if (!data)
2008 return NULL;
2009 data->ctx = set->ctx;
2010 data->n = set->n;
2011 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2012 if (!data->hull_table)
2013 goto error;
2014 for (i = 0; i < set->n; ++i) {
2015 data->p[i].table = isl_hash_table_alloc(set->ctx,
2016 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2017 if (!data->p[i].table)
2018 goto error;
2019 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2020 goto error;
2022 return data;
2023 error:
2024 sh_data_free(data);
2025 return NULL;
2028 /* Check if inequality "ineq" is a bound for basic set "j" or if
2029 * it can be relaxed (by increasing the constant term) to become
2030 * a bound for that basic set. In the latter case, the constant
2031 * term is updated.
2032 * Return 1 if "ineq" is a bound
2033 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2034 * -1 if some error occurred
2036 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2037 isl_int *ineq)
2039 enum isl_lp_result res;
2040 isl_int opt;
2042 if (!data->p[j].tab) {
2043 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2044 if (!data->p[j].tab)
2045 return -1;
2048 isl_int_init(opt);
2050 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2051 &opt, NULL, 0);
2052 if (res == isl_lp_ok && isl_int_is_neg(opt))
2053 isl_int_sub(ineq[0], ineq[0], opt);
2055 isl_int_clear(opt);
2057 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2058 res == isl_lp_unbounded ? 0 : -1;
2061 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2062 * become a bound on the whole set. If so, add the (relaxed) inequality
2063 * to "hull".
2065 * We first check if "hull" already contains a translate of the inequality.
2066 * If so, we are done.
2067 * Then, we check if any of the previous basic sets contains a translate
2068 * of the inequality. If so, then we have already considered this
2069 * inequality and we are done.
2070 * Otherwise, for each basic set other than "i", we check if the inequality
2071 * is a bound on the basic set.
2072 * For previous basic sets, we know that they do not contain a translate
2073 * of the inequality, so we directly call is_bound.
2074 * For following basic sets, we first check if a translate of the
2075 * inequality appears in its description and if so directly update
2076 * the inequality accordingly.
2078 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2079 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2081 uint32_t c_hash;
2082 struct ineq_cmp_data v;
2083 struct isl_hash_table_entry *entry;
2084 int j, k;
2086 if (!hull)
2087 return NULL;
2089 v.len = isl_basic_set_total_dim(hull);
2090 v.p = ineq;
2091 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2093 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2094 has_ineq, &v, 0);
2095 if (entry)
2096 return hull;
2098 for (j = 0; j < i; ++j) {
2099 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2100 c_hash, has_ineq, &v, 0);
2101 if (entry)
2102 break;
2104 if (j < i)
2105 return hull;
2107 k = isl_basic_set_alloc_inequality(hull);
2108 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2109 if (k < 0)
2110 goto error;
2112 for (j = 0; j < i; ++j) {
2113 int bound;
2114 bound = is_bound(data, set, j, hull->ineq[k]);
2115 if (bound < 0)
2116 goto error;
2117 if (!bound)
2118 break;
2120 if (j < i) {
2121 isl_basic_set_free_inequality(hull, 1);
2122 return hull;
2125 for (j = i + 1; j < set->n; ++j) {
2126 int bound, neg;
2127 isl_int *ineq_j;
2128 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2129 c_hash, has_ineq, &v, 0);
2130 if (entry) {
2131 ineq_j = entry->data;
2132 neg = isl_seq_is_neg(ineq_j + 1,
2133 hull->ineq[k] + 1, v.len);
2134 if (neg)
2135 isl_int_neg(ineq_j[0], ineq_j[0]);
2136 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2137 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2138 if (neg)
2139 isl_int_neg(ineq_j[0], ineq_j[0]);
2140 continue;
2142 bound = is_bound(data, set, j, hull->ineq[k]);
2143 if (bound < 0)
2144 goto error;
2145 if (!bound)
2146 break;
2148 if (j < set->n) {
2149 isl_basic_set_free_inequality(hull, 1);
2150 return hull;
2153 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2154 has_ineq, &v, 1);
2155 if (!entry)
2156 goto error;
2157 entry->data = hull->ineq[k];
2159 return hull;
2160 error:
2161 isl_basic_set_free(hull);
2162 return NULL;
2165 /* Check if any inequality from basic set "i" can be relaxed to
2166 * become a bound on the whole set. If so, add the (relaxed) inequality
2167 * to "hull".
2169 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2170 struct sh_data *data, struct isl_set *set, int i)
2172 int j, k;
2173 unsigned dim = isl_basic_set_total_dim(bset);
2175 for (j = 0; j < set->p[i]->n_eq; ++j) {
2176 for (k = 0; k < 2; ++k) {
2177 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2178 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2181 for (j = 0; j < set->p[i]->n_ineq; ++j)
2182 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2183 return bset;
2186 /* Compute a superset of the convex hull of set that is described
2187 * by only translates of the constraints in the constituents of set.
2189 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2191 struct sh_data *data = NULL;
2192 struct isl_basic_set *hull = NULL;
2193 unsigned n_ineq;
2194 int i;
2196 if (!set)
2197 return NULL;
2199 n_ineq = 0;
2200 for (i = 0; i < set->n; ++i) {
2201 if (!set->p[i])
2202 goto error;
2203 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2206 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2207 if (!hull)
2208 goto error;
2210 data = sh_data_alloc(set, n_ineq);
2211 if (!data)
2212 goto error;
2214 for (i = 0; i < set->n; ++i)
2215 hull = add_bounds(hull, data, set, i);
2217 sh_data_free(data);
2218 isl_set_free(set);
2220 return hull;
2221 error:
2222 sh_data_free(data);
2223 isl_basic_set_free(hull);
2224 isl_set_free(set);
2225 return NULL;
2228 /* Compute a superset of the convex hull of map that is described
2229 * by only translates of the constraints in the constituents of map.
2231 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2233 struct isl_set *set = NULL;
2234 struct isl_basic_map *model = NULL;
2235 struct isl_basic_map *hull;
2236 struct isl_basic_map *affine_hull;
2237 struct isl_basic_set *bset = NULL;
2239 if (!map)
2240 return NULL;
2241 if (map->n == 0) {
2242 hull = isl_basic_map_empty_like_map(map);
2243 isl_map_free(map);
2244 return hull;
2246 if (map->n == 1) {
2247 hull = isl_basic_map_copy(map->p[0]);
2248 isl_map_free(map);
2249 return hull;
2252 map = isl_map_detect_equalities(map);
2253 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2254 map = isl_map_align_divs(map);
2255 model = isl_basic_map_copy(map->p[0]);
2257 set = isl_map_underlying_set(map);
2259 bset = uset_simple_hull(set);
2261 hull = isl_basic_map_overlying_set(bset, model);
2263 hull = isl_basic_map_intersect(hull, affine_hull);
2264 hull = isl_basic_map_convex_hull(hull);
2265 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2266 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2268 return hull;
2271 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2273 return (struct isl_basic_set *)
2274 isl_map_simple_hull((struct isl_map *)set);
2277 /* Given a set "set", return parametric bounds on the dimension "dim".
2279 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2281 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2282 set = isl_set_copy(set);
2283 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2284 set = isl_set_eliminate_dims(set, 0, dim);
2285 return isl_set_convex_hull(set);
2288 /* Computes a "simple hull" and then check if each dimension in the
2289 * resulting hull is bounded by a symbolic constant. If not, the
2290 * hull is intersected with the corresponding bounds on the whole set.
2292 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2294 int i, j;
2295 struct isl_basic_set *hull;
2296 unsigned nparam, left;
2297 int removed_divs = 0;
2299 hull = isl_set_simple_hull(isl_set_copy(set));
2300 if (!hull)
2301 goto error;
2303 nparam = isl_basic_set_dim(hull, isl_dim_param);
2304 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2305 int lower = 0, upper = 0;
2306 struct isl_basic_set *bounds;
2308 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2309 for (j = 0; j < hull->n_eq; ++j) {
2310 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2311 continue;
2312 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2313 left) == -1)
2314 break;
2316 if (j < hull->n_eq)
2317 continue;
2319 for (j = 0; j < hull->n_ineq; ++j) {
2320 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2321 continue;
2322 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2323 left) != -1 ||
2324 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2325 i) != -1)
2326 continue;
2327 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2328 lower = 1;
2329 else
2330 upper = 1;
2331 if (lower && upper)
2332 break;
2335 if (lower && upper)
2336 continue;
2338 if (!removed_divs) {
2339 set = isl_set_remove_divs(set);
2340 if (!set)
2341 goto error;
2342 removed_divs = 1;
2344 bounds = set_bounds(set, i);
2345 hull = isl_basic_set_intersect(hull, bounds);
2346 if (!hull)
2347 goto error;
2350 isl_set_free(set);
2351 return hull;
2352 error:
2353 isl_set_free(set);
2354 return NULL;