add extra AST generation test case from CLooG
[isl.git] / isl_ast_codegen.c
blobc0afa0ae3a9f5ea5c7e3004eec04266f63c90de0
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <isl/aff.h>
11 #include <isl/set.h>
12 #include <isl/ilp.h>
13 #include <isl/union_map.h>
14 #include <isl_sort.h>
15 #include <isl_tarjan.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_expr.h>
18 #include <isl_ast_build_private.h>
19 #include <isl_ast_graft_private.h>
20 #include <isl_list_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
112 list = generate_code(isl_union_map_from_map(executed), build, 1);
114 data->list = isl_ast_graft_list_concat(data->list, list);
116 return 0;
119 /* Call the at_each_domain callback, if requested by the user,
120 * after recording the current inverse schedule in the build.
122 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
123 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
125 if (!graft || !build)
126 return isl_ast_graft_free(graft);
127 if (!build->at_each_domain)
128 return graft;
130 build = isl_ast_build_copy(build);
131 build = isl_ast_build_set_executed(build,
132 isl_union_map_from_map(isl_map_copy(executed)));
133 if (!build)
134 return isl_ast_graft_free(graft);
136 graft->node = build->at_each_domain(graft->node,
137 build, build->at_each_domain_user);
138 isl_ast_build_free(build);
140 if (!graft->node)
141 graft = isl_ast_graft_free(graft);
143 return graft;
146 /* Generate an AST for a single domain based on
147 * the inverse schedule "executed".
149 * If there is more than one domain element associated to the current
150 * schedule "time", then we need to continue the generation process
151 * in generate_non_single_valued.
152 * Note that the inverse schedule being single-valued may depend
153 * on constraints that are only available in the original context
154 * domain specified by the user. If the bare inverse schedule
155 * is not single-valued, we double-check after introducing the constraints
156 * from data->build->domain.
158 * Otherwise, we generate a call expression for the single executed
159 * domain element and put a guard around it based on the (simplified)
160 * domain of "executed".
162 * If the user has set an at_each_domain callback, it is called
163 * on the constructed call expression node.
165 static int generate_domain(__isl_take isl_map *executed, void *user)
167 struct isl_generate_domain_data *data = user;
168 isl_ast_graft *graft;
169 isl_ast_graft_list *list;
170 isl_set *guard;
171 isl_map *map;
172 int sv;
174 sv = isl_map_is_single_valued(executed);
175 if (sv < 0)
176 goto error;
177 if (!sv) {
178 map = isl_map_copy(executed);
179 map = isl_map_intersect_domain(map,
180 isl_set_copy(data->build->domain));
181 sv = isl_map_is_single_valued(map);
182 isl_map_free(map);
184 if (!sv)
185 return generate_non_single_valued(executed, data);
187 executed = isl_map_coalesce(executed);
188 map = isl_map_copy(executed);
189 map = isl_ast_build_compute_gist_map_domain(data->build, map);
190 guard = isl_map_domain(isl_map_copy(map));
191 guard = isl_set_coalesce(guard);
192 guard = isl_ast_build_compute_gist(data->build, guard);
193 graft = isl_ast_graft_alloc_domain(map, data->build);
194 graft = at_each_domain(graft, executed, data->build);
196 isl_map_free(executed);
197 graft = isl_ast_graft_add_guard(graft, guard, data->build);
199 list = isl_ast_graft_list_from_ast_graft(graft);
200 data->list = isl_ast_graft_list_concat(data->list, list);
202 return 0;
203 error:
204 isl_map_free(executed);
205 return -1;
208 /* Call build->create_leaf to a create "leaf" node in the AST,
209 * encapsulate the result in an isl_ast_graft and return the result
210 * as a 1-element list.
212 * Note that the node returned by the user may be an entire tree.
214 * Before we pass control to the user, we first clear some information
215 * from the build that is (presumbably) only meaningful
216 * for the current code generation.
217 * This includes the create_leaf callback itself, so we make a copy
218 * of the build first.
220 static __isl_give isl_ast_graft_list *call_create_leaf(
221 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
223 isl_ast_node *node;
224 isl_ast_graft *graft;
225 isl_ast_build *user_build;
227 user_build = isl_ast_build_copy(build);
228 user_build = isl_ast_build_set_executed(user_build, executed);
229 user_build = isl_ast_build_clear_local_info(user_build);
230 if (!user_build)
231 node = NULL;
232 else
233 node = build->create_leaf(user_build, build->create_leaf_user);
234 graft = isl_ast_graft_alloc(node, build);
235 isl_ast_build_free(build);
236 return isl_ast_graft_list_from_ast_graft(graft);
239 /* Generate an AST after having handled the complete schedule
240 * of this call to the code generator.
242 * If the user has specified a create_leaf callback, control
243 * is passed to the user in call_create_leaf.
245 * Otherwise, we generate one or more calls for each individual
246 * domain in generate_domain.
248 static __isl_give isl_ast_graft_list *generate_inner_level(
249 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
251 isl_ctx *ctx;
252 struct isl_generate_domain_data data = { build };
254 if (!build || !executed)
255 goto error;
257 if (build->create_leaf)
258 return call_create_leaf(executed, build);
260 ctx = isl_union_map_get_ctx(executed);
261 data.list = isl_ast_graft_list_alloc(ctx, 0);
262 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
263 data.list = isl_ast_graft_list_free(data.list);
265 if (0)
266 error: data.list = NULL;
267 isl_ast_build_free(build);
268 isl_union_map_free(executed);
269 return data.list;
272 /* Eliminate the schedule dimension "pos" from "executed" and return
273 * the result.
275 static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
276 int pos, __isl_keep isl_ast_build *build)
278 isl_space *space;
279 isl_map *elim;
281 space = isl_ast_build_get_space(build, 1);
282 space = isl_space_map_from_set(space);
283 elim = isl_map_identity(space);
284 elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
286 executed = isl_union_map_apply_domain(executed,
287 isl_union_map_from_map(elim));
289 return executed;
292 /* Check if the constraint "c" is a lower bound on dimension "pos",
293 * an upper bound, or independent of dimension "pos".
295 static int constraint_type(isl_constraint *c, int pos)
297 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
298 return 1;
299 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
300 return 2;
301 return 0;
304 /* Compare the types of the constraints "a" and "b",
305 * resulting in constraints that are independent of "depth"
306 * to be sorted before the lower bounds on "depth", which in
307 * turn are sorted before the upper bounds on "depth".
309 static int cmp_constraint(const void *a, const void *b, void *user)
311 int *depth = user;
312 isl_constraint * const *c1 = a;
313 isl_constraint * const *c2 = b;
314 int t1 = constraint_type(*c1, *depth);
315 int t2 = constraint_type(*c2, *depth);
317 return t1 - t2;
320 /* Extract a lower bound on dimension "pos" from constraint "c".
322 * If the constraint is of the form
324 * a x + f(...) >= 0
326 * then we essentially return
328 * l = ceil(-f(...)/a)
330 * However, if the current dimension is strided, then we need to make
331 * sure that the lower bound we construct is of the form
333 * f + s a
335 * with f the offset and s the stride.
336 * We therefore compute
338 * f + s * ceil((l - f)/s)
340 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
341 int pos, __isl_keep isl_ast_build *build)
343 isl_aff *aff;
345 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
346 aff = isl_aff_ceil(aff);
348 if (isl_ast_build_has_stride(build, pos)) {
349 isl_aff *offset;
350 isl_int stride;
352 isl_int_init(stride);
354 offset = isl_ast_build_get_offset(build, pos);
355 isl_ast_build_get_stride(build, pos, &stride);
357 aff = isl_aff_sub(aff, isl_aff_copy(offset));
358 aff = isl_aff_scale_down(aff, stride);
359 aff = isl_aff_ceil(aff);
360 aff = isl_aff_scale(aff, stride);
361 aff = isl_aff_add(aff, offset);
363 isl_int_clear(stride);
366 aff = isl_ast_build_compute_gist_aff(build, aff);
368 return aff;
371 /* Return the exact lower bound (or upper bound if "upper" is set)
372 * of "domain" as a piecewise affine expression.
374 * If we are computing a lower bound (of a strided dimension), then
375 * we need to make sure it is of the form
377 * f + s a
379 * where f is the offset and s is the stride.
380 * We therefore need to include the stride constraint before computing
381 * the minimum.
383 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
384 __isl_keep isl_ast_build *build, int upper)
386 isl_set *stride;
387 isl_map *it_map;
388 isl_pw_aff *pa;
389 isl_pw_multi_aff *pma;
391 domain = isl_set_copy(domain);
392 if (!upper) {
393 stride = isl_ast_build_get_stride_constraint(build);
394 domain = isl_set_intersect(domain, stride);
396 it_map = isl_ast_build_map_to_iterator(build, domain);
397 if (upper)
398 pma = isl_map_lexmax_pw_multi_aff(it_map);
399 else
400 pma = isl_map_lexmin_pw_multi_aff(it_map);
401 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
402 isl_pw_multi_aff_free(pma);
403 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
404 pa = isl_pw_aff_coalesce(pa);
406 return pa;
409 /* Return a list of "n" lower bounds on dimension "pos"
410 * extracted from the "n" constraints starting at "constraint".
411 * If "n" is zero, then we extract a lower bound from "domain" instead.
413 static __isl_give isl_pw_aff_list *lower_bounds(
414 __isl_keep isl_constraint **constraint, int n, int pos,
415 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
417 isl_ctx *ctx;
418 isl_pw_aff_list *list;
419 int i;
421 if (!build)
422 return NULL;
424 if (n == 0) {
425 isl_pw_aff *pa;
426 pa = exact_bound(domain, build, 0);
427 return isl_pw_aff_list_from_pw_aff(pa);
430 ctx = isl_ast_build_get_ctx(build);
431 list = isl_pw_aff_list_alloc(ctx,n);
433 for (i = 0; i < n; ++i) {
434 isl_aff *aff;
436 aff = lower_bound(constraint[i], pos, build);
437 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
440 return list;
443 /* Return a list of "n" upper bounds on dimension "pos"
444 * extracted from the "n" constraints starting at "constraint".
445 * If "n" is zero, then we extract an upper bound from "domain" instead.
447 static __isl_give isl_pw_aff_list *upper_bounds(
448 __isl_keep isl_constraint **constraint, int n, int pos,
449 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
451 isl_ctx *ctx;
452 isl_pw_aff_list *list;
453 int i;
455 if (n == 0) {
456 isl_pw_aff *pa;
457 pa = exact_bound(domain, build, 1);
458 return isl_pw_aff_list_from_pw_aff(pa);
461 ctx = isl_ast_build_get_ctx(build);
462 list = isl_pw_aff_list_alloc(ctx,n);
464 for (i = 0; i < n; ++i) {
465 isl_aff *aff;
467 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
468 aff = isl_aff_floor(aff);
469 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
472 return list;
475 /* Return an isl_ast_expr that performs the reduction of type "type"
476 * on AST expressions corresponding to the elements in "list".
478 * The list is assumed to contain at least one element.
479 * If the list contains exactly one element, then the returned isl_ast_expr
480 * simply computes that affine expression.
482 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
483 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
485 int i, n;
486 isl_ctx *ctx;
487 isl_ast_expr *expr;
489 if (!list)
490 return NULL;
492 n = isl_pw_aff_list_n_pw_aff(list);
494 if (n == 1)
495 return isl_ast_build_expr_from_pw_aff_internal(build,
496 isl_pw_aff_list_get_pw_aff(list, 0));
498 ctx = isl_pw_aff_list_get_ctx(list);
499 expr = isl_ast_expr_alloc_op(ctx, type, n);
500 if (!expr)
501 return NULL;
503 for (i = 0; i < n; ++i) {
504 isl_ast_expr *expr_i;
506 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
507 isl_pw_aff_list_get_pw_aff(list, i));
508 if (!expr_i)
509 return isl_ast_expr_free(expr);
510 expr->u.op.args[i] = expr_i;
513 return expr;
516 /* Add a guard to "graft" based on "bound" in the case of a degenerate
517 * level (including the special case of an eliminated level).
519 * We eliminate the current dimension, simplify the result in the current
520 * build and add the result as guards to the graft.
522 * Note that we cannot simply drop the constraints on the current dimension
523 * even in the eliminated case, because the single affine expression may
524 * not be explicitly available in "bounds". Moreover, the single affine
525 * expression may only be defined on a subset of the build domain,
526 * so we do in some cases need to insert a guard even in the eliminated case.
528 static __isl_give isl_ast_graft *add_degenerate_guard(
529 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
530 __isl_keep isl_ast_build *build)
532 int depth;
533 isl_set *dom;
535 depth = isl_ast_build_get_depth(build);
537 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
538 if (isl_ast_build_has_stride(build, depth)) {
539 isl_set *stride;
541 stride = isl_ast_build_get_stride_constraint(build);
542 dom = isl_set_intersect(dom, stride);
544 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
545 dom = isl_ast_build_compute_gist(build, dom);
547 graft = isl_ast_graft_add_guard(graft, dom, build);
549 return graft;
552 /* Update "graft" based on "bounds" for the eliminated case.
554 * In the eliminated case, no for node is created, so we only need
555 * to check if "bounds" imply any guards that need to be inserted.
557 static __isl_give isl_ast_graft *refine_eliminated(
558 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
559 __isl_keep isl_ast_build *build)
561 return add_degenerate_guard(graft, bounds, build);
564 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
566 * "build" is the build in which graft->node was created
567 * "sub_build" contains information about the current level itself,
568 * including the single value attained.
570 * We first set the initialization part of the for loop to the single
571 * value attained by the current dimension.
572 * The increment and condition are not strictly needed as the are known
573 * to be "1" and "iterator <= value" respectively.
574 * Then we set the size of the iterator and
575 * check if "bounds" imply any guards that need to be inserted.
577 static __isl_give isl_ast_graft *refine_degenerate(
578 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
579 __isl_keep isl_ast_build *build,
580 __isl_keep isl_ast_build *sub_build)
582 isl_pw_aff *value;
584 if (!graft || !sub_build)
585 return isl_ast_graft_free(graft);
587 value = isl_pw_aff_copy(sub_build->value);
589 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
590 value);
591 if (!graft->node->u.f.init)
592 return isl_ast_graft_free(graft);
594 graft = add_degenerate_guard(graft, bounds, build);
596 return graft;
599 /* Return the intersection of the "n" constraints starting at "constraint"
600 * as a set.
602 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
603 __isl_keep isl_constraint **constraint, int n)
605 int i;
606 isl_basic_set *bset;
608 if (n < 1)
609 isl_die(ctx, isl_error_internal,
610 "expecting at least one constraint", return NULL);
612 bset = isl_basic_set_from_constraint(
613 isl_constraint_copy(constraint[0]));
614 for (i = 1; i < n; ++i) {
615 isl_basic_set *bset_i;
617 bset_i = isl_basic_set_from_constraint(
618 isl_constraint_copy(constraint[i]));
619 bset = isl_basic_set_intersect(bset, bset_i);
622 return isl_set_from_basic_set(bset);
625 /* Compute the constraints on the outer dimensions enforced by
626 * graft->node and add those constraints to graft->enforced,
627 * in case the upper bound is expressed as a set "upper".
629 * In particular, if l(...) is a lower bound in "lower", and
631 * -a i + f(...) >= 0 or a i <= f(...)
633 * is an upper bound ocnstraint on the current dimension i,
634 * then the for loop enforces the constraint
636 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
638 * We therefore simply take each lower bound in turn, plug it into
639 * the upper bounds and compute the intersection over all lower bounds.
641 * If a lower bound is a rational expression, then
642 * isl_basic_set_preimage_multi_aff will force this rational
643 * expression to have only integer values. However, the loop
644 * itself does not enforce this integrality constraint. We therefore
645 * use the ceil of the lower bounds instead of the lower bounds themselves.
646 * Other constraints will make sure that the for loop is only executed
647 * when each of the lower bounds attains an integral value.
648 * In particular, potentially rational values only occur in
649 * lower_bound if the offset is a (seemingly) rational expression,
650 * but then outer conditions will make sure that this rational expression
651 * only attains integer values.
653 static __isl_give isl_ast_graft *set_enforced_from_set(
654 __isl_take isl_ast_graft *graft,
655 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
657 isl_space *space;
658 isl_basic_set *enforced;
659 isl_pw_multi_aff *pma;
660 int i, n;
662 if (!graft || !lower)
663 return isl_ast_graft_free(graft);
665 space = isl_set_get_space(upper);
666 enforced = isl_basic_set_universe(isl_space_copy(space));
668 space = isl_space_map_from_set(space);
669 pma = isl_pw_multi_aff_identity(space);
671 n = isl_pw_aff_list_n_pw_aff(lower);
672 for (i = 0; i < n; ++i) {
673 isl_pw_aff *pa;
674 isl_set *enforced_i;
675 isl_basic_set *hull;
676 isl_pw_multi_aff *pma_i;
678 pa = isl_pw_aff_list_get_pw_aff(lower, i);
679 pa = isl_pw_aff_ceil(pa);
680 pma_i = isl_pw_multi_aff_copy(pma);
681 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
682 enforced_i = isl_set_copy(upper);
683 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
684 hull = isl_set_simple_hull(enforced_i);
685 enforced = isl_basic_set_intersect(enforced, hull);
688 isl_pw_multi_aff_free(pma);
690 graft = isl_ast_graft_enforce(graft, enforced);
692 return graft;
695 /* Compute the constraints on the outer dimensions enforced by
696 * graft->node and add those constraints to graft->enforced,
697 * in case the upper bound is expressed as
698 * a list of affine expressions "upper".
700 * The enforced condition is that each lower bound expression is less
701 * than or equal to each upper bound expression.
703 static __isl_give isl_ast_graft *set_enforced_from_list(
704 __isl_take isl_ast_graft *graft,
705 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
707 isl_set *cond;
708 isl_basic_set *enforced;
710 lower = isl_pw_aff_list_copy(lower);
711 upper = isl_pw_aff_list_copy(upper);
712 cond = isl_pw_aff_list_le_set(lower, upper);
713 enforced = isl_set_simple_hull(cond);
714 graft = isl_ast_graft_enforce(graft, enforced);
716 return graft;
719 /* Set the condition part of the for node graft->node in case
720 * the upper bound is represented as a list of piecewise affine expressions.
722 * In particular, set the condition to
724 * iterator <= min(list of upper bounds)
726 static __isl_give isl_ast_graft *set_for_cond_from_list(
727 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
728 __isl_keep isl_ast_build *build)
730 isl_ast_expr *bound, *iterator, *cond;
732 if (!graft || !list)
733 return isl_ast_graft_free(graft);
735 bound = reduce_list(isl_ast_op_min, list, build);
736 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
737 cond = isl_ast_expr_alloc_binary(isl_ast_op_le, iterator, bound);
738 graft->node->u.f.cond = cond;
740 if (!graft->node->u.f.cond)
741 return isl_ast_graft_free(graft);
742 return graft;
745 /* Set the condition part of the for node graft->node in case
746 * the upper bound is represented as a set.
748 static __isl_give isl_ast_graft *set_for_cond_from_set(
749 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
750 __isl_keep isl_ast_build *build)
752 isl_ast_expr *cond;
754 if (!graft)
755 return NULL;
757 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
758 graft->node->u.f.cond = cond;
759 if (!graft->node->u.f.cond)
760 return isl_ast_graft_free(graft);
761 return graft;
764 /* Construct an isl_ast_expr for the increment (i.e., stride) of
765 * the current dimension.
767 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
769 int depth;
770 isl_int v;
771 isl_ctx *ctx;
772 isl_ast_expr *inc;
774 ctx = isl_ast_build_get_ctx(build);
775 depth = isl_ast_build_get_depth(build);
777 if (!isl_ast_build_has_stride(build, depth))
778 return isl_ast_expr_alloc_int_si(ctx, 1);
780 isl_int_init(v);
781 isl_ast_build_get_stride(build, depth, &v);
782 inc = isl_ast_expr_alloc_int(ctx, v);
783 isl_int_clear(v);
785 return inc;
788 /* Should we express the loop condition as
790 * iterator <= min(list of upper bounds)
792 * or as a conjunction of constraints?
794 * The first is constructed from a list of upper bounds.
795 * The second is constructed from a set.
797 * If there are no upper bounds in "constraints", then this could mean
798 * that "domain" simply doesn't have an upper bound or that we didn't
799 * pick any upper bound. In the first case, we want to generate the
800 * loop condition as a(n empty) conjunction of constraints
801 * In the second case, we will compute
802 * a single upper bound from "domain" and so we use the list form.
804 * If there are upper bounds in "constraints",
805 * then we use the list form iff the atomic_upper_bound option is set.
807 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
808 __isl_keep isl_set *domain, int depth)
810 if (n_upper > 0)
811 return isl_options_get_ast_build_atomic_upper_bound(ctx);
812 else
813 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
816 /* Fill in the expressions of the for node in graft->node.
818 * In particular,
819 * - set the initialization part of the loop to the maximum of the lower bounds
820 * - set the size of the iterator based on the values attained by the iterator
821 * - extract the increment from the stride of the current dimension
822 * - construct the for condition either based on a list of upper bounds
823 * or on a set of upper bound constraints.
825 static __isl_give isl_ast_graft *set_for_node_expressions(
826 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
827 int use_list, __isl_keep isl_pw_aff_list *upper_list,
828 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
830 isl_ast_node *node;
832 if (!graft)
833 return NULL;
835 build = isl_ast_build_copy(build);
836 build = isl_ast_build_set_enforced(build,
837 isl_ast_graft_get_enforced(graft));
839 node = graft->node;
840 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
841 node->u.f.inc = for_inc(build);
843 if (use_list)
844 graft = set_for_cond_from_list(graft, upper_list, build);
845 else
846 graft = set_for_cond_from_set(graft, upper_set, build);
848 isl_ast_build_free(build);
850 if (!node->u.f.iterator || !node->u.f.init ||
851 !node->u.f.cond || !node->u.f.inc)
852 return isl_ast_graft_free(graft);
854 return graft;
857 /* Update "graft" based on "bounds" and "domain" for the generic,
858 * non-degenerate, case.
860 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
861 * that the loop node should express.
862 * "domain" is the subset of the intersection of the constraints
863 * for which some code is executed.
865 * There may be zero lower bounds or zero upper bounds in "constraints"
866 * in case the list of constraints was created
867 * based on the atomic option or based on separation with explicit bounds.
868 * In that case, we use "domain" to derive lower and/or upper bounds.
870 * We first compute a list of one or more lower bounds.
872 * Then we decide if we want to express the condition as
874 * iterator <= min(list of upper bounds)
876 * or as a conjunction of constraints.
878 * The set of enforced constraints is then computed either based on
879 * a list of upper bounds or on a set of upper bound constraints.
880 * We do not compute any enforced constraints if we were forced
881 * to compute a lower or upper bound using exact_bound. The domains
882 * of the resulting expressions may imply some bounds on outer dimensions
883 * that we do not want to appear in the enforced constraints since
884 * they are not actually enforced by the corresponding code.
886 * Finally, we fill in the expressions of the for node.
888 static __isl_give isl_ast_graft *refine_generic_bounds(
889 __isl_take isl_ast_graft *graft,
890 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
891 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
893 int depth;
894 isl_ctx *ctx;
895 isl_pw_aff_list *lower;
896 int use_list;
897 isl_set *upper_set = NULL;
898 isl_pw_aff_list *upper_list = NULL;
900 if (!graft || !build)
901 return isl_ast_graft_free(graft);
903 depth = isl_ast_build_get_depth(build);
904 ctx = isl_ast_graft_get_ctx(graft);
906 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
908 lower = lower_bounds(constraint, n_lower, depth, domain, build);
910 if (use_list)
911 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
912 domain, build);
913 else if (n_upper > 0)
914 upper_set = intersect_constraints(ctx, constraint + n_lower,
915 n_upper);
916 else
917 upper_set = isl_set_universe(isl_set_get_space(domain));
919 if (n_lower == 0 || n_upper == 0)
921 else if (use_list)
922 graft = set_enforced_from_list(graft, lower, upper_list);
923 else
924 graft = set_enforced_from_set(graft, lower, depth, upper_set);
926 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
927 upper_set, build);
929 isl_pw_aff_list_free(lower);
930 isl_pw_aff_list_free(upper_list);
931 isl_set_free(upper_set);
933 return graft;
936 /* How many constraints in the "constraint" array, starting at position "first"
937 * are of the give type? "n" represents the total number of elements
938 * in the array.
940 static int count_constraints(isl_constraint **constraint, int n, int first,
941 int pos, int type)
943 int i;
945 constraint += first;
947 for (i = 0; first + i < n; i++)
948 if (constraint_type(constraint[i], pos) != type)
949 break;
951 return i;
954 /* Update "graft" based on "bounds" and "domain" for the generic,
955 * non-degenerate, case.
957 * "list" respresent the list of bounds that need to be encoded by
958 * the for loop (or a guard around the for loop).
959 * "domain" is the subset of the intersection of the constraints
960 * for which some code is executed.
961 * "build" is the build in which graft->node was created.
963 * We separate lower bounds, upper bounds and constraints that
964 * are independent of the loop iterator.
966 * The actual for loop bounds are generated in refine_generic_bounds.
967 * If there are any constraints that are independent of the loop iterator,
968 * we need to put a guard around the for loop (which may get hoisted up
969 * to higher levels) and we call refine_generic_bounds in a build
970 * where this guard is enforced.
972 static __isl_give isl_ast_graft *refine_generic_split(
973 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
974 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
976 isl_ctx *ctx;
977 isl_ast_build *for_build;
978 isl_set *guard;
979 int n_indep, n_lower, n_upper;
980 int pos;
981 int n;
983 if (!list)
984 return isl_ast_graft_free(graft);
986 pos = isl_ast_build_get_depth(build);
988 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
989 &cmp_constraint, &pos) < 0)
990 return isl_ast_graft_free(graft);
992 n = list->n;
993 n_indep = count_constraints(list->p, n, 0, pos, 0);
994 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
995 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
997 if (n_indep == 0)
998 return refine_generic_bounds(graft,
999 list->p + n_indep, n_lower, n_upper, domain, build);
1001 ctx = isl_ast_graft_get_ctx(graft);
1002 guard = intersect_constraints(ctx, list->p, n_indep);
1004 for_build = isl_ast_build_copy(build);
1005 for_build = isl_ast_build_restrict_pending(for_build,
1006 isl_set_copy(guard));
1007 graft = refine_generic_bounds(graft,
1008 list->p + n_indep, n_lower, n_upper, domain, for_build);
1009 isl_ast_build_free(for_build);
1011 graft = isl_ast_graft_add_guard(graft, guard, build);
1013 return graft;
1016 /* Update "graft" based on "bounds" and "domain" for the generic,
1017 * non-degenerate, case.
1019 * "bounds" respresent the bounds that need to be encoded by
1020 * the for loop (or a guard around the for loop).
1021 * "domain" is the subset of "bounds" for which some code is executed.
1022 * "build" is the build in which graft->node was created.
1024 * We break up "bounds" into a list of constraints and continue with
1025 * refine_generic_split.
1027 static __isl_give isl_ast_graft *refine_generic(
1028 __isl_take isl_ast_graft *graft,
1029 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1030 __isl_keep isl_ast_build *build)
1032 isl_constraint_list *list;
1034 if (!build || !graft)
1035 return isl_ast_graft_free(graft);
1037 bounds = isl_basic_set_copy(bounds);
1038 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1039 list = isl_constraint_list_from_basic_set(bounds);
1041 graft = refine_generic_split(graft, list, domain, build);
1043 isl_constraint_list_free(list);
1044 return graft;
1047 /* Create a for node for the current level.
1049 * Mark the for node degenerate if "degenerate" is set.
1051 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1052 int degenerate)
1054 int depth;
1055 isl_id *id;
1056 isl_ast_node *node;
1058 if (!build)
1059 return NULL;
1061 depth = isl_ast_build_get_depth(build);
1062 id = isl_ast_build_get_iterator_id(build, depth);
1063 node = isl_ast_node_alloc_for(id);
1064 if (degenerate)
1065 node = isl_ast_node_for_mark_degenerate(node);
1067 return node;
1070 /* Create an AST node for the current dimension based on
1071 * the schedule domain "bounds" and return the node encapsulated
1072 * in an isl_ast_graft.
1074 * "executed" is the current inverse schedule, taking into account
1075 * the bounds in "bounds"
1076 * "domain" is the domain of "executed", with inner dimensions projected out.
1077 * It may be a strict subset of "bounds" in case "bounds" was created
1078 * based on the atomic option or based on separation with explicit bounds.
1080 * "domain" may satisfy additional equalities that result
1081 * from intersecting "executed" with "bounds" in add_node.
1082 * It may also satisfy some global constraints that were dropped out because
1083 * we performed separation with explicit bounds.
1084 * The very first step is then to copy these constraints to "bounds".
1086 * We consider three builds,
1087 * "build" is the one in which the current level is created,
1088 * "body_build" is the build in which the next level is created,
1089 * "sub_build" is essentially the same as "body_build", except that
1090 * the depth has not been increased yet.
1092 * "build" already contains information (in strides and offsets)
1093 * about the strides at the current level, but this information is not
1094 * reflected in the build->domain.
1095 * We first add this information and the "bounds" to the sub_build->domain.
1096 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1097 * only a single value and whether this single value can be represented using
1098 * a single affine expression.
1099 * In the first case, the current level is considered "degenerate".
1100 * In the second, sub-case, the current level is considered "eliminated".
1101 * Eliminated level don't need to be reflected in the AST since we can
1102 * simply plug in the affine expression. For degenerate, but non-eliminated,
1103 * levels, we do introduce a for node, but mark is as degenerate so that
1104 * it can be printed as an assignment of the single value to the loop
1105 * "iterator".
1107 * If the current level is eliminated, we eliminate the current dimension
1108 * from the inverse schedule to make sure no inner dimensions depend
1109 * on the current dimension. Otherwise, we create a for node, marking
1110 * it degenerate if appropriate. The initial for node is still incomplete
1111 * and will be completed in either refine_degenerate or refine_generic.
1113 * We then generate a sequence of grafts for the next level,
1114 * create a surrounding graft for the current level and insert
1115 * the for node we created (if the current level is not eliminated).
1117 * Finally, we set the bounds of the for loop and insert guards
1118 * (either in the AST or in the graft) in one of
1119 * refine_eliminated, refine_degenerate or refine_generic.
1121 static __isl_give isl_ast_graft *create_node_scaled(
1122 __isl_take isl_union_map *executed,
1123 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1124 __isl_take isl_ast_build *build)
1126 int depth;
1127 int degenerate, eliminated;
1128 isl_basic_set *hull;
1129 isl_ast_node *node = NULL;
1130 isl_ast_graft *graft;
1131 isl_ast_graft_list *children;
1132 isl_ast_build *sub_build;
1133 isl_ast_build *body_build;
1135 domain = isl_ast_build_eliminate_divs(build, domain);
1136 domain = isl_set_detect_equalities(domain);
1137 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1138 bounds = isl_basic_set_intersect(bounds, hull);
1140 depth = isl_ast_build_get_depth(build);
1141 sub_build = isl_ast_build_copy(build);
1142 sub_build = isl_ast_build_include_stride(sub_build);
1143 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1144 isl_basic_set_copy(bounds));
1145 degenerate = isl_ast_build_has_value(sub_build);
1146 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1147 if (degenerate < 0 || eliminated < 0)
1148 executed = isl_union_map_free(executed);
1149 if (eliminated)
1150 executed = eliminate(executed, depth, build);
1151 else
1152 node = create_for(build, degenerate);
1154 body_build = isl_ast_build_copy(sub_build);
1155 body_build = isl_ast_build_increase_depth(body_build);
1156 children = generate_next_level(executed,
1157 isl_ast_build_copy(body_build));
1159 graft = isl_ast_graft_alloc_level(children, sub_build);
1160 if (!eliminated)
1161 graft = isl_ast_graft_insert_for(graft, node);
1162 if (eliminated)
1163 graft = refine_eliminated(graft, bounds, build);
1164 else if (degenerate)
1165 graft = refine_degenerate(graft, bounds, build, sub_build);
1166 else
1167 graft = refine_generic(graft, bounds, domain, build);
1169 isl_ast_build_free(body_build);
1170 isl_ast_build_free(sub_build);
1171 isl_ast_build_free(build);
1172 isl_basic_set_free(bounds);
1173 isl_set_free(domain);
1175 return graft;
1178 /* Internal data structure for checking if all constraints involving
1179 * the input dimension "depth" are such that the other coefficients
1180 * are multiples of "m", reducing "m" if they are not.
1181 * If "m" is reduced all the way down to "1", then the check has failed
1182 * and we break out of the iteration.
1183 * "d" is an initialized isl_int that can be used internally.
1185 struct isl_check_scaled_data {
1186 int depth;
1187 isl_int m, d;
1190 /* If constraint "c" involves the input dimension data->depth,
1191 * then make sure that all the other coefficients are multiples of data->m,
1192 * reducing data->m if needed.
1193 * Break out of the iteration if data->m has become equal to "1".
1195 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1197 struct isl_check_scaled_data *data = user;
1198 int i, j, n;
1199 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1200 isl_dim_div };
1202 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1203 isl_constraint_free(c);
1204 return 0;
1207 for (i = 0; i < 4; ++i) {
1208 n = isl_constraint_dim(c, t[i]);
1209 for (j = 0; j < n; ++j) {
1210 if (t[i] == isl_dim_in && j == data->depth)
1211 continue;
1212 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1213 continue;
1214 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1215 isl_int_gcd(data->m, data->m, data->d);
1216 if (isl_int_is_one(data->m))
1217 break;
1219 if (j < n)
1220 break;
1223 isl_constraint_free(c);
1225 return i < 4 ? -1 : 0;
1228 /* For each constraint of "bmap" that involves the input dimension data->depth,
1229 * make sure that all the other coefficients are multiples of data->m,
1230 * reducing data->m if needed.
1231 * Break out of the iteration if data->m has become equal to "1".
1233 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1235 int r;
1237 r = isl_basic_map_foreach_constraint(bmap,
1238 &constraint_check_scaled, user);
1239 isl_basic_map_free(bmap);
1241 return r;
1244 /* For each constraint of "map" that involves the input dimension data->depth,
1245 * make sure that all the other coefficients are multiples of data->m,
1246 * reducing data->m if needed.
1247 * Break out of the iteration if data->m has become equal to "1".
1249 static int map_check_scaled(__isl_take isl_map *map, void *user)
1251 int r;
1253 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1254 isl_map_free(map);
1256 return r;
1259 /* Create an AST node for the current dimension based on
1260 * the schedule domain "bounds" and return the node encapsulated
1261 * in an isl_ast_graft.
1263 * "executed" is the current inverse schedule, taking into account
1264 * the bounds in "bounds"
1265 * "domain" is the domain of "executed", with inner dimensions projected out.
1268 * Before moving on to the actual AST node construction in create_node_scaled,
1269 * we first check if the current dimension is strided and if we can scale
1270 * down this stride. Note that we only do this if the ast_build_scale_strides
1271 * option is set.
1273 * In particular, let the current dimension take on values
1275 * f + s a
1277 * with a an integer. We check if we can find an integer m that (obviouly)
1278 * divides both f and s.
1280 * If so, we check if the current dimension only appears in constraints
1281 * where the coefficients of the other variables are multiples of m.
1282 * We perform this extra check to avoid the risk of introducing
1283 * divisions by scaling down the current dimension.
1285 * If so, we scale the current dimension down by a factor of m.
1286 * That is, we plug in
1288 * i = m i' (1)
1290 * Note that in principle we could always scale down strided loops
1291 * by plugging in
1293 * i = f + s i'
1295 * but this may result in i' taking on larger values than the original i,
1296 * due to the shift by "f".
1297 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1299 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1300 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1301 __isl_take isl_ast_build *build)
1303 struct isl_check_scaled_data data;
1304 isl_ctx *ctx;
1305 isl_aff *offset;
1307 ctx = isl_ast_build_get_ctx(build);
1308 if (!isl_options_get_ast_build_scale_strides(ctx))
1309 return create_node_scaled(executed, bounds, domain, build);
1311 data.depth = isl_ast_build_get_depth(build);
1312 if (!isl_ast_build_has_stride(build, data.depth))
1313 return create_node_scaled(executed, bounds, domain, build);
1315 isl_int_init(data.m);
1316 isl_int_init(data.d);
1318 offset = isl_ast_build_get_offset(build, data.depth);
1319 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1320 offset = isl_aff_free(offset);
1321 offset = isl_aff_scale_down(offset, data.m);
1322 if (isl_aff_get_denominator(offset, &data.d) < 0)
1323 executed = isl_union_map_free(executed);
1325 if (isl_int_is_divisible_by(data.m, data.d))
1326 isl_int_divexact(data.m, data.m, data.d);
1327 else
1328 isl_int_set_si(data.m, 1);
1330 if (!isl_int_is_one(data.m)) {
1331 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1332 &data) < 0 &&
1333 !isl_int_is_one(data.m))
1334 executed = isl_union_map_free(executed);
1337 if (!isl_int_is_one(data.m)) {
1338 isl_space *space;
1339 isl_multi_aff *ma;
1340 isl_aff *aff;
1341 isl_map *map;
1342 isl_union_map *umap;
1344 space = isl_ast_build_get_space(build, 1);
1345 space = isl_space_map_from_set(space);
1346 ma = isl_multi_aff_identity(space);
1347 aff = isl_multi_aff_get_aff(ma, data.depth);
1348 aff = isl_aff_scale(aff, data.m);
1349 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1351 bounds = isl_basic_set_preimage_multi_aff(bounds,
1352 isl_multi_aff_copy(ma));
1353 domain = isl_set_preimage_multi_aff(domain,
1354 isl_multi_aff_copy(ma));
1355 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1356 umap = isl_union_map_from_map(map);
1357 executed = isl_union_map_apply_domain(executed,
1358 isl_union_map_copy(umap));
1359 build = isl_ast_build_scale_down(build, data.m, umap);
1361 isl_aff_free(offset);
1363 isl_int_clear(data.d);
1364 isl_int_clear(data.m);
1366 return create_node_scaled(executed, bounds, domain, build);
1369 /* Add the basic set to the list that "user" points to.
1371 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1373 isl_basic_set_list **list = user;
1375 *list = isl_basic_set_list_add(*list, bset);
1377 return 0;
1380 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1382 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1383 __isl_take isl_set *set)
1385 int n;
1386 isl_ctx *ctx;
1387 isl_basic_set_list *list;
1389 if (!set)
1390 return NULL;
1392 ctx = isl_set_get_ctx(set);
1394 n = isl_set_n_basic_set(set);
1395 list = isl_basic_set_list_alloc(ctx, n);
1396 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1397 list = isl_basic_set_list_free(list);
1399 isl_set_free(set);
1400 return list;
1403 /* Generate code for the schedule domain "bounds"
1404 * and add the result to "list".
1406 * We mainly detect strides and additional equalities here
1407 * and then pass over control to create_node.
1409 * "bounds" reflects the bounds on the current dimension and possibly
1410 * some extra conditions on outer dimensions.
1411 * It does not, however, include any divs involving the current dimension,
1412 * so it does not capture any stride constraints.
1413 * We therefore need to compute that part of the schedule domain that
1414 * intersects with "bounds" and derive the strides from the result.
1416 static __isl_give isl_ast_graft_list *add_node(
1417 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1418 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1420 isl_ast_graft *graft;
1421 isl_set *domain = NULL;
1422 isl_union_set *uset;
1423 int empty;
1425 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1426 executed = isl_union_map_intersect_domain(executed, uset);
1427 empty = isl_union_map_is_empty(executed);
1428 if (empty < 0)
1429 goto error;
1430 if (empty)
1431 goto done;
1433 uset = isl_union_map_domain(isl_union_map_copy(executed));
1434 domain = isl_set_from_union_set(uset);
1435 domain = isl_ast_build_compute_gist(build, domain);
1436 empty = isl_set_is_empty(domain);
1437 if (empty < 0)
1438 goto error;
1439 if (empty)
1440 goto done;
1442 domain = isl_ast_build_eliminate_inner(build, domain);
1443 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1445 graft = create_node(executed, bounds, domain,
1446 isl_ast_build_copy(build));
1447 list = isl_ast_graft_list_add(list, graft);
1448 isl_ast_build_free(build);
1449 return list;
1450 error:
1451 list = isl_ast_graft_list_free(list);
1452 done:
1453 isl_set_free(domain);
1454 isl_basic_set_free(bounds);
1455 isl_union_map_free(executed);
1456 isl_ast_build_free(build);
1457 return list;
1460 struct isl_domain_follows_at_depth_data {
1461 int depth;
1462 isl_basic_set **piece;
1465 /* Does any element of i follow or coincide with any element of j
1466 * at the current depth (data->depth) for equal values of the outer
1467 * dimensions?
1469 static int domain_follows_at_depth(int i, int j, void *user)
1471 struct isl_domain_follows_at_depth_data *data = user;
1472 isl_basic_map *test;
1473 int empty;
1474 int l;
1476 test = isl_basic_map_from_domain_and_range(
1477 isl_basic_set_copy(data->piece[i]),
1478 isl_basic_set_copy(data->piece[j]));
1479 for (l = 0; l < data->depth; ++l)
1480 test = isl_basic_map_equate(test, isl_dim_in, l,
1481 isl_dim_out, l);
1482 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1483 isl_dim_out, data->depth);
1484 empty = isl_basic_map_is_empty(test);
1485 isl_basic_map_free(test);
1487 return empty < 0 ? -1 : !empty;
1490 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1491 __isl_keep isl_basic_set_list *domain_list,
1492 __isl_keep isl_union_map *executed,
1493 __isl_keep isl_ast_build *build);
1495 /* Generate code for the "n" schedule domains in "domain_list"
1496 * with positions specified by the entries of the "pos" array
1497 * and add the results to "list".
1499 * The "n" domains form a strongly connected component in the ordering.
1500 * If n is larger than 1, then this means that we cannot determine a valid
1501 * ordering for the n domains in the component. This should be fairly
1502 * rare because the individual domains have been made disjoint first.
1503 * The problem is that the domains may be integrally disjoint but not
1504 * rationally disjoint. For example, we may have domains
1506 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1508 * These two domains have an empty intersection, but their rational
1509 * relaxations do intersect. It is impossible to order these domains
1510 * in the second dimension because the first should be ordered before
1511 * the second for outer dimension equal to 0, while it should be ordered
1512 * after for outer dimension equal to 1.
1514 * This may happen in particular in case of unrolling since the domain
1515 * of each slice is replaced by its simple hull.
1517 * We collect the basic sets in the component, call isl_set_make_disjoint
1518 * and try again. Note that we rely here on isl_set_make_disjoint also
1519 * making the basic sets rationally disjoint. If the basic sets
1520 * are rationally disjoint, then the ordering problem does not occur.
1521 * To see this, there can only be a problem if there are points
1522 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1523 * a < c and b > d. This means that either the interval spanned
1524 * by a en b lies inside that spanned by c and or the other way around.
1525 * In either case, there is a point inside both intervals with the
1526 * convex combination in terms of a and b and in terms of c and d.
1527 * Taking the same combination of i and j gives a point in the intersection.
1529 static __isl_give isl_ast_graft_list *add_nodes(
1530 __isl_take isl_ast_graft_list *list, int *pos, int n,
1531 __isl_keep isl_basic_set_list *domain_list,
1532 __isl_keep isl_union_map *executed,
1533 __isl_keep isl_ast_build *build)
1535 int i;
1536 isl_basic_set *bset;
1537 isl_set *set;
1539 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1540 if (n == 1)
1541 return add_node(list, isl_union_map_copy(executed), bset,
1542 isl_ast_build_copy(build));
1544 set = isl_set_from_basic_set(bset);
1545 for (i = 1; i < n; ++i) {
1546 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1547 set = isl_set_union(set, isl_set_from_basic_set(bset));
1550 set = isl_set_make_disjoint(set);
1551 if (isl_set_n_basic_set(set) == n)
1552 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1553 "unable to separate loop parts", goto error);
1554 domain_list = isl_basic_set_list_from_set(set);
1555 list = isl_ast_graft_list_concat(list,
1556 generate_sorted_domains(domain_list, executed, build));
1557 isl_basic_set_list_free(domain_list);
1559 return list;
1560 error:
1561 isl_set_free(set);
1562 return isl_ast_graft_list_free(list);
1565 /* Sort the domains in "domain_list" according to the execution order
1566 * at the current depth (for equal values of the outer dimensions),
1567 * generate code for each of them, collecting the results in a list.
1568 * If no code is generated (because the intersection of the inverse schedule
1569 * with the domains turns out to be empty), then an empty list is returned.
1571 * The caller is responsible for ensuring that the basic sets in "domain_list"
1572 * are pair-wise disjoint. It can, however, in principle happen that
1573 * two basic sets should be ordered one way for one value of the outer
1574 * dimensions and the other way for some other value of the outer dimensions.
1575 * We therefore play safe and look for strongly connected components.
1576 * The function add_nodes takes care of handling non-trivial components.
1578 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1579 __isl_keep isl_basic_set_list *domain_list,
1580 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1582 isl_ctx *ctx;
1583 isl_ast_graft_list *list;
1584 struct isl_domain_follows_at_depth_data data;
1585 struct isl_tarjan_graph *g;
1586 int i, n;
1588 if (!domain_list)
1589 return NULL;
1591 ctx = isl_basic_set_list_get_ctx(domain_list);
1592 n = isl_basic_set_list_n_basic_set(domain_list);
1593 list = isl_ast_graft_list_alloc(ctx, n);
1594 if (n == 0)
1595 return list;
1596 if (n == 1)
1597 return add_node(list, isl_union_map_copy(executed),
1598 isl_basic_set_list_get_basic_set(domain_list, 0),
1599 isl_ast_build_copy(build));
1601 data.depth = isl_ast_build_get_depth(build);
1602 data.piece = domain_list->p;
1603 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1605 i = 0;
1606 while (list && n) {
1607 int first;
1609 if (g->order[i] == -1)
1610 isl_die(ctx, isl_error_internal, "cannot happen",
1611 goto error);
1612 first = i;
1613 while (g->order[i] != -1) {
1614 ++i; --n;
1616 list = add_nodes(list, g->order + first, i - first,
1617 domain_list, executed, build);
1618 ++i;
1621 if (0)
1622 error: list = isl_ast_graft_list_free(list);
1623 isl_tarjan_graph_free(g);
1625 return list;
1628 struct isl_shared_outer_data {
1629 int depth;
1630 isl_basic_set **piece;
1633 /* Do elements i and j share any values for the outer dimensions?
1635 static int shared_outer(int i, int j, void *user)
1637 struct isl_shared_outer_data *data = user;
1638 isl_basic_map *test;
1639 int empty;
1640 int l;
1642 test = isl_basic_map_from_domain_and_range(
1643 isl_basic_set_copy(data->piece[i]),
1644 isl_basic_set_copy(data->piece[j]));
1645 for (l = 0; l < data->depth; ++l)
1646 test = isl_basic_map_equate(test, isl_dim_in, l,
1647 isl_dim_out, l);
1648 empty = isl_basic_map_is_empty(test);
1649 isl_basic_map_free(test);
1651 return empty < 0 ? -1 : !empty;
1654 /* Call generate_sorted_domains on a list containing the elements
1655 * of "domain_list indexed by the first "n" elements of "pos".
1657 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1658 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1659 __isl_keep isl_union_map *executed,
1660 __isl_keep isl_ast_build *build)
1662 int i;
1663 isl_ctx *ctx;
1664 isl_basic_set_list *slice;
1665 isl_ast_graft_list *list;
1667 ctx = isl_ast_build_get_ctx(build);
1668 slice = isl_basic_set_list_alloc(ctx, n);
1669 for (i = 0; i < n; ++i) {
1670 isl_basic_set *bset;
1672 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1673 slice = isl_basic_set_list_add(slice, bset);
1676 list = generate_sorted_domains(slice, executed, build);
1677 isl_basic_set_list_free(slice);
1679 return list;
1682 /* Look for any (weakly connected) components in the "domain_list"
1683 * of domains that share some values of the outer dimensions.
1684 * That is, domains in different components do not share any values
1685 * of the outer dimensions. This means that these components
1686 * can be freely reorderd.
1687 * Within each of the components, we sort the domains according
1688 * to the execution order at the current depth.
1690 * We fuse the result of each call to generate_sorted_domains_part
1691 * into a list with either zero or one graft and collect these (at most)
1692 * single element lists into a bigger list. This means that the elements of the
1693 * final list can be freely reordered. In particular, we sort them
1694 * according to an arbitrary but fixed ordering to ease merging of
1695 * graft lists from different components.
1697 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1698 __isl_keep isl_basic_set_list *domain_list,
1699 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1701 int i, n;
1702 isl_ctx *ctx;
1703 isl_ast_graft_list *list;
1704 struct isl_shared_outer_data data;
1705 struct isl_tarjan_graph *g;
1707 if (!domain_list)
1708 return NULL;
1710 n = isl_basic_set_list_n_basic_set(domain_list);
1711 if (n <= 1)
1712 return generate_sorted_domains(domain_list, executed, build);
1714 ctx = isl_basic_set_list_get_ctx(domain_list);
1716 data.depth = isl_ast_build_get_depth(build);
1717 data.piece = domain_list->p;
1718 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1719 if (!g)
1720 return NULL;
1722 i = 0;
1723 do {
1724 int first;
1725 isl_ast_graft_list *list_c;
1727 if (g->order[i] == -1)
1728 isl_die(ctx, isl_error_internal, "cannot happen",
1729 break);
1730 first = i;
1731 while (g->order[i] != -1) {
1732 ++i; --n;
1734 if (first == 0 && n == 0) {
1735 isl_tarjan_graph_free(g);
1736 return generate_sorted_domains(domain_list,
1737 executed, build);
1739 list_c = generate_sorted_domains_part(domain_list,
1740 g->order + first, i - first, executed, build);
1741 list_c = isl_ast_graft_list_fuse(list_c, build);
1742 if (first == 0)
1743 list = list_c;
1744 else
1745 list = isl_ast_graft_list_concat(list, list_c);
1746 ++i;
1747 } while (list && n);
1749 if (n > 0)
1750 list = isl_ast_graft_list_free(list);
1752 list = isl_ast_graft_list_sort(list);
1754 isl_tarjan_graph_free(g);
1756 return list;
1759 /* Internal data for separate_domain.
1761 * "explicit" is set if we only want to use explicit bounds.
1763 * "domain" collects the separated domains.
1765 struct isl_separate_domain_data {
1766 isl_ast_build *build;
1767 int explicit;
1768 isl_set *domain;
1771 /* Extract implicit bounds on the current dimension for the executed "map".
1773 * The domain of "map" may involve inner dimensions, so we
1774 * need to eliminate them.
1776 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1777 __isl_keep isl_ast_build *build)
1779 isl_set *domain;
1781 domain = isl_map_domain(map);
1782 domain = isl_ast_build_eliminate(build, domain);
1784 return domain;
1787 /* Extract explicit bounds on the current dimension for the executed "map".
1789 * Rather than eliminating the inner dimensions as in implicit_bounds,
1790 * we simply drop any constraints involving those inner dimensions.
1791 * The idea is that most bounds that are implied by constraints on the
1792 * inner dimensions will be enforced by for loops and not by explicit guards.
1793 * There is then no need to separate along those bounds.
1795 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1796 __isl_keep isl_ast_build *build)
1798 isl_set *domain;
1799 int depth, dim;
1801 dim = isl_map_dim(map, isl_dim_out);
1802 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1804 domain = isl_map_domain(map);
1805 depth = isl_ast_build_get_depth(build);
1806 dim = isl_set_dim(domain, isl_dim_set);
1807 domain = isl_set_detect_equalities(domain);
1808 domain = isl_set_drop_constraints_involving_dims(domain,
1809 isl_dim_set, depth + 1, dim - (depth + 1));
1810 domain = isl_set_remove_divs_involving_dims(domain,
1811 isl_dim_set, depth, 1);
1812 domain = isl_set_remove_unknown_divs(domain);
1814 return domain;
1817 /* Split data->domain into pieces that intersect with the range of "map"
1818 * and pieces that do not intersect with the range of "map"
1819 * and then add that part of the range of "map" that does not intersect
1820 * with data->domain.
1822 static int separate_domain(__isl_take isl_map *map, void *user)
1824 struct isl_separate_domain_data *data = user;
1825 isl_set *domain;
1826 isl_set *d1, *d2;
1828 if (data->explicit)
1829 domain = explicit_bounds(map, data->build);
1830 else
1831 domain = implicit_bounds(map, data->build);
1833 domain = isl_set_coalesce(domain);
1834 domain = isl_set_make_disjoint(domain);
1835 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
1836 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
1837 data->domain = isl_set_intersect(data->domain, domain);
1838 data->domain = isl_set_union(data->domain, d1);
1839 data->domain = isl_set_union(data->domain, d2);
1841 return 0;
1844 /* Separate the schedule domains of "executed".
1846 * That is, break up the domain of "executed" into basic sets,
1847 * such that for each basic set S, every element in S is associated with
1848 * the same domain spaces.
1850 * "space" is the (single) domain space of "executed".
1852 static __isl_give isl_set *separate_schedule_domains(
1853 __isl_take isl_space *space, __isl_take isl_union_map *executed,
1854 __isl_keep isl_ast_build *build)
1856 struct isl_separate_domain_data data = { build };
1857 isl_ctx *ctx;
1859 ctx = isl_ast_build_get_ctx(build);
1860 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
1861 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
1862 data.domain = isl_set_empty(space);
1863 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
1864 data.domain = isl_set_free(data.domain);
1866 isl_union_map_free(executed);
1867 return data.domain;
1870 /* Temporary data used during the search for a lower bound for unrolling.
1872 * "domain" is the original set for which to find a lower bound
1873 * "depth" is the dimension for which to find a lower boudn
1875 * "lower" is the best lower bound found so far. It is NULL if we have not
1876 * found any yet.
1877 * "n" is the corresponding size. If lower is NULL, then the value of n
1878 * is undefined.
1880 * "tmp" is a temporary initialized isl_int.
1882 struct isl_find_unroll_data {
1883 isl_set *domain;
1884 int depth;
1886 isl_aff *lower;
1887 int *n;
1888 isl_int tmp;
1891 /* Check if we can use "c" as a lower bound and if it is better than
1892 * any previously found lower bound.
1894 * If "c" does not involve the dimension at the current depth,
1895 * then we cannot use it.
1896 * Otherwise, let "c" be of the form
1898 * i >= f(j)/a
1900 * We compute the maximal value of
1902 * -ceil(f(j)/a)) + i + 1
1904 * over the domain. If there is such a value "n", then we know
1906 * -ceil(f(j)/a)) + i + 1 <= n
1908 * or
1910 * i < ceil(f(j)/a)) + n
1912 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
1913 * We just need to check if we have found any lower bound before and
1914 * if the new lower bound is better (smaller n) than the previously found
1915 * lower bounds.
1917 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
1918 __isl_keep isl_constraint *c)
1920 isl_aff *aff, *lower;
1921 enum isl_lp_result res;
1923 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
1924 return 0;
1926 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
1927 lower = isl_aff_ceil(lower);
1928 aff = isl_aff_copy(lower);
1929 aff = isl_aff_neg(aff);
1930 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
1931 aff = isl_aff_add_constant_si(aff, 1);
1932 res = isl_set_max(data->domain, aff, &data->tmp);
1933 isl_aff_free(aff);
1935 if (res == isl_lp_error)
1936 goto error;
1937 if (res == isl_lp_unbounded) {
1938 isl_aff_free(lower);
1939 return 0;
1942 if (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0) {
1943 isl_aff_free(data->lower);
1944 data->lower = lower;
1945 *data->n = isl_int_get_si(data->tmp);
1946 } else
1947 isl_aff_free(lower);
1949 return 1;
1950 error:
1951 isl_aff_free(lower);
1952 return -1;
1955 /* Check if we can use "c" as a lower bound and if it is better than
1956 * any previously found lower bound.
1958 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
1960 struct isl_find_unroll_data *data;
1961 int r;
1963 data = (struct isl_find_unroll_data *) user;
1964 r = update_unrolling_lower_bound(data, c);
1965 isl_constraint_free(c);
1967 return r;
1970 /* Look for a lower bound l(i) on the dimension at "depth"
1971 * and a size n such that "domain" is a subset of
1973 * { [i] : l(i) <= i_d < l(i) + n }
1975 * where d is "depth" and l(i) depends only on earlier dimensions.
1976 * Furthermore, try and find a lower bound such that n is as small as possible.
1977 * In particular, "n" needs to be finite.
1979 * Inner dimensions have been eliminated from "domain" by the caller.
1981 * We first construct a collection of lower bounds on the input set
1982 * by computing its simple hull. We then iterate through them,
1983 * discarding those that we cannot use (either because they do not
1984 * involve the dimension at "depth" or because they have no corresponding
1985 * upper bound, meaning that "n" would be unbounded) and pick out the
1986 * best from the remaining ones.
1988 * If we cannot find a suitable lower bound, then we consider that
1989 * to be an error.
1991 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
1992 int depth, int *n)
1994 struct isl_find_unroll_data data = { domain, depth, NULL, n };
1995 isl_basic_set *hull;
1997 isl_int_init(data.tmp);
1998 hull = isl_set_simple_hull(isl_set_copy(domain));
2000 if (isl_basic_set_foreach_constraint(hull,
2001 &constraint_find_unroll, &data) < 0)
2002 goto error;
2004 isl_basic_set_free(hull);
2005 isl_int_clear(data.tmp);
2007 if (!data.lower)
2008 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2009 "cannot find lower bound for unrolling", return NULL);
2011 return data.lower;
2012 error:
2013 isl_basic_set_free(hull);
2014 isl_int_clear(data.tmp);
2015 return isl_aff_free(data.lower);
2018 /* Intersect "set" with the constraint
2020 * i_"depth" = aff + offset
2022 static __isl_give isl_set *at_offset(__isl_take isl_set *set, int depth,
2023 __isl_keep isl_aff *aff, int offset)
2025 isl_constraint *eq;
2027 aff = isl_aff_copy(aff);
2028 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2029 aff = isl_aff_add_constant_si(aff, offset);
2030 eq = isl_equality_from_aff(aff);
2031 set = isl_set_add_constraint(set, eq);
2033 return set;
2036 /* Return a list of basic sets, one for each value of the current dimension
2037 * in "domain".
2038 * The divs that involve the current dimension have not been projected out
2039 * from this domain.
2041 * Since we are going to be iterating over the individual values,
2042 * we first check if there are any strides on the current dimension.
2043 * If there is, we rewrite the current dimension i as
2045 * i = stride i' + offset
2047 * and then iterate over individual values of i' instead.
2049 * We then look for a lower bound on i' and a size such that the domain
2050 * is a subset of
2052 * { [j,i'] : l(j) <= i' < l(j) + n }
2054 * and then take slices of the domain at values of i'
2055 * between l(j) and l(j) + n - 1.
2057 * We compute the unshifted simple hull of each slice to ensure that
2058 * we have a single basic set per offset. The slicing constraint
2059 * is preserved by taking the unshifted simple hull, so these basic sets
2060 * remain disjoint. The constraints that are dropped by taking the hull
2061 * will be taken into account at the next level, as in the case of the
2062 * atomic option.
2064 * Finally, we map i' back to i and add each basic set to the list.
2066 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2067 __isl_keep isl_ast_build *build)
2069 int i, n;
2070 int depth;
2071 isl_ctx *ctx;
2072 isl_aff *lower;
2073 isl_basic_set_list *list;
2074 isl_multi_aff *expansion;
2075 isl_basic_map *bmap;
2077 if (!domain)
2078 return NULL;
2080 ctx = isl_set_get_ctx(domain);
2081 depth = isl_ast_build_get_depth(build);
2082 build = isl_ast_build_copy(build);
2083 domain = isl_ast_build_eliminate_inner(build, domain);
2084 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2085 expansion = isl_ast_build_get_stride_expansion(build);
2087 domain = isl_set_preimage_multi_aff(domain,
2088 isl_multi_aff_copy(expansion));
2089 domain = isl_ast_build_eliminate_divs(build, domain);
2091 isl_ast_build_free(build);
2093 list = isl_basic_set_list_alloc(ctx, 0);
2095 lower = find_unroll_lower_bound(domain, depth, &n);
2096 if (!lower)
2097 list = isl_basic_set_list_free(list);
2099 bmap = isl_basic_map_from_multi_aff(expansion);
2101 for (i = 0; list && i < n; ++i) {
2102 isl_set *set;
2103 isl_basic_set *bset;
2105 set = at_offset(isl_set_copy(domain), depth, lower, i);
2106 bset = isl_set_unshifted_simple_hull(set);
2107 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2108 list = isl_basic_set_list_add(list, bset);
2111 isl_aff_free(lower);
2112 isl_set_free(domain);
2113 isl_basic_map_free(bmap);
2115 return list;
2118 /* Data structure for storing the results and the intermediate objects
2119 * of compute_domains.
2121 * "list" is the main result of the function and contains a list
2122 * of disjoint basic sets for which code should be generated.
2124 * "executed" and "build" are inputs to compute_domains.
2125 * "schedule_domain" is the domain of "executed".
2127 * "option" constains the domains at the current depth that should by
2128 * atomic, separated or unrolled. These domains are as specified by
2129 * the user, except that inner dimensions have been eliminated and
2130 * that they have been made pair-wise disjoint.
2132 * "includes_schedule_domain" is set if the "class_domain" (not stored
2133 * in this structure, but passed to the various functions) has been
2134 * intersected with "schedule_domain".
2136 * "sep_class" contains the user-specified split into separation classes
2137 * specialized to the current depth.
2138 * "done" contains the union of th separation domains that have already
2139 * been handled.
2141 struct isl_codegen_domains {
2142 isl_basic_set_list *list;
2144 isl_union_map *executed;
2145 isl_ast_build *build;
2146 isl_set *schedule_domain;
2148 isl_set *option[3];
2150 int includes_schedule_domain;
2152 isl_map *sep_class;
2153 isl_set *done;
2156 /* Add domains to domains->list for each individual value of the current
2157 * dimension, for that part of the schedule domain that lies in the
2158 * intersection of the option domain and the class domain.
2160 * "domain" is the intersection of the class domain and the schedule domain.
2161 * The divs that involve the current dimension have not been projected out
2162 * from this domain.
2164 * We first break up the unroll option domain into individual pieces
2165 * and then handle each of them separately. The unroll option domain
2166 * has been made disjoint in compute_domains_init_options,
2168 * Note that we actively want to combine different pieces of the
2169 * schedule domain that have the same value at the current dimension.
2170 * We therefore need to break up the unroll option domain before
2171 * intersecting with class and schedule domain, hoping that the
2172 * unroll option domain specified by the user is relatively simple.
2174 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2175 __isl_keep isl_set *domain)
2177 isl_set *unroll_domain;
2178 isl_basic_set_list *unroll_list;
2179 int i, n;
2180 int empty;
2182 empty = isl_set_is_empty(domains->option[unroll]);
2183 if (empty < 0)
2184 return -1;
2185 if (empty)
2186 return 0;
2188 unroll_domain = isl_set_copy(domains->option[unroll]);
2189 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2191 n = isl_basic_set_list_n_basic_set(unroll_list);
2192 for (i = 0; i < n; ++i) {
2193 isl_basic_set *bset;
2194 isl_basic_set_list *list;
2196 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2197 unroll_domain = isl_set_from_basic_set(bset);
2198 unroll_domain = isl_set_intersect(unroll_domain,
2199 isl_set_copy(domain));
2201 empty = isl_set_is_empty(unroll_domain);
2202 if (empty >= 0 && empty) {
2203 isl_set_free(unroll_domain);
2204 continue;
2207 list = do_unroll(unroll_domain, domains->build);
2208 domains->list = isl_basic_set_list_concat(domains->list, list);
2211 isl_basic_set_list_free(unroll_list);
2213 return 0;
2216 /* Construct a single basic set that includes the intersection of
2217 * the schedule domain, the atomic option domain and the class domain.
2218 * Add the resulting basic set to domains->list.
2220 * We construct a single domain rather than trying to combine
2221 * the schedule domains of individual domains because we are working
2222 * within a single component so that non-overlapping schedule domains
2223 * should already have been separated.
2224 * Note, though, that this does not take into account the class domain.
2225 * So, it is possible for a class domain to carve out a piece of the
2226 * schedule domain with independent pieces and then we would only
2227 * generate a single domain for them. If this proves to be problematic
2228 * for some users, then this function will have to be adjusted.
2230 * "domain" is the intersection of the schedule domain and the class domain,
2231 * with inner dimensions projected out.
2233 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2234 __isl_keep isl_set *domain)
2236 isl_basic_set *bset;
2237 isl_set *atomic_domain;
2238 int empty;
2240 atomic_domain = isl_set_copy(domains->option[atomic]);
2241 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2242 empty = isl_set_is_empty(atomic_domain);
2243 if (empty < 0 || empty) {
2244 isl_set_free(atomic_domain);
2245 return empty < 0 ? -1 : 0;
2248 atomic_domain = isl_set_coalesce(atomic_domain);
2249 bset = isl_set_unshifted_simple_hull(atomic_domain);
2250 domains->list = isl_basic_set_list_add(domains->list, bset);
2252 return 0;
2255 /* Split up the schedule domain into uniform basic sets,
2256 * in the sense that each element in a basic set is associated to
2257 * elements of the same domains, and add the result to domains->list.
2258 * Do this for that part of the schedule domain that lies in the
2259 * intersection of "class_domain" and the separate option domain.
2261 * "class_domain" may or may not include the constraints
2262 * of the schedule domain, but this does not make a difference
2263 * since we are going to intersect it with the domain of the inverse schedule.
2264 * If it includes schedule domain constraints, then they may involve
2265 * inner dimensions, but we will eliminate them in separation_domain.
2267 static int compute_separate_domain(struct isl_codegen_domains *domains,
2268 __isl_keep isl_set *class_domain)
2270 isl_space *space;
2271 isl_set *domain;
2272 isl_union_map *executed;
2273 isl_basic_set_list *list;
2274 int empty;
2276 domain = isl_set_copy(domains->option[separate]);
2277 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2278 executed = isl_union_map_copy(domains->executed);
2279 executed = isl_union_map_intersect_domain(executed,
2280 isl_union_set_from_set(domain));
2281 empty = isl_union_map_is_empty(executed);
2282 if (empty < 0 || empty) {
2283 isl_union_map_free(executed);
2284 return empty < 0 ? -1 : 0;
2287 space = isl_set_get_space(class_domain);
2288 domain = separate_schedule_domains(space, executed, domains->build);
2290 list = isl_basic_set_list_from_set(domain);
2291 domains->list = isl_basic_set_list_concat(domains->list, list);
2293 return 0;
2296 /* Split up the domain at the current depth into disjoint
2297 * basic sets for which code should be generated separately
2298 * for the given separation class domain.
2300 * We first make sure that the class domain is disjoint from
2301 * previously considered class domains.
2303 * The separate domains can be computed directly from the "class_domain".
2305 * The unroll, atomic and remainder domains need the constraints
2306 * from the schedule domain.
2308 * For unrolling, the actual schedule domain is needed (with divs that
2309 * may refer to the current dimension) so that stride detection can be
2310 * performed.
2312 * For atomic and remainder domains, inner dimensions and divs involving
2313 * the current dimensions should be eliminated.
2315 * If anything is left after handling separate, unroll and atomic,
2316 * we split it up into basic sets and append the basic sets to domains->list.
2318 static int compute_partial_domains(struct isl_codegen_domains *domains,
2319 __isl_take isl_set *class_domain)
2321 isl_basic_set_list *list;
2323 class_domain = isl_set_subtract(class_domain,
2324 isl_set_copy(domains->done));
2325 domains->done = isl_set_union(domains->done,
2326 isl_set_copy(class_domain));
2328 if (compute_separate_domain(domains, class_domain) < 0)
2329 goto error;
2330 class_domain = isl_set_subtract(class_domain,
2331 isl_set_copy(domains->option[separate]));
2333 if (!domains->includes_schedule_domain)
2334 class_domain = isl_set_intersect(class_domain,
2335 isl_set_copy(domains->schedule_domain));
2337 if (compute_unroll_domains(domains, class_domain) < 0)
2338 goto error;
2339 class_domain = isl_set_subtract(class_domain,
2340 isl_set_copy(domains->option[unroll]));
2342 class_domain = isl_ast_build_eliminate(domains->build,
2343 class_domain);
2345 if (compute_atomic_domain(domains, class_domain) < 0)
2346 goto error;
2347 class_domain = isl_set_subtract(class_domain,
2348 isl_set_copy(domains->option[atomic]));
2350 class_domain = isl_set_coalesce(class_domain);
2351 class_domain = isl_set_make_disjoint(class_domain);
2353 list = isl_basic_set_list_from_set(class_domain);
2354 domains->list = isl_basic_set_list_concat(domains->list, list);
2356 return 0;
2357 error:
2358 isl_set_free(class_domain);
2359 return -1;
2362 /* Split up the domain at the current depth into disjoint
2363 * basic sets for which code should be generated separately
2364 * for the separation class identified by "pnt".
2366 * We extract the corresponding class domain from domains->sep_class,
2367 * eliminate inner dimensions and pass control to compute_partial_domains.
2369 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2371 struct isl_codegen_domains *domains = user;
2372 isl_set *class_set;
2373 isl_set *domain;
2374 int disjoint;
2376 class_set = isl_set_from_point(pnt);
2377 domain = isl_map_domain(isl_map_intersect_range(
2378 isl_map_copy(domains->sep_class), class_set));
2379 domain = isl_ast_build_eliminate(domains->build, domain);
2381 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2382 if (disjoint < 0)
2383 return -1;
2384 if (disjoint) {
2385 isl_set_free(domain);
2386 return 0;
2389 domains->includes_schedule_domain = 0;
2390 return compute_partial_domains(domains, domain);
2393 /* Extract the domains at the current depth that should be atomic,
2394 * separated or unrolled and store them in option.
2396 * The domains specified by the user might overlap, so we make
2397 * them disjoint by subtracting earlier domains from later domains.
2399 static void compute_domains_init_options(isl_set *option[3],
2400 __isl_keep isl_ast_build *build)
2402 enum isl_ast_build_domain_type type, type2;
2404 for (type = atomic; type <= separate; ++type) {
2405 option[type] = isl_ast_build_get_option_domain(build, type);
2406 for (type2 = atomic; type2 < type; ++type2)
2407 option[type] = isl_set_subtract(option[type],
2408 isl_set_copy(option[type2]));
2411 option[unroll] = isl_set_coalesce(option[unroll]);
2412 option[unroll] = isl_set_make_disjoint(option[unroll]);
2415 /* Split up the domain at the current depth into disjoint
2416 * basic sets for which code should be generated separately,
2417 * based on the user-specified options.
2418 * Return the list of disjoint basic sets.
2420 * There are three kinds of domains that we need to keep track of.
2421 * - the "schedule domain" is the domain of "executed"
2422 * - the "class domain" is the domain corresponding to the currrent
2423 * separation class
2424 * - the "option domain" is the domain corresponding to one of the options
2425 * atomic, unroll or separate
2427 * We first consider the individial values of the separation classes
2428 * and split up the domain for each of them separately.
2429 * Finally, we consider the remainder. If no separation classes were
2430 * specified, then we call compute_partial_domains with the universe
2431 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain"
2432 * and set includes_schedule_domain to reflect that the schedule domain
2433 * has already been taken into account. We do this because we want to
2434 * avoid computing the complement of the class domains (i.e., the difference
2435 * between the universe and domains->done).
2437 static __isl_give isl_basic_set_list *compute_domains(
2438 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2440 struct isl_codegen_domains domains;
2441 isl_ctx *ctx;
2442 isl_set *domain;
2443 isl_union_set *schedule_domain;
2444 isl_set *classes;
2445 isl_space *space;
2446 int n_param;
2447 enum isl_ast_build_domain_type type;
2449 ctx = isl_union_map_get_ctx(executed);
2450 domains.list = isl_basic_set_list_alloc(ctx, 0);
2452 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2453 domain = isl_set_from_union_set(schedule_domain);
2455 compute_domains_init_options(domains.option, build);
2457 domains.sep_class = isl_ast_build_get_separation_class(build);
2458 classes = isl_map_range(isl_map_copy(domains.sep_class));
2459 n_param = isl_set_dim(classes, isl_dim_param);
2460 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2462 space = isl_set_get_space(domain);
2463 domains.build = build;
2464 domains.schedule_domain = isl_set_copy(domain);
2465 domains.executed = executed;
2466 domains.done = isl_set_empty(space);
2468 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2469 domains.list = isl_basic_set_list_free(domains.list);
2470 isl_set_free(classes);
2472 if (!domains.done)
2473 domains.list = isl_basic_set_list_free(domains.list);
2474 domains.includes_schedule_domain = !isl_set_is_empty(domains.done);
2475 if (!domains.includes_schedule_domain) {
2476 isl_set_free(domain);
2477 domain = isl_set_universe(isl_set_get_space(domains.done));
2479 if (compute_partial_domains(&domains, domain) < 0)
2480 domains.list = isl_basic_set_list_free(domains.list);
2482 isl_set_free(domains.schedule_domain);
2483 isl_set_free(domains.done);
2484 isl_map_free(domains.sep_class);
2485 for (type = atomic; type <= separate; ++type)
2486 isl_set_free(domains.option[type]);
2488 return domains.list;
2491 /* Generate code for a single component, after shifting (if any)
2492 * has been applied.
2494 * We first split up the domain at the current depth into disjoint
2495 * basic sets based on the user-specified options.
2496 * Then we generated code for each of them and concatenate the results.
2498 static __isl_give isl_ast_graft_list *generate_shifted_component(
2499 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2501 isl_basic_set_list *domain_list;
2502 isl_ast_graft_list *list = NULL;
2504 domain_list = compute_domains(executed, build);
2505 list = generate_parallel_domains(domain_list, executed, build);
2507 isl_basic_set_list_free(domain_list);
2508 isl_union_map_free(executed);
2509 isl_ast_build_free(build);
2511 return list;
2514 struct isl_set_map_pair {
2515 isl_set *set;
2516 isl_map *map;
2519 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2520 * of indices into the "domain" array,
2521 * return the union of the "map" fields of the elements
2522 * indexed by the first "n" elements of "order".
2524 static __isl_give isl_union_map *construct_component_executed(
2525 struct isl_set_map_pair *domain, int *order, int n)
2527 int i;
2528 isl_map *map;
2529 isl_union_map *executed;
2531 map = isl_map_copy(domain[order[0]].map);
2532 executed = isl_union_map_from_map(map);
2533 for (i = 1; i < n; ++i) {
2534 map = isl_map_copy(domain[order[i]].map);
2535 executed = isl_union_map_add_map(executed, map);
2538 return executed;
2541 /* Generate code for a single component, after shifting (if any)
2542 * has been applied.
2544 * The component inverse schedule is specified as the "map" fields
2545 * of the elements of "domain" indexed by the first "n" elements of "order".
2547 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2548 struct isl_set_map_pair *domain, int *order, int n,
2549 __isl_take isl_ast_build *build)
2551 isl_union_map *executed;
2553 executed = construct_component_executed(domain, order, n);
2554 return generate_shifted_component(executed, build);
2557 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2558 * of indices into the "domain" array,
2559 * do all (except for at most one) of the "set" field of the elements
2560 * indexed by the first "n" elements of "order" have a fixed value
2561 * at position "depth"?
2563 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2564 int *order, int n, int depth)
2566 int i;
2567 int non_fixed = -1;
2569 for (i = 0; i < n; ++i) {
2570 int f;
2572 f = isl_set_plain_is_fixed(domain[order[i]].set,
2573 isl_dim_set, depth, NULL);
2574 if (f < 0)
2575 return -1;
2576 if (f)
2577 continue;
2578 if (non_fixed >= 0)
2579 return 0;
2580 non_fixed = i;
2583 return 1;
2586 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2587 * of indices into the "domain" array,
2588 * eliminate the inner dimensions from the "set" field of the elements
2589 * indexed by the first "n" elements of "order", provided the current
2590 * dimension does not have a fixed value.
2592 * Return the index of the first element in "order" with a corresponding
2593 * "set" field that does not have an (obviously) fixed value.
2595 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2596 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2598 int i;
2599 int base = -1;
2601 for (i = n - 1; i >= 0; --i) {
2602 int f;
2603 f = isl_set_plain_is_fixed(domain[order[i]].set,
2604 isl_dim_set, depth, NULL);
2605 if (f < 0)
2606 return -1;
2607 if (f)
2608 continue;
2609 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2610 domain[order[i]].set);
2611 base = i;
2614 return base;
2617 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2618 * of indices into the "domain" array,
2619 * find the element of "domain" (amongst those indexed by the first "n"
2620 * elements of "order") with the "set" field that has the smallest
2621 * value for the current iterator.
2623 * Note that the domain with the smallest value may depend on the parameters
2624 * and/or outer loop dimension. Since the result of this function is only
2625 * used as heuristic, we only make a reasonable attempt at finding the best
2626 * domain, one that should work in case a single domain provides the smallest
2627 * value for the current dimension over all values of the parameters
2628 * and outer dimensions.
2630 * In particular, we compute the smallest value of the first domain
2631 * and replace it by that of any later domain if that later domain
2632 * has a smallest value that is smaller for at least some value
2633 * of the parameters and outer dimensions.
2635 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2636 __isl_keep isl_ast_build *build)
2638 int i;
2639 isl_map *min_first;
2640 int first = 0;
2642 min_first = isl_ast_build_map_to_iterator(build,
2643 isl_set_copy(domain[order[0]].set));
2644 min_first = isl_map_lexmin(min_first);
2646 for (i = 1; i < n; ++i) {
2647 isl_map *min, *test;
2648 int empty;
2650 min = isl_ast_build_map_to_iterator(build,
2651 isl_set_copy(domain[order[i]].set));
2652 min = isl_map_lexmin(min);
2653 test = isl_map_copy(min);
2654 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2655 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2656 empty = isl_map_is_empty(test);
2657 isl_map_free(test);
2658 if (empty >= 0 && !empty) {
2659 isl_map_free(min_first);
2660 first = i;
2661 min_first = min;
2662 } else
2663 isl_map_free(min);
2665 if (empty < 0)
2666 break;
2669 isl_map_free(min_first);
2671 return i < n ? -1 : first;
2674 /* Construct a shifted inverse schedule based on the original inverse schedule,
2675 * the stride and the offset.
2677 * The original inverse schedule is specified as the "map" fields
2678 * of the elements of "domain" indexed by the first "n" elements of "order".
2680 * "stride" and "offset" are such that the difference
2681 * between the values of the current dimension of domain "i"
2682 * and the values of the current dimension for some reference domain are
2683 * equal to
2685 * stride * integer + offset[i]
2687 * Moreover, 0 <= offset[i] < stride.
2689 * For each domain, we create a map
2691 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2693 * where j refers to the current dimension and the other dimensions are
2694 * unchanged, and apply this map to the original schedule domain.
2696 * For example, for the original schedule
2698 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2700 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2701 * we apply the mapping
2703 * { [j] -> [j, 0] }
2705 * to the schedule of the "A" domain and the mapping
2707 * { [j - 1] -> [j, 1] }
2709 * to the schedule of the "B" domain.
2712 * Note that after the transformation, the differences between pairs
2713 * of values of the current dimension over all domains are multiples
2714 * of stride and that we have therefore exposed the stride.
2717 * To see that the mapping preserves the lexicographic order,
2718 * first note that each of the individual maps above preserves the order.
2719 * If the value of the current iterator is j1 in one domain and j2 in another,
2720 * then if j1 = j2, we know that the same map is applied to both domains
2721 * and the order is preserved.
2722 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2723 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2725 * j1 - c1 < j2 - c2
2727 * and the order is preserved.
2728 * If c1 < c2, then we know
2730 * 0 <= c2 - c1 < s
2732 * We also have
2734 * j2 - j1 = n * s + r
2736 * with n >= 0 and 0 <= r < s.
2737 * In other words, r = c2 - c1.
2738 * If n > 0, then
2740 * j1 - c1 < j2 - c2
2742 * If n = 0, then
2744 * j1 - c1 = j2 - c2
2746 * and so
2748 * (j1 - c1, c1) << (j2 - c2, c2)
2750 * with "<<" the lexicographic order, proving that the order is preserved
2751 * in all cases.
2753 static __isl_give isl_union_map *contruct_shifted_executed(
2754 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2755 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2757 int i;
2758 isl_int v;
2759 isl_union_map *executed;
2760 isl_space *space;
2761 isl_map *map;
2762 int depth;
2763 isl_constraint *c;
2765 depth = isl_ast_build_get_depth(build);
2766 space = isl_ast_build_get_space(build, 1);
2767 executed = isl_union_map_empty(isl_space_copy(space));
2768 space = isl_space_map_from_set(space);
2769 map = isl_map_identity(isl_space_copy(space));
2770 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2771 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2772 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2774 c = isl_equality_alloc(isl_local_space_from_space(space));
2775 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2776 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2778 isl_int_init(v);
2780 for (i = 0; i < n; ++i) {
2781 isl_map *map_i;
2783 if (isl_vec_get_element(offset, i, &v) < 0)
2784 break;
2785 map_i = isl_map_copy(map);
2786 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2787 isl_int_neg(v, v);
2788 c = isl_constraint_set_constant(c, v);
2789 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2791 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2792 map_i);
2793 executed = isl_union_map_add_map(executed, map_i);
2796 isl_constraint_free(c);
2797 isl_map_free(map);
2799 isl_int_clear(v);
2801 if (i < n)
2802 executed = isl_union_map_free(executed);
2804 return executed;
2807 /* Generate code for a single component, after exposing the stride,
2808 * given that the schedule domain is "shifted strided".
2810 * The component inverse schedule is specified as the "map" fields
2811 * of the elements of "domain" indexed by the first "n" elements of "order".
2813 * The schedule domain being "shifted strided" means that the differences
2814 * between the values of the current dimension of domain "i"
2815 * and the values of the current dimension for some reference domain are
2816 * equal to
2818 * stride * integer + offset[i]
2820 * We first look for the domain with the "smallest" value for the current
2821 * dimension and adjust the offsets such that the offset of the "smallest"
2822 * domain is equal to zero. The other offsets are reduced modulo stride.
2824 * Based on this information, we construct a new inverse schedule in
2825 * contruct_shifted_executed that exposes the stride.
2826 * Since this involves the introduction of a new schedule dimension,
2827 * the build needs to be changed accodingly.
2828 * After computing the AST, the newly introduced dimension needs
2829 * to be removed again from the list of grafts. We do this by plugging
2830 * in a mapping that represents the new schedule domain in terms of the
2831 * old schedule domain.
2833 static __isl_give isl_ast_graft_list *generate_shift_component(
2834 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2835 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
2837 isl_ast_graft_list *list;
2838 int first;
2839 int depth;
2840 isl_ctx *ctx;
2841 isl_int val;
2842 isl_vec *v;
2843 isl_space *space;
2844 isl_multi_aff *ma, *zero;
2845 isl_union_map *executed;
2847 ctx = isl_ast_build_get_ctx(build);
2848 depth = isl_ast_build_get_depth(build);
2850 first = first_offset(domain, order, n, build);
2851 if (first < 0)
2852 return isl_ast_build_free(build);
2854 isl_int_init(val);
2855 v = isl_vec_alloc(ctx, n);
2856 if (isl_vec_get_element(offset, first, &val) < 0)
2857 v = isl_vec_free(v);
2858 isl_int_neg(val, val);
2859 v = isl_vec_set(v, val);
2860 v = isl_vec_add(v, isl_vec_copy(offset));
2861 v = isl_vec_fdiv_r(v, stride);
2863 executed = contruct_shifted_executed(domain, order, n, stride, v,
2864 build);
2865 space = isl_ast_build_get_space(build, 1);
2866 space = isl_space_map_from_set(space);
2867 ma = isl_multi_aff_identity(isl_space_copy(space));
2868 space = isl_space_from_domain(isl_space_domain(space));
2869 space = isl_space_add_dims(space, isl_dim_out, 1);
2870 zero = isl_multi_aff_zero(space);
2871 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
2872 build = isl_ast_build_insert_dim(build, depth + 1);
2873 list = generate_shifted_component(executed, build);
2875 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
2877 isl_vec_free(v);
2878 isl_int_clear(val);
2880 return list;
2883 /* Generate code for a single component.
2885 * The component inverse schedule is specified as the "map" fields
2886 * of the elements of "domain" indexed by the first "n" elements of "order".
2888 * This function may modify the "set" fields of "domain".
2890 * Before proceeding with the actual code generation for the component,
2891 * we first check if there are any "shifted" strides, meaning that
2892 * the schedule domains of the individual domains are all strided,
2893 * but that they have different offsets, resulting in the union
2894 * of schedule domains not being strided anymore.
2896 * The simplest example is the schedule
2898 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2900 * Both schedule domains are strided, but their union is not.
2901 * This function detects such cases and then rewrites the schedule to
2903 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
2905 * In the new schedule, the schedule domains have the same offset (modulo
2906 * the stride), ensuring that the union of schedule domains is also strided.
2909 * If there is only a single domain in the component, then there is
2910 * nothing to do. Similarly, if the current schedule dimension has
2911 * a fixed value for almost all domains then there is nothing to be done.
2912 * In particular, we need at least two domains where the current schedule
2913 * dimension does not have a fixed value.
2914 * Finally, if any of the options refer to the current schedule dimension,
2915 * then we bail out as well. It would be possible to reformulate the options
2916 * in terms of the new schedule domain, but that would introduce constraints
2917 * that separate the domains in the options and that is something we would
2918 * like to avoid.
2921 * To see if there is any shifted stride, we look at the differences
2922 * between the values of the current dimension in pairs of domains
2923 * for equal values of outer dimensions. These differences should be
2924 * of the form
2926 * m x + r
2928 * with "m" the stride and "r" a constant. Note that we cannot perform
2929 * this analysis on individual domains as the lower bound in each domain
2930 * may depend on parameters or outer dimensions and so the current dimension
2931 * itself may not have a fixed remainder on division by the stride.
2933 * In particular, we compare the first domain that does not have an
2934 * obviously fixed value for the current dimension to itself and all
2935 * other domains and collect the offsets and the gcd of the strides.
2936 * If the gcd becomes one, then we failed to find shifted strides.
2937 * If all the offsets are the same (for those domains that do not have
2938 * an obviously fixed value for the current dimension), then we do not
2939 * apply the transformation.
2940 * If none of the domains were skipped, then there is nothing to do.
2941 * If some of them were skipped, then if we apply separation, the schedule
2942 * domain should get split in pieces with a (non-shifted) stride.
2944 * Otherwise, we apply a shift to expose the stride in
2945 * generate_shift_component.
2947 static __isl_give isl_ast_graft_list *generate_component(
2948 struct isl_set_map_pair *domain, int *order, int n,
2949 __isl_take isl_ast_build *build)
2951 int i, d;
2952 int depth;
2953 isl_ctx *ctx;
2954 isl_map *map;
2955 isl_set *deltas;
2956 isl_int m, r, gcd;
2957 isl_vec *v;
2958 int fixed, skip;
2959 int base;
2960 isl_ast_graft_list *list;
2961 int res = 0;
2963 depth = isl_ast_build_get_depth(build);
2965 skip = n == 1;
2966 if (skip >= 0 && !skip)
2967 skip = at_most_one_non_fixed(domain, order, n, depth);
2968 if (skip >= 0 && !skip)
2969 skip = isl_ast_build_options_involve_depth(build);
2970 if (skip < 0)
2971 return isl_ast_build_free(build);
2972 if (skip)
2973 return generate_shifted_component_from_list(domain,
2974 order, n, build);
2976 base = eliminate_non_fixed(domain, order, n, depth, build);
2977 if (base < 0)
2978 return isl_ast_build_free(build);
2980 ctx = isl_ast_build_get_ctx(build);
2982 isl_int_init(m);
2983 isl_int_init(r);
2984 isl_int_init(gcd);
2985 v = isl_vec_alloc(ctx, n);
2987 fixed = 1;
2988 for (i = 0; i < n; ++i) {
2989 map = isl_map_from_domain_and_range(
2990 isl_set_copy(domain[order[base]].set),
2991 isl_set_copy(domain[order[i]].set));
2992 for (d = 0; d < depth; ++d)
2993 map = isl_map_equate(map, isl_dim_in, d,
2994 isl_dim_out, d);
2995 deltas = isl_map_deltas(map);
2996 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
2997 isl_set_free(deltas);
2998 if (res < 0)
2999 break;
3001 if (i == 0)
3002 isl_int_set(gcd, m);
3003 else
3004 isl_int_gcd(gcd, gcd, m);
3005 if (isl_int_is_one(gcd))
3006 break;
3007 v = isl_vec_set_element(v, i, r);
3009 res = isl_set_plain_is_fixed(domain[order[i]].set,
3010 isl_dim_set, depth, NULL);
3011 if (res < 0)
3012 break;
3013 if (res)
3014 continue;
3016 if (fixed && i > base) {
3017 isl_vec_get_element(v, base, &m);
3018 if (isl_int_ne(m, r))
3019 fixed = 0;
3023 if (res < 0) {
3024 isl_ast_build_free(build);
3025 list = NULL;
3026 } else if (i < n || fixed) {
3027 list = generate_shifted_component_from_list(domain,
3028 order, n, build);
3029 } else {
3030 list = generate_shift_component(domain, order, n, gcd, v,
3031 build);
3034 isl_vec_free(v);
3035 isl_int_clear(gcd);
3036 isl_int_clear(r);
3037 isl_int_clear(m);
3039 return list;
3042 /* Store both "map" itself and its domain in the
3043 * structure pointed to by *next and advance to the next array element.
3045 static int extract_domain(__isl_take isl_map *map, void *user)
3047 struct isl_set_map_pair **next = user;
3049 (*next)->map = isl_map_copy(map);
3050 (*next)->set = isl_map_domain(map);
3051 (*next)++;
3053 return 0;
3056 /* Internal data for any_scheduled_after.
3058 * "depth" is the number of loops that have already been generated
3059 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3060 * "domain" is an array of set-map pairs corresponding to the different
3061 * iteration domains. The set is the schedule domain, i.e., the domain
3062 * of the inverse schedule, while the map is the inverse schedule itself.
3064 struct isl_any_scheduled_after_data {
3065 int depth;
3066 int group_coscheduled;
3067 struct isl_set_map_pair *domain;
3070 /* Is any element of domain "i" scheduled after any element of domain "j"
3071 * (for a common iteration of the first data->depth loops)?
3073 * data->domain[i].set contains the domain of the inverse schedule
3074 * for domain "i", i.e., elements in the schedule domain.
3076 * If data->group_coscheduled is set, then we also return 1 if there
3077 * is any pair of elements in the two domains that are scheduled together.
3079 static int any_scheduled_after(int i, int j, void *user)
3081 struct isl_any_scheduled_after_data *data = user;
3082 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3083 int pos;
3085 for (pos = data->depth; pos < dim; ++pos) {
3086 int follows;
3088 follows = isl_set_follows_at(data->domain[i].set,
3089 data->domain[j].set, pos);
3091 if (follows < -1)
3092 return -1;
3093 if (follows > 0)
3094 return 1;
3095 if (follows < 0)
3096 return 0;
3099 return data->group_coscheduled;
3102 /* Look for independent components at the current depth and generate code
3103 * for each component separately. The resulting lists of grafts are
3104 * merged in an attempt to combine grafts with identical guards.
3106 * Code for two domains can be generated separately if all the elements
3107 * of one domain are scheduled before (or together with) all the elements
3108 * of the other domain. We therefore consider the graph with as nodes
3109 * the domains and an edge between two nodes if any element of the first
3110 * node is scheduled after any element of the second node.
3111 * If the ast_build_group_coscheduled is set, then we also add an edge if
3112 * there is any pair of elements in the two domains that are scheduled
3113 * together.
3114 * Code is then generated (by generate_component)
3115 * for each of the strongly connected components in this graph
3116 * in their topological order.
3118 * Since the test is performed on the domain of the inverse schedules of
3119 * the different domains, we precompute these domains and store
3120 * them in data.domain.
3122 static __isl_give isl_ast_graft_list *generate_components(
3123 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3125 int i;
3126 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3127 int n = isl_union_map_n_map(executed);
3128 struct isl_any_scheduled_after_data data;
3129 struct isl_set_map_pair *next;
3130 struct isl_tarjan_graph *g = NULL;
3131 isl_ast_graft_list *list = NULL;
3132 int n_domain = 0;
3134 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3135 if (!data.domain)
3136 goto error;
3137 n_domain = n;
3139 next = data.domain;
3140 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3141 goto error;
3143 if (!build)
3144 goto error;
3145 data.depth = isl_ast_build_get_depth(build);
3146 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3147 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3149 list = isl_ast_graft_list_alloc(ctx, 0);
3151 i = 0;
3152 while (list && n) {
3153 isl_ast_graft_list *list_c;
3154 int first = i;
3156 if (g->order[i] == -1)
3157 isl_die(ctx, isl_error_internal, "cannot happen",
3158 goto error);
3159 ++i; --n;
3160 while (g->order[i] != -1) {
3161 ++i; --n;
3164 list_c = generate_component(data.domain,
3165 g->order + first, i - first,
3166 isl_ast_build_copy(build));
3167 list = isl_ast_graft_list_merge(list, list_c, build);
3169 ++i;
3172 if (0)
3173 error: list = isl_ast_graft_list_free(list);
3174 isl_tarjan_graph_free(g);
3175 for (i = 0; i < n_domain; ++i) {
3176 isl_map_free(data.domain[i].map);
3177 isl_set_free(data.domain[i].set);
3179 free(data.domain);
3180 isl_union_map_free(executed);
3181 isl_ast_build_free(build);
3183 return list;
3186 /* Generate code for the next level (and all inner levels).
3188 * If "executed" is empty, i.e., no code needs to be generated,
3189 * then we return an empty list.
3191 * If we have already generated code for all loop levels, then we pass
3192 * control to generate_inner_level.
3194 * If "executed" lives in a single space, i.e., if code needs to be
3195 * generated for a single domain, then there can only be a single
3196 * component and we go directly to generate_shifted_component.
3197 * Otherwise, we call generate_components to detect the components
3198 * and to call generate_component on each of them separately.
3200 static __isl_give isl_ast_graft_list *generate_next_level(
3201 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3203 int depth;
3205 if (!build || !executed)
3206 goto error;
3208 if (isl_union_map_is_empty(executed)) {
3209 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3210 isl_union_map_free(executed);
3211 isl_ast_build_free(build);
3212 return isl_ast_graft_list_alloc(ctx, 0);
3215 depth = isl_ast_build_get_depth(build);
3216 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3217 return generate_inner_level(executed, build);
3219 if (isl_union_map_n_map(executed) == 1)
3220 return generate_shifted_component(executed, build);
3222 return generate_components(executed, build);
3223 error:
3224 isl_union_map_free(executed);
3225 isl_ast_build_free(build);
3226 return NULL;
3229 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3230 * internal, executed and build are the inputs to generate_code.
3231 * list collects the output.
3233 struct isl_generate_code_data {
3234 int internal;
3235 isl_union_map *executed;
3236 isl_ast_build *build;
3238 isl_ast_graft_list *list;
3241 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3243 * [E -> S] -> D
3245 * with E the external build schedule and S the additional schedule "space",
3246 * reformulate the inverse schedule in terms of the internal schedule domain,
3247 * i.e., return
3249 * [I -> S] -> D
3251 * We first obtain a mapping
3253 * I -> E
3255 * take the inverse and the product with S -> S, resulting in
3257 * [I -> S] -> [E -> S]
3259 * Applying the map to the input produces the desired result.
3261 static __isl_give isl_union_map *internal_executed(
3262 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3263 __isl_keep isl_ast_build *build)
3265 isl_map *id, *proj;
3267 proj = isl_ast_build_get_schedule_map(build);
3268 proj = isl_map_reverse(proj);
3269 space = isl_space_map_from_set(isl_space_copy(space));
3270 id = isl_map_identity(space);
3271 proj = isl_map_product(proj, id);
3272 executed = isl_union_map_apply_domain(executed,
3273 isl_union_map_from_map(proj));
3274 return executed;
3277 /* Generate an AST that visits the elements in the range of data->executed
3278 * in the relative order specified by the corresponding image element(s)
3279 * for those image elements that belong to "set".
3280 * Add the result to data->list.
3282 * The caller ensures that "set" is a universe domain.
3283 * "space" is the space of the additional part of the schedule.
3284 * It is equal to the space of "set" if build->domain is parametric.
3285 * Otherwise, it is equal to the range of the wrapped space of "set".
3287 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3288 * was called from an outside user (data->internal not set), then
3289 * the (inverse) schedule refers to the external build domain and needs to
3290 * be transformed to refer to the internal build domain.
3292 * The build is extended to include the additional part of the schedule.
3293 * If the original build space was not parametric, then the options
3294 * in data->build refer only to the additional part of the schedule
3295 * and they need to be adjusted to refer to the complete AST build
3296 * domain.
3298 * After having adjusted inverse schedule and build, we start generating
3299 * code with the outer loop of the current code generation
3300 * in generate_next_level.
3302 * If the original build space was not parametric, we undo the embedding
3303 * on the resulting isl_ast_node_list so that it can be used within
3304 * the outer AST build.
3306 static int generate_code_in_space(struct isl_generate_code_data *data,
3307 __isl_take isl_set *set, __isl_take isl_space *space)
3309 isl_union_map *executed;
3310 isl_ast_build *build;
3311 isl_ast_graft_list *list;
3312 int embed;
3314 executed = isl_union_map_copy(data->executed);
3315 executed = isl_union_map_intersect_domain(executed,
3316 isl_union_set_from_set(set));
3318 embed = !isl_set_is_params(data->build->domain);
3319 if (embed && !data->internal)
3320 executed = internal_executed(executed, space, data->build);
3322 build = isl_ast_build_copy(data->build);
3323 build = isl_ast_build_product(build, space);
3325 list = generate_next_level(executed, build);
3327 list = isl_ast_graft_list_unembed(list, embed);
3329 data->list = isl_ast_graft_list_concat(data->list, list);
3331 return 0;
3334 /* Generate an AST that visits the elements in the range of data->executed
3335 * in the relative order specified by the corresponding domain element(s)
3336 * for those domain elements that belong to "set".
3337 * Add the result to data->list.
3339 * The caller ensures that "set" is a universe domain.
3341 * If the build space S is not parametric, then the space of "set"
3342 * need to be a wrapped relation with S as domain. That is, it needs
3343 * to be of the form
3345 * [S -> T]
3347 * Check this property and pass control to generate_code_in_space
3348 * passing along T.
3349 * If the build space is not parametric, then T is the space of "set".
3351 static int generate_code_set(__isl_take isl_set *set, void *user)
3353 struct isl_generate_code_data *data = user;
3354 isl_space *space, *build_space;
3355 int is_domain;
3357 space = isl_set_get_space(set);
3359 if (isl_set_is_params(data->build->domain))
3360 return generate_code_in_space(data, set, space);
3362 build_space = isl_ast_build_get_space(data->build, data->internal);
3363 space = isl_space_unwrap(space);
3364 is_domain = isl_space_is_domain(build_space, space);
3365 isl_space_free(build_space);
3366 space = isl_space_range(space);
3368 if (is_domain < 0)
3369 goto error;
3370 if (!is_domain)
3371 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3372 "invalid nested schedule space", goto error);
3374 return generate_code_in_space(data, set, space);
3375 error:
3376 isl_set_free(set);
3377 isl_space_free(space);
3378 return -1;
3381 /* Generate an AST that visits the elements in the range of "executed"
3382 * in the relative order specified by the corresponding domain element(s).
3384 * "build" is an isl_ast_build that has either been constructed by
3385 * isl_ast_build_from_context or passed to a callback set by
3386 * isl_ast_build_set_create_leaf.
3387 * In the first case, the space of the isl_ast_build is typically
3388 * a parametric space, although this is currently not enforced.
3389 * In the second case, the space is never a parametric space.
3390 * If the space S is not parametric, then the domain space(s) of "executed"
3391 * need to be wrapped relations with S as domain.
3393 * If the domain of "executed" consists of several spaces, then an AST
3394 * is generated for each of them (in arbitrary order) and the results
3395 * are concatenated.
3397 * If "internal" is set, then the domain "S" above refers to the internal
3398 * schedule domain representation. Otherwise, it refers to the external
3399 * representation, as returned by isl_ast_build_get_schedule_space.
3401 * We essentially run over all the spaces in the domain of "executed"
3402 * and call generate_code_set on each of them.
3404 static __isl_give isl_ast_graft_list *generate_code(
3405 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3406 int internal)
3408 isl_ctx *ctx;
3409 struct isl_generate_code_data data = { 0 };
3410 isl_space *space;
3411 isl_union_set *schedule_domain;
3412 isl_union_map *universe;
3414 if (!build)
3415 goto error;
3416 space = isl_ast_build_get_space(build, 1);
3417 space = isl_space_align_params(space,
3418 isl_union_map_get_space(executed));
3419 space = isl_space_align_params(space,
3420 isl_union_map_get_space(build->options));
3421 build = isl_ast_build_align_params(build, isl_space_copy(space));
3422 executed = isl_union_map_align_params(executed, space);
3423 if (!executed || !build)
3424 goto error;
3426 ctx = isl_ast_build_get_ctx(build);
3428 data.internal = internal;
3429 data.executed = executed;
3430 data.build = build;
3431 data.list = isl_ast_graft_list_alloc(ctx, 0);
3433 universe = isl_union_map_universe(isl_union_map_copy(executed));
3434 schedule_domain = isl_union_map_domain(universe);
3435 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3436 &data) < 0)
3437 data.list = isl_ast_graft_list_free(data.list);
3439 isl_union_set_free(schedule_domain);
3440 isl_union_map_free(executed);
3442 isl_ast_build_free(build);
3443 return data.list;
3444 error:
3445 isl_union_map_free(executed);
3446 isl_ast_build_free(build);
3447 return NULL;
3450 /* Generate an AST that visits the elements in the domain of "schedule"
3451 * in the relative order specified by the corresponding image element(s).
3453 * "build" is an isl_ast_build that has either been constructed by
3454 * isl_ast_build_from_context or passed to a callback set by
3455 * isl_ast_build_set_create_leaf.
3456 * In the first case, the space of the isl_ast_build is typically
3457 * a parametric space, although this is currently not enforced.
3458 * In the second case, the space is never a parametric space.
3459 * If the space S is not parametric, then the range space(s) of "schedule"
3460 * need to be wrapped relations with S as domain.
3462 * If the range of "schedule" consists of several spaces, then an AST
3463 * is generated for each of them (in arbitrary order) and the results
3464 * are concatenated.
3466 * We first initialize the local copies of the relevant options.
3467 * We do this here rather than when the isl_ast_build is created
3468 * because the options may have changed between the construction
3469 * of the isl_ast_build and the call to isl_generate_code.
3471 * The main computation is performed on an inverse schedule (with
3472 * the schedule domain in the domain and the elements to be executed
3473 * in the range) called "executed".
3475 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3476 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3478 isl_ast_graft_list *list;
3479 isl_ast_node *node;
3480 isl_union_map *executed;
3482 executed = isl_union_map_reverse(schedule);
3483 list = generate_code(executed, isl_ast_build_copy(build), 0);
3484 node = isl_ast_node_from_graft_list(list, build);
3486 return node;