isl_vertex_get_domain: return parameter domain
[isl.git] / isl_map_simplify.c
blob5cb6bfb45d064458c19dab11a210bb4cab20d663
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl/seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
22 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
24 isl_int *t = bmap->eq[a];
25 bmap->eq[a] = bmap->eq[b];
26 bmap->eq[b] = t;
29 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
31 if (a != b) {
32 isl_int *t = bmap->ineq[a];
33 bmap->ineq[a] = bmap->ineq[b];
34 bmap->ineq[b] = t;
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
40 isl_seq_cpy(c, c + n, rem);
41 isl_seq_clr(c + rem, n);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set *isl_basic_set_drop_dims(
52 struct isl_basic_set *bset, unsigned first, unsigned n)
54 int i;
56 if (!bset)
57 goto error;
59 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
61 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
62 return bset;
64 bset = isl_basic_set_cow(bset);
65 if (!bset)
66 return NULL;
68 for (i = 0; i < bset->n_eq; ++i)
69 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70 (bset->dim->n_out-first-n)+bset->extra);
72 for (i = 0; i < bset->n_ineq; ++i)
73 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_div; ++i)
77 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
81 if (!bset->dim)
82 goto error;
84 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85 bset = isl_basic_set_simplify(bset);
86 return isl_basic_set_finalize(bset);
87 error:
88 isl_basic_set_free(bset);
89 return NULL;
92 struct isl_set *isl_set_drop_dims(
93 struct isl_set *set, unsigned first, unsigned n)
95 int i;
97 if (!set)
98 goto error;
100 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
102 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
103 return set;
104 set = isl_set_cow(set);
105 if (!set)
106 goto error;
107 set->dim = isl_space_drop_outputs(set->dim, first, n);
108 if (!set->dim)
109 goto error;
111 for (i = 0; i < set->n; ++i) {
112 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
113 if (!set->p[i])
114 goto error;
117 ISL_F_CLR(set, ISL_SET_NORMALIZED);
118 return set;
119 error:
120 isl_set_free(set);
121 return NULL;
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127 unsigned first, unsigned n)
129 isl_int **div;
130 int i;
132 if (first + n == bmap->n_div)
133 return bmap;
135 div = isl_alloc_array(bmap->ctx, isl_int *, n);
136 if (!div)
137 goto error;
138 for (i = 0; i < n; ++i)
139 div[i] = bmap->div[first + i];
140 for (i = 0; i < bmap->n_div - first - n; ++i)
141 bmap->div[first + i] = bmap->div[first + n + i];
142 for (i = 0; i < n; ++i)
143 bmap->div[bmap->n_div - n + i] = div[i];
144 free(div);
145 return bmap;
146 error:
147 isl_basic_map_free(bmap);
148 return NULL;
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159 enum isl_dim_type type, unsigned first, unsigned n)
161 int i;
162 unsigned dim;
163 unsigned offset;
164 unsigned left;
166 if (!bmap)
167 goto error;
169 dim = isl_basic_map_dim(bmap, type);
170 isl_assert(bmap->ctx, first + n <= dim, goto error);
172 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
173 return bmap;
175 bmap = isl_basic_map_cow(bmap);
176 if (!bmap)
177 return NULL;
179 offset = isl_basic_map_offset(bmap, type) + first;
180 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181 for (i = 0; i < bmap->n_eq; ++i)
182 constraint_drop_vars(bmap->eq[i]+offset, n, left);
184 for (i = 0; i < bmap->n_ineq; ++i)
185 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_div; ++i)
188 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
190 if (type == isl_dim_div) {
191 bmap = move_divs_last(bmap, first, n);
192 if (!bmap)
193 goto error;
194 isl_basic_map_free_div(bmap, n);
195 } else
196 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
197 if (!bmap->dim)
198 goto error;
200 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201 bmap = isl_basic_map_simplify(bmap);
202 return isl_basic_map_finalize(bmap);
203 error:
204 isl_basic_map_free(bmap);
205 return NULL;
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209 enum isl_dim_type type, unsigned first, unsigned n)
211 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
212 type, first, n);
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216 struct isl_basic_map *bmap, unsigned first, unsigned n)
218 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
221 struct isl_map *isl_map_drop(struct isl_map *map,
222 enum isl_dim_type type, unsigned first, unsigned n)
224 int i;
226 if (!map)
227 goto error;
229 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
231 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
232 return map;
233 map = isl_map_cow(map);
234 if (!map)
235 goto error;
236 map->dim = isl_space_drop_dims(map->dim, type, first, n);
237 if (!map->dim)
238 goto error;
240 for (i = 0; i < map->n; ++i) {
241 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
242 if (!map->p[i])
243 goto error;
245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
247 return map;
248 error:
249 isl_map_free(map);
250 return NULL;
253 struct isl_set *isl_set_drop(struct isl_set *set,
254 enum isl_dim_type type, unsigned first, unsigned n)
256 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
259 struct isl_map *isl_map_drop_inputs(
260 struct isl_map *map, unsigned first, unsigned n)
262 return isl_map_drop(map, isl_dim_in, first, n);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map *isl_basic_map_drop_div(
269 struct isl_basic_map *bmap, unsigned div)
271 int i;
272 unsigned pos;
274 if (!bmap)
275 goto error;
277 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
279 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
281 for (i = 0; i < bmap->n_eq; ++i)
282 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
284 for (i = 0; i < bmap->n_ineq; ++i) {
285 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286 isl_basic_map_drop_inequality(bmap, i);
287 --i;
288 continue;
290 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
293 for (i = 0; i < bmap->n_div; ++i)
294 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
296 if (div != bmap->n_div - 1) {
297 int j;
298 isl_int *t = bmap->div[div];
300 for (j = div; j < bmap->n_div - 1; ++j)
301 bmap->div[j] = bmap->div[j+1];
303 bmap->div[bmap->n_div - 1] = t;
305 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306 isl_basic_map_free_div(bmap, 1);
308 return bmap;
309 error:
310 isl_basic_map_free(bmap);
311 return NULL;
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315 struct isl_basic_map *bmap)
317 int i;
318 isl_int gcd;
319 unsigned total = isl_basic_map_total_dim(bmap);
321 if (!bmap)
322 return NULL;
324 isl_int_init(gcd);
325 for (i = bmap->n_eq - 1; i >= 0; --i) {
326 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327 if (isl_int_is_zero(gcd)) {
328 if (!isl_int_is_zero(bmap->eq[i][0])) {
329 bmap = isl_basic_map_set_to_empty(bmap);
330 break;
332 isl_basic_map_drop_equality(bmap, i);
333 continue;
335 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337 if (isl_int_is_one(gcd))
338 continue;
339 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340 bmap = isl_basic_map_set_to_empty(bmap);
341 break;
343 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
346 for (i = bmap->n_ineq - 1; i >= 0; --i) {
347 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348 if (isl_int_is_zero(gcd)) {
349 if (isl_int_is_neg(bmap->ineq[i][0])) {
350 bmap = isl_basic_map_set_to_empty(bmap);
351 break;
353 isl_basic_map_drop_inequality(bmap, i);
354 continue;
356 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358 if (isl_int_is_one(gcd))
359 continue;
360 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
363 isl_int_clear(gcd);
365 return bmap;
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369 struct isl_basic_set *bset)
371 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map *)bset);
375 /* Remove any common factor in numerator and denominator of the div expression,
376 * not taking into account the constant term.
377 * That is, if the div is of the form
379 * floor((a + m f(x))/(m d))
381 * then replace it by
383 * floor((floor(a/m) + f(x))/d)
385 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386 * and can therefore not influence the result of the floor.
388 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
390 unsigned total = isl_basic_map_total_dim(bmap);
391 isl_ctx *ctx = bmap->ctx;
393 if (isl_int_is_zero(bmap->div[div][0]))
394 return;
395 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
396 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
397 if (isl_int_is_one(ctx->normalize_gcd))
398 return;
399 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
400 ctx->normalize_gcd);
401 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
402 ctx->normalize_gcd);
403 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
404 ctx->normalize_gcd, total);
407 /* Remove any common factor in numerator and denominator of a div expression,
408 * not taking into account the constant term.
409 * That is, look for any div of the form
411 * floor((a + m f(x))/(m d))
413 * and replace it by
415 * floor((floor(a/m) + f(x))/d)
417 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418 * and can therefore not influence the result of the floor.
420 static __isl_give isl_basic_map *normalize_div_expressions(
421 __isl_take isl_basic_map *bmap)
423 int i;
425 if (!bmap)
426 return NULL;
427 if (bmap->n_div == 0)
428 return bmap;
430 for (i = 0; i < bmap->n_div; ++i)
431 normalize_div_expression(bmap, i);
433 return bmap;
436 /* Assumes divs have been ordered if keep_divs is set.
438 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
439 unsigned pos, isl_int *eq, int keep_divs, int *progress)
441 unsigned total;
442 unsigned space_total;
443 int k;
444 int last_div;
446 total = isl_basic_map_total_dim(bmap);
447 space_total = isl_space_dim(bmap->dim, isl_dim_all);
448 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
449 for (k = 0; k < bmap->n_eq; ++k) {
450 if (bmap->eq[k] == eq)
451 continue;
452 if (isl_int_is_zero(bmap->eq[k][1+pos]))
453 continue;
454 if (progress)
455 *progress = 1;
456 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
457 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
460 for (k = 0; k < bmap->n_ineq; ++k) {
461 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
462 continue;
463 if (progress)
464 *progress = 1;
465 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
466 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
467 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
470 for (k = 0; k < bmap->n_div; ++k) {
471 if (isl_int_is_zero(bmap->div[k][0]))
472 continue;
473 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
474 continue;
475 if (progress)
476 *progress = 1;
477 /* We need to be careful about circular definitions,
478 * so for now we just remove the definition of div k
479 * if the equality contains any divs.
480 * If keep_divs is set, then the divs have been ordered
481 * and we can keep the definition as long as the result
482 * is still ordered.
484 if (last_div == -1 || (keep_divs && last_div < k)) {
485 isl_seq_elim(bmap->div[k]+1, eq,
486 1+pos, 1+total, &bmap->div[k][0]);
487 normalize_div_expression(bmap, k);
488 } else
489 isl_seq_clr(bmap->div[k], 1 + total);
490 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
494 /* Assumes divs have been ordered if keep_divs is set.
496 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
497 unsigned div, int keep_divs)
499 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
501 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
503 isl_basic_map_drop_div(bmap, div);
506 /* Check if elimination of div "div" using equality "eq" would not
507 * result in a div depending on a later div.
509 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
510 unsigned div)
512 int k;
513 int last_div;
514 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
515 unsigned pos = space_total + div;
517 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
518 if (last_div < 0 || last_div <= div)
519 return 1;
521 for (k = 0; k <= last_div; ++k) {
522 if (isl_int_is_zero(bmap->div[k][0]))
523 return 1;
524 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
525 return 0;
528 return 1;
531 /* Elimininate divs based on equalities
533 static struct isl_basic_map *eliminate_divs_eq(
534 struct isl_basic_map *bmap, int *progress)
536 int d;
537 int i;
538 int modified = 0;
539 unsigned off;
541 bmap = isl_basic_map_order_divs(bmap);
543 if (!bmap)
544 return NULL;
546 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
548 for (d = bmap->n_div - 1; d >= 0 ; --d) {
549 for (i = 0; i < bmap->n_eq; ++i) {
550 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
551 !isl_int_is_negone(bmap->eq[i][off + d]))
552 continue;
553 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
554 continue;
555 modified = 1;
556 *progress = 1;
557 eliminate_div(bmap, bmap->eq[i], d, 1);
558 isl_basic_map_drop_equality(bmap, i);
559 break;
562 if (modified)
563 return eliminate_divs_eq(bmap, progress);
564 return bmap;
567 /* Elimininate divs based on inequalities
569 static struct isl_basic_map *eliminate_divs_ineq(
570 struct isl_basic_map *bmap, int *progress)
572 int d;
573 int i;
574 unsigned off;
575 struct isl_ctx *ctx;
577 if (!bmap)
578 return NULL;
580 ctx = bmap->ctx;
581 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
583 for (d = bmap->n_div - 1; d >= 0 ; --d) {
584 for (i = 0; i < bmap->n_eq; ++i)
585 if (!isl_int_is_zero(bmap->eq[i][off + d]))
586 break;
587 if (i < bmap->n_eq)
588 continue;
589 for (i = 0; i < bmap->n_ineq; ++i)
590 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
591 break;
592 if (i < bmap->n_ineq)
593 continue;
594 *progress = 1;
595 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
596 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
597 break;
598 bmap = isl_basic_map_drop_div(bmap, d);
599 if (!bmap)
600 break;
602 return bmap;
605 struct isl_basic_map *isl_basic_map_gauss(
606 struct isl_basic_map *bmap, int *progress)
608 int k;
609 int done;
610 int last_var;
611 unsigned total_var;
612 unsigned total;
614 bmap = isl_basic_map_order_divs(bmap);
616 if (!bmap)
617 return NULL;
619 total = isl_basic_map_total_dim(bmap);
620 total_var = total - bmap->n_div;
622 last_var = total - 1;
623 for (done = 0; done < bmap->n_eq; ++done) {
624 for (; last_var >= 0; --last_var) {
625 for (k = done; k < bmap->n_eq; ++k)
626 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
627 break;
628 if (k < bmap->n_eq)
629 break;
631 if (last_var < 0)
632 break;
633 if (k != done)
634 swap_equality(bmap, k, done);
635 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
636 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
638 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
639 progress);
641 if (last_var >= total_var &&
642 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
643 unsigned div = last_var - total_var;
644 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
645 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
646 isl_int_set(bmap->div[div][0],
647 bmap->eq[done][1+last_var]);
648 if (progress)
649 *progress = 1;
650 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
653 if (done == bmap->n_eq)
654 return bmap;
655 for (k = done; k < bmap->n_eq; ++k) {
656 if (isl_int_is_zero(bmap->eq[k][0]))
657 continue;
658 return isl_basic_map_set_to_empty(bmap);
660 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
661 return bmap;
664 struct isl_basic_set *isl_basic_set_gauss(
665 struct isl_basic_set *bset, int *progress)
667 return (struct isl_basic_set*)isl_basic_map_gauss(
668 (struct isl_basic_map *)bset, progress);
672 static unsigned int round_up(unsigned int v)
674 int old_v = v;
676 while (v) {
677 old_v = v;
678 v ^= v & -v;
680 return old_v << 1;
683 static int hash_index(isl_int ***index, unsigned int size, int bits,
684 struct isl_basic_map *bmap, int k)
686 int h;
687 unsigned total = isl_basic_map_total_dim(bmap);
688 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
689 for (h = hash; index[h]; h = (h+1) % size)
690 if (&bmap->ineq[k] != index[h] &&
691 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
692 break;
693 return h;
696 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
697 struct isl_basic_set *bset, int k)
699 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
702 /* If we can eliminate more than one div, then we need to make
703 * sure we do it from last div to first div, in order not to
704 * change the position of the other divs that still need to
705 * be removed.
707 static struct isl_basic_map *remove_duplicate_divs(
708 struct isl_basic_map *bmap, int *progress)
710 unsigned int size;
711 int *index;
712 int *elim_for;
713 int k, l, h;
714 int bits;
715 struct isl_blk eq;
716 unsigned total_var;
717 unsigned total;
718 struct isl_ctx *ctx;
720 bmap = isl_basic_map_order_divs(bmap);
721 if (!bmap || bmap->n_div <= 1)
722 return bmap;
724 total_var = isl_space_dim(bmap->dim, isl_dim_all);
725 total = total_var + bmap->n_div;
727 ctx = bmap->ctx;
728 for (k = bmap->n_div - 1; k >= 0; --k)
729 if (!isl_int_is_zero(bmap->div[k][0]))
730 break;
731 if (k <= 0)
732 return bmap;
734 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
735 size = round_up(4 * bmap->n_div / 3 - 1);
736 bits = ffs(size) - 1;
737 index = isl_calloc_array(ctx, int, size);
738 if (!index)
739 return bmap;
740 eq = isl_blk_alloc(ctx, 1+total);
741 if (isl_blk_is_error(eq))
742 goto out;
744 isl_seq_clr(eq.data, 1+total);
745 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
746 for (--k; k >= 0; --k) {
747 uint32_t hash;
749 if (isl_int_is_zero(bmap->div[k][0]))
750 continue;
752 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
753 for (h = hash; index[h]; h = (h+1) % size)
754 if (isl_seq_eq(bmap->div[k],
755 bmap->div[index[h]-1], 2+total))
756 break;
757 if (index[h]) {
758 *progress = 1;
759 l = index[h] - 1;
760 elim_for[l] = k + 1;
762 index[h] = k+1;
764 for (l = bmap->n_div - 1; l >= 0; --l) {
765 if (!elim_for[l])
766 continue;
767 k = elim_for[l] - 1;
768 isl_int_set_si(eq.data[1+total_var+k], -1);
769 isl_int_set_si(eq.data[1+total_var+l], 1);
770 eliminate_div(bmap, eq.data, l, 1);
771 isl_int_set_si(eq.data[1+total_var+k], 0);
772 isl_int_set_si(eq.data[1+total_var+l], 0);
775 isl_blk_free(ctx, eq);
776 out:
777 free(index);
778 free(elim_for);
779 return bmap;
782 static int n_pure_div_eq(struct isl_basic_map *bmap)
784 int i, j;
785 unsigned total;
787 total = isl_space_dim(bmap->dim, isl_dim_all);
788 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
789 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
790 --j;
791 if (j < 0)
792 break;
793 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
794 return 0;
796 return i;
799 /* Normalize divs that appear in equalities.
801 * In particular, we assume that bmap contains some equalities
802 * of the form
804 * a x = m * e_i
806 * and we want to replace the set of e_i by a minimal set and
807 * such that the new e_i have a canonical representation in terms
808 * of the vector x.
809 * If any of the equalities involves more than one divs, then
810 * we currently simply bail out.
812 * Let us first additionally assume that all equalities involve
813 * a div. The equalities then express modulo constraints on the
814 * remaining variables and we can use "parameter compression"
815 * to find a minimal set of constraints. The result is a transformation
817 * x = T(x') = x_0 + G x'
819 * with G a lower-triangular matrix with all elements below the diagonal
820 * non-negative and smaller than the diagonal element on the same row.
821 * We first normalize x_0 by making the same property hold in the affine
822 * T matrix.
823 * The rows i of G with a 1 on the diagonal do not impose any modulo
824 * constraint and simply express x_i = x'_i.
825 * For each of the remaining rows i, we introduce a div and a corresponding
826 * equality. In particular
828 * g_ii e_j = x_i - g_i(x')
830 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831 * corresponding div (if g_kk != 1).
833 * If there are any equalities not involving any div, then we
834 * first apply a variable compression on the variables x:
836 * x = C x'' x'' = C_2 x
838 * and perform the above parameter compression on A C instead of on A.
839 * The resulting compression is then of the form
841 * x'' = T(x') = x_0 + G x'
843 * and in constructing the new divs and the corresponding equalities,
844 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845 * by the corresponding row from C_2.
847 static struct isl_basic_map *normalize_divs(
848 struct isl_basic_map *bmap, int *progress)
850 int i, j, k;
851 int total;
852 int div_eq;
853 struct isl_mat *B;
854 struct isl_vec *d;
855 struct isl_mat *T = NULL;
856 struct isl_mat *C = NULL;
857 struct isl_mat *C2 = NULL;
858 isl_int v;
859 int *pos;
860 int dropped, needed;
862 if (!bmap)
863 return NULL;
865 if (bmap->n_div == 0)
866 return bmap;
868 if (bmap->n_eq == 0)
869 return bmap;
871 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
872 return bmap;
874 total = isl_space_dim(bmap->dim, isl_dim_all);
875 div_eq = n_pure_div_eq(bmap);
876 if (div_eq == 0)
877 return bmap;
879 if (div_eq < bmap->n_eq) {
880 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
881 bmap->n_eq - div_eq, 0, 1 + total);
882 C = isl_mat_variable_compression(B, &C2);
883 if (!C || !C2)
884 goto error;
885 if (C->n_col == 0) {
886 bmap = isl_basic_map_set_to_empty(bmap);
887 isl_mat_free(C);
888 isl_mat_free(C2);
889 goto done;
893 d = isl_vec_alloc(bmap->ctx, div_eq);
894 if (!d)
895 goto error;
896 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
897 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
898 --j;
899 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
901 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
903 if (C) {
904 B = isl_mat_product(B, C);
905 C = NULL;
908 T = isl_mat_parameter_compression(B, d);
909 if (!T)
910 goto error;
911 if (T->n_col == 0) {
912 bmap = isl_basic_map_set_to_empty(bmap);
913 isl_mat_free(C2);
914 isl_mat_free(T);
915 goto done;
917 isl_int_init(v);
918 for (i = 0; i < T->n_row - 1; ++i) {
919 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
920 if (isl_int_is_zero(v))
921 continue;
922 isl_mat_col_submul(T, 0, v, 1 + i);
924 isl_int_clear(v);
925 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
926 if (!pos)
927 goto error;
928 /* We have to be careful because dropping equalities may reorder them */
929 dropped = 0;
930 for (j = bmap->n_div - 1; j >= 0; --j) {
931 for (i = 0; i < bmap->n_eq; ++i)
932 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
933 break;
934 if (i < bmap->n_eq) {
935 bmap = isl_basic_map_drop_div(bmap, j);
936 isl_basic_map_drop_equality(bmap, i);
937 ++dropped;
940 pos[0] = 0;
941 needed = 0;
942 for (i = 1; i < T->n_row; ++i) {
943 if (isl_int_is_one(T->row[i][i]))
944 pos[i] = i;
945 else
946 needed++;
948 if (needed > dropped) {
949 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
950 needed, needed, 0);
951 if (!bmap)
952 goto error;
954 for (i = 1; i < T->n_row; ++i) {
955 if (isl_int_is_one(T->row[i][i]))
956 continue;
957 k = isl_basic_map_alloc_div(bmap);
958 pos[i] = 1 + total + k;
959 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
960 isl_int_set(bmap->div[k][0], T->row[i][i]);
961 if (C2)
962 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
963 else
964 isl_int_set_si(bmap->div[k][1 + i], 1);
965 for (j = 0; j < i; ++j) {
966 if (isl_int_is_zero(T->row[i][j]))
967 continue;
968 if (pos[j] < T->n_row && C2)
969 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
970 C2->row[pos[j]], 1 + total);
971 else
972 isl_int_neg(bmap->div[k][1 + pos[j]],
973 T->row[i][j]);
975 j = isl_basic_map_alloc_equality(bmap);
976 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
977 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
979 free(pos);
980 isl_mat_free(C2);
981 isl_mat_free(T);
983 if (progress)
984 *progress = 1;
985 done:
986 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
988 return bmap;
989 error:
990 isl_mat_free(C);
991 isl_mat_free(C2);
992 isl_mat_free(T);
993 return bmap;
996 static struct isl_basic_map *set_div_from_lower_bound(
997 struct isl_basic_map *bmap, int div, int ineq)
999 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1001 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1002 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1003 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1004 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1005 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1007 return bmap;
1010 /* Check whether it is ok to define a div based on an inequality.
1011 * To avoid the introduction of circular definitions of divs, we
1012 * do not allow such a definition if the resulting expression would refer to
1013 * any other undefined divs or if any known div is defined in
1014 * terms of the unknown div.
1016 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1017 int div, int ineq)
1019 int j;
1020 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1022 /* Not defined in terms of unknown divs */
1023 for (j = 0; j < bmap->n_div; ++j) {
1024 if (div == j)
1025 continue;
1026 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1027 continue;
1028 if (isl_int_is_zero(bmap->div[j][0]))
1029 return 0;
1032 /* No other div defined in terms of this one => avoid loops */
1033 for (j = 0; j < bmap->n_div; ++j) {
1034 if (div == j)
1035 continue;
1036 if (isl_int_is_zero(bmap->div[j][0]))
1037 continue;
1038 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1039 return 0;
1042 return 1;
1045 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1046 * be a better expression than the current one?
1048 * If we do not have any expression yet, then any expression would be better.
1049 * Otherwise we check if the last variable involved in the inequality
1050 * (disregarding the div that it would define) is in an earlier position
1051 * than the last variable involved in the current div expression.
1053 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1054 int div, int ineq)
1056 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1057 int last_div;
1058 int last_ineq;
1060 if (isl_int_is_zero(bmap->div[div][0]))
1061 return 1;
1063 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1064 bmap->n_div - (div + 1)) >= 0)
1065 return 0;
1067 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1068 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1069 total + bmap->n_div);
1071 return last_ineq < last_div;
1074 /* Given two constraints "k" and "l" that are opposite to each other,
1075 * except for the constant term, check if we can use them
1076 * to obtain an expression for one of the hitherto unknown divs or
1077 * a "better" expression for a div for which we already have an expression.
1078 * "sum" is the sum of the constant terms of the constraints.
1079 * If this sum is strictly smaller than the coefficient of one
1080 * of the divs, then this pair can be used define the div.
1081 * To avoid the introduction of circular definitions of divs, we
1082 * do not use the pair if the resulting expression would refer to
1083 * any other undefined divs or if any known div is defined in
1084 * terms of the unknown div.
1086 static struct isl_basic_map *check_for_div_constraints(
1087 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1089 int i;
1090 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1092 for (i = 0; i < bmap->n_div; ++i) {
1093 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1094 continue;
1095 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1096 continue;
1097 if (!better_div_constraint(bmap, i, k))
1098 continue;
1099 if (!ok_to_set_div_from_bound(bmap, i, k))
1100 break;
1101 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1102 bmap = set_div_from_lower_bound(bmap, i, k);
1103 else
1104 bmap = set_div_from_lower_bound(bmap, i, l);
1105 if (progress)
1106 *progress = 1;
1107 break;
1109 return bmap;
1112 static struct isl_basic_map *remove_duplicate_constraints(
1113 struct isl_basic_map *bmap, int *progress, int detect_divs)
1115 unsigned int size;
1116 isl_int ***index;
1117 int k, l, h;
1118 int bits;
1119 unsigned total = isl_basic_map_total_dim(bmap);
1120 isl_int sum;
1121 isl_ctx *ctx;
1123 if (!bmap || bmap->n_ineq <= 1)
1124 return bmap;
1126 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1127 bits = ffs(size) - 1;
1128 ctx = isl_basic_map_get_ctx(bmap);
1129 index = isl_calloc_array(ctx, isl_int **, size);
1130 if (!index)
1131 return bmap;
1133 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1134 for (k = 1; k < bmap->n_ineq; ++k) {
1135 h = hash_index(index, size, bits, bmap, k);
1136 if (!index[h]) {
1137 index[h] = &bmap->ineq[k];
1138 continue;
1140 if (progress)
1141 *progress = 1;
1142 l = index[h] - &bmap->ineq[0];
1143 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1144 swap_inequality(bmap, k, l);
1145 isl_basic_map_drop_inequality(bmap, k);
1146 --k;
1148 isl_int_init(sum);
1149 for (k = 0; k < bmap->n_ineq-1; ++k) {
1150 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1151 h = hash_index(index, size, bits, bmap, k);
1152 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1153 if (!index[h])
1154 continue;
1155 l = index[h] - &bmap->ineq[0];
1156 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1157 if (isl_int_is_pos(sum)) {
1158 if (detect_divs)
1159 bmap = check_for_div_constraints(bmap, k, l,
1160 sum, progress);
1161 continue;
1163 if (isl_int_is_zero(sum)) {
1164 /* We need to break out of the loop after these
1165 * changes since the contents of the hash
1166 * will no longer be valid.
1167 * Plus, we probably we want to regauss first.
1169 if (progress)
1170 *progress = 1;
1171 isl_basic_map_drop_inequality(bmap, l);
1172 isl_basic_map_inequality_to_equality(bmap, k);
1173 } else
1174 bmap = isl_basic_map_set_to_empty(bmap);
1175 break;
1177 isl_int_clear(sum);
1179 free(index);
1180 return bmap;
1184 /* Eliminate knowns divs from constraints where they appear with
1185 * a (positive or negative) unit coefficient.
1187 * That is, replace
1189 * floor(e/m) + f >= 0
1191 * by
1193 * e + m f >= 0
1195 * and
1197 * -floor(e/m) + f >= 0
1199 * by
1201 * -e + m f + m - 1 >= 0
1203 * The first conversion is valid because floor(e/m) >= -f is equivalent
1204 * to e/m >= -f because -f is an integral expression.
1205 * The second conversion follows from the fact that
1207 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1210 * We skip integral divs, i.e., those with denominator 1, as we would
1211 * risk eliminating the div from the div constraints. We do not need
1212 * to handle those divs here anyway since the div constraints will turn
1213 * out to form an equality and this equality can then be use to eliminate
1214 * the div from all constraints.
1216 static __isl_give isl_basic_map *eliminate_unit_divs(
1217 __isl_take isl_basic_map *bmap, int *progress)
1219 int i, j;
1220 isl_ctx *ctx;
1221 unsigned total;
1223 if (!bmap)
1224 return NULL;
1226 ctx = isl_basic_map_get_ctx(bmap);
1227 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1229 for (i = 0; i < bmap->n_div; ++i) {
1230 if (isl_int_is_zero(bmap->div[i][0]))
1231 continue;
1232 if (isl_int_is_one(bmap->div[i][0]))
1233 continue;
1234 for (j = 0; j < bmap->n_ineq; ++j) {
1235 int s;
1237 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1238 !isl_int_is_negone(bmap->ineq[j][total + i]))
1239 continue;
1241 *progress = 1;
1243 s = isl_int_sgn(bmap->ineq[j][total + i]);
1244 isl_int_set_si(bmap->ineq[j][total + i], 0);
1245 if (s < 0)
1246 isl_seq_combine(bmap->ineq[j],
1247 ctx->negone, bmap->div[i] + 1,
1248 bmap->div[i][0], bmap->ineq[j],
1249 total + bmap->n_div);
1250 else
1251 isl_seq_combine(bmap->ineq[j],
1252 ctx->one, bmap->div[i] + 1,
1253 bmap->div[i][0], bmap->ineq[j],
1254 total + bmap->n_div);
1255 if (s < 0) {
1256 isl_int_add(bmap->ineq[j][0],
1257 bmap->ineq[j][0], bmap->div[i][0]);
1258 isl_int_sub_ui(bmap->ineq[j][0],
1259 bmap->ineq[j][0], 1);
1264 return bmap;
1267 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1269 int progress = 1;
1270 if (!bmap)
1271 return NULL;
1272 while (progress) {
1273 progress = 0;
1274 if (!bmap)
1275 break;
1276 if (isl_basic_map_plain_is_empty(bmap))
1277 break;
1278 bmap = isl_basic_map_normalize_constraints(bmap);
1279 bmap = normalize_div_expressions(bmap);
1280 bmap = remove_duplicate_divs(bmap, &progress);
1281 bmap = eliminate_unit_divs(bmap, &progress);
1282 bmap = eliminate_divs_eq(bmap, &progress);
1283 bmap = eliminate_divs_ineq(bmap, &progress);
1284 bmap = isl_basic_map_gauss(bmap, &progress);
1285 /* requires equalities in normal form */
1286 bmap = normalize_divs(bmap, &progress);
1287 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1289 return bmap;
1292 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1294 return (struct isl_basic_set *)
1295 isl_basic_map_simplify((struct isl_basic_map *)bset);
1299 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1300 isl_int *constraint, unsigned div)
1302 unsigned pos;
1304 if (!bmap)
1305 return -1;
1307 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1309 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1310 int neg;
1311 isl_int_sub(bmap->div[div][1],
1312 bmap->div[div][1], bmap->div[div][0]);
1313 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1314 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1315 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1316 isl_int_add(bmap->div[div][1],
1317 bmap->div[div][1], bmap->div[div][0]);
1318 if (!neg)
1319 return 0;
1320 if (isl_seq_first_non_zero(constraint+pos+1,
1321 bmap->n_div-div-1) != -1)
1322 return 0;
1323 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1324 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1325 return 0;
1326 if (isl_seq_first_non_zero(constraint+pos+1,
1327 bmap->n_div-div-1) != -1)
1328 return 0;
1329 } else
1330 return 0;
1332 return 1;
1335 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1336 isl_int *constraint, unsigned div)
1338 return isl_basic_map_is_div_constraint(bset, constraint, div);
1342 /* If the only constraints a div d=floor(f/m)
1343 * appears in are its two defining constraints
1345 * f - m d >=0
1346 * -(f - (m - 1)) + m d >= 0
1348 * then it can safely be removed.
1350 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1352 int i;
1353 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1355 for (i = 0; i < bmap->n_eq; ++i)
1356 if (!isl_int_is_zero(bmap->eq[i][pos]))
1357 return 0;
1359 for (i = 0; i < bmap->n_ineq; ++i) {
1360 if (isl_int_is_zero(bmap->ineq[i][pos]))
1361 continue;
1362 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1363 return 0;
1366 for (i = 0; i < bmap->n_div; ++i) {
1367 if (isl_int_is_zero(bmap->div[i][0]))
1368 continue;
1369 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1370 return 0;
1373 return 1;
1377 * Remove divs that don't occur in any of the constraints or other divs.
1378 * These can arise when dropping some of the variables in a quast
1379 * returned by piplib.
1381 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1383 int i;
1385 if (!bmap)
1386 return NULL;
1388 for (i = bmap->n_div-1; i >= 0; --i) {
1389 if (!div_is_redundant(bmap, i))
1390 continue;
1391 bmap = isl_basic_map_drop_div(bmap, i);
1393 return bmap;
1396 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1398 bmap = remove_redundant_divs(bmap);
1399 if (!bmap)
1400 return NULL;
1401 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1402 return bmap;
1405 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1407 return (struct isl_basic_set *)
1408 isl_basic_map_finalize((struct isl_basic_map *)bset);
1411 struct isl_set *isl_set_finalize(struct isl_set *set)
1413 int i;
1415 if (!set)
1416 return NULL;
1417 for (i = 0; i < set->n; ++i) {
1418 set->p[i] = isl_basic_set_finalize(set->p[i]);
1419 if (!set->p[i])
1420 goto error;
1422 return set;
1423 error:
1424 isl_set_free(set);
1425 return NULL;
1428 struct isl_map *isl_map_finalize(struct isl_map *map)
1430 int i;
1432 if (!map)
1433 return NULL;
1434 for (i = 0; i < map->n; ++i) {
1435 map->p[i] = isl_basic_map_finalize(map->p[i]);
1436 if (!map->p[i])
1437 goto error;
1439 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1440 return map;
1441 error:
1442 isl_map_free(map);
1443 return NULL;
1447 /* Remove definition of any div that is defined in terms of the given variable.
1448 * The div itself is not removed. Functions such as
1449 * eliminate_divs_ineq depend on the other divs remaining in place.
1451 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1452 int pos)
1454 int i;
1456 if (!bmap)
1457 return NULL;
1459 for (i = 0; i < bmap->n_div; ++i) {
1460 if (isl_int_is_zero(bmap->div[i][0]))
1461 continue;
1462 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1463 continue;
1464 isl_int_set_si(bmap->div[i][0], 0);
1466 return bmap;
1469 /* Eliminate the specified variables from the constraints using
1470 * Fourier-Motzkin. The variables themselves are not removed.
1472 struct isl_basic_map *isl_basic_map_eliminate_vars(
1473 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1475 int d;
1476 int i, j, k;
1477 unsigned total;
1478 int need_gauss = 0;
1480 if (n == 0)
1481 return bmap;
1482 if (!bmap)
1483 return NULL;
1484 total = isl_basic_map_total_dim(bmap);
1486 bmap = isl_basic_map_cow(bmap);
1487 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1488 bmap = remove_dependent_vars(bmap, d);
1489 if (!bmap)
1490 return NULL;
1492 for (d = pos + n - 1;
1493 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1494 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1495 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1496 int n_lower, n_upper;
1497 if (!bmap)
1498 return NULL;
1499 for (i = 0; i < bmap->n_eq; ++i) {
1500 if (isl_int_is_zero(bmap->eq[i][1+d]))
1501 continue;
1502 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1503 isl_basic_map_drop_equality(bmap, i);
1504 need_gauss = 1;
1505 break;
1507 if (i < bmap->n_eq)
1508 continue;
1509 n_lower = 0;
1510 n_upper = 0;
1511 for (i = 0; i < bmap->n_ineq; ++i) {
1512 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1513 n_lower++;
1514 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1515 n_upper++;
1517 bmap = isl_basic_map_extend_constraints(bmap,
1518 0, n_lower * n_upper);
1519 if (!bmap)
1520 goto error;
1521 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1522 int last;
1523 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1524 continue;
1525 last = -1;
1526 for (j = 0; j < i; ++j) {
1527 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1528 continue;
1529 last = j;
1530 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1531 isl_int_sgn(bmap->ineq[j][1+d]))
1532 continue;
1533 k = isl_basic_map_alloc_inequality(bmap);
1534 if (k < 0)
1535 goto error;
1536 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1537 1+total);
1538 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1539 1+d, 1+total, NULL);
1541 isl_basic_map_drop_inequality(bmap, i);
1542 i = last + 1;
1544 if (n_lower > 0 && n_upper > 0) {
1545 bmap = isl_basic_map_normalize_constraints(bmap);
1546 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1547 bmap = isl_basic_map_gauss(bmap, NULL);
1548 bmap = isl_basic_map_remove_redundancies(bmap);
1549 need_gauss = 0;
1550 if (!bmap)
1551 goto error;
1552 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1553 break;
1556 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1557 if (need_gauss)
1558 bmap = isl_basic_map_gauss(bmap, NULL);
1559 return bmap;
1560 error:
1561 isl_basic_map_free(bmap);
1562 return NULL;
1565 struct isl_basic_set *isl_basic_set_eliminate_vars(
1566 struct isl_basic_set *bset, unsigned pos, unsigned n)
1568 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1569 (struct isl_basic_map *)bset, pos, n);
1572 /* Eliminate the specified n dimensions starting at first from the
1573 * constraints, without removing the dimensions from the space.
1574 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1575 * Otherwise, they are projected out and the original space is restored.
1577 __isl_give isl_basic_map *isl_basic_map_eliminate(
1578 __isl_take isl_basic_map *bmap,
1579 enum isl_dim_type type, unsigned first, unsigned n)
1581 isl_space *space;
1583 if (!bmap)
1584 return NULL;
1585 if (n == 0)
1586 return bmap;
1588 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1589 isl_die(bmap->ctx, isl_error_invalid,
1590 "index out of bounds", goto error);
1592 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1593 first += isl_basic_map_offset(bmap, type) - 1;
1594 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1595 return isl_basic_map_finalize(bmap);
1598 space = isl_basic_map_get_space(bmap);
1599 bmap = isl_basic_map_project_out(bmap, type, first, n);
1600 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1601 bmap = isl_basic_map_reset_space(bmap, space);
1602 return bmap;
1603 error:
1604 isl_basic_map_free(bmap);
1605 return NULL;
1608 __isl_give isl_basic_set *isl_basic_set_eliminate(
1609 __isl_take isl_basic_set *bset,
1610 enum isl_dim_type type, unsigned first, unsigned n)
1612 return isl_basic_map_eliminate(bset, type, first, n);
1615 /* Don't assume equalities are in order, because align_divs
1616 * may have changed the order of the divs.
1618 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1620 int d, i;
1621 unsigned total;
1623 total = isl_space_dim(bmap->dim, isl_dim_all);
1624 for (d = 0; d < total; ++d)
1625 elim[d] = -1;
1626 for (i = 0; i < bmap->n_eq; ++i) {
1627 for (d = total - 1; d >= 0; --d) {
1628 if (isl_int_is_zero(bmap->eq[i][1+d]))
1629 continue;
1630 elim[d] = i;
1631 break;
1636 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1638 compute_elimination_index((struct isl_basic_map *)bset, elim);
1641 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1642 struct isl_basic_map *bmap, int *elim)
1644 int d;
1645 int copied = 0;
1646 unsigned total;
1648 total = isl_space_dim(bmap->dim, isl_dim_all);
1649 for (d = total - 1; d >= 0; --d) {
1650 if (isl_int_is_zero(src[1+d]))
1651 continue;
1652 if (elim[d] == -1)
1653 continue;
1654 if (!copied) {
1655 isl_seq_cpy(dst, src, 1 + total);
1656 copied = 1;
1658 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1660 return copied;
1663 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1664 struct isl_basic_set *bset, int *elim)
1666 return reduced_using_equalities(dst, src,
1667 (struct isl_basic_map *)bset, elim);
1670 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1671 struct isl_basic_set *bset, struct isl_basic_set *context)
1673 int i;
1674 int *elim;
1676 if (!bset || !context)
1677 goto error;
1679 if (context->n_eq == 0) {
1680 isl_basic_set_free(context);
1681 return bset;
1684 bset = isl_basic_set_cow(bset);
1685 if (!bset)
1686 goto error;
1688 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1689 if (!elim)
1690 goto error;
1691 set_compute_elimination_index(context, elim);
1692 for (i = 0; i < bset->n_eq; ++i)
1693 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1694 context, elim);
1695 for (i = 0; i < bset->n_ineq; ++i)
1696 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1697 context, elim);
1698 isl_basic_set_free(context);
1699 free(elim);
1700 bset = isl_basic_set_simplify(bset);
1701 bset = isl_basic_set_finalize(bset);
1702 return bset;
1703 error:
1704 isl_basic_set_free(bset);
1705 isl_basic_set_free(context);
1706 return NULL;
1709 static struct isl_basic_set *remove_shifted_constraints(
1710 struct isl_basic_set *bset, struct isl_basic_set *context)
1712 unsigned int size;
1713 isl_int ***index;
1714 int bits;
1715 int k, h, l;
1716 isl_ctx *ctx;
1718 if (!bset)
1719 return NULL;
1721 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1722 bits = ffs(size) - 1;
1723 ctx = isl_basic_set_get_ctx(bset);
1724 index = isl_calloc_array(ctx, isl_int **, size);
1725 if (!index)
1726 return bset;
1728 for (k = 0; k < context->n_ineq; ++k) {
1729 h = set_hash_index(index, size, bits, context, k);
1730 index[h] = &context->ineq[k];
1732 for (k = 0; k < bset->n_ineq; ++k) {
1733 h = set_hash_index(index, size, bits, bset, k);
1734 if (!index[h])
1735 continue;
1736 l = index[h] - &context->ineq[0];
1737 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1738 continue;
1739 bset = isl_basic_set_cow(bset);
1740 if (!bset)
1741 goto error;
1742 isl_basic_set_drop_inequality(bset, k);
1743 --k;
1745 free(index);
1746 return bset;
1747 error:
1748 free(index);
1749 return bset;
1752 /* Does the (linear part of a) constraint "c" involve any of the "len"
1753 * "relevant" dimensions?
1755 static int is_related(isl_int *c, int len, int *relevant)
1757 int i;
1759 for (i = 0; i < len; ++i) {
1760 if (!relevant[i])
1761 continue;
1762 if (!isl_int_is_zero(c[i]))
1763 return 1;
1766 return 0;
1769 /* Drop constraints from "bset" that do not involve any of
1770 * the dimensions marked "relevant".
1772 static __isl_give isl_basic_set *drop_unrelated_constraints(
1773 __isl_take isl_basic_set *bset, int *relevant)
1775 int i, dim;
1777 dim = isl_basic_set_dim(bset, isl_dim_set);
1778 for (i = 0; i < dim; ++i)
1779 if (!relevant[i])
1780 break;
1781 if (i >= dim)
1782 return bset;
1784 for (i = bset->n_eq - 1; i >= 0; --i)
1785 if (!is_related(bset->eq[i] + 1, dim, relevant))
1786 isl_basic_set_drop_equality(bset, i);
1788 for (i = bset->n_ineq - 1; i >= 0; --i)
1789 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1790 isl_basic_set_drop_inequality(bset, i);
1792 return bset;
1795 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1797 * In particular, for any variable involved in the constraint,
1798 * find the actual group id from before and replace the group
1799 * of the corresponding variable by the minimal group of all
1800 * the variables involved in the constraint considered so far
1801 * (if this minimum is smaller) or replace the minimum by this group
1802 * (if the minimum is larger).
1804 * At the end, all the variables in "c" will (indirectly) point
1805 * to the minimal of the groups that they referred to originally.
1807 static void update_groups(int dim, int *group, isl_int *c)
1809 int j;
1810 int min = dim;
1812 for (j = 0; j < dim; ++j) {
1813 if (isl_int_is_zero(c[j]))
1814 continue;
1815 while (group[j] >= 0 && group[group[j]] != group[j])
1816 group[j] = group[group[j]];
1817 if (group[j] == min)
1818 continue;
1819 if (group[j] < min) {
1820 if (min >= 0 && min < dim)
1821 group[min] = group[j];
1822 min = group[j];
1823 } else
1824 group[group[j]] = min;
1828 /* Drop constraints from "context" that are irrelevant for computing
1829 * the gist of "bset".
1831 * In particular, drop constraints in variables that are not related
1832 * to any of the variables involved in the constraints of "bset"
1833 * in the sense that there is no sequence of constraints that connects them.
1835 * We construct groups of variables that collect variables that
1836 * (indirectly) appear in some common constraint of "context".
1837 * Each group is identified by the first variable in the group,
1838 * except for the special group of variables that appear in "bset"
1839 * (or are related to those variables), which is identified by -1.
1840 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1841 * otherwise the group of i is the group of group[i].
1843 * We first initialize the -1 group with the variables that appear in "bset".
1844 * Then we initialize groups for the remaining variables.
1845 * Then we iterate over the constraints of "context" and update the
1846 * group of the variables in the constraint by the smallest group.
1847 * Finally, we resolve indirect references to groups by running over
1848 * the variables.
1850 * After computing the groups, we drop constraints that do not involve
1851 * any variables in the -1 group.
1853 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1854 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1856 isl_ctx *ctx;
1857 int *group;
1858 int dim;
1859 int i, j;
1860 int last;
1862 if (!context || !bset)
1863 return isl_basic_set_free(context);
1865 dim = isl_basic_set_dim(bset, isl_dim_set);
1866 ctx = isl_basic_set_get_ctx(bset);
1867 group = isl_calloc_array(ctx, int, dim);
1869 if (!group)
1870 goto error;
1872 for (i = 0; i < dim; ++i) {
1873 for (j = 0; j < bset->n_eq; ++j)
1874 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1875 break;
1876 if (j < bset->n_eq) {
1877 group[i] = -1;
1878 continue;
1880 for (j = 0; j < bset->n_ineq; ++j)
1881 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1882 break;
1883 if (j < bset->n_ineq)
1884 group[i] = -1;
1887 last = -1;
1888 for (i = 0; i < dim; ++i)
1889 if (group[i] >= 0)
1890 last = group[i] = i;
1891 if (last < 0) {
1892 free(group);
1893 return context;
1896 for (i = 0; i < context->n_eq; ++i)
1897 update_groups(dim, group, context->eq[i] + 1);
1898 for (i = 0; i < context->n_ineq; ++i)
1899 update_groups(dim, group, context->ineq[i] + 1);
1901 for (i = 0; i < dim; ++i)
1902 if (group[i] >= 0)
1903 group[i] = group[group[i]];
1905 for (i = 0; i < dim; ++i)
1906 group[i] = group[i] == -1;
1908 context = drop_unrelated_constraints(context, group);
1910 free(group);
1911 return context;
1912 error:
1913 free(group);
1914 return isl_basic_set_free(context);
1917 /* Remove all information from bset that is redundant in the context
1918 * of context. Both bset and context are assumed to be full-dimensional.
1920 * We first remove the inequalities from "bset"
1921 * that are obviously redundant with respect to some inequality in "context".
1922 * Then we remove those constraints from "context" that have become
1923 * irrelevant for computing the gist of "bset".
1924 * Note that this removal of constraints cannot be replaced by
1925 * a factorization because factors in "bset" may still be connected
1926 * to each other through constraints in "context".
1928 * If there are any inequalities left, we construct a tableau for
1929 * the context and then add the inequalities of "bset".
1930 * Before adding these inequalities, we freeze all constraints such that
1931 * they won't be considered redundant in terms of the constraints of "bset".
1932 * Then we detect all redundant constraints (among the
1933 * constraints that weren't frozen), first by checking for redundancy in the
1934 * the tableau and then by checking if replacing a constraint by its negation
1935 * would lead to an empty set. This last step is fairly expensive
1936 * and could be optimized by more reuse of the tableau.
1937 * Finally, we update bset according to the results.
1939 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1940 __isl_take isl_basic_set *context)
1942 int i, k;
1943 isl_basic_set *combined = NULL;
1944 struct isl_tab *tab = NULL;
1945 unsigned context_ineq;
1946 unsigned total;
1948 if (!bset || !context)
1949 goto error;
1951 if (isl_basic_set_is_universe(bset)) {
1952 isl_basic_set_free(context);
1953 return bset;
1956 if (isl_basic_set_is_universe(context)) {
1957 isl_basic_set_free(context);
1958 return bset;
1961 bset = remove_shifted_constraints(bset, context);
1962 if (!bset)
1963 goto error;
1964 if (bset->n_ineq == 0)
1965 goto done;
1967 context = drop_irrelevant_constraints(context, bset);
1968 if (!context)
1969 goto error;
1970 if (isl_basic_set_is_universe(context)) {
1971 isl_basic_set_free(context);
1972 return bset;
1975 context_ineq = context->n_ineq;
1976 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1977 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1978 tab = isl_tab_from_basic_set(combined, 0);
1979 for (i = 0; i < context_ineq; ++i)
1980 if (isl_tab_freeze_constraint(tab, i) < 0)
1981 goto error;
1982 tab = isl_tab_extend(tab, bset->n_ineq);
1983 for (i = 0; i < bset->n_ineq; ++i)
1984 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1985 goto error;
1986 bset = isl_basic_set_add_constraints(combined, bset, 0);
1987 combined = NULL;
1988 if (!bset)
1989 goto error;
1990 if (isl_tab_detect_redundant(tab) < 0)
1991 goto error;
1992 total = isl_basic_set_total_dim(bset);
1993 for (i = context_ineq; i < bset->n_ineq; ++i) {
1994 int is_empty;
1995 if (tab->con[i].is_redundant)
1996 continue;
1997 tab->con[i].is_redundant = 1;
1998 combined = isl_basic_set_dup(bset);
1999 combined = isl_basic_set_update_from_tab(combined, tab);
2000 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2001 k = isl_basic_set_alloc_inequality(combined);
2002 if (k < 0)
2003 goto error;
2004 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2005 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2006 is_empty = isl_basic_set_is_empty(combined);
2007 if (is_empty < 0)
2008 goto error;
2009 isl_basic_set_free(combined);
2010 combined = NULL;
2011 if (!is_empty)
2012 tab->con[i].is_redundant = 0;
2014 for (i = 0; i < context_ineq; ++i)
2015 tab->con[i].is_redundant = 1;
2016 bset = isl_basic_set_update_from_tab(bset, tab);
2017 if (bset) {
2018 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2019 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2022 isl_tab_free(tab);
2023 done:
2024 bset = isl_basic_set_simplify(bset);
2025 bset = isl_basic_set_finalize(bset);
2026 isl_basic_set_free(context);
2027 return bset;
2028 error:
2029 isl_tab_free(tab);
2030 isl_basic_set_free(combined);
2031 isl_basic_set_free(context);
2032 isl_basic_set_free(bset);
2033 return NULL;
2036 /* Remove all information from bset that is redundant in the context
2037 * of context. In particular, equalities that are linear combinations
2038 * of those in context are removed. Then the inequalities that are
2039 * redundant in the context of the equalities and inequalities of
2040 * context are removed.
2042 * First of all, we drop those constraints from "context"
2043 * that are irrelevant for computing the gist of "bset".
2044 * Alternatively, we could factorize the intersection of "context" and "bset".
2046 * We first compute the integer affine hull of the intersection,
2047 * compute the gist inside this affine hull and then add back
2048 * those equalities that are not implied by the context.
2050 * If two constraints are mutually redundant, then uset_gist_full
2051 * will remove the second of those constraints. We therefore first
2052 * sort the constraints so that constraints not involving existentially
2053 * quantified variables are given precedence over those that do.
2054 * We have to perform this sorting before the variable compression,
2055 * because that may effect the order of the variables.
2057 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2058 __isl_take isl_basic_set *context)
2060 isl_mat *eq;
2061 isl_mat *T, *T2;
2062 isl_basic_set *aff;
2063 isl_basic_set *aff_context;
2064 unsigned total;
2066 if (!bset || !context)
2067 goto error;
2069 context = drop_irrelevant_constraints(context, bset);
2071 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2072 if (isl_basic_set_plain_is_empty(bset)) {
2073 isl_basic_set_free(context);
2074 return bset;
2076 bset = isl_basic_set_sort_constraints(bset);
2077 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2078 if (!aff)
2079 goto error;
2080 if (isl_basic_set_plain_is_empty(aff)) {
2081 isl_basic_set_free(aff);
2082 isl_basic_set_free(context);
2083 return bset;
2085 if (aff->n_eq == 0) {
2086 isl_basic_set_free(aff);
2087 return uset_gist_full(bset, context);
2089 total = isl_basic_set_total_dim(bset);
2090 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2091 eq = isl_mat_cow(eq);
2092 T = isl_mat_variable_compression(eq, &T2);
2093 if (T && T->n_col == 0) {
2094 isl_mat_free(T);
2095 isl_mat_free(T2);
2096 isl_basic_set_free(context);
2097 isl_basic_set_free(aff);
2098 return isl_basic_set_set_to_empty(bset);
2101 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2103 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2104 context = isl_basic_set_preimage(context, T);
2106 bset = uset_gist_full(bset, context);
2107 bset = isl_basic_set_preimage(bset, T2);
2108 bset = isl_basic_set_intersect(bset, aff);
2109 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2111 if (bset) {
2112 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2113 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2116 return bset;
2117 error:
2118 isl_basic_set_free(bset);
2119 isl_basic_set_free(context);
2120 return NULL;
2123 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2124 * We simply add the equalities in context to bmap and then do a regular
2125 * div normalizations. Better results can be obtained by normalizing
2126 * only the divs in bmap than do not also appear in context.
2127 * We need to be careful to reduce the divs using the equalities
2128 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2129 * spurious constraints.
2131 static struct isl_basic_map *normalize_divs_in_context(
2132 struct isl_basic_map *bmap, struct isl_basic_map *context)
2134 int i;
2135 unsigned total_context;
2136 int div_eq;
2138 div_eq = n_pure_div_eq(bmap);
2139 if (div_eq == 0)
2140 return bmap;
2142 if (context->n_div > 0)
2143 bmap = isl_basic_map_align_divs(bmap, context);
2145 total_context = isl_basic_map_total_dim(context);
2146 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2147 for (i = 0; i < context->n_eq; ++i) {
2148 int k;
2149 k = isl_basic_map_alloc_equality(bmap);
2150 if (k < 0)
2151 return isl_basic_map_free(bmap);
2152 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2153 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2154 isl_basic_map_total_dim(bmap) - total_context);
2156 bmap = isl_basic_map_gauss(bmap, NULL);
2157 bmap = normalize_divs(bmap, NULL);
2158 bmap = isl_basic_map_gauss(bmap, NULL);
2159 return bmap;
2162 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2163 struct isl_basic_map *context)
2165 struct isl_basic_set *bset;
2167 if (!bmap || !context)
2168 goto error;
2170 if (isl_basic_map_is_universe(bmap)) {
2171 isl_basic_map_free(context);
2172 return bmap;
2174 if (isl_basic_map_plain_is_empty(context)) {
2175 isl_basic_map_free(bmap);
2176 return context;
2178 if (isl_basic_map_plain_is_empty(bmap)) {
2179 isl_basic_map_free(context);
2180 return bmap;
2183 bmap = isl_basic_map_remove_redundancies(bmap);
2184 context = isl_basic_map_remove_redundancies(context);
2186 if (context->n_eq)
2187 bmap = normalize_divs_in_context(bmap, context);
2189 context = isl_basic_map_align_divs(context, bmap);
2190 bmap = isl_basic_map_align_divs(bmap, context);
2192 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2193 isl_basic_map_underlying_set(context));
2195 return isl_basic_map_overlying_set(bset, bmap);
2196 error:
2197 isl_basic_map_free(bmap);
2198 isl_basic_map_free(context);
2199 return NULL;
2203 * Assumes context has no implicit divs.
2205 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2206 __isl_take isl_basic_map *context)
2208 int i;
2210 if (!map || !context)
2211 goto error;;
2213 if (isl_basic_map_plain_is_empty(context)) {
2214 isl_map_free(map);
2215 return isl_map_from_basic_map(context);
2218 context = isl_basic_map_remove_redundancies(context);
2219 map = isl_map_cow(map);
2220 if (!map || !context)
2221 goto error;;
2222 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2223 map = isl_map_compute_divs(map);
2224 if (!map)
2225 goto error;
2226 for (i = 0; i < map->n; ++i)
2227 context = isl_basic_map_align_divs(context, map->p[i]);
2228 for (i = map->n - 1; i >= 0; --i) {
2229 map->p[i] = isl_basic_map_gist(map->p[i],
2230 isl_basic_map_copy(context));
2231 if (!map->p[i])
2232 goto error;
2233 if (isl_basic_map_plain_is_empty(map->p[i])) {
2234 isl_basic_map_free(map->p[i]);
2235 if (i != map->n - 1)
2236 map->p[i] = map->p[map->n - 1];
2237 map->n--;
2240 isl_basic_map_free(context);
2241 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2242 return map;
2243 error:
2244 isl_map_free(map);
2245 isl_basic_map_free(context);
2246 return NULL;
2249 /* Return a map that has the same intersection with "context" as "map"
2250 * and that as "simple" as possible.
2252 * If "map" is already the universe, then we cannot make it any simpler.
2253 * Similarly, if "context" is the universe, then we cannot exploit it
2254 * to simplify "map"
2255 * If "map" and "context" are identical to each other, then we can
2256 * return the corresponding universe.
2258 * If none of these cases apply, we have to work a bit harder.
2260 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2261 __isl_take isl_map *context)
2263 int equal;
2264 int is_universe;
2266 is_universe = isl_map_plain_is_universe(map);
2267 if (is_universe >= 0 && !is_universe)
2268 is_universe = isl_map_plain_is_universe(context);
2269 if (is_universe < 0)
2270 goto error;
2271 if (is_universe) {
2272 isl_map_free(context);
2273 return map;
2276 equal = isl_map_plain_is_equal(map, context);
2277 if (equal < 0)
2278 goto error;
2279 if (equal) {
2280 isl_map *res = isl_map_universe(isl_map_get_space(map));
2281 isl_map_free(map);
2282 isl_map_free(context);
2283 return res;
2286 context = isl_map_compute_divs(context);
2287 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2288 error:
2289 isl_map_free(map);
2290 isl_map_free(context);
2291 return NULL;
2294 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2295 __isl_take isl_map *context)
2297 return isl_map_align_params_map_map_and(map, context, &map_gist);
2300 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2301 struct isl_basic_set *context)
2303 return (struct isl_basic_set *)isl_basic_map_gist(
2304 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2307 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2308 __isl_take isl_basic_set *context)
2310 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2311 (struct isl_basic_map *)context);
2314 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2315 __isl_take isl_basic_set *context)
2317 isl_space *space = isl_set_get_space(set);
2318 isl_basic_set *dom_context = isl_basic_set_universe(space);
2319 dom_context = isl_basic_set_intersect_params(dom_context, context);
2320 return isl_set_gist_basic_set(set, dom_context);
2323 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2324 __isl_take isl_set *context)
2326 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2327 (struct isl_map *)context);
2330 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2331 __isl_take isl_set *context)
2333 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2334 map_context = isl_map_intersect_domain(map_context, context);
2335 return isl_map_gist(map, map_context);
2338 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2339 __isl_take isl_set *context)
2341 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2342 map_context = isl_map_intersect_range(map_context, context);
2343 return isl_map_gist(map, map_context);
2346 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2347 __isl_take isl_set *context)
2349 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2350 map_context = isl_map_intersect_params(map_context, context);
2351 return isl_map_gist(map, map_context);
2354 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2355 __isl_take isl_set *context)
2357 return isl_map_gist_params(set, context);
2360 /* Quick check to see if two basic maps are disjoint.
2361 * In particular, we reduce the equalities and inequalities of
2362 * one basic map in the context of the equalities of the other
2363 * basic map and check if we get a contradiction.
2365 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2366 __isl_keep isl_basic_map *bmap2)
2368 struct isl_vec *v = NULL;
2369 int *elim = NULL;
2370 unsigned total;
2371 int i;
2373 if (!bmap1 || !bmap2)
2374 return -1;
2375 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2376 return -1);
2377 if (bmap1->n_div || bmap2->n_div)
2378 return 0;
2379 if (!bmap1->n_eq && !bmap2->n_eq)
2380 return 0;
2382 total = isl_space_dim(bmap1->dim, isl_dim_all);
2383 if (total == 0)
2384 return 0;
2385 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2386 if (!v)
2387 goto error;
2388 elim = isl_alloc_array(bmap1->ctx, int, total);
2389 if (!elim)
2390 goto error;
2391 compute_elimination_index(bmap1, elim);
2392 for (i = 0; i < bmap2->n_eq; ++i) {
2393 int reduced;
2394 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2395 bmap1, elim);
2396 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2397 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2398 goto disjoint;
2400 for (i = 0; i < bmap2->n_ineq; ++i) {
2401 int reduced;
2402 reduced = reduced_using_equalities(v->block.data,
2403 bmap2->ineq[i], bmap1, elim);
2404 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2405 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2406 goto disjoint;
2408 compute_elimination_index(bmap2, elim);
2409 for (i = 0; i < bmap1->n_ineq; ++i) {
2410 int reduced;
2411 reduced = reduced_using_equalities(v->block.data,
2412 bmap1->ineq[i], bmap2, elim);
2413 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2414 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2415 goto disjoint;
2417 isl_vec_free(v);
2418 free(elim);
2419 return 0;
2420 disjoint:
2421 isl_vec_free(v);
2422 free(elim);
2423 return 1;
2424 error:
2425 isl_vec_free(v);
2426 free(elim);
2427 return -1;
2430 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2431 __isl_keep isl_basic_set *bset2)
2433 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2434 (struct isl_basic_map *)bset2);
2437 /* Are "map1" and "map2" obviously disjoint?
2439 * If one of them is empty or if they live in different spaces (ignoring
2440 * parameters), then they are clearly disjoint.
2442 * If they have different parameters, then we skip any further tests.
2444 * If they are obviously equal, but not obviously empty, then we will
2445 * not be able to detect if they are disjoint.
2447 * Otherwise we check if each basic map in "map1" is obviously disjoint
2448 * from each basic map in "map2".
2450 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2451 __isl_keep isl_map *map2)
2453 int i, j;
2454 int disjoint;
2455 int intersect;
2456 int match;
2458 if (!map1 || !map2)
2459 return -1;
2461 disjoint = isl_map_plain_is_empty(map1);
2462 if (disjoint < 0 || disjoint)
2463 return disjoint;
2465 disjoint = isl_map_plain_is_empty(map2);
2466 if (disjoint < 0 || disjoint)
2467 return disjoint;
2469 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2470 map2->dim, isl_dim_in);
2471 if (match < 0 || !match)
2472 return match < 0 ? -1 : 1;
2474 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2475 map2->dim, isl_dim_out);
2476 if (match < 0 || !match)
2477 return match < 0 ? -1 : 1;
2479 match = isl_space_match(map1->dim, isl_dim_param,
2480 map2->dim, isl_dim_param);
2481 if (match < 0 || !match)
2482 return match < 0 ? -1 : 0;
2484 intersect = isl_map_plain_is_equal(map1, map2);
2485 if (intersect < 0 || intersect)
2486 return intersect < 0 ? -1 : 0;
2488 for (i = 0; i < map1->n; ++i) {
2489 for (j = 0; j < map2->n; ++j) {
2490 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2491 map2->p[j]);
2492 if (d != 1)
2493 return d;
2496 return 1;
2499 /* Are "map1" and "map2" disjoint?
2501 * They are disjoint if they are "obviously disjoint" or if one of them
2502 * is empty. Otherwise, they are not disjoint if one of them is universal.
2503 * If none of these cases apply, we compute the intersection and see if
2504 * the result is empty.
2506 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2508 int disjoint;
2509 int intersect;
2510 isl_map *test;
2512 disjoint = isl_map_plain_is_disjoint(map1, map2);
2513 if (disjoint < 0 || disjoint)
2514 return disjoint;
2516 disjoint = isl_map_is_empty(map1);
2517 if (disjoint < 0 || disjoint)
2518 return disjoint;
2520 disjoint = isl_map_is_empty(map2);
2521 if (disjoint < 0 || disjoint)
2522 return disjoint;
2524 intersect = isl_map_plain_is_universe(map1);
2525 if (intersect < 0 || intersect)
2526 return intersect < 0 ? -1 : 0;
2528 intersect = isl_map_plain_is_universe(map2);
2529 if (intersect < 0 || intersect)
2530 return intersect < 0 ? -1 : 0;
2532 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2533 disjoint = isl_map_is_empty(test);
2534 isl_map_free(test);
2536 return disjoint;
2539 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2540 __isl_keep isl_set *set2)
2542 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2543 (struct isl_map *)set2);
2546 /* Are "set1" and "set2" disjoint?
2548 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2550 return isl_map_is_disjoint(set1, set2);
2553 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2555 return isl_set_plain_is_disjoint(set1, set2);
2558 /* Check if we can combine a given div with lower bound l and upper
2559 * bound u with some other div and if so return that other div.
2560 * Otherwise return -1.
2562 * We first check that
2563 * - the bounds are opposites of each other (except for the constant
2564 * term)
2565 * - the bounds do not reference any other div
2566 * - no div is defined in terms of this div
2568 * Let m be the size of the range allowed on the div by the bounds.
2569 * That is, the bounds are of the form
2571 * e <= a <= e + m - 1
2573 * with e some expression in the other variables.
2574 * We look for another div b such that no third div is defined in terms
2575 * of this second div b and such that in any constraint that contains
2576 * a (except for the given lower and upper bound), also contains b
2577 * with a coefficient that is m times that of b.
2578 * That is, all constraints (execpt for the lower and upper bound)
2579 * are of the form
2581 * e + f (a + m b) >= 0
2583 * If so, we return b so that "a + m b" can be replaced by
2584 * a single div "c = a + m b".
2586 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2587 unsigned div, unsigned l, unsigned u)
2589 int i, j;
2590 unsigned dim;
2591 int coalesce = -1;
2593 if (bmap->n_div <= 1)
2594 return -1;
2595 dim = isl_space_dim(bmap->dim, isl_dim_all);
2596 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2597 return -1;
2598 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2599 bmap->n_div - div - 1) != -1)
2600 return -1;
2601 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2602 dim + bmap->n_div))
2603 return -1;
2605 for (i = 0; i < bmap->n_div; ++i) {
2606 if (isl_int_is_zero(bmap->div[i][0]))
2607 continue;
2608 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2609 return -1;
2612 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2613 if (isl_int_is_neg(bmap->ineq[l][0])) {
2614 isl_int_sub(bmap->ineq[l][0],
2615 bmap->ineq[l][0], bmap->ineq[u][0]);
2616 bmap = isl_basic_map_copy(bmap);
2617 bmap = isl_basic_map_set_to_empty(bmap);
2618 isl_basic_map_free(bmap);
2619 return -1;
2621 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2622 for (i = 0; i < bmap->n_div; ++i) {
2623 if (i == div)
2624 continue;
2625 if (!pairs[i])
2626 continue;
2627 for (j = 0; j < bmap->n_div; ++j) {
2628 if (isl_int_is_zero(bmap->div[j][0]))
2629 continue;
2630 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2631 break;
2633 if (j < bmap->n_div)
2634 continue;
2635 for (j = 0; j < bmap->n_ineq; ++j) {
2636 int valid;
2637 if (j == l || j == u)
2638 continue;
2639 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2640 continue;
2641 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2642 break;
2643 isl_int_mul(bmap->ineq[j][1 + dim + div],
2644 bmap->ineq[j][1 + dim + div],
2645 bmap->ineq[l][0]);
2646 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2647 bmap->ineq[j][1 + dim + i]);
2648 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2649 bmap->ineq[j][1 + dim + div],
2650 bmap->ineq[l][0]);
2651 if (!valid)
2652 break;
2654 if (j < bmap->n_ineq)
2655 continue;
2656 coalesce = i;
2657 break;
2659 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2660 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2661 return coalesce;
2664 /* Given a lower and an upper bound on div i, construct an inequality
2665 * that when nonnegative ensures that this pair of bounds always allows
2666 * for an integer value of the given div.
2667 * The lower bound is inequality l, while the upper bound is inequality u.
2668 * The constructed inequality is stored in ineq.
2669 * g, fl, fu are temporary scalars.
2671 * Let the upper bound be
2673 * -n_u a + e_u >= 0
2675 * and the lower bound
2677 * n_l a + e_l >= 0
2679 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2680 * We have
2682 * - f_u e_l <= f_u f_l g a <= f_l e_u
2684 * Since all variables are integer valued, this is equivalent to
2686 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2688 * If this interval is at least f_u f_l g, then it contains at least
2689 * one integer value for a.
2690 * That is, the test constraint is
2692 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2694 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2695 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2697 unsigned dim;
2698 dim = isl_space_dim(bmap->dim, isl_dim_all);
2700 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2701 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2702 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2703 isl_int_neg(fu, fu);
2704 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2705 1 + dim + bmap->n_div);
2706 isl_int_add(ineq[0], ineq[0], fl);
2707 isl_int_add(ineq[0], ineq[0], fu);
2708 isl_int_sub_ui(ineq[0], ineq[0], 1);
2709 isl_int_mul(g, g, fl);
2710 isl_int_mul(g, g, fu);
2711 isl_int_sub(ineq[0], ineq[0], g);
2714 /* Remove more kinds of divs that are not strictly needed.
2715 * In particular, if all pairs of lower and upper bounds on a div
2716 * are such that they allow at least one integer value of the div,
2717 * the we can eliminate the div using Fourier-Motzkin without
2718 * introducing any spurious solutions.
2720 static struct isl_basic_map *drop_more_redundant_divs(
2721 struct isl_basic_map *bmap, int *pairs, int n)
2723 struct isl_tab *tab = NULL;
2724 struct isl_vec *vec = NULL;
2725 unsigned dim;
2726 int remove = -1;
2727 isl_int g, fl, fu;
2729 isl_int_init(g);
2730 isl_int_init(fl);
2731 isl_int_init(fu);
2733 if (!bmap)
2734 goto error;
2736 dim = isl_space_dim(bmap->dim, isl_dim_all);
2737 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2738 if (!vec)
2739 goto error;
2741 tab = isl_tab_from_basic_map(bmap, 0);
2743 while (n > 0) {
2744 int i, l, u;
2745 int best = -1;
2746 enum isl_lp_result res;
2748 for (i = 0; i < bmap->n_div; ++i) {
2749 if (!pairs[i])
2750 continue;
2751 if (best >= 0 && pairs[best] <= pairs[i])
2752 continue;
2753 best = i;
2756 i = best;
2757 for (l = 0; l < bmap->n_ineq; ++l) {
2758 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2759 continue;
2760 for (u = 0; u < bmap->n_ineq; ++u) {
2761 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2762 continue;
2763 construct_test_ineq(bmap, i, l, u,
2764 vec->el, g, fl, fu);
2765 res = isl_tab_min(tab, vec->el,
2766 bmap->ctx->one, &g, NULL, 0);
2767 if (res == isl_lp_error)
2768 goto error;
2769 if (res == isl_lp_empty) {
2770 bmap = isl_basic_map_set_to_empty(bmap);
2771 break;
2773 if (res != isl_lp_ok || isl_int_is_neg(g))
2774 break;
2776 if (u < bmap->n_ineq)
2777 break;
2779 if (l == bmap->n_ineq) {
2780 remove = i;
2781 break;
2783 pairs[i] = 0;
2784 --n;
2787 isl_tab_free(tab);
2788 isl_vec_free(vec);
2790 isl_int_clear(g);
2791 isl_int_clear(fl);
2792 isl_int_clear(fu);
2794 free(pairs);
2796 if (remove < 0)
2797 return bmap;
2799 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2800 return isl_basic_map_drop_redundant_divs(bmap);
2801 error:
2802 free(pairs);
2803 isl_basic_map_free(bmap);
2804 isl_tab_free(tab);
2805 isl_vec_free(vec);
2806 isl_int_clear(g);
2807 isl_int_clear(fl);
2808 isl_int_clear(fu);
2809 return NULL;
2812 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2813 * and the upper bound u, div1 always occurs together with div2 in the form
2814 * (div1 + m div2), where m is the constant range on the variable div1
2815 * allowed by l and u, replace the pair div1 and div2 by a single
2816 * div that is equal to div1 + m div2.
2818 * The new div will appear in the location that contains div2.
2819 * We need to modify all constraints that contain
2820 * div2 = (div - div1) / m
2821 * (If a constraint does not contain div2, it will also not contain div1.)
2822 * If the constraint also contains div1, then we know they appear
2823 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2824 * i.e., the coefficient of div is f.
2826 * Otherwise, we first need to introduce div1 into the constraint.
2827 * Let the l be
2829 * div1 + f >=0
2831 * and u
2833 * -div1 + f' >= 0
2835 * A lower bound on div2
2837 * n div2 + t >= 0
2839 * can be replaced by
2841 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2843 * with g = gcd(m,n).
2844 * An upper bound
2846 * -n div2 + t >= 0
2848 * can be replaced by
2850 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2852 * These constraint are those that we would obtain from eliminating
2853 * div1 using Fourier-Motzkin.
2855 * After all constraints have been modified, we drop the lower and upper
2856 * bound and then drop div1.
2858 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2859 unsigned div1, unsigned div2, unsigned l, unsigned u)
2861 isl_int a;
2862 isl_int b;
2863 isl_int m;
2864 unsigned dim, total;
2865 int i;
2867 dim = isl_space_dim(bmap->dim, isl_dim_all);
2868 total = 1 + dim + bmap->n_div;
2870 isl_int_init(a);
2871 isl_int_init(b);
2872 isl_int_init(m);
2873 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2874 isl_int_add_ui(m, m, 1);
2876 for (i = 0; i < bmap->n_ineq; ++i) {
2877 if (i == l || i == u)
2878 continue;
2879 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2880 continue;
2881 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2882 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2883 isl_int_divexact(a, m, b);
2884 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2885 if (isl_int_is_pos(b)) {
2886 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2887 b, bmap->ineq[l], total);
2888 } else {
2889 isl_int_neg(b, b);
2890 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2891 b, bmap->ineq[u], total);
2894 isl_int_set(bmap->ineq[i][1 + dim + div2],
2895 bmap->ineq[i][1 + dim + div1]);
2896 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2899 isl_int_clear(a);
2900 isl_int_clear(b);
2901 isl_int_clear(m);
2902 if (l > u) {
2903 isl_basic_map_drop_inequality(bmap, l);
2904 isl_basic_map_drop_inequality(bmap, u);
2905 } else {
2906 isl_basic_map_drop_inequality(bmap, u);
2907 isl_basic_map_drop_inequality(bmap, l);
2909 bmap = isl_basic_map_drop_div(bmap, div1);
2910 return bmap;
2913 /* First check if we can coalesce any pair of divs and
2914 * then continue with dropping more redundant divs.
2916 * We loop over all pairs of lower and upper bounds on a div
2917 * with coefficient 1 and -1, respectively, check if there
2918 * is any other div "c" with which we can coalesce the div
2919 * and if so, perform the coalescing.
2921 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2922 struct isl_basic_map *bmap, int *pairs, int n)
2924 int i, l, u;
2925 unsigned dim;
2927 dim = isl_space_dim(bmap->dim, isl_dim_all);
2929 for (i = 0; i < bmap->n_div; ++i) {
2930 if (!pairs[i])
2931 continue;
2932 for (l = 0; l < bmap->n_ineq; ++l) {
2933 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2934 continue;
2935 for (u = 0; u < bmap->n_ineq; ++u) {
2936 int c;
2938 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2939 continue;
2940 c = div_find_coalesce(bmap, pairs, i, l, u);
2941 if (c < 0)
2942 continue;
2943 free(pairs);
2944 bmap = coalesce_divs(bmap, i, c, l, u);
2945 return isl_basic_map_drop_redundant_divs(bmap);
2950 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2951 return bmap;
2953 return drop_more_redundant_divs(bmap, pairs, n);
2956 /* Remove divs that are not strictly needed.
2957 * In particular, if a div only occurs positively (or negatively)
2958 * in constraints, then it can simply be dropped.
2959 * Also, if a div occurs in only two constraints and if moreover
2960 * those two constraints are opposite to each other, except for the constant
2961 * term and if the sum of the constant terms is such that for any value
2962 * of the other values, there is always at least one integer value of the
2963 * div, i.e., if one plus this sum is greater than or equal to
2964 * the (absolute value) of the coefficent of the div in the constraints,
2965 * then we can also simply drop the div.
2967 * We skip divs that appear in equalities or in the definition of other divs.
2968 * Divs that appear in the definition of other divs usually occur in at least
2969 * 4 constraints, but the constraints may have been simplified.
2971 * If any divs are left after these simple checks then we move on
2972 * to more complicated cases in drop_more_redundant_divs.
2974 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2975 struct isl_basic_map *bmap)
2977 int i, j;
2978 unsigned off;
2979 int *pairs = NULL;
2980 int n = 0;
2982 if (!bmap)
2983 goto error;
2985 off = isl_space_dim(bmap->dim, isl_dim_all);
2986 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2987 if (!pairs)
2988 goto error;
2990 for (i = 0; i < bmap->n_div; ++i) {
2991 int pos, neg;
2992 int last_pos, last_neg;
2993 int redundant;
2994 int defined;
2996 defined = !isl_int_is_zero(bmap->div[i][0]);
2997 for (j = i; j < bmap->n_div; ++j)
2998 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
2999 break;
3000 if (j < bmap->n_div)
3001 continue;
3002 for (j = 0; j < bmap->n_eq; ++j)
3003 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3004 break;
3005 if (j < bmap->n_eq)
3006 continue;
3007 ++n;
3008 pos = neg = 0;
3009 for (j = 0; j < bmap->n_ineq; ++j) {
3010 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3011 last_pos = j;
3012 ++pos;
3014 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3015 last_neg = j;
3016 ++neg;
3019 pairs[i] = pos * neg;
3020 if (pairs[i] == 0) {
3021 for (j = bmap->n_ineq - 1; j >= 0; --j)
3022 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3023 isl_basic_map_drop_inequality(bmap, j);
3024 bmap = isl_basic_map_drop_div(bmap, i);
3025 free(pairs);
3026 return isl_basic_map_drop_redundant_divs(bmap);
3028 if (pairs[i] != 1)
3029 continue;
3030 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3031 bmap->ineq[last_neg] + 1,
3032 off + bmap->n_div))
3033 continue;
3035 isl_int_add(bmap->ineq[last_pos][0],
3036 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3037 isl_int_add_ui(bmap->ineq[last_pos][0],
3038 bmap->ineq[last_pos][0], 1);
3039 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3040 bmap->ineq[last_pos][1+off+i]);
3041 isl_int_sub_ui(bmap->ineq[last_pos][0],
3042 bmap->ineq[last_pos][0], 1);
3043 isl_int_sub(bmap->ineq[last_pos][0],
3044 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3045 if (!redundant) {
3046 if (defined ||
3047 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3048 pairs[i] = 0;
3049 --n;
3050 continue;
3052 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3053 bmap = isl_basic_map_simplify(bmap);
3054 free(pairs);
3055 return isl_basic_map_drop_redundant_divs(bmap);
3057 if (last_pos > last_neg) {
3058 isl_basic_map_drop_inequality(bmap, last_pos);
3059 isl_basic_map_drop_inequality(bmap, last_neg);
3060 } else {
3061 isl_basic_map_drop_inequality(bmap, last_neg);
3062 isl_basic_map_drop_inequality(bmap, last_pos);
3064 bmap = isl_basic_map_drop_div(bmap, i);
3065 free(pairs);
3066 return isl_basic_map_drop_redundant_divs(bmap);
3069 if (n > 0)
3070 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3072 free(pairs);
3073 return bmap;
3074 error:
3075 free(pairs);
3076 isl_basic_map_free(bmap);
3077 return NULL;
3080 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3081 struct isl_basic_set *bset)
3083 return (struct isl_basic_set *)
3084 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3087 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3089 int i;
3091 if (!map)
3092 return NULL;
3093 for (i = 0; i < map->n; ++i) {
3094 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3095 if (!map->p[i])
3096 goto error;
3098 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3099 return map;
3100 error:
3101 isl_map_free(map);
3102 return NULL;
3105 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3107 return (struct isl_set *)
3108 isl_map_drop_redundant_divs((struct isl_map *)set);