isl_vertex_get_domain: return parameter domain
[isl.git] / isl_aff.c
blobde1a0ca297b9e5c0c1d10791f25e644d89151377
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2011 Sven Verdoolaege
4 * Copyright 2012-2013 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #define ISL_DIM_H
16 #include <isl_map_private.h>
17 #include <isl_union_map_private.h>
18 #include <isl_aff_private.h>
19 #include <isl_space_private.h>
20 #include <isl_local_space_private.h>
21 #include <isl_mat_private.h>
22 #include <isl/constraint.h>
23 #include <isl/seq.h>
24 #include <isl/set.h>
25 #include <isl_config.h>
27 #undef BASE
28 #define BASE aff
30 #include <isl_list_templ.c>
32 #undef BASE
33 #define BASE pw_aff
35 #include <isl_list_templ.c>
37 __isl_give isl_aff *isl_aff_alloc_vec(__isl_take isl_local_space *ls,
38 __isl_take isl_vec *v)
40 isl_aff *aff;
42 if (!ls || !v)
43 goto error;
45 aff = isl_calloc_type(v->ctx, struct isl_aff);
46 if (!aff)
47 goto error;
49 aff->ref = 1;
50 aff->ls = ls;
51 aff->v = v;
53 return aff;
54 error:
55 isl_local_space_free(ls);
56 isl_vec_free(v);
57 return NULL;
60 __isl_give isl_aff *isl_aff_alloc(__isl_take isl_local_space *ls)
62 isl_ctx *ctx;
63 isl_vec *v;
64 unsigned total;
66 if (!ls)
67 return NULL;
69 ctx = isl_local_space_get_ctx(ls);
70 if (!isl_local_space_divs_known(ls))
71 isl_die(ctx, isl_error_invalid, "local space has unknown divs",
72 goto error);
73 if (!isl_local_space_is_set(ls))
74 isl_die(ctx, isl_error_invalid,
75 "domain of affine expression should be a set",
76 goto error);
78 total = isl_local_space_dim(ls, isl_dim_all);
79 v = isl_vec_alloc(ctx, 1 + 1 + total);
80 return isl_aff_alloc_vec(ls, v);
81 error:
82 isl_local_space_free(ls);
83 return NULL;
86 __isl_give isl_aff *isl_aff_zero_on_domain(__isl_take isl_local_space *ls)
88 isl_aff *aff;
90 aff = isl_aff_alloc(ls);
91 if (!aff)
92 return NULL;
94 isl_int_set_si(aff->v->el[0], 1);
95 isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
97 return aff;
100 /* Return a piecewise affine expression defined on the specified domain
101 * that is equal to zero.
103 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(__isl_take isl_local_space *ls)
105 return isl_pw_aff_from_aff(isl_aff_zero_on_domain(ls));
108 /* Return an affine expression that is equal to the specified dimension
109 * in "ls".
111 __isl_give isl_aff *isl_aff_var_on_domain(__isl_take isl_local_space *ls,
112 enum isl_dim_type type, unsigned pos)
114 isl_space *space;
115 isl_aff *aff;
117 if (!ls)
118 return NULL;
120 space = isl_local_space_get_space(ls);
121 if (!space)
122 goto error;
123 if (isl_space_is_map(space))
124 isl_die(isl_space_get_ctx(space), isl_error_invalid,
125 "expecting (parameter) set space", goto error);
126 if (pos >= isl_local_space_dim(ls, type))
127 isl_die(isl_space_get_ctx(space), isl_error_invalid,
128 "position out of bounds", goto error);
130 isl_space_free(space);
131 aff = isl_aff_alloc(ls);
132 if (!aff)
133 return NULL;
135 pos += isl_local_space_offset(aff->ls, type);
137 isl_int_set_si(aff->v->el[0], 1);
138 isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
139 isl_int_set_si(aff->v->el[1 + pos], 1);
141 return aff;
142 error:
143 isl_local_space_free(ls);
144 isl_space_free(space);
145 return NULL;
148 /* Return a piecewise affine expression that is equal to
149 * the specified dimension in "ls".
151 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(__isl_take isl_local_space *ls,
152 enum isl_dim_type type, unsigned pos)
154 return isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, type, pos));
157 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff)
159 if (!aff)
160 return NULL;
162 aff->ref++;
163 return aff;
166 __isl_give isl_aff *isl_aff_dup(__isl_keep isl_aff *aff)
168 if (!aff)
169 return NULL;
171 return isl_aff_alloc_vec(isl_local_space_copy(aff->ls),
172 isl_vec_copy(aff->v));
175 __isl_give isl_aff *isl_aff_cow(__isl_take isl_aff *aff)
177 if (!aff)
178 return NULL;
180 if (aff->ref == 1)
181 return aff;
182 aff->ref--;
183 return isl_aff_dup(aff);
186 void *isl_aff_free(__isl_take isl_aff *aff)
188 if (!aff)
189 return NULL;
191 if (--aff->ref > 0)
192 return NULL;
194 isl_local_space_free(aff->ls);
195 isl_vec_free(aff->v);
197 free(aff);
199 return NULL;
202 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff)
204 return aff ? isl_local_space_get_ctx(aff->ls) : NULL;
207 /* Externally, an isl_aff has a map space, but internally, the
208 * ls field corresponds to the domain of that space.
210 int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type)
212 if (!aff)
213 return 0;
214 if (type == isl_dim_out)
215 return 1;
216 if (type == isl_dim_in)
217 type = isl_dim_set;
218 return isl_local_space_dim(aff->ls, type);
221 __isl_give isl_space *isl_aff_get_domain_space(__isl_keep isl_aff *aff)
223 return aff ? isl_local_space_get_space(aff->ls) : NULL;
226 __isl_give isl_space *isl_aff_get_space(__isl_keep isl_aff *aff)
228 isl_space *space;
229 if (!aff)
230 return NULL;
231 space = isl_local_space_get_space(aff->ls);
232 space = isl_space_from_domain(space);
233 space = isl_space_add_dims(space, isl_dim_out, 1);
234 return space;
237 __isl_give isl_local_space *isl_aff_get_domain_local_space(
238 __isl_keep isl_aff *aff)
240 return aff ? isl_local_space_copy(aff->ls) : NULL;
243 __isl_give isl_local_space *isl_aff_get_local_space(__isl_keep isl_aff *aff)
245 isl_local_space *ls;
246 if (!aff)
247 return NULL;
248 ls = isl_local_space_copy(aff->ls);
249 ls = isl_local_space_from_domain(ls);
250 ls = isl_local_space_add_dims(ls, isl_dim_out, 1);
251 return ls;
254 /* Externally, an isl_aff has a map space, but internally, the
255 * ls field corresponds to the domain of that space.
257 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
258 enum isl_dim_type type, unsigned pos)
260 if (!aff)
261 return NULL;
262 if (type == isl_dim_out)
263 return NULL;
264 if (type == isl_dim_in)
265 type = isl_dim_set;
266 return isl_local_space_get_dim_name(aff->ls, type, pos);
269 __isl_give isl_aff *isl_aff_reset_domain_space(__isl_take isl_aff *aff,
270 __isl_take isl_space *dim)
272 aff = isl_aff_cow(aff);
273 if (!aff || !dim)
274 goto error;
276 aff->ls = isl_local_space_reset_space(aff->ls, dim);
277 if (!aff->ls)
278 return isl_aff_free(aff);
280 return aff;
281 error:
282 isl_aff_free(aff);
283 isl_space_free(dim);
284 return NULL;
287 /* Reset the space of "aff". This function is called from isl_pw_templ.c
288 * and doesn't know if the space of an element object is represented
289 * directly or through its domain. It therefore passes along both.
291 __isl_give isl_aff *isl_aff_reset_space_and_domain(__isl_take isl_aff *aff,
292 __isl_take isl_space *space, __isl_take isl_space *domain)
294 isl_space_free(space);
295 return isl_aff_reset_domain_space(aff, domain);
298 /* Reorder the coefficients of the affine expression based
299 * on the given reodering.
300 * The reordering r is assumed to have been extended with the local
301 * variables.
303 static __isl_give isl_vec *vec_reorder(__isl_take isl_vec *vec,
304 __isl_take isl_reordering *r, int n_div)
306 isl_vec *res;
307 int i;
309 if (!vec || !r)
310 goto error;
312 res = isl_vec_alloc(vec->ctx,
313 2 + isl_space_dim(r->dim, isl_dim_all) + n_div);
314 isl_seq_cpy(res->el, vec->el, 2);
315 isl_seq_clr(res->el + 2, res->size - 2);
316 for (i = 0; i < r->len; ++i)
317 isl_int_set(res->el[2 + r->pos[i]], vec->el[2 + i]);
319 isl_reordering_free(r);
320 isl_vec_free(vec);
321 return res;
322 error:
323 isl_vec_free(vec);
324 isl_reordering_free(r);
325 return NULL;
328 /* Reorder the dimensions of the domain of "aff" according
329 * to the given reordering.
331 __isl_give isl_aff *isl_aff_realign_domain(__isl_take isl_aff *aff,
332 __isl_take isl_reordering *r)
334 aff = isl_aff_cow(aff);
335 if (!aff)
336 goto error;
338 r = isl_reordering_extend(r, aff->ls->div->n_row);
339 aff->v = vec_reorder(aff->v, isl_reordering_copy(r),
340 aff->ls->div->n_row);
341 aff->ls = isl_local_space_realign(aff->ls, r);
343 if (!aff->v || !aff->ls)
344 return isl_aff_free(aff);
346 return aff;
347 error:
348 isl_aff_free(aff);
349 isl_reordering_free(r);
350 return NULL;
353 __isl_give isl_aff *isl_aff_align_params(__isl_take isl_aff *aff,
354 __isl_take isl_space *model)
356 if (!aff || !model)
357 goto error;
359 if (!isl_space_match(aff->ls->dim, isl_dim_param,
360 model, isl_dim_param)) {
361 isl_reordering *exp;
363 model = isl_space_drop_dims(model, isl_dim_in,
364 0, isl_space_dim(model, isl_dim_in));
365 model = isl_space_drop_dims(model, isl_dim_out,
366 0, isl_space_dim(model, isl_dim_out));
367 exp = isl_parameter_alignment_reordering(aff->ls->dim, model);
368 exp = isl_reordering_extend_space(exp,
369 isl_aff_get_domain_space(aff));
370 aff = isl_aff_realign_domain(aff, exp);
373 isl_space_free(model);
374 return aff;
375 error:
376 isl_space_free(model);
377 isl_aff_free(aff);
378 return NULL;
381 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff)
383 if (!aff)
384 return -1;
386 return isl_seq_first_non_zero(aff->v->el + 1, aff->v->size - 1) < 0;
389 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2)
391 int equal;
393 if (!aff1 || !aff2)
394 return -1;
396 equal = isl_local_space_is_equal(aff1->ls, aff2->ls);
397 if (equal < 0 || !equal)
398 return equal;
400 return isl_vec_is_equal(aff1->v, aff2->v);
403 int isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v)
405 if (!aff)
406 return -1;
407 isl_int_set(*v, aff->v->el[0]);
408 return 0;
411 int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v)
413 if (!aff)
414 return -1;
415 isl_int_set(*v, aff->v->el[1]);
416 return 0;
419 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
420 enum isl_dim_type type, int pos, isl_int *v)
422 if (!aff)
423 return -1;
425 if (type == isl_dim_out)
426 isl_die(aff->v->ctx, isl_error_invalid,
427 "output/set dimension does not have a coefficient",
428 return -1);
429 if (type == isl_dim_in)
430 type = isl_dim_set;
432 if (pos >= isl_local_space_dim(aff->ls, type))
433 isl_die(aff->v->ctx, isl_error_invalid,
434 "position out of bounds", return -1);
436 pos += isl_local_space_offset(aff->ls, type);
437 isl_int_set(*v, aff->v->el[1 + pos]);
439 return 0;
442 __isl_give isl_aff *isl_aff_set_denominator(__isl_take isl_aff *aff, isl_int v)
444 aff = isl_aff_cow(aff);
445 if (!aff)
446 return NULL;
448 aff->v = isl_vec_cow(aff->v);
449 if (!aff->v)
450 return isl_aff_free(aff);
452 isl_int_set(aff->v->el[0], v);
454 return aff;
457 __isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v)
459 aff = isl_aff_cow(aff);
460 if (!aff)
461 return NULL;
463 aff->v = isl_vec_cow(aff->v);
464 if (!aff->v)
465 return isl_aff_free(aff);
467 isl_int_set(aff->v->el[1], v);
469 return aff;
472 __isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v)
474 if (isl_int_is_zero(v))
475 return aff;
477 aff = isl_aff_cow(aff);
478 if (!aff)
479 return NULL;
481 aff->v = isl_vec_cow(aff->v);
482 if (!aff->v)
483 return isl_aff_free(aff);
485 isl_int_addmul(aff->v->el[1], aff->v->el[0], v);
487 return aff;
490 __isl_give isl_aff *isl_aff_add_constant_si(__isl_take isl_aff *aff, int v)
492 isl_int t;
494 isl_int_init(t);
495 isl_int_set_si(t, v);
496 aff = isl_aff_add_constant(aff, t);
497 isl_int_clear(t);
499 return aff;
502 /* Add "v" to the numerator of the constant term of "aff".
504 __isl_give isl_aff *isl_aff_add_constant_num(__isl_take isl_aff *aff, isl_int v)
506 if (isl_int_is_zero(v))
507 return aff;
509 aff = isl_aff_cow(aff);
510 if (!aff)
511 return NULL;
513 aff->v = isl_vec_cow(aff->v);
514 if (!aff->v)
515 return isl_aff_free(aff);
517 isl_int_add(aff->v->el[1], aff->v->el[1], v);
519 return aff;
522 /* Add "v" to the numerator of the constant term of "aff".
524 __isl_give isl_aff *isl_aff_add_constant_num_si(__isl_take isl_aff *aff, int v)
526 isl_int t;
528 if (v == 0)
529 return aff;
531 isl_int_init(t);
532 isl_int_set_si(t, v);
533 aff = isl_aff_add_constant_num(aff, t);
534 isl_int_clear(t);
536 return aff;
539 __isl_give isl_aff *isl_aff_set_constant_si(__isl_take isl_aff *aff, int v)
541 aff = isl_aff_cow(aff);
542 if (!aff)
543 return NULL;
545 aff->v = isl_vec_cow(aff->v);
546 if (!aff->v)
547 return isl_aff_free(aff);
549 isl_int_set_si(aff->v->el[1], v);
551 return aff;
554 __isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff,
555 enum isl_dim_type type, int pos, isl_int v)
557 if (!aff)
558 return NULL;
560 if (type == isl_dim_out)
561 isl_die(aff->v->ctx, isl_error_invalid,
562 "output/set dimension does not have a coefficient",
563 return isl_aff_free(aff));
564 if (type == isl_dim_in)
565 type = isl_dim_set;
567 if (pos >= isl_local_space_dim(aff->ls, type))
568 isl_die(aff->v->ctx, isl_error_invalid,
569 "position out of bounds", return isl_aff_free(aff));
571 aff = isl_aff_cow(aff);
572 if (!aff)
573 return NULL;
575 aff->v = isl_vec_cow(aff->v);
576 if (!aff->v)
577 return isl_aff_free(aff);
579 pos += isl_local_space_offset(aff->ls, type);
580 isl_int_set(aff->v->el[1 + pos], v);
582 return aff;
585 __isl_give isl_aff *isl_aff_set_coefficient_si(__isl_take isl_aff *aff,
586 enum isl_dim_type type, int pos, int v)
588 if (!aff)
589 return NULL;
591 if (type == isl_dim_out)
592 isl_die(aff->v->ctx, isl_error_invalid,
593 "output/set dimension does not have a coefficient",
594 return isl_aff_free(aff));
595 if (type == isl_dim_in)
596 type = isl_dim_set;
598 if (pos >= isl_local_space_dim(aff->ls, type))
599 isl_die(aff->v->ctx, isl_error_invalid,
600 "position out of bounds", return isl_aff_free(aff));
602 aff = isl_aff_cow(aff);
603 if (!aff)
604 return NULL;
606 aff->v = isl_vec_cow(aff->v);
607 if (!aff->v)
608 return isl_aff_free(aff);
610 pos += isl_local_space_offset(aff->ls, type);
611 isl_int_set_si(aff->v->el[1 + pos], v);
613 return aff;
616 __isl_give isl_aff *isl_aff_add_coefficient(__isl_take isl_aff *aff,
617 enum isl_dim_type type, int pos, isl_int v)
619 if (!aff)
620 return NULL;
622 if (type == isl_dim_out)
623 isl_die(aff->v->ctx, isl_error_invalid,
624 "output/set dimension does not have a coefficient",
625 return isl_aff_free(aff));
626 if (type == isl_dim_in)
627 type = isl_dim_set;
629 if (pos >= isl_local_space_dim(aff->ls, type))
630 isl_die(aff->v->ctx, isl_error_invalid,
631 "position out of bounds", return isl_aff_free(aff));
633 aff = isl_aff_cow(aff);
634 if (!aff)
635 return NULL;
637 aff->v = isl_vec_cow(aff->v);
638 if (!aff->v)
639 return isl_aff_free(aff);
641 pos += isl_local_space_offset(aff->ls, type);
642 isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v);
644 return aff;
647 __isl_give isl_aff *isl_aff_add_coefficient_si(__isl_take isl_aff *aff,
648 enum isl_dim_type type, int pos, int v)
650 isl_int t;
652 isl_int_init(t);
653 isl_int_set_si(t, v);
654 aff = isl_aff_add_coefficient(aff, type, pos, t);
655 isl_int_clear(t);
657 return aff;
660 __isl_give isl_aff *isl_aff_get_div(__isl_keep isl_aff *aff, int pos)
662 if (!aff)
663 return NULL;
665 return isl_local_space_get_div(aff->ls, pos);
668 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff)
670 aff = isl_aff_cow(aff);
671 if (!aff)
672 return NULL;
673 aff->v = isl_vec_cow(aff->v);
674 if (!aff->v)
675 return isl_aff_free(aff);
677 isl_seq_neg(aff->v->el + 1, aff->v->el + 1, aff->v->size - 1);
679 return aff;
682 /* Remove divs from the local space that do not appear in the affine
683 * expression.
684 * We currently only remove divs at the end.
685 * Some intermediate divs may also not appear directly in the affine
686 * expression, but we would also need to check that no other divs are
687 * defined in terms of them.
689 __isl_give isl_aff *isl_aff_remove_unused_divs( __isl_take isl_aff *aff)
691 int pos;
692 int off;
693 int n;
695 if (!aff)
696 return NULL;
698 n = isl_local_space_dim(aff->ls, isl_dim_div);
699 off = isl_local_space_offset(aff->ls, isl_dim_div);
701 pos = isl_seq_last_non_zero(aff->v->el + 1 + off, n) + 1;
702 if (pos == n)
703 return aff;
705 aff = isl_aff_cow(aff);
706 if (!aff)
707 return NULL;
709 aff->ls = isl_local_space_drop_dims(aff->ls, isl_dim_div, pos, n - pos);
710 aff->v = isl_vec_drop_els(aff->v, 1 + off + pos, n - pos);
711 if (!aff->ls || !aff->v)
712 return isl_aff_free(aff);
714 return aff;
717 /* Given two affine expressions "p" of length p_len (including the
718 * denominator and the constant term) and "subs" of length subs_len,
719 * plug in "subs" for the variable at position "pos".
720 * The variables of "subs" and "p" are assumed to match up to subs_len,
721 * but "p" may have additional variables.
722 * "v" is an initialized isl_int that can be used internally.
724 * In particular, if "p" represents the expression
726 * (a i + g)/m
728 * with i the variable at position "pos" and "subs" represents the expression
730 * f/d
732 * then the result represents the expression
734 * (a f + d g)/(m d)
737 void isl_seq_substitute(isl_int *p, int pos, isl_int *subs,
738 int p_len, int subs_len, isl_int v)
740 isl_int_set(v, p[1 + pos]);
741 isl_int_set_si(p[1 + pos], 0);
742 isl_seq_combine(p + 1, subs[0], p + 1, v, subs + 1, subs_len - 1);
743 isl_seq_scale(p + subs_len, p + subs_len, subs[0], p_len - subs_len);
744 isl_int_mul(p[0], p[0], subs[0]);
747 /* Look for any divs in the aff->ls with a denominator equal to one
748 * and plug them into the affine expression and any subsequent divs
749 * that may reference the div.
751 static __isl_give isl_aff *plug_in_integral_divs(__isl_take isl_aff *aff)
753 int i, n;
754 int len;
755 isl_int v;
756 isl_vec *vec;
757 isl_local_space *ls;
758 unsigned pos;
760 if (!aff)
761 return NULL;
763 n = isl_local_space_dim(aff->ls, isl_dim_div);
764 len = aff->v->size;
765 for (i = 0; i < n; ++i) {
766 if (!isl_int_is_one(aff->ls->div->row[i][0]))
767 continue;
768 ls = isl_local_space_copy(aff->ls);
769 ls = isl_local_space_substitute_seq(ls, isl_dim_div, i,
770 aff->ls->div->row[i], len, i + 1, n - (i + 1));
771 vec = isl_vec_copy(aff->v);
772 vec = isl_vec_cow(vec);
773 if (!ls || !vec)
774 goto error;
776 isl_int_init(v);
778 pos = isl_local_space_offset(aff->ls, isl_dim_div) + i;
779 isl_seq_substitute(vec->el, pos, aff->ls->div->row[i],
780 len, len, v);
782 isl_int_clear(v);
784 isl_vec_free(aff->v);
785 aff->v = vec;
786 isl_local_space_free(aff->ls);
787 aff->ls = ls;
790 return aff;
791 error:
792 isl_vec_free(vec);
793 isl_local_space_free(ls);
794 return isl_aff_free(aff);
797 /* Look for any divs j that appear with a unit coefficient inside
798 * the definitions of other divs i and plug them into the definitions
799 * of the divs i.
801 * In particular, an expression of the form
803 * floor((f(..) + floor(g(..)/n))/m)
805 * is simplified to
807 * floor((n * f(..) + g(..))/(n * m))
809 * This simplification is correct because we can move the expression
810 * f(..) into the inner floor in the original expression to obtain
812 * floor(floor((n * f(..) + g(..))/n)/m)
814 * from which we can derive the simplified expression.
816 static __isl_give isl_aff *plug_in_unit_divs(__isl_take isl_aff *aff)
818 int i, j, n;
819 int off;
821 if (!aff)
822 return NULL;
824 n = isl_local_space_dim(aff->ls, isl_dim_div);
825 off = isl_local_space_offset(aff->ls, isl_dim_div);
826 for (i = 1; i < n; ++i) {
827 for (j = 0; j < i; ++j) {
828 if (!isl_int_is_one(aff->ls->div->row[i][1 + off + j]))
829 continue;
830 aff->ls = isl_local_space_substitute_seq(aff->ls,
831 isl_dim_div, j, aff->ls->div->row[j],
832 aff->v->size, i, 1);
833 if (!aff->ls)
834 return isl_aff_free(aff);
838 return aff;
841 /* Swap divs "a" and "b" in "aff", which is assumed to be non-NULL.
843 * Even though this function is only called on isl_affs with a single
844 * reference, we are careful to only change aff->v and aff->ls together.
846 static __isl_give isl_aff *swap_div(__isl_take isl_aff *aff, int a, int b)
848 unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
849 isl_local_space *ls;
850 isl_vec *v;
852 ls = isl_local_space_copy(aff->ls);
853 ls = isl_local_space_swap_div(ls, a, b);
854 v = isl_vec_copy(aff->v);
855 v = isl_vec_cow(v);
856 if (!ls || !v)
857 goto error;
859 isl_int_swap(v->el[1 + off + a], v->el[1 + off + b]);
860 isl_vec_free(aff->v);
861 aff->v = v;
862 isl_local_space_free(aff->ls);
863 aff->ls = ls;
865 return aff;
866 error:
867 isl_vec_free(v);
868 isl_local_space_free(ls);
869 return isl_aff_free(aff);
872 /* Merge divs "a" and "b" in "aff", which is assumed to be non-NULL.
874 * We currently do not actually remove div "b", but simply add its
875 * coefficient to that of "a" and then zero it out.
877 static __isl_give isl_aff *merge_divs(__isl_take isl_aff *aff, int a, int b)
879 unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
881 if (isl_int_is_zero(aff->v->el[1 + off + b]))
882 return aff;
884 aff->v = isl_vec_cow(aff->v);
885 if (!aff->v)
886 return isl_aff_free(aff);
888 isl_int_add(aff->v->el[1 + off + a],
889 aff->v->el[1 + off + a], aff->v->el[1 + off + b]);
890 isl_int_set_si(aff->v->el[1 + off + b], 0);
892 return aff;
895 /* Sort the divs in the local space of "aff" according to
896 * the comparison function "cmp_row" in isl_local_space.c,
897 * combining the coefficients of identical divs.
899 * Reordering divs does not change the semantics of "aff",
900 * so there is no need to call isl_aff_cow.
901 * Moreover, this function is currently only called on isl_affs
902 * with a single reference.
904 static __isl_give isl_aff *sort_divs(__isl_take isl_aff *aff)
906 int i, j, n;
907 unsigned off;
909 if (!aff)
910 return NULL;
912 off = isl_local_space_offset(aff->ls, isl_dim_div);
913 n = isl_aff_dim(aff, isl_dim_div);
914 for (i = 1; i < n; ++i) {
915 for (j = i - 1; j >= 0; --j) {
916 int cmp = isl_mat_cmp_div(aff->ls->div, j, j + 1);
917 if (cmp < 0)
918 break;
919 if (cmp == 0)
920 aff = merge_divs(aff, j, j + 1);
921 else
922 aff = swap_div(aff, j, j + 1);
923 if (!aff)
924 return NULL;
928 return aff;
931 /* Normalize the representation of "aff".
933 * This function should only be called of "new" isl_affs, i.e.,
934 * with only a single reference. We therefore do not need to
935 * worry about affecting other instances.
937 __isl_give isl_aff *isl_aff_normalize(__isl_take isl_aff *aff)
939 if (!aff)
940 return NULL;
941 aff->v = isl_vec_normalize(aff->v);
942 if (!aff->v)
943 return isl_aff_free(aff);
944 aff = plug_in_integral_divs(aff);
945 aff = plug_in_unit_divs(aff);
946 aff = sort_divs(aff);
947 aff = isl_aff_remove_unused_divs(aff);
948 return aff;
951 /* Given f, return floor(f).
952 * If f is an integer expression, then just return f.
953 * If f is a constant, then return the constant floor(f).
954 * Otherwise, if f = g/m, write g = q m + r,
955 * create a new div d = [r/m] and return the expression q + d.
956 * The coefficients in r are taken to lie between -m/2 and m/2.
958 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff)
960 int i;
961 int size;
962 isl_ctx *ctx;
963 isl_vec *div;
965 if (!aff)
966 return NULL;
968 if (isl_int_is_one(aff->v->el[0]))
969 return aff;
971 aff = isl_aff_cow(aff);
972 if (!aff)
973 return NULL;
975 aff->v = isl_vec_cow(aff->v);
976 if (!aff->v)
977 return isl_aff_free(aff);
979 if (isl_aff_is_cst(aff)) {
980 isl_int_fdiv_q(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
981 isl_int_set_si(aff->v->el[0], 1);
982 return aff;
985 div = isl_vec_copy(aff->v);
986 div = isl_vec_cow(div);
987 if (!div)
988 return isl_aff_free(aff);
990 ctx = isl_aff_get_ctx(aff);
991 isl_int_fdiv_q(aff->v->el[0], aff->v->el[0], ctx->two);
992 for (i = 1; i < aff->v->size; ++i) {
993 isl_int_fdiv_r(div->el[i], div->el[i], div->el[0]);
994 isl_int_fdiv_q(aff->v->el[i], aff->v->el[i], div->el[0]);
995 if (isl_int_gt(div->el[i], aff->v->el[0])) {
996 isl_int_sub(div->el[i], div->el[i], div->el[0]);
997 isl_int_add_ui(aff->v->el[i], aff->v->el[i], 1);
1001 aff->ls = isl_local_space_add_div(aff->ls, div);
1002 if (!aff->ls)
1003 return isl_aff_free(aff);
1005 size = aff->v->size;
1006 aff->v = isl_vec_extend(aff->v, size + 1);
1007 if (!aff->v)
1008 return isl_aff_free(aff);
1009 isl_int_set_si(aff->v->el[0], 1);
1010 isl_int_set_si(aff->v->el[size], 1);
1012 aff = isl_aff_normalize(aff);
1014 return aff;
1017 /* Compute
1019 * aff mod m = aff - m * floor(aff/m)
1021 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int m)
1023 isl_aff *res;
1025 res = isl_aff_copy(aff);
1026 aff = isl_aff_scale_down(aff, m);
1027 aff = isl_aff_floor(aff);
1028 aff = isl_aff_scale(aff, m);
1029 res = isl_aff_sub(res, aff);
1031 return res;
1034 /* Compute
1036 * pwaff mod m = pwaff - m * floor(pwaff/m)
1038 __isl_give isl_pw_aff *isl_pw_aff_mod(__isl_take isl_pw_aff *pwaff, isl_int m)
1040 isl_pw_aff *res;
1042 res = isl_pw_aff_copy(pwaff);
1043 pwaff = isl_pw_aff_scale_down(pwaff, m);
1044 pwaff = isl_pw_aff_floor(pwaff);
1045 pwaff = isl_pw_aff_scale(pwaff, m);
1046 res = isl_pw_aff_sub(res, pwaff);
1048 return res;
1051 /* Given f, return ceil(f).
1052 * If f is an integer expression, then just return f.
1053 * Otherwise, let f be the expression
1055 * e/m
1057 * then return
1059 * floor((e + m - 1)/m)
1061 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff)
1063 if (!aff)
1064 return NULL;
1066 if (isl_int_is_one(aff->v->el[0]))
1067 return aff;
1069 aff = isl_aff_cow(aff);
1070 if (!aff)
1071 return NULL;
1072 aff->v = isl_vec_cow(aff->v);
1073 if (!aff->v)
1074 return isl_aff_free(aff);
1076 isl_int_add(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
1077 isl_int_sub_ui(aff->v->el[1], aff->v->el[1], 1);
1078 aff = isl_aff_floor(aff);
1080 return aff;
1083 /* Apply the expansion computed by isl_merge_divs.
1084 * The expansion itself is given by "exp" while the resulting
1085 * list of divs is given by "div".
1087 __isl_give isl_aff *isl_aff_expand_divs( __isl_take isl_aff *aff,
1088 __isl_take isl_mat *div, int *exp)
1090 int i, j;
1091 int old_n_div;
1092 int new_n_div;
1093 int offset;
1095 aff = isl_aff_cow(aff);
1096 if (!aff || !div)
1097 goto error;
1099 old_n_div = isl_local_space_dim(aff->ls, isl_dim_div);
1100 new_n_div = isl_mat_rows(div);
1101 if (new_n_div < old_n_div)
1102 isl_die(isl_mat_get_ctx(div), isl_error_invalid,
1103 "not an expansion", goto error);
1105 aff->v = isl_vec_extend(aff->v, aff->v->size + new_n_div - old_n_div);
1106 if (!aff->v)
1107 goto error;
1109 offset = 1 + isl_local_space_offset(aff->ls, isl_dim_div);
1110 j = old_n_div - 1;
1111 for (i = new_n_div - 1; i >= 0; --i) {
1112 if (j >= 0 && exp[j] == i) {
1113 if (i != j)
1114 isl_int_swap(aff->v->el[offset + i],
1115 aff->v->el[offset + j]);
1116 j--;
1117 } else
1118 isl_int_set_si(aff->v->el[offset + i], 0);
1121 aff->ls = isl_local_space_replace_divs(aff->ls, isl_mat_copy(div));
1122 if (!aff->ls)
1123 goto error;
1124 isl_mat_free(div);
1125 return aff;
1126 error:
1127 isl_aff_free(aff);
1128 isl_mat_free(div);
1129 return NULL;
1132 /* Add two affine expressions that live in the same local space.
1134 static __isl_give isl_aff *add_expanded(__isl_take isl_aff *aff1,
1135 __isl_take isl_aff *aff2)
1137 isl_int gcd, f;
1139 aff1 = isl_aff_cow(aff1);
1140 if (!aff1 || !aff2)
1141 goto error;
1143 aff1->v = isl_vec_cow(aff1->v);
1144 if (!aff1->v)
1145 goto error;
1147 isl_int_init(gcd);
1148 isl_int_init(f);
1149 isl_int_gcd(gcd, aff1->v->el[0], aff2->v->el[0]);
1150 isl_int_divexact(f, aff2->v->el[0], gcd);
1151 isl_seq_scale(aff1->v->el + 1, aff1->v->el + 1, f, aff1->v->size - 1);
1152 isl_int_divexact(f, aff1->v->el[0], gcd);
1153 isl_seq_addmul(aff1->v->el + 1, f, aff2->v->el + 1, aff1->v->size - 1);
1154 isl_int_divexact(f, aff2->v->el[0], gcd);
1155 isl_int_mul(aff1->v->el[0], aff1->v->el[0], f);
1156 isl_int_clear(f);
1157 isl_int_clear(gcd);
1159 isl_aff_free(aff2);
1160 return aff1;
1161 error:
1162 isl_aff_free(aff1);
1163 isl_aff_free(aff2);
1164 return NULL;
1167 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
1168 __isl_take isl_aff *aff2)
1170 isl_ctx *ctx;
1171 int *exp1 = NULL;
1172 int *exp2 = NULL;
1173 isl_mat *div;
1175 if (!aff1 || !aff2)
1176 goto error;
1178 ctx = isl_aff_get_ctx(aff1);
1179 if (!isl_space_is_equal(aff1->ls->dim, aff2->ls->dim))
1180 isl_die(ctx, isl_error_invalid,
1181 "spaces don't match", goto error);
1183 if (aff1->ls->div->n_row == 0 && aff2->ls->div->n_row == 0)
1184 return add_expanded(aff1, aff2);
1186 exp1 = isl_alloc_array(ctx, int, aff1->ls->div->n_row);
1187 exp2 = isl_alloc_array(ctx, int, aff2->ls->div->n_row);
1188 if (!exp1 || !exp2)
1189 goto error;
1191 div = isl_merge_divs(aff1->ls->div, aff2->ls->div, exp1, exp2);
1192 aff1 = isl_aff_expand_divs(aff1, isl_mat_copy(div), exp1);
1193 aff2 = isl_aff_expand_divs(aff2, div, exp2);
1194 free(exp1);
1195 free(exp2);
1197 return add_expanded(aff1, aff2);
1198 error:
1199 free(exp1);
1200 free(exp2);
1201 isl_aff_free(aff1);
1202 isl_aff_free(aff2);
1203 return NULL;
1206 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
1207 __isl_take isl_aff *aff2)
1209 return isl_aff_add(aff1, isl_aff_neg(aff2));
1212 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f)
1214 isl_int gcd;
1216 if (isl_int_is_one(f))
1217 return aff;
1219 aff = isl_aff_cow(aff);
1220 if (!aff)
1221 return NULL;
1222 aff->v = isl_vec_cow(aff->v);
1223 if (!aff->v)
1224 return isl_aff_free(aff);
1226 if (isl_int_is_pos(f) && isl_int_is_divisible_by(aff->v->el[0], f)) {
1227 isl_int_divexact(aff->v->el[0], aff->v->el[0], f);
1228 return aff;
1231 isl_int_init(gcd);
1232 isl_int_gcd(gcd, aff->v->el[0], f);
1233 isl_int_divexact(aff->v->el[0], aff->v->el[0], gcd);
1234 isl_int_divexact(gcd, f, gcd);
1235 isl_seq_scale(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
1236 isl_int_clear(gcd);
1238 return aff;
1241 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f)
1243 isl_int gcd;
1245 if (isl_int_is_one(f))
1246 return aff;
1248 aff = isl_aff_cow(aff);
1249 if (!aff)
1250 return NULL;
1252 if (isl_int_is_zero(f))
1253 isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
1254 "cannot scale down by zero", return isl_aff_free(aff));
1256 aff->v = isl_vec_cow(aff->v);
1257 if (!aff->v)
1258 return isl_aff_free(aff);
1260 isl_int_init(gcd);
1261 isl_seq_gcd(aff->v->el + 1, aff->v->size - 1, &gcd);
1262 isl_int_gcd(gcd, gcd, f);
1263 isl_seq_scale_down(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
1264 isl_int_divexact(gcd, f, gcd);
1265 isl_int_mul(aff->v->el[0], aff->v->el[0], gcd);
1266 isl_int_clear(gcd);
1268 return aff;
1271 __isl_give isl_aff *isl_aff_scale_down_ui(__isl_take isl_aff *aff, unsigned f)
1273 isl_int v;
1275 if (f == 1)
1276 return aff;
1278 isl_int_init(v);
1279 isl_int_set_ui(v, f);
1280 aff = isl_aff_scale_down(aff, v);
1281 isl_int_clear(v);
1283 return aff;
1286 __isl_give isl_aff *isl_aff_set_dim_name(__isl_take isl_aff *aff,
1287 enum isl_dim_type type, unsigned pos, const char *s)
1289 aff = isl_aff_cow(aff);
1290 if (!aff)
1291 return NULL;
1292 if (type == isl_dim_out)
1293 isl_die(aff->v->ctx, isl_error_invalid,
1294 "cannot set name of output/set dimension",
1295 return isl_aff_free(aff));
1296 if (type == isl_dim_in)
1297 type = isl_dim_set;
1298 aff->ls = isl_local_space_set_dim_name(aff->ls, type, pos, s);
1299 if (!aff->ls)
1300 return isl_aff_free(aff);
1302 return aff;
1305 __isl_give isl_aff *isl_aff_set_dim_id(__isl_take isl_aff *aff,
1306 enum isl_dim_type type, unsigned pos, __isl_take isl_id *id)
1308 aff = isl_aff_cow(aff);
1309 if (!aff)
1310 return isl_id_free(id);
1311 if (type == isl_dim_out)
1312 isl_die(aff->v->ctx, isl_error_invalid,
1313 "cannot set name of output/set dimension",
1314 goto error);
1315 if (type == isl_dim_in)
1316 type = isl_dim_set;
1317 aff->ls = isl_local_space_set_dim_id(aff->ls, type, pos, id);
1318 if (!aff->ls)
1319 return isl_aff_free(aff);
1321 return aff;
1322 error:
1323 isl_id_free(id);
1324 isl_aff_free(aff);
1325 return NULL;
1328 /* Exploit the equalities in "eq" to simplify the affine expression
1329 * and the expressions of the integer divisions in the local space.
1330 * The integer divisions in this local space are assumed to appear
1331 * as regular dimensions in "eq".
1333 static __isl_give isl_aff *isl_aff_substitute_equalities_lifted(
1334 __isl_take isl_aff *aff, __isl_take isl_basic_set *eq)
1336 int i, j;
1337 unsigned total;
1338 unsigned n_div;
1340 if (!eq)
1341 goto error;
1342 if (eq->n_eq == 0) {
1343 isl_basic_set_free(eq);
1344 return aff;
1347 aff = isl_aff_cow(aff);
1348 if (!aff)
1349 goto error;
1351 aff->ls = isl_local_space_substitute_equalities(aff->ls,
1352 isl_basic_set_copy(eq));
1353 aff->v = isl_vec_cow(aff->v);
1354 if (!aff->ls || !aff->v)
1355 goto error;
1357 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
1358 n_div = eq->n_div;
1359 for (i = 0; i < eq->n_eq; ++i) {
1360 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
1361 if (j < 0 || j == 0 || j >= total)
1362 continue;
1364 isl_seq_elim(aff->v->el + 1, eq->eq[i], j, total,
1365 &aff->v->el[0]);
1368 isl_basic_set_free(eq);
1369 aff = isl_aff_normalize(aff);
1370 return aff;
1371 error:
1372 isl_basic_set_free(eq);
1373 isl_aff_free(aff);
1374 return NULL;
1377 /* Exploit the equalities in "eq" to simplify the affine expression
1378 * and the expressions of the integer divisions in the local space.
1380 static __isl_give isl_aff *isl_aff_substitute_equalities(
1381 __isl_take isl_aff *aff, __isl_take isl_basic_set *eq)
1383 int n_div;
1385 if (!aff || !eq)
1386 goto error;
1387 n_div = isl_local_space_dim(aff->ls, isl_dim_div);
1388 if (n_div > 0)
1389 eq = isl_basic_set_add_dims(eq, isl_dim_set, n_div);
1390 return isl_aff_substitute_equalities_lifted(aff, eq);
1391 error:
1392 isl_basic_set_free(eq);
1393 isl_aff_free(aff);
1394 return NULL;
1397 /* Look for equalities among the variables shared by context and aff
1398 * and the integer divisions of aff, if any.
1399 * The equalities are then used to eliminate coefficients and/or integer
1400 * divisions from aff.
1402 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
1403 __isl_take isl_set *context)
1405 isl_basic_set *hull;
1406 int n_div;
1408 if (!aff)
1409 goto error;
1410 n_div = isl_local_space_dim(aff->ls, isl_dim_div);
1411 if (n_div > 0) {
1412 isl_basic_set *bset;
1413 isl_local_space *ls;
1414 context = isl_set_add_dims(context, isl_dim_set, n_div);
1415 ls = isl_aff_get_domain_local_space(aff);
1416 bset = isl_basic_set_from_local_space(ls);
1417 bset = isl_basic_set_lift(bset);
1418 bset = isl_basic_set_flatten(bset);
1419 context = isl_set_intersect(context,
1420 isl_set_from_basic_set(bset));
1423 hull = isl_set_affine_hull(context);
1424 return isl_aff_substitute_equalities_lifted(aff, hull);
1425 error:
1426 isl_aff_free(aff);
1427 isl_set_free(context);
1428 return NULL;
1431 __isl_give isl_aff *isl_aff_gist_params(__isl_take isl_aff *aff,
1432 __isl_take isl_set *context)
1434 isl_set *dom_context = isl_set_universe(isl_aff_get_domain_space(aff));
1435 dom_context = isl_set_intersect_params(dom_context, context);
1436 return isl_aff_gist(aff, dom_context);
1439 /* Return a basic set containing those elements in the space
1440 * of aff where it is non-negative.
1441 * If "rational" is set, then return a rational basic set.
1443 static __isl_give isl_basic_set *aff_nonneg_basic_set(
1444 __isl_take isl_aff *aff, int rational)
1446 isl_constraint *ineq;
1447 isl_basic_set *bset;
1449 ineq = isl_inequality_from_aff(aff);
1451 bset = isl_basic_set_from_constraint(ineq);
1452 if (rational)
1453 bset = isl_basic_set_set_rational(bset);
1454 bset = isl_basic_set_simplify(bset);
1455 return bset;
1458 /* Return a basic set containing those elements in the space
1459 * of aff where it is non-negative.
1461 __isl_give isl_basic_set *isl_aff_nonneg_basic_set(__isl_take isl_aff *aff)
1463 return aff_nonneg_basic_set(aff, 0);
1466 /* Return a basic set containing those elements in the domain space
1467 * of aff where it is negative.
1469 __isl_give isl_basic_set *isl_aff_neg_basic_set(__isl_take isl_aff *aff)
1471 aff = isl_aff_neg(aff);
1472 aff = isl_aff_add_constant_num_si(aff, -1);
1473 return isl_aff_nonneg_basic_set(aff);
1476 /* Return a basic set containing those elements in the space
1477 * of aff where it is zero.
1478 * If "rational" is set, then return a rational basic set.
1480 static __isl_give isl_basic_set *aff_zero_basic_set(__isl_take isl_aff *aff,
1481 int rational)
1483 isl_constraint *ineq;
1484 isl_basic_set *bset;
1486 ineq = isl_equality_from_aff(aff);
1488 bset = isl_basic_set_from_constraint(ineq);
1489 if (rational)
1490 bset = isl_basic_set_set_rational(bset);
1491 bset = isl_basic_set_simplify(bset);
1492 return bset;
1495 /* Return a basic set containing those elements in the space
1496 * of aff where it is zero.
1498 __isl_give isl_basic_set *isl_aff_zero_basic_set(__isl_take isl_aff *aff)
1500 return aff_zero_basic_set(aff, 0);
1503 /* Return a basic set containing those elements in the shared space
1504 * of aff1 and aff2 where aff1 is greater than or equal to aff2.
1506 __isl_give isl_basic_set *isl_aff_ge_basic_set(__isl_take isl_aff *aff1,
1507 __isl_take isl_aff *aff2)
1509 aff1 = isl_aff_sub(aff1, aff2);
1511 return isl_aff_nonneg_basic_set(aff1);
1514 /* Return a basic set containing those elements in the shared space
1515 * of aff1 and aff2 where aff1 is smaller than or equal to aff2.
1517 __isl_give isl_basic_set *isl_aff_le_basic_set(__isl_take isl_aff *aff1,
1518 __isl_take isl_aff *aff2)
1520 return isl_aff_ge_basic_set(aff2, aff1);
1523 __isl_give isl_aff *isl_aff_add_on_domain(__isl_keep isl_set *dom,
1524 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2)
1526 aff1 = isl_aff_add(aff1, aff2);
1527 aff1 = isl_aff_gist(aff1, isl_set_copy(dom));
1528 return aff1;
1531 int isl_aff_is_empty(__isl_keep isl_aff *aff)
1533 if (!aff)
1534 return -1;
1536 return 0;
1539 /* Check whether the given affine expression has non-zero coefficient
1540 * for any dimension in the given range or if any of these dimensions
1541 * appear with non-zero coefficients in any of the integer divisions
1542 * involved in the affine expression.
1544 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
1545 enum isl_dim_type type, unsigned first, unsigned n)
1547 int i;
1548 isl_ctx *ctx;
1549 int *active = NULL;
1550 int involves = 0;
1552 if (!aff)
1553 return -1;
1554 if (n == 0)
1555 return 0;
1557 ctx = isl_aff_get_ctx(aff);
1558 if (first + n > isl_aff_dim(aff, type))
1559 isl_die(ctx, isl_error_invalid,
1560 "range out of bounds", return -1);
1562 active = isl_local_space_get_active(aff->ls, aff->v->el + 2);
1563 if (!active)
1564 goto error;
1566 first += isl_local_space_offset(aff->ls, type) - 1;
1567 for (i = 0; i < n; ++i)
1568 if (active[first + i]) {
1569 involves = 1;
1570 break;
1573 free(active);
1575 return involves;
1576 error:
1577 free(active);
1578 return -1;
1581 __isl_give isl_aff *isl_aff_drop_dims(__isl_take isl_aff *aff,
1582 enum isl_dim_type type, unsigned first, unsigned n)
1584 isl_ctx *ctx;
1586 if (!aff)
1587 return NULL;
1588 if (type == isl_dim_out)
1589 isl_die(aff->v->ctx, isl_error_invalid,
1590 "cannot drop output/set dimension",
1591 return isl_aff_free(aff));
1592 if (type == isl_dim_in)
1593 type = isl_dim_set;
1594 if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
1595 return aff;
1597 ctx = isl_aff_get_ctx(aff);
1598 if (first + n > isl_local_space_dim(aff->ls, type))
1599 isl_die(ctx, isl_error_invalid, "range out of bounds",
1600 return isl_aff_free(aff));
1602 aff = isl_aff_cow(aff);
1603 if (!aff)
1604 return NULL;
1606 aff->ls = isl_local_space_drop_dims(aff->ls, type, first, n);
1607 if (!aff->ls)
1608 return isl_aff_free(aff);
1610 first += 1 + isl_local_space_offset(aff->ls, type);
1611 aff->v = isl_vec_drop_els(aff->v, first, n);
1612 if (!aff->v)
1613 return isl_aff_free(aff);
1615 return aff;
1618 /* Project the domain of the affine expression onto its parameter space.
1619 * The affine expression may not involve any of the domain dimensions.
1621 __isl_give isl_aff *isl_aff_project_domain_on_params(__isl_take isl_aff *aff)
1623 isl_space *space;
1624 unsigned n;
1625 int involves;
1627 n = isl_aff_dim(aff, isl_dim_in);
1628 involves = isl_aff_involves_dims(aff, isl_dim_in, 0, n);
1629 if (involves < 0)
1630 return isl_aff_free(aff);
1631 if (involves)
1632 isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
1633 "affine expression involves some of the domain dimensions",
1634 return isl_aff_free(aff));
1635 aff = isl_aff_drop_dims(aff, isl_dim_in, 0, n);
1636 space = isl_aff_get_domain_space(aff);
1637 space = isl_space_params(space);
1638 aff = isl_aff_reset_domain_space(aff, space);
1639 return aff;
1642 __isl_give isl_aff *isl_aff_insert_dims(__isl_take isl_aff *aff,
1643 enum isl_dim_type type, unsigned first, unsigned n)
1645 isl_ctx *ctx;
1647 if (!aff)
1648 return NULL;
1649 if (type == isl_dim_out)
1650 isl_die(aff->v->ctx, isl_error_invalid,
1651 "cannot insert output/set dimensions",
1652 return isl_aff_free(aff));
1653 if (type == isl_dim_in)
1654 type = isl_dim_set;
1655 if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
1656 return aff;
1658 ctx = isl_aff_get_ctx(aff);
1659 if (first > isl_local_space_dim(aff->ls, type))
1660 isl_die(ctx, isl_error_invalid, "position out of bounds",
1661 return isl_aff_free(aff));
1663 aff = isl_aff_cow(aff);
1664 if (!aff)
1665 return NULL;
1667 aff->ls = isl_local_space_insert_dims(aff->ls, type, first, n);
1668 if (!aff->ls)
1669 return isl_aff_free(aff);
1671 first += 1 + isl_local_space_offset(aff->ls, type);
1672 aff->v = isl_vec_insert_zero_els(aff->v, first, n);
1673 if (!aff->v)
1674 return isl_aff_free(aff);
1676 return aff;
1679 __isl_give isl_aff *isl_aff_add_dims(__isl_take isl_aff *aff,
1680 enum isl_dim_type type, unsigned n)
1682 unsigned pos;
1684 pos = isl_aff_dim(aff, type);
1686 return isl_aff_insert_dims(aff, type, pos, n);
1689 __isl_give isl_pw_aff *isl_pw_aff_add_dims(__isl_take isl_pw_aff *pwaff,
1690 enum isl_dim_type type, unsigned n)
1692 unsigned pos;
1694 pos = isl_pw_aff_dim(pwaff, type);
1696 return isl_pw_aff_insert_dims(pwaff, type, pos, n);
1699 __isl_give isl_pw_aff *isl_pw_aff_from_aff(__isl_take isl_aff *aff)
1701 isl_set *dom = isl_set_universe(isl_aff_get_domain_space(aff));
1702 return isl_pw_aff_alloc(dom, aff);
1705 #undef PW
1706 #define PW isl_pw_aff
1707 #undef EL
1708 #define EL isl_aff
1709 #undef EL_IS_ZERO
1710 #define EL_IS_ZERO is_empty
1711 #undef ZERO
1712 #define ZERO empty
1713 #undef IS_ZERO
1714 #define IS_ZERO is_empty
1715 #undef FIELD
1716 #define FIELD aff
1717 #undef DEFAULT_IS_ZERO
1718 #define DEFAULT_IS_ZERO 0
1720 #define NO_EVAL
1721 #define NO_OPT
1722 #define NO_MOVE_DIMS
1723 #define NO_LIFT
1724 #define NO_MORPH
1726 #include <isl_pw_templ.c>
1728 static __isl_give isl_set *align_params_pw_pw_set_and(
1729 __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2,
1730 __isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
1731 __isl_take isl_pw_aff *pwaff2))
1733 if (!pwaff1 || !pwaff2)
1734 goto error;
1735 if (isl_space_match(pwaff1->dim, isl_dim_param,
1736 pwaff2->dim, isl_dim_param))
1737 return fn(pwaff1, pwaff2);
1738 if (!isl_space_has_named_params(pwaff1->dim) ||
1739 !isl_space_has_named_params(pwaff2->dim))
1740 isl_die(isl_pw_aff_get_ctx(pwaff1), isl_error_invalid,
1741 "unaligned unnamed parameters", goto error);
1742 pwaff1 = isl_pw_aff_align_params(pwaff1, isl_pw_aff_get_space(pwaff2));
1743 pwaff2 = isl_pw_aff_align_params(pwaff2, isl_pw_aff_get_space(pwaff1));
1744 return fn(pwaff1, pwaff2);
1745 error:
1746 isl_pw_aff_free(pwaff1);
1747 isl_pw_aff_free(pwaff2);
1748 return NULL;
1751 /* Compute a piecewise quasi-affine expression with a domain that
1752 * is the union of those of pwaff1 and pwaff2 and such that on each
1753 * cell, the quasi-affine expression is the better (according to cmp)
1754 * of those of pwaff1 and pwaff2. If only one of pwaff1 or pwaff2
1755 * is defined on a given cell, then the associated expression
1756 * is the defined one.
1758 static __isl_give isl_pw_aff *pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1,
1759 __isl_take isl_pw_aff *pwaff2,
1760 __isl_give isl_basic_set *(*cmp)(__isl_take isl_aff *aff1,
1761 __isl_take isl_aff *aff2))
1763 int i, j, n;
1764 isl_pw_aff *res;
1765 isl_ctx *ctx;
1766 isl_set *set;
1768 if (!pwaff1 || !pwaff2)
1769 goto error;
1771 ctx = isl_space_get_ctx(pwaff1->dim);
1772 if (!isl_space_is_equal(pwaff1->dim, pwaff2->dim))
1773 isl_die(ctx, isl_error_invalid,
1774 "arguments should live in same space", goto error);
1776 if (isl_pw_aff_is_empty(pwaff1)) {
1777 isl_pw_aff_free(pwaff1);
1778 return pwaff2;
1781 if (isl_pw_aff_is_empty(pwaff2)) {
1782 isl_pw_aff_free(pwaff2);
1783 return pwaff1;
1786 n = 2 * (pwaff1->n + 1) * (pwaff2->n + 1);
1787 res = isl_pw_aff_alloc_size(isl_space_copy(pwaff1->dim), n);
1789 for (i = 0; i < pwaff1->n; ++i) {
1790 set = isl_set_copy(pwaff1->p[i].set);
1791 for (j = 0; j < pwaff2->n; ++j) {
1792 struct isl_set *common;
1793 isl_set *better;
1795 common = isl_set_intersect(
1796 isl_set_copy(pwaff1->p[i].set),
1797 isl_set_copy(pwaff2->p[j].set));
1798 better = isl_set_from_basic_set(cmp(
1799 isl_aff_copy(pwaff2->p[j].aff),
1800 isl_aff_copy(pwaff1->p[i].aff)));
1801 better = isl_set_intersect(common, better);
1802 if (isl_set_plain_is_empty(better)) {
1803 isl_set_free(better);
1804 continue;
1806 set = isl_set_subtract(set, isl_set_copy(better));
1808 res = isl_pw_aff_add_piece(res, better,
1809 isl_aff_copy(pwaff2->p[j].aff));
1811 res = isl_pw_aff_add_piece(res, set,
1812 isl_aff_copy(pwaff1->p[i].aff));
1815 for (j = 0; j < pwaff2->n; ++j) {
1816 set = isl_set_copy(pwaff2->p[j].set);
1817 for (i = 0; i < pwaff1->n; ++i)
1818 set = isl_set_subtract(set,
1819 isl_set_copy(pwaff1->p[i].set));
1820 res = isl_pw_aff_add_piece(res, set,
1821 isl_aff_copy(pwaff2->p[j].aff));
1824 isl_pw_aff_free(pwaff1);
1825 isl_pw_aff_free(pwaff2);
1827 return res;
1828 error:
1829 isl_pw_aff_free(pwaff1);
1830 isl_pw_aff_free(pwaff2);
1831 return NULL;
1834 /* Compute a piecewise quasi-affine expression with a domain that
1835 * is the union of those of pwaff1 and pwaff2 and such that on each
1836 * cell, the quasi-affine expression is the maximum of those of pwaff1
1837 * and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given
1838 * cell, then the associated expression is the defined one.
1840 static __isl_give isl_pw_aff *pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
1841 __isl_take isl_pw_aff *pwaff2)
1843 return pw_aff_union_opt(pwaff1, pwaff2, &isl_aff_ge_basic_set);
1846 __isl_give isl_pw_aff *isl_pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
1847 __isl_take isl_pw_aff *pwaff2)
1849 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
1850 &pw_aff_union_max);
1853 /* Compute a piecewise quasi-affine expression with a domain that
1854 * is the union of those of pwaff1 and pwaff2 and such that on each
1855 * cell, the quasi-affine expression is the minimum of those of pwaff1
1856 * and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given
1857 * cell, then the associated expression is the defined one.
1859 static __isl_give isl_pw_aff *pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
1860 __isl_take isl_pw_aff *pwaff2)
1862 return pw_aff_union_opt(pwaff1, pwaff2, &isl_aff_le_basic_set);
1865 __isl_give isl_pw_aff *isl_pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
1866 __isl_take isl_pw_aff *pwaff2)
1868 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
1869 &pw_aff_union_min);
1872 __isl_give isl_pw_aff *isl_pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1,
1873 __isl_take isl_pw_aff *pwaff2, int max)
1875 if (max)
1876 return isl_pw_aff_union_max(pwaff1, pwaff2);
1877 else
1878 return isl_pw_aff_union_min(pwaff1, pwaff2);
1881 /* Construct a map with as domain the domain of pwaff and
1882 * one-dimensional range corresponding to the affine expressions.
1884 static __isl_give isl_map *map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
1886 int i;
1887 isl_space *dim;
1888 isl_map *map;
1890 if (!pwaff)
1891 return NULL;
1893 dim = isl_pw_aff_get_space(pwaff);
1894 map = isl_map_empty(dim);
1896 for (i = 0; i < pwaff->n; ++i) {
1897 isl_basic_map *bmap;
1898 isl_map *map_i;
1900 bmap = isl_basic_map_from_aff(isl_aff_copy(pwaff->p[i].aff));
1901 map_i = isl_map_from_basic_map(bmap);
1902 map_i = isl_map_intersect_domain(map_i,
1903 isl_set_copy(pwaff->p[i].set));
1904 map = isl_map_union_disjoint(map, map_i);
1907 isl_pw_aff_free(pwaff);
1909 return map;
1912 /* Construct a map with as domain the domain of pwaff and
1913 * one-dimensional range corresponding to the affine expressions.
1915 __isl_give isl_map *isl_map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
1917 if (!pwaff)
1918 return NULL;
1919 if (isl_space_is_set(pwaff->dim))
1920 isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
1921 "space of input is not a map",
1922 return isl_pw_aff_free(pwaff));
1923 return map_from_pw_aff(pwaff);
1926 /* Construct a one-dimensional set with as parameter domain
1927 * the domain of pwaff and the single set dimension
1928 * corresponding to the affine expressions.
1930 __isl_give isl_set *isl_set_from_pw_aff(__isl_take isl_pw_aff *pwaff)
1932 if (!pwaff)
1933 return NULL;
1934 if (!isl_space_is_set(pwaff->dim))
1935 isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
1936 "space of input is not a set",
1937 return isl_pw_aff_free(pwaff));
1938 return map_from_pw_aff(pwaff);
1941 /* Return a set containing those elements in the domain
1942 * of pwaff where it is non-negative.
1944 __isl_give isl_set *isl_pw_aff_nonneg_set(__isl_take isl_pw_aff *pwaff)
1946 int i;
1947 isl_set *set;
1949 if (!pwaff)
1950 return NULL;
1952 set = isl_set_empty(isl_pw_aff_get_domain_space(pwaff));
1954 for (i = 0; i < pwaff->n; ++i) {
1955 isl_basic_set *bset;
1956 isl_set *set_i;
1957 int rational;
1959 rational = isl_set_has_rational(pwaff->p[i].set);
1960 bset = aff_nonneg_basic_set(isl_aff_copy(pwaff->p[i].aff),
1961 rational);
1962 set_i = isl_set_from_basic_set(bset);
1963 set_i = isl_set_intersect(set_i, isl_set_copy(pwaff->p[i].set));
1964 set = isl_set_union_disjoint(set, set_i);
1967 isl_pw_aff_free(pwaff);
1969 return set;
1972 /* Return a set containing those elements in the domain
1973 * of pwaff where it is zero (if complement is 0) or not zero
1974 * (if complement is 1).
1976 static __isl_give isl_set *pw_aff_zero_set(__isl_take isl_pw_aff *pwaff,
1977 int complement)
1979 int i;
1980 isl_set *set;
1982 if (!pwaff)
1983 return NULL;
1985 set = isl_set_empty(isl_pw_aff_get_domain_space(pwaff));
1987 for (i = 0; i < pwaff->n; ++i) {
1988 isl_basic_set *bset;
1989 isl_set *set_i, *zero;
1990 int rational;
1992 rational = isl_set_has_rational(pwaff->p[i].set);
1993 bset = aff_zero_basic_set(isl_aff_copy(pwaff->p[i].aff),
1994 rational);
1995 zero = isl_set_from_basic_set(bset);
1996 set_i = isl_set_copy(pwaff->p[i].set);
1997 if (complement)
1998 set_i = isl_set_subtract(set_i, zero);
1999 else
2000 set_i = isl_set_intersect(set_i, zero);
2001 set = isl_set_union_disjoint(set, set_i);
2004 isl_pw_aff_free(pwaff);
2006 return set;
2009 /* Return a set containing those elements in the domain
2010 * of pwaff where it is zero.
2012 __isl_give isl_set *isl_pw_aff_zero_set(__isl_take isl_pw_aff *pwaff)
2014 return pw_aff_zero_set(pwaff, 0);
2017 /* Return a set containing those elements in the domain
2018 * of pwaff where it is not zero.
2020 __isl_give isl_set *isl_pw_aff_non_zero_set(__isl_take isl_pw_aff *pwaff)
2022 return pw_aff_zero_set(pwaff, 1);
2025 /* Return a set containing those elements in the shared domain
2026 * of pwaff1 and pwaff2 where pwaff1 is greater than (or equal) to pwaff2.
2028 * We compute the difference on the shared domain and then construct
2029 * the set of values where this difference is non-negative.
2030 * If strict is set, we first subtract 1 from the difference.
2031 * If equal is set, we only return the elements where pwaff1 and pwaff2
2032 * are equal.
2034 static __isl_give isl_set *pw_aff_gte_set(__isl_take isl_pw_aff *pwaff1,
2035 __isl_take isl_pw_aff *pwaff2, int strict, int equal)
2037 isl_set *set1, *set2;
2039 set1 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff1));
2040 set2 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff2));
2041 set1 = isl_set_intersect(set1, set2);
2042 pwaff1 = isl_pw_aff_intersect_domain(pwaff1, isl_set_copy(set1));
2043 pwaff2 = isl_pw_aff_intersect_domain(pwaff2, isl_set_copy(set1));
2044 pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_neg(pwaff2));
2046 if (strict) {
2047 isl_space *dim = isl_set_get_space(set1);
2048 isl_aff *aff;
2049 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2050 aff = isl_aff_add_constant_si(aff, -1);
2051 pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_alloc(set1, aff));
2052 } else
2053 isl_set_free(set1);
2055 if (equal)
2056 return isl_pw_aff_zero_set(pwaff1);
2057 return isl_pw_aff_nonneg_set(pwaff1);
2060 /* Return a set containing those elements in the shared domain
2061 * of pwaff1 and pwaff2 where pwaff1 is equal to pwaff2.
2063 static __isl_give isl_set *pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
2064 __isl_take isl_pw_aff *pwaff2)
2066 return pw_aff_gte_set(pwaff1, pwaff2, 0, 1);
2069 __isl_give isl_set *isl_pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
2070 __isl_take isl_pw_aff *pwaff2)
2072 return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_eq_set);
2075 /* Return a set containing those elements in the shared domain
2076 * of pwaff1 and pwaff2 where pwaff1 is greater than or equal to pwaff2.
2078 static __isl_give isl_set *pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
2079 __isl_take isl_pw_aff *pwaff2)
2081 return pw_aff_gte_set(pwaff1, pwaff2, 0, 0);
2084 __isl_give isl_set *isl_pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
2085 __isl_take isl_pw_aff *pwaff2)
2087 return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ge_set);
2090 /* Return a set containing those elements in the shared domain
2091 * of pwaff1 and pwaff2 where pwaff1 is strictly greater than pwaff2.
2093 static __isl_give isl_set *pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
2094 __isl_take isl_pw_aff *pwaff2)
2096 return pw_aff_gte_set(pwaff1, pwaff2, 1, 0);
2099 __isl_give isl_set *isl_pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
2100 __isl_take isl_pw_aff *pwaff2)
2102 return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_gt_set);
2105 __isl_give isl_set *isl_pw_aff_le_set(__isl_take isl_pw_aff *pwaff1,
2106 __isl_take isl_pw_aff *pwaff2)
2108 return isl_pw_aff_ge_set(pwaff2, pwaff1);
2111 __isl_give isl_set *isl_pw_aff_lt_set(__isl_take isl_pw_aff *pwaff1,
2112 __isl_take isl_pw_aff *pwaff2)
2114 return isl_pw_aff_gt_set(pwaff2, pwaff1);
2117 /* Return a set containing those elements in the shared domain
2118 * of the elements of list1 and list2 where each element in list1
2119 * has the relation specified by "fn" with each element in list2.
2121 static __isl_give isl_set *pw_aff_list_set(__isl_take isl_pw_aff_list *list1,
2122 __isl_take isl_pw_aff_list *list2,
2123 __isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
2124 __isl_take isl_pw_aff *pwaff2))
2126 int i, j;
2127 isl_ctx *ctx;
2128 isl_set *set;
2130 if (!list1 || !list2)
2131 goto error;
2133 ctx = isl_pw_aff_list_get_ctx(list1);
2134 if (list1->n < 1 || list2->n < 1)
2135 isl_die(ctx, isl_error_invalid,
2136 "list should contain at least one element", goto error);
2138 set = isl_set_universe(isl_pw_aff_get_domain_space(list1->p[0]));
2139 for (i = 0; i < list1->n; ++i)
2140 for (j = 0; j < list2->n; ++j) {
2141 isl_set *set_ij;
2143 set_ij = fn(isl_pw_aff_copy(list1->p[i]),
2144 isl_pw_aff_copy(list2->p[j]));
2145 set = isl_set_intersect(set, set_ij);
2148 isl_pw_aff_list_free(list1);
2149 isl_pw_aff_list_free(list2);
2150 return set;
2151 error:
2152 isl_pw_aff_list_free(list1);
2153 isl_pw_aff_list_free(list2);
2154 return NULL;
2157 /* Return a set containing those elements in the shared domain
2158 * of the elements of list1 and list2 where each element in list1
2159 * is equal to each element in list2.
2161 __isl_give isl_set *isl_pw_aff_list_eq_set(__isl_take isl_pw_aff_list *list1,
2162 __isl_take isl_pw_aff_list *list2)
2164 return pw_aff_list_set(list1, list2, &isl_pw_aff_eq_set);
2167 __isl_give isl_set *isl_pw_aff_list_ne_set(__isl_take isl_pw_aff_list *list1,
2168 __isl_take isl_pw_aff_list *list2)
2170 return pw_aff_list_set(list1, list2, &isl_pw_aff_ne_set);
2173 /* Return a set containing those elements in the shared domain
2174 * of the elements of list1 and list2 where each element in list1
2175 * is less than or equal to each element in list2.
2177 __isl_give isl_set *isl_pw_aff_list_le_set(__isl_take isl_pw_aff_list *list1,
2178 __isl_take isl_pw_aff_list *list2)
2180 return pw_aff_list_set(list1, list2, &isl_pw_aff_le_set);
2183 __isl_give isl_set *isl_pw_aff_list_lt_set(__isl_take isl_pw_aff_list *list1,
2184 __isl_take isl_pw_aff_list *list2)
2186 return pw_aff_list_set(list1, list2, &isl_pw_aff_lt_set);
2189 __isl_give isl_set *isl_pw_aff_list_ge_set(__isl_take isl_pw_aff_list *list1,
2190 __isl_take isl_pw_aff_list *list2)
2192 return pw_aff_list_set(list1, list2, &isl_pw_aff_ge_set);
2195 __isl_give isl_set *isl_pw_aff_list_gt_set(__isl_take isl_pw_aff_list *list1,
2196 __isl_take isl_pw_aff_list *list2)
2198 return pw_aff_list_set(list1, list2, &isl_pw_aff_gt_set);
2202 /* Return a set containing those elements in the shared domain
2203 * of pwaff1 and pwaff2 where pwaff1 is not equal to pwaff2.
2205 static __isl_give isl_set *pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
2206 __isl_take isl_pw_aff *pwaff2)
2208 isl_set *set_lt, *set_gt;
2210 set_lt = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff1),
2211 isl_pw_aff_copy(pwaff2));
2212 set_gt = isl_pw_aff_gt_set(pwaff1, pwaff2);
2213 return isl_set_union_disjoint(set_lt, set_gt);
2216 __isl_give isl_set *isl_pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
2217 __isl_take isl_pw_aff *pwaff2)
2219 return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ne_set);
2222 __isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff,
2223 isl_int v)
2225 int i;
2227 if (isl_int_is_one(v))
2228 return pwaff;
2229 if (!isl_int_is_pos(v))
2230 isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
2231 "factor needs to be positive",
2232 return isl_pw_aff_free(pwaff));
2233 pwaff = isl_pw_aff_cow(pwaff);
2234 if (!pwaff)
2235 return NULL;
2236 if (pwaff->n == 0)
2237 return pwaff;
2239 for (i = 0; i < pwaff->n; ++i) {
2240 pwaff->p[i].aff = isl_aff_scale_down(pwaff->p[i].aff, v);
2241 if (!pwaff->p[i].aff)
2242 return isl_pw_aff_free(pwaff);
2245 return pwaff;
2248 __isl_give isl_pw_aff *isl_pw_aff_floor(__isl_take isl_pw_aff *pwaff)
2250 int i;
2252 pwaff = isl_pw_aff_cow(pwaff);
2253 if (!pwaff)
2254 return NULL;
2255 if (pwaff->n == 0)
2256 return pwaff;
2258 for (i = 0; i < pwaff->n; ++i) {
2259 pwaff->p[i].aff = isl_aff_floor(pwaff->p[i].aff);
2260 if (!pwaff->p[i].aff)
2261 return isl_pw_aff_free(pwaff);
2264 return pwaff;
2267 __isl_give isl_pw_aff *isl_pw_aff_ceil(__isl_take isl_pw_aff *pwaff)
2269 int i;
2271 pwaff = isl_pw_aff_cow(pwaff);
2272 if (!pwaff)
2273 return NULL;
2274 if (pwaff->n == 0)
2275 return pwaff;
2277 for (i = 0; i < pwaff->n; ++i) {
2278 pwaff->p[i].aff = isl_aff_ceil(pwaff->p[i].aff);
2279 if (!pwaff->p[i].aff)
2280 return isl_pw_aff_free(pwaff);
2283 return pwaff;
2286 /* Assuming that "cond1" and "cond2" are disjoint,
2287 * return an affine expression that is equal to pwaff1 on cond1
2288 * and to pwaff2 on cond2.
2290 static __isl_give isl_pw_aff *isl_pw_aff_select(
2291 __isl_take isl_set *cond1, __isl_take isl_pw_aff *pwaff1,
2292 __isl_take isl_set *cond2, __isl_take isl_pw_aff *pwaff2)
2294 pwaff1 = isl_pw_aff_intersect_domain(pwaff1, cond1);
2295 pwaff2 = isl_pw_aff_intersect_domain(pwaff2, cond2);
2297 return isl_pw_aff_add_disjoint(pwaff1, pwaff2);
2300 /* Return an affine expression that is equal to pwaff_true for elements
2301 * where "cond" is non-zero and to pwaff_false for elements where "cond"
2302 * is zero.
2303 * That is, return cond ? pwaff_true : pwaff_false;
2305 __isl_give isl_pw_aff *isl_pw_aff_cond(__isl_take isl_pw_aff *cond,
2306 __isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false)
2308 isl_set *cond_true, *cond_false;
2310 cond_true = isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond));
2311 cond_false = isl_pw_aff_zero_set(cond);
2312 return isl_pw_aff_select(cond_true, pwaff_true,
2313 cond_false, pwaff_false);
2316 int isl_aff_is_cst(__isl_keep isl_aff *aff)
2318 if (!aff)
2319 return -1;
2321 return isl_seq_first_non_zero(aff->v->el + 2, aff->v->size - 2) == -1;
2324 /* Check whether pwaff is a piecewise constant.
2326 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff)
2328 int i;
2330 if (!pwaff)
2331 return -1;
2333 for (i = 0; i < pwaff->n; ++i) {
2334 int is_cst = isl_aff_is_cst(pwaff->p[i].aff);
2335 if (is_cst < 0 || !is_cst)
2336 return is_cst;
2339 return 1;
2342 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2343 __isl_take isl_aff *aff2)
2345 if (!isl_aff_is_cst(aff2) && isl_aff_is_cst(aff1))
2346 return isl_aff_mul(aff2, aff1);
2348 if (!isl_aff_is_cst(aff2))
2349 isl_die(isl_aff_get_ctx(aff1), isl_error_invalid,
2350 "at least one affine expression should be constant",
2351 goto error);
2353 aff1 = isl_aff_cow(aff1);
2354 if (!aff1 || !aff2)
2355 goto error;
2357 aff1 = isl_aff_scale(aff1, aff2->v->el[1]);
2358 aff1 = isl_aff_scale_down(aff1, aff2->v->el[0]);
2360 isl_aff_free(aff2);
2361 return aff1;
2362 error:
2363 isl_aff_free(aff1);
2364 isl_aff_free(aff2);
2365 return NULL;
2368 /* Divide "aff1" by "aff2", assuming "aff2" is a piecewise constant.
2370 __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
2371 __isl_take isl_aff *aff2)
2373 int is_cst;
2374 int neg;
2376 is_cst = isl_aff_is_cst(aff2);
2377 if (is_cst < 0)
2378 goto error;
2379 if (!is_cst)
2380 isl_die(isl_aff_get_ctx(aff2), isl_error_invalid,
2381 "second argument should be a constant", goto error);
2383 if (!aff2)
2384 goto error;
2386 neg = isl_int_is_neg(aff2->v->el[1]);
2387 if (neg) {
2388 isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
2389 isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
2392 aff1 = isl_aff_scale(aff1, aff2->v->el[0]);
2393 aff1 = isl_aff_scale_down(aff1, aff2->v->el[1]);
2395 if (neg) {
2396 isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
2397 isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
2400 isl_aff_free(aff2);
2401 return aff1;
2402 error:
2403 isl_aff_free(aff1);
2404 isl_aff_free(aff2);
2405 return NULL;
2408 static __isl_give isl_pw_aff *pw_aff_add(__isl_take isl_pw_aff *pwaff1,
2409 __isl_take isl_pw_aff *pwaff2)
2411 return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_add);
2414 __isl_give isl_pw_aff *isl_pw_aff_add(__isl_take isl_pw_aff *pwaff1,
2415 __isl_take isl_pw_aff *pwaff2)
2417 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_add);
2420 __isl_give isl_pw_aff *isl_pw_aff_union_add(__isl_take isl_pw_aff *pwaff1,
2421 __isl_take isl_pw_aff *pwaff2)
2423 return isl_pw_aff_union_add_(pwaff1, pwaff2);
2426 static __isl_give isl_pw_aff *pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
2427 __isl_take isl_pw_aff *pwaff2)
2429 return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_mul);
2432 __isl_give isl_pw_aff *isl_pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
2433 __isl_take isl_pw_aff *pwaff2)
2435 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_mul);
2438 static __isl_give isl_pw_aff *pw_aff_div(__isl_take isl_pw_aff *pa1,
2439 __isl_take isl_pw_aff *pa2)
2441 return isl_pw_aff_on_shared_domain(pa1, pa2, &isl_aff_div);
2444 /* Divide "pa1" by "pa2", assuming "pa2" is a piecewise constant.
2446 __isl_give isl_pw_aff *isl_pw_aff_div(__isl_take isl_pw_aff *pa1,
2447 __isl_take isl_pw_aff *pa2)
2449 int is_cst;
2451 is_cst = isl_pw_aff_is_cst(pa2);
2452 if (is_cst < 0)
2453 goto error;
2454 if (!is_cst)
2455 isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
2456 "second argument should be a piecewise constant",
2457 goto error);
2458 return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_div);
2459 error:
2460 isl_pw_aff_free(pa1);
2461 isl_pw_aff_free(pa2);
2462 return NULL;
2465 /* Compute the quotient of the integer division of "pa1" by "pa2"
2466 * with rounding towards zero.
2467 * "pa2" is assumed to be a piecewise constant.
2469 * In particular, return
2471 * pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2)
2474 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(__isl_take isl_pw_aff *pa1,
2475 __isl_take isl_pw_aff *pa2)
2477 int is_cst;
2478 isl_set *cond;
2479 isl_pw_aff *f, *c;
2481 is_cst = isl_pw_aff_is_cst(pa2);
2482 if (is_cst < 0)
2483 goto error;
2484 if (!is_cst)
2485 isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
2486 "second argument should be a piecewise constant",
2487 goto error);
2489 pa1 = isl_pw_aff_div(pa1, pa2);
2491 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(pa1));
2492 f = isl_pw_aff_floor(isl_pw_aff_copy(pa1));
2493 c = isl_pw_aff_ceil(pa1);
2494 return isl_pw_aff_cond(isl_set_indicator_function(cond), f, c);
2495 error:
2496 isl_pw_aff_free(pa1);
2497 isl_pw_aff_free(pa2);
2498 return NULL;
2501 /* Compute the remainder of the integer division of "pa1" by "pa2"
2502 * with rounding towards zero.
2503 * "pa2" is assumed to be a piecewise constant.
2505 * In particular, return
2507 * pa1 - pa2 * (pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2))
2510 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(__isl_take isl_pw_aff *pa1,
2511 __isl_take isl_pw_aff *pa2)
2513 int is_cst;
2514 isl_pw_aff *res;
2516 is_cst = isl_pw_aff_is_cst(pa2);
2517 if (is_cst < 0)
2518 goto error;
2519 if (!is_cst)
2520 isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
2521 "second argument should be a piecewise constant",
2522 goto error);
2523 res = isl_pw_aff_tdiv_q(isl_pw_aff_copy(pa1), isl_pw_aff_copy(pa2));
2524 res = isl_pw_aff_mul(pa2, res);
2525 res = isl_pw_aff_sub(pa1, res);
2526 return res;
2527 error:
2528 isl_pw_aff_free(pa1);
2529 isl_pw_aff_free(pa2);
2530 return NULL;
2533 static __isl_give isl_pw_aff *pw_aff_min(__isl_take isl_pw_aff *pwaff1,
2534 __isl_take isl_pw_aff *pwaff2)
2536 isl_set *le;
2537 isl_set *dom;
2539 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
2540 isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
2541 le = isl_pw_aff_le_set(isl_pw_aff_copy(pwaff1),
2542 isl_pw_aff_copy(pwaff2));
2543 dom = isl_set_subtract(dom, isl_set_copy(le));
2544 return isl_pw_aff_select(le, pwaff1, dom, pwaff2);
2547 __isl_give isl_pw_aff *isl_pw_aff_min(__isl_take isl_pw_aff *pwaff1,
2548 __isl_take isl_pw_aff *pwaff2)
2550 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_min);
2553 static __isl_give isl_pw_aff *pw_aff_max(__isl_take isl_pw_aff *pwaff1,
2554 __isl_take isl_pw_aff *pwaff2)
2556 isl_set *ge;
2557 isl_set *dom;
2559 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
2560 isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
2561 ge = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff1),
2562 isl_pw_aff_copy(pwaff2));
2563 dom = isl_set_subtract(dom, isl_set_copy(ge));
2564 return isl_pw_aff_select(ge, pwaff1, dom, pwaff2);
2567 __isl_give isl_pw_aff *isl_pw_aff_max(__isl_take isl_pw_aff *pwaff1,
2568 __isl_take isl_pw_aff *pwaff2)
2570 return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_max);
2573 static __isl_give isl_pw_aff *pw_aff_list_reduce(
2574 __isl_take isl_pw_aff_list *list,
2575 __isl_give isl_pw_aff *(*fn)(__isl_take isl_pw_aff *pwaff1,
2576 __isl_take isl_pw_aff *pwaff2))
2578 int i;
2579 isl_ctx *ctx;
2580 isl_pw_aff *res;
2582 if (!list)
2583 return NULL;
2585 ctx = isl_pw_aff_list_get_ctx(list);
2586 if (list->n < 1)
2587 isl_die(ctx, isl_error_invalid,
2588 "list should contain at least one element",
2589 return isl_pw_aff_list_free(list));
2591 res = isl_pw_aff_copy(list->p[0]);
2592 for (i = 1; i < list->n; ++i)
2593 res = fn(res, isl_pw_aff_copy(list->p[i]));
2595 isl_pw_aff_list_free(list);
2596 return res;
2599 /* Return an isl_pw_aff that maps each element in the intersection of the
2600 * domains of the elements of list to the minimal corresponding affine
2601 * expression.
2603 __isl_give isl_pw_aff *isl_pw_aff_list_min(__isl_take isl_pw_aff_list *list)
2605 return pw_aff_list_reduce(list, &isl_pw_aff_min);
2608 /* Return an isl_pw_aff that maps each element in the intersection of the
2609 * domains of the elements of list to the maximal corresponding affine
2610 * expression.
2612 __isl_give isl_pw_aff *isl_pw_aff_list_max(__isl_take isl_pw_aff_list *list)
2614 return pw_aff_list_reduce(list, &isl_pw_aff_max);
2617 /* Mark the domains of "pwaff" as rational.
2619 __isl_give isl_pw_aff *isl_pw_aff_set_rational(__isl_take isl_pw_aff *pwaff)
2621 int i;
2623 pwaff = isl_pw_aff_cow(pwaff);
2624 if (!pwaff)
2625 return NULL;
2626 if (pwaff->n == 0)
2627 return pwaff;
2629 for (i = 0; i < pwaff->n; ++i) {
2630 pwaff->p[i].set = isl_set_set_rational(pwaff->p[i].set);
2631 if (!pwaff->p[i].set)
2632 return isl_pw_aff_free(pwaff);
2635 return pwaff;
2638 /* Mark the domains of the elements of "list" as rational.
2640 __isl_give isl_pw_aff_list *isl_pw_aff_list_set_rational(
2641 __isl_take isl_pw_aff_list *list)
2643 int i, n;
2645 if (!list)
2646 return NULL;
2647 if (list->n == 0)
2648 return list;
2650 n = list->n;
2651 for (i = 0; i < n; ++i) {
2652 isl_pw_aff *pa;
2654 pa = isl_pw_aff_list_get_pw_aff(list, i);
2655 pa = isl_pw_aff_set_rational(pa);
2656 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
2659 return list;
2662 #undef BASE
2663 #define BASE aff
2665 #include <isl_multi_templ.c>
2667 /* Create an isl_pw_multi_aff with the given isl_multi_aff on a universe
2668 * domain.
2670 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_aff(
2671 __isl_take isl_multi_aff *ma)
2673 isl_set *dom = isl_set_universe(isl_multi_aff_get_domain_space(ma));
2674 return isl_pw_multi_aff_alloc(dom, ma);
2677 /* Create a piecewise multi-affine expression in the given space that maps each
2678 * input dimension to the corresponding output dimension.
2680 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
2681 __isl_take isl_space *space)
2683 return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_identity(space));
2686 __isl_give isl_multi_aff *isl_multi_aff_add(__isl_take isl_multi_aff *maff1,
2687 __isl_take isl_multi_aff *maff2)
2689 return isl_multi_aff_bin_op(maff1, maff2, &isl_aff_add);
2692 /* Subtract "ma2" from "ma1" and return the result.
2694 __isl_give isl_multi_aff *isl_multi_aff_sub(__isl_take isl_multi_aff *ma1,
2695 __isl_take isl_multi_aff *ma2)
2697 return isl_multi_aff_bin_op(ma1, ma2, &isl_aff_sub);
2700 /* Given two multi-affine expressions A -> B and C -> D,
2701 * construct a multi-affine expression [A -> C] -> [B -> D].
2703 __isl_give isl_multi_aff *isl_multi_aff_product(
2704 __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
2706 int i;
2707 isl_aff *aff;
2708 isl_space *space;
2709 isl_multi_aff *res;
2710 int in1, in2, out1, out2;
2712 in1 = isl_multi_aff_dim(ma1, isl_dim_in);
2713 in2 = isl_multi_aff_dim(ma2, isl_dim_in);
2714 out1 = isl_multi_aff_dim(ma1, isl_dim_out);
2715 out2 = isl_multi_aff_dim(ma2, isl_dim_out);
2716 space = isl_space_product(isl_multi_aff_get_space(ma1),
2717 isl_multi_aff_get_space(ma2));
2718 res = isl_multi_aff_alloc(isl_space_copy(space));
2719 space = isl_space_domain(space);
2721 for (i = 0; i < out1; ++i) {
2722 aff = isl_multi_aff_get_aff(ma1, i);
2723 aff = isl_aff_insert_dims(aff, isl_dim_in, in1, in2);
2724 aff = isl_aff_reset_domain_space(aff, isl_space_copy(space));
2725 res = isl_multi_aff_set_aff(res, i, aff);
2728 for (i = 0; i < out2; ++i) {
2729 aff = isl_multi_aff_get_aff(ma2, i);
2730 aff = isl_aff_insert_dims(aff, isl_dim_in, 0, in1);
2731 aff = isl_aff_reset_domain_space(aff, isl_space_copy(space));
2732 res = isl_multi_aff_set_aff(res, out1 + i, aff);
2735 isl_space_free(space);
2736 isl_multi_aff_free(ma1);
2737 isl_multi_aff_free(ma2);
2738 return res;
2741 /* Exploit the equalities in "eq" to simplify the affine expressions.
2743 static __isl_give isl_multi_aff *isl_multi_aff_substitute_equalities(
2744 __isl_take isl_multi_aff *maff, __isl_take isl_basic_set *eq)
2746 int i;
2748 maff = isl_multi_aff_cow(maff);
2749 if (!maff || !eq)
2750 goto error;
2752 for (i = 0; i < maff->n; ++i) {
2753 maff->p[i] = isl_aff_substitute_equalities(maff->p[i],
2754 isl_basic_set_copy(eq));
2755 if (!maff->p[i])
2756 goto error;
2759 isl_basic_set_free(eq);
2760 return maff;
2761 error:
2762 isl_basic_set_free(eq);
2763 isl_multi_aff_free(maff);
2764 return NULL;
2767 __isl_give isl_multi_aff *isl_multi_aff_scale(__isl_take isl_multi_aff *maff,
2768 isl_int f)
2770 int i;
2772 maff = isl_multi_aff_cow(maff);
2773 if (!maff)
2774 return NULL;
2776 for (i = 0; i < maff->n; ++i) {
2777 maff->p[i] = isl_aff_scale(maff->p[i], f);
2778 if (!maff->p[i])
2779 return isl_multi_aff_free(maff);
2782 return maff;
2785 __isl_give isl_multi_aff *isl_multi_aff_add_on_domain(__isl_keep isl_set *dom,
2786 __isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2)
2788 maff1 = isl_multi_aff_add(maff1, maff2);
2789 maff1 = isl_multi_aff_gist(maff1, isl_set_copy(dom));
2790 return maff1;
2793 int isl_multi_aff_is_empty(__isl_keep isl_multi_aff *maff)
2795 if (!maff)
2796 return -1;
2798 return 0;
2801 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
2802 __isl_keep isl_multi_aff *maff2)
2804 int i;
2805 int equal;
2807 if (!maff1 || !maff2)
2808 return -1;
2809 if (maff1->n != maff2->n)
2810 return 0;
2811 equal = isl_space_is_equal(maff1->space, maff2->space);
2812 if (equal < 0 || !equal)
2813 return equal;
2815 for (i = 0; i < maff1->n; ++i) {
2816 equal = isl_aff_plain_is_equal(maff1->p[i], maff2->p[i]);
2817 if (equal < 0 || !equal)
2818 return equal;
2821 return 1;
2824 /* Return the set of domain elements where "ma1" is lexicographically
2825 * smaller than or equal to "ma2".
2827 __isl_give isl_set *isl_multi_aff_lex_le_set(__isl_take isl_multi_aff *ma1,
2828 __isl_take isl_multi_aff *ma2)
2830 return isl_multi_aff_lex_ge_set(ma2, ma1);
2833 /* Return the set of domain elements where "ma1" is lexicographically
2834 * greater than or equal to "ma2".
2836 __isl_give isl_set *isl_multi_aff_lex_ge_set(__isl_take isl_multi_aff *ma1,
2837 __isl_take isl_multi_aff *ma2)
2839 isl_space *space;
2840 isl_map *map1, *map2;
2841 isl_map *map, *ge;
2843 map1 = isl_map_from_multi_aff(ma1);
2844 map2 = isl_map_from_multi_aff(ma2);
2845 map = isl_map_range_product(map1, map2);
2846 space = isl_space_range(isl_map_get_space(map));
2847 space = isl_space_domain(isl_space_unwrap(space));
2848 ge = isl_map_lex_ge(space);
2849 map = isl_map_intersect_range(map, isl_map_wrap(ge));
2851 return isl_map_domain(map);
2854 #undef PW
2855 #define PW isl_pw_multi_aff
2856 #undef EL
2857 #define EL isl_multi_aff
2858 #undef EL_IS_ZERO
2859 #define EL_IS_ZERO is_empty
2860 #undef ZERO
2861 #define ZERO empty
2862 #undef IS_ZERO
2863 #define IS_ZERO is_empty
2864 #undef FIELD
2865 #define FIELD maff
2866 #undef DEFAULT_IS_ZERO
2867 #define DEFAULT_IS_ZERO 0
2869 #define NO_NEG
2870 #define NO_EVAL
2871 #define NO_OPT
2872 #define NO_INVOLVES_DIMS
2873 #define NO_MOVE_DIMS
2874 #define NO_INSERT_DIMS
2875 #define NO_LIFT
2876 #define NO_MORPH
2878 #include <isl_pw_templ.c>
2880 #undef UNION
2881 #define UNION isl_union_pw_multi_aff
2882 #undef PART
2883 #define PART isl_pw_multi_aff
2884 #undef PARTS
2885 #define PARTS pw_multi_aff
2886 #define ALIGN_DOMAIN
2888 #define NO_EVAL
2890 #include <isl_union_templ.c>
2892 /* Given a function "cmp" that returns the set of elements where
2893 * "ma1" is "better" than "ma2", return the intersection of this
2894 * set with "dom1" and "dom2".
2896 static __isl_give isl_set *shared_and_better(__isl_keep isl_set *dom1,
2897 __isl_keep isl_set *dom2, __isl_keep isl_multi_aff *ma1,
2898 __isl_keep isl_multi_aff *ma2,
2899 __isl_give isl_set *(*cmp)(__isl_take isl_multi_aff *ma1,
2900 __isl_take isl_multi_aff *ma2))
2902 isl_set *common;
2903 isl_set *better;
2904 int is_empty;
2906 common = isl_set_intersect(isl_set_copy(dom1), isl_set_copy(dom2));
2907 is_empty = isl_set_plain_is_empty(common);
2908 if (is_empty >= 0 && is_empty)
2909 return common;
2910 if (is_empty < 0)
2911 return isl_set_free(common);
2912 better = cmp(isl_multi_aff_copy(ma1), isl_multi_aff_copy(ma2));
2913 better = isl_set_intersect(common, better);
2915 return better;
2918 /* Given a function "cmp" that returns the set of elements where
2919 * "ma1" is "better" than "ma2", return a piecewise multi affine
2920 * expression defined on the union of the definition domains
2921 * of "pma1" and "pma2" that maps to the "best" of "pma1" and
2922 * "pma2" on each cell. If only one of the two input functions
2923 * is defined on a given cell, then it is considered the best.
2925 static __isl_give isl_pw_multi_aff *pw_multi_aff_union_opt(
2926 __isl_take isl_pw_multi_aff *pma1,
2927 __isl_take isl_pw_multi_aff *pma2,
2928 __isl_give isl_set *(*cmp)(__isl_take isl_multi_aff *ma1,
2929 __isl_take isl_multi_aff *ma2))
2931 int i, j, n;
2932 isl_pw_multi_aff *res = NULL;
2933 isl_ctx *ctx;
2934 isl_set *set = NULL;
2936 if (!pma1 || !pma2)
2937 goto error;
2939 ctx = isl_space_get_ctx(pma1->dim);
2940 if (!isl_space_is_equal(pma1->dim, pma2->dim))
2941 isl_die(ctx, isl_error_invalid,
2942 "arguments should live in the same space", goto error);
2944 if (isl_pw_multi_aff_is_empty(pma1)) {
2945 isl_pw_multi_aff_free(pma1);
2946 return pma2;
2949 if (isl_pw_multi_aff_is_empty(pma2)) {
2950 isl_pw_multi_aff_free(pma2);
2951 return pma1;
2954 n = 2 * (pma1->n + 1) * (pma2->n + 1);
2955 res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma1->dim), n);
2957 for (i = 0; i < pma1->n; ++i) {
2958 set = isl_set_copy(pma1->p[i].set);
2959 for (j = 0; j < pma2->n; ++j) {
2960 isl_set *better;
2961 int is_empty;
2963 better = shared_and_better(pma2->p[j].set,
2964 pma1->p[i].set, pma2->p[j].maff,
2965 pma1->p[i].maff, cmp);
2966 is_empty = isl_set_plain_is_empty(better);
2967 if (is_empty < 0 || is_empty) {
2968 isl_set_free(better);
2969 if (is_empty < 0)
2970 goto error;
2971 continue;
2973 set = isl_set_subtract(set, isl_set_copy(better));
2975 res = isl_pw_multi_aff_add_piece(res, better,
2976 isl_multi_aff_copy(pma2->p[j].maff));
2978 res = isl_pw_multi_aff_add_piece(res, set,
2979 isl_multi_aff_copy(pma1->p[i].maff));
2982 for (j = 0; j < pma2->n; ++j) {
2983 set = isl_set_copy(pma2->p[j].set);
2984 for (i = 0; i < pma1->n; ++i)
2985 set = isl_set_subtract(set,
2986 isl_set_copy(pma1->p[i].set));
2987 res = isl_pw_multi_aff_add_piece(res, set,
2988 isl_multi_aff_copy(pma2->p[j].maff));
2991 isl_pw_multi_aff_free(pma1);
2992 isl_pw_multi_aff_free(pma2);
2994 return res;
2995 error:
2996 isl_pw_multi_aff_free(pma1);
2997 isl_pw_multi_aff_free(pma2);
2998 isl_set_free(set);
2999 return isl_pw_multi_aff_free(res);
3002 static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmax(
3003 __isl_take isl_pw_multi_aff *pma1,
3004 __isl_take isl_pw_multi_aff *pma2)
3006 return pw_multi_aff_union_opt(pma1, pma2, &isl_multi_aff_lex_ge_set);
3009 /* Given two piecewise multi affine expressions, return a piecewise
3010 * multi-affine expression defined on the union of the definition domains
3011 * of the inputs that is equal to the lexicographic maximum of the two
3012 * inputs on each cell. If only one of the two inputs is defined on
3013 * a given cell, then it is considered to be the maximum.
3015 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
3016 __isl_take isl_pw_multi_aff *pma1,
3017 __isl_take isl_pw_multi_aff *pma2)
3019 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
3020 &pw_multi_aff_union_lexmax);
3023 static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmin(
3024 __isl_take isl_pw_multi_aff *pma1,
3025 __isl_take isl_pw_multi_aff *pma2)
3027 return pw_multi_aff_union_opt(pma1, pma2, &isl_multi_aff_lex_le_set);
3030 /* Given two piecewise multi affine expressions, return a piecewise
3031 * multi-affine expression defined on the union of the definition domains
3032 * of the inputs that is equal to the lexicographic minimum of the two
3033 * inputs on each cell. If only one of the two inputs is defined on
3034 * a given cell, then it is considered to be the minimum.
3036 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
3037 __isl_take isl_pw_multi_aff *pma1,
3038 __isl_take isl_pw_multi_aff *pma2)
3040 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
3041 &pw_multi_aff_union_lexmin);
3044 static __isl_give isl_pw_multi_aff *pw_multi_aff_add(
3045 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3047 return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
3048 &isl_multi_aff_add);
3051 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3052 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3054 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
3055 &pw_multi_aff_add);
3058 static __isl_give isl_pw_multi_aff *pw_multi_aff_sub(
3059 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3061 return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
3062 &isl_multi_aff_sub);
3065 /* Subtract "pma2" from "pma1" and return the result.
3067 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
3068 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3070 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
3071 &pw_multi_aff_sub);
3074 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3075 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3077 return isl_pw_multi_aff_union_add_(pma1, pma2);
3080 /* Given two piecewise multi-affine expressions A -> B and C -> D,
3081 * construct a piecewise multi-affine expression [A -> C] -> [B -> D].
3083 static __isl_give isl_pw_multi_aff *pw_multi_aff_product(
3084 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3086 int i, j, n;
3087 isl_space *space;
3088 isl_pw_multi_aff *res;
3090 if (!pma1 || !pma2)
3091 goto error;
3093 n = pma1->n * pma2->n;
3094 space = isl_space_product(isl_space_copy(pma1->dim),
3095 isl_space_copy(pma2->dim));
3096 res = isl_pw_multi_aff_alloc_size(space, n);
3098 for (i = 0; i < pma1->n; ++i) {
3099 for (j = 0; j < pma2->n; ++j) {
3100 isl_set *domain;
3101 isl_multi_aff *ma;
3103 domain = isl_set_product(isl_set_copy(pma1->p[i].set),
3104 isl_set_copy(pma2->p[j].set));
3105 ma = isl_multi_aff_product(
3106 isl_multi_aff_copy(pma1->p[i].maff),
3107 isl_multi_aff_copy(pma2->p[i].maff));
3108 res = isl_pw_multi_aff_add_piece(res, domain, ma);
3112 isl_pw_multi_aff_free(pma1);
3113 isl_pw_multi_aff_free(pma2);
3114 return res;
3115 error:
3116 isl_pw_multi_aff_free(pma1);
3117 isl_pw_multi_aff_free(pma2);
3118 return NULL;
3121 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
3122 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
3124 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
3125 &pw_multi_aff_product);
3128 /* Construct a map mapping the domain of the piecewise multi-affine expression
3129 * to its range, with each dimension in the range equated to the
3130 * corresponding affine expression on its cell.
3132 __isl_give isl_map *isl_map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
3134 int i;
3135 isl_map *map;
3137 if (!pma)
3138 return NULL;
3140 map = isl_map_empty(isl_pw_multi_aff_get_space(pma));
3142 for (i = 0; i < pma->n; ++i) {
3143 isl_multi_aff *maff;
3144 isl_basic_map *bmap;
3145 isl_map *map_i;
3147 maff = isl_multi_aff_copy(pma->p[i].maff);
3148 bmap = isl_basic_map_from_multi_aff(maff);
3149 map_i = isl_map_from_basic_map(bmap);
3150 map_i = isl_map_intersect_domain(map_i,
3151 isl_set_copy(pma->p[i].set));
3152 map = isl_map_union_disjoint(map, map_i);
3155 isl_pw_multi_aff_free(pma);
3156 return map;
3159 __isl_give isl_set *isl_set_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
3161 if (!pma)
3162 return NULL;
3164 if (!isl_space_is_set(pma->dim))
3165 isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
3166 "isl_pw_multi_aff cannot be converted into an isl_set",
3167 return isl_pw_multi_aff_free(pma));
3169 return isl_map_from_pw_multi_aff(pma);
3172 /* Given a basic map with a single output dimension that is defined
3173 * in terms of the parameters and input dimensions using an equality,
3174 * extract an isl_aff that expresses the output dimension in terms
3175 * of the parameters and input dimensions.
3177 * Since some applications expect the result of isl_pw_multi_aff_from_map
3178 * to only contain integer affine expressions, we compute the floor
3179 * of the expression before returning.
3181 * This function shares some similarities with
3182 * isl_basic_map_has_defining_equality and isl_constraint_get_bound.
3184 static __isl_give isl_aff *extract_isl_aff_from_basic_map(
3185 __isl_take isl_basic_map *bmap)
3187 int i;
3188 unsigned offset;
3189 unsigned total;
3190 isl_local_space *ls;
3191 isl_aff *aff;
3193 if (!bmap)
3194 return NULL;
3195 if (isl_basic_map_dim(bmap, isl_dim_out) != 1)
3196 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3197 "basic map should have a single output dimension",
3198 goto error);
3199 offset = isl_basic_map_offset(bmap, isl_dim_out);
3200 total = isl_basic_map_total_dim(bmap);
3201 for (i = 0; i < bmap->n_eq; ++i) {
3202 if (isl_int_is_zero(bmap->eq[i][offset]))
3203 continue;
3204 if (isl_seq_first_non_zero(bmap->eq[i] + offset + 1,
3205 1 + total - (offset + 1)) != -1)
3206 continue;
3207 break;
3209 if (i >= bmap->n_eq)
3210 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3211 "unable to find suitable equality", goto error);
3212 ls = isl_basic_map_get_local_space(bmap);
3213 aff = isl_aff_alloc(isl_local_space_domain(ls));
3214 if (!aff)
3215 goto error;
3216 if (isl_int_is_neg(bmap->eq[i][offset]))
3217 isl_seq_cpy(aff->v->el + 1, bmap->eq[i], offset);
3218 else
3219 isl_seq_neg(aff->v->el + 1, bmap->eq[i], offset);
3220 isl_seq_clr(aff->v->el + 1 + offset, aff->v->size - (1 + offset));
3221 isl_int_abs(aff->v->el[0], bmap->eq[i][offset]);
3222 isl_basic_map_free(bmap);
3224 aff = isl_aff_remove_unused_divs(aff);
3225 aff = isl_aff_floor(aff);
3226 return aff;
3227 error:
3228 isl_basic_map_free(bmap);
3229 return NULL;
3232 /* Given a basic map where each output dimension is defined
3233 * in terms of the parameters and input dimensions using an equality,
3234 * extract an isl_multi_aff that expresses the output dimensions in terms
3235 * of the parameters and input dimensions.
3237 static __isl_give isl_multi_aff *extract_isl_multi_aff_from_basic_map(
3238 __isl_take isl_basic_map *bmap)
3240 int i;
3241 unsigned n_out;
3242 isl_multi_aff *ma;
3244 if (!bmap)
3245 return NULL;
3247 ma = isl_multi_aff_alloc(isl_basic_map_get_space(bmap));
3248 n_out = isl_basic_map_dim(bmap, isl_dim_out);
3250 for (i = 0; i < n_out; ++i) {
3251 isl_basic_map *bmap_i;
3252 isl_aff *aff;
3254 bmap_i = isl_basic_map_copy(bmap);
3255 bmap_i = isl_basic_map_project_out(bmap_i, isl_dim_out,
3256 i + 1, n_out - (1 + i));
3257 bmap_i = isl_basic_map_project_out(bmap_i, isl_dim_out, 0, i);
3258 aff = extract_isl_aff_from_basic_map(bmap_i);
3259 ma = isl_multi_aff_set_aff(ma, i, aff);
3262 isl_basic_map_free(bmap);
3264 return ma;
3267 /* Create an isl_pw_multi_aff that is equivalent to
3268 * isl_map_intersect_domain(isl_map_from_basic_map(bmap), domain).
3269 * The given basic map is such that each output dimension is defined
3270 * in terms of the parameters and input dimensions using an equality.
3272 static __isl_give isl_pw_multi_aff *plain_pw_multi_aff_from_map(
3273 __isl_take isl_set *domain, __isl_take isl_basic_map *bmap)
3275 isl_multi_aff *ma;
3277 ma = extract_isl_multi_aff_from_basic_map(bmap);
3278 return isl_pw_multi_aff_alloc(domain, ma);
3281 /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
3282 * This obviously only works if the input "map" is single-valued.
3283 * If so, we compute the lexicographic minimum of the image in the form
3284 * of an isl_pw_multi_aff. Since the image is unique, it is equal
3285 * to its lexicographic minimum.
3286 * If the input is not single-valued, we produce an error.
3288 static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_base(
3289 __isl_take isl_map *map)
3291 int i;
3292 int sv;
3293 isl_pw_multi_aff *pma;
3295 sv = isl_map_is_single_valued(map);
3296 if (sv < 0)
3297 goto error;
3298 if (!sv)
3299 isl_die(isl_map_get_ctx(map), isl_error_invalid,
3300 "map is not single-valued", goto error);
3301 map = isl_map_make_disjoint(map);
3302 if (!map)
3303 return NULL;
3305 pma = isl_pw_multi_aff_empty(isl_map_get_space(map));
3307 for (i = 0; i < map->n; ++i) {
3308 isl_pw_multi_aff *pma_i;
3309 isl_basic_map *bmap;
3310 bmap = isl_basic_map_copy(map->p[i]);
3311 pma_i = isl_basic_map_lexmin_pw_multi_aff(bmap);
3312 pma = isl_pw_multi_aff_add_disjoint(pma, pma_i);
3315 isl_map_free(map);
3316 return pma;
3317 error:
3318 isl_map_free(map);
3319 return NULL;
3322 /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
3323 * taking into account that the output dimension at position "d"
3324 * can be represented as
3326 * x = floor((e(...) + c1) / m)
3328 * given that constraint "i" is of the form
3330 * e(...) + c1 - m x >= 0
3333 * Let "map" be of the form
3335 * A -> B
3337 * We construct a mapping
3339 * A -> [A -> x = floor(...)]
3341 * apply that to the map, obtaining
3343 * [A -> x = floor(...)] -> B
3345 * and equate dimension "d" to x.
3346 * We then compute a isl_pw_multi_aff representation of the resulting map
3347 * and plug in the mapping above.
3349 static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_div(
3350 __isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i)
3352 isl_ctx *ctx;
3353 isl_space *space;
3354 isl_local_space *ls;
3355 isl_multi_aff *ma;
3356 isl_aff *aff;
3357 isl_vec *v;
3358 isl_map *insert;
3359 int offset;
3360 int n;
3361 int n_in;
3362 isl_pw_multi_aff *pma;
3363 int is_set;
3365 is_set = isl_map_is_set(map);
3367 offset = isl_basic_map_offset(hull, isl_dim_out);
3368 ctx = isl_map_get_ctx(map);
3369 space = isl_space_domain(isl_map_get_space(map));
3370 n_in = isl_space_dim(space, isl_dim_set);
3371 n = isl_space_dim(space, isl_dim_all);
3373 v = isl_vec_alloc(ctx, 1 + 1 + n);
3374 if (v) {
3375 isl_int_neg(v->el[0], hull->ineq[i][offset + d]);
3376 isl_seq_cpy(v->el + 1, hull->ineq[i], 1 + n);
3378 isl_basic_map_free(hull);
3380 ls = isl_local_space_from_space(isl_space_copy(space));
3381 aff = isl_aff_alloc_vec(ls, v);
3382 aff = isl_aff_floor(aff);
3383 if (is_set) {
3384 isl_space_free(space);
3385 ma = isl_multi_aff_from_aff(aff);
3386 } else {
3387 ma = isl_multi_aff_identity(isl_space_map_from_set(space));
3388 ma = isl_multi_aff_range_product(ma,
3389 isl_multi_aff_from_aff(aff));
3392 insert = isl_map_from_multi_aff(isl_multi_aff_copy(ma));
3393 map = isl_map_apply_domain(map, insert);
3394 map = isl_map_equate(map, isl_dim_in, n_in, isl_dim_out, d);
3395 pma = isl_pw_multi_aff_from_map(map);
3396 pma = isl_pw_multi_aff_pullback_multi_aff(pma, ma);
3398 return pma;
3401 /* Is constraint "c" of the form
3403 * e(...) + c1 - m x >= 0
3405 * or
3407 * -e(...) + c2 + m x >= 0
3409 * where m > 1 and e only depends on parameters and input dimemnsions?
3411 * "offset" is the offset of the output dimensions
3412 * "pos" is the position of output dimension x.
3414 static int is_potential_div_constraint(isl_int *c, int offset, int d, int total)
3416 if (isl_int_is_zero(c[offset + d]))
3417 return 0;
3418 if (isl_int_is_one(c[offset + d]))
3419 return 0;
3420 if (isl_int_is_negone(c[offset + d]))
3421 return 0;
3422 if (isl_seq_first_non_zero(c + offset, d) != -1)
3423 return 0;
3424 if (isl_seq_first_non_zero(c + offset + d + 1,
3425 total - (offset + d + 1)) != -1)
3426 return 0;
3427 return 1;
3430 /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
3432 * As a special case, we first check if there is any pair of constraints,
3433 * shared by all the basic maps in "map" that force a given dimension
3434 * to be equal to the floor of some affine combination of the input dimensions.
3436 * In particular, if we can find two constraints
3438 * e(...) + c1 - m x >= 0 i.e., m x <= e(...) + c1
3440 * and
3442 * -e(...) + c2 + m x >= 0 i.e., m x >= e(...) - c2
3444 * where m > 1 and e only depends on parameters and input dimemnsions,
3445 * and such that
3447 * c1 + c2 < m i.e., -c2 >= c1 - (m - 1)
3449 * then we know that we can take
3451 * x = floor((e(...) + c1) / m)
3453 * without having to perform any computation.
3455 * Note that we know that
3457 * c1 + c2 >= 1
3459 * If c1 + c2 were 0, then we would have detected an equality during
3460 * simplification. If c1 + c2 were negative, then we would have detected
3461 * a contradiction.
3463 static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_check_div(
3464 __isl_take isl_map *map)
3466 int d, dim;
3467 int i, j, n;
3468 int offset, total;
3469 isl_int sum;
3470 isl_basic_map *hull;
3472 hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
3473 if (!hull)
3474 goto error;
3476 isl_int_init(sum);
3477 dim = isl_map_dim(map, isl_dim_out);
3478 offset = isl_basic_map_offset(hull, isl_dim_out);
3479 total = 1 + isl_basic_map_total_dim(hull);
3480 n = hull->n_ineq;
3481 for (d = 0; d < dim; ++d) {
3482 for (i = 0; i < n; ++i) {
3483 if (!is_potential_div_constraint(hull->ineq[i],
3484 offset, d, total))
3485 continue;
3486 for (j = i + 1; j < n; ++j) {
3487 if (!isl_seq_is_neg(hull->ineq[i] + 1,
3488 hull->ineq[j] + 1, total - 1))
3489 continue;
3490 isl_int_add(sum, hull->ineq[i][0],
3491 hull->ineq[j][0]);
3492 if (isl_int_abs_lt(sum,
3493 hull->ineq[i][offset + d]))
3494 break;
3497 if (j >= n)
3498 continue;
3499 isl_int_clear(sum);
3500 if (isl_int_is_pos(hull->ineq[j][offset + d]))
3501 j = i;
3502 return pw_multi_aff_from_map_div(map, hull, d, j);
3505 isl_int_clear(sum);
3506 isl_basic_map_free(hull);
3507 return pw_multi_aff_from_map_base(map);
3508 error:
3509 isl_map_free(map);
3510 isl_basic_map_free(hull);
3511 return NULL;
3514 /* Given an affine expression
3516 * [A -> B] -> f(A,B)
3518 * construct an isl_multi_aff
3520 * [A -> B] -> B'
3522 * such that dimension "d" in B' is set to "aff" and the remaining
3523 * dimensions are set equal to the corresponding dimensions in B.
3524 * "n_in" is the dimension of the space A.
3525 * "n_out" is the dimension of the space B.
3527 * If "is_set" is set, then the affine expression is of the form
3529 * [B] -> f(B)
3531 * and we construct an isl_multi_aff
3533 * B -> B'
3535 static __isl_give isl_multi_aff *range_map(__isl_take isl_aff *aff, int d,
3536 unsigned n_in, unsigned n_out, int is_set)
3538 int i;
3539 isl_multi_aff *ma;
3540 isl_space *space, *space2;
3541 isl_local_space *ls;
3543 space = isl_aff_get_domain_space(aff);
3544 ls = isl_local_space_from_space(isl_space_copy(space));
3545 space2 = isl_space_copy(space);
3546 if (!is_set)
3547 space2 = isl_space_range(isl_space_unwrap(space2));
3548 space = isl_space_map_from_domain_and_range(space, space2);
3549 ma = isl_multi_aff_alloc(space);
3550 ma = isl_multi_aff_set_aff(ma, d, aff);
3552 for (i = 0; i < n_out; ++i) {
3553 if (i == d)
3554 continue;
3555 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
3556 isl_dim_set, n_in + i);
3557 ma = isl_multi_aff_set_aff(ma, i, aff);
3560 isl_local_space_free(ls);
3562 return ma;
3565 /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
3566 * taking into account that the dimension at position "d" can be written as
3568 * x = m a + f(..) (1)
3570 * where m is equal to "gcd".
3571 * "i" is the index of the equality in "hull" that defines f(..).
3572 * In particular, the equality is of the form
3574 * f(..) - x + m g(existentials) = 0
3576 * or
3578 * -f(..) + x + m g(existentials) = 0
3580 * We basically plug (1) into "map", resulting in a map with "a"
3581 * in the range instead of "x". The corresponding isl_pw_multi_aff
3582 * defining "a" is then plugged back into (1) to obtain a definition fro "x".
3584 * Specifically, given the input map
3586 * A -> B
3588 * We first wrap it into a set
3590 * [A -> B]
3592 * and define (1) on top of the corresponding space, resulting in "aff".
3593 * We use this to create an isl_multi_aff that maps the output position "d"
3594 * from "a" to "x", leaving all other (intput and output) dimensions unchanged.
3595 * We plug this into the wrapped map, unwrap the result and compute the
3596 * corresponding isl_pw_multi_aff.
3597 * The result is an expression
3599 * A -> T(A)
3601 * We adjust that to
3603 * A -> [A -> T(A)]
3605 * so that we can plug that into "aff", after extending the latter to
3606 * a mapping
3608 * [A -> B] -> B'
3611 * If "map" is actually a set, then there is no "A" space, meaning
3612 * that we do not need to perform any wrapping, and that the result
3613 * of the recursive call is of the form
3615 * [T]
3617 * which is plugged into a mapping of the form
3619 * B -> B'
3621 static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_stride(
3622 __isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i,
3623 isl_int gcd)
3625 isl_set *set;
3626 isl_space *space;
3627 isl_local_space *ls;
3628 isl_aff *aff;
3629 isl_multi_aff *ma;
3630 isl_pw_multi_aff *pma, *id;
3631 unsigned n_in;
3632 unsigned o_out;
3633 unsigned n_out;
3634 int is_set;
3636 is_set = isl_map_is_set(map);
3638 n_in = isl_basic_map_dim(hull, isl_dim_in);
3639 n_out = isl_basic_map_dim(hull, isl_dim_out);
3640 o_out = isl_basic_map_offset(hull, isl_dim_out);
3642 if (is_set)
3643 set = map;
3644 else
3645 set = isl_map_wrap(map);
3646 space = isl_space_map_from_set(isl_set_get_space(set));
3647 ma = isl_multi_aff_identity(space);
3648 ls = isl_local_space_from_space(isl_set_get_space(set));
3649 aff = isl_aff_alloc(ls);
3650 if (aff) {
3651 isl_int_set_si(aff->v->el[0], 1);
3652 if (isl_int_is_one(hull->eq[i][o_out + d]))
3653 isl_seq_neg(aff->v->el + 1, hull->eq[i],
3654 aff->v->size - 1);
3655 else
3656 isl_seq_cpy(aff->v->el + 1, hull->eq[i],
3657 aff->v->size - 1);
3658 isl_int_set(aff->v->el[1 + o_out + d], gcd);
3660 ma = isl_multi_aff_set_aff(ma, n_in + d, isl_aff_copy(aff));
3661 set = isl_set_preimage_multi_aff(set, ma);
3663 ma = range_map(aff, d, n_in, n_out, is_set);
3665 if (is_set)
3666 map = set;
3667 else
3668 map = isl_set_unwrap(set);
3669 pma = isl_pw_multi_aff_from_map(set);
3671 if (!is_set) {
3672 space = isl_pw_multi_aff_get_domain_space(pma);
3673 space = isl_space_map_from_set(space);
3674 id = isl_pw_multi_aff_identity(space);
3675 pma = isl_pw_multi_aff_range_product(id, pma);
3677 id = isl_pw_multi_aff_from_multi_aff(ma);
3678 pma = isl_pw_multi_aff_pullback_pw_multi_aff(id, pma);
3680 isl_basic_map_free(hull);
3681 return pma;
3684 /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
3686 * As a special case, we first check if all output dimensions are uniquely
3687 * defined in terms of the parameters and input dimensions over the entire
3688 * domain. If so, we extract the desired isl_pw_multi_aff directly
3689 * from the affine hull of "map" and its domain.
3691 * Otherwise, we check if any of the output dimensions is "strided".
3692 * That is, we check if can be written as
3694 * x = m a + f(..)
3696 * with m greater than 1, a some combination of existentiall quantified
3697 * variables and f and expression in the parameters and input dimensions.
3698 * If so, we remove the stride in pw_multi_aff_from_map_stride.
3700 * Otherwise, we continue with pw_multi_aff_from_map_check_div for a further
3701 * special case.
3703 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(__isl_take isl_map *map)
3705 int i, j;
3706 int sv;
3707 isl_basic_map *hull;
3708 unsigned n_out;
3709 unsigned o_out;
3710 unsigned n_div;
3711 unsigned o_div;
3712 isl_int gcd;
3714 if (!map)
3715 return NULL;
3717 hull = isl_map_affine_hull(isl_map_copy(map));
3718 sv = isl_basic_map_plain_is_single_valued(hull);
3719 if (sv >= 0 && sv)
3720 return plain_pw_multi_aff_from_map(isl_map_domain(map), hull);
3721 if (sv < 0)
3722 hull = isl_basic_map_free(hull);
3723 if (!hull)
3724 goto error;
3726 n_div = isl_basic_map_dim(hull, isl_dim_div);
3727 o_div = isl_basic_map_offset(hull, isl_dim_div);
3729 if (n_div == 0) {
3730 isl_basic_map_free(hull);
3731 return pw_multi_aff_from_map_check_div(map);
3734 isl_int_init(gcd);
3736 n_out = isl_basic_map_dim(hull, isl_dim_out);
3737 o_out = isl_basic_map_offset(hull, isl_dim_out);
3739 for (i = 0; i < n_out; ++i) {
3740 for (j = 0; j < hull->n_eq; ++j) {
3741 isl_int *eq = hull->eq[j];
3742 isl_pw_multi_aff *res;
3744 if (!isl_int_is_one(eq[o_out + i]) &&
3745 !isl_int_is_negone(eq[o_out + i]))
3746 continue;
3747 if (isl_seq_first_non_zero(eq + o_out, i) != -1)
3748 continue;
3749 if (isl_seq_first_non_zero(eq + o_out + i + 1,
3750 n_out - (i + 1)) != -1)
3751 continue;
3752 isl_seq_gcd(eq + o_div, n_div, &gcd);
3753 if (isl_int_is_zero(gcd))
3754 continue;
3755 if (isl_int_is_one(gcd))
3756 continue;
3758 res = pw_multi_aff_from_map_stride(map, hull,
3759 i, j, gcd);
3760 isl_int_clear(gcd);
3761 return res;
3765 isl_int_clear(gcd);
3766 isl_basic_map_free(hull);
3767 return pw_multi_aff_from_map_check_div(map);
3768 error:
3769 isl_map_free(map);
3770 return NULL;
3773 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(__isl_take isl_set *set)
3775 return isl_pw_multi_aff_from_map(set);
3778 /* Convert "map" into an isl_pw_multi_aff (if possible) and
3779 * add it to *user.
3781 static int pw_multi_aff_from_map(__isl_take isl_map *map, void *user)
3783 isl_union_pw_multi_aff **upma = user;
3784 isl_pw_multi_aff *pma;
3786 pma = isl_pw_multi_aff_from_map(map);
3787 *upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
3789 return *upma ? 0 : -1;
3792 /* Try and create an isl_union_pw_multi_aff that is equivalent
3793 * to the given isl_union_map.
3794 * The isl_union_map is required to be single-valued in each space.
3795 * Otherwise, an error is produced.
3797 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_map(
3798 __isl_take isl_union_map *umap)
3800 isl_space *space;
3801 isl_union_pw_multi_aff *upma;
3803 space = isl_union_map_get_space(umap);
3804 upma = isl_union_pw_multi_aff_empty(space);
3805 if (isl_union_map_foreach_map(umap, &pw_multi_aff_from_map, &upma) < 0)
3806 upma = isl_union_pw_multi_aff_free(upma);
3807 isl_union_map_free(umap);
3809 return upma;
3812 /* Try and create an isl_union_pw_multi_aff that is equivalent
3813 * to the given isl_union_set.
3814 * The isl_union_set is required to be a singleton in each space.
3815 * Otherwise, an error is produced.
3817 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_set(
3818 __isl_take isl_union_set *uset)
3820 return isl_union_pw_multi_aff_from_union_map(uset);
3823 /* Return the piecewise affine expression "set ? 1 : 0".
3825 __isl_give isl_pw_aff *isl_set_indicator_function(__isl_take isl_set *set)
3827 isl_pw_aff *pa;
3828 isl_space *space = isl_set_get_space(set);
3829 isl_local_space *ls = isl_local_space_from_space(space);
3830 isl_aff *zero = isl_aff_zero_on_domain(isl_local_space_copy(ls));
3831 isl_aff *one = isl_aff_zero_on_domain(ls);
3833 one = isl_aff_add_constant_si(one, 1);
3834 pa = isl_pw_aff_alloc(isl_set_copy(set), one);
3835 set = isl_set_complement(set);
3836 pa = isl_pw_aff_add_disjoint(pa, isl_pw_aff_alloc(set, zero));
3838 return pa;
3841 /* Plug in "subs" for dimension "type", "pos" of "aff".
3843 * Let i be the dimension to replace and let "subs" be of the form
3845 * f/d
3847 * and "aff" of the form
3849 * (a i + g)/m
3851 * The result is
3853 * (a f + d g')/(m d)
3855 * where g' is the result of plugging in "subs" in each of the integer
3856 * divisions in g.
3858 __isl_give isl_aff *isl_aff_substitute(__isl_take isl_aff *aff,
3859 enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs)
3861 isl_ctx *ctx;
3862 isl_int v;
3864 aff = isl_aff_cow(aff);
3865 if (!aff || !subs)
3866 return isl_aff_free(aff);
3868 ctx = isl_aff_get_ctx(aff);
3869 if (!isl_space_is_equal(aff->ls->dim, subs->ls->dim))
3870 isl_die(ctx, isl_error_invalid,
3871 "spaces don't match", return isl_aff_free(aff));
3872 if (isl_local_space_dim(subs->ls, isl_dim_div) != 0)
3873 isl_die(ctx, isl_error_unsupported,
3874 "cannot handle divs yet", return isl_aff_free(aff));
3876 aff->ls = isl_local_space_substitute(aff->ls, type, pos, subs);
3877 if (!aff->ls)
3878 return isl_aff_free(aff);
3880 aff->v = isl_vec_cow(aff->v);
3881 if (!aff->v)
3882 return isl_aff_free(aff);
3884 pos += isl_local_space_offset(aff->ls, type);
3886 isl_int_init(v);
3887 isl_seq_substitute(aff->v->el, pos, subs->v->el,
3888 aff->v->size, subs->v->size, v);
3889 isl_int_clear(v);
3891 return aff;
3894 /* Plug in "subs" for dimension "type", "pos" in each of the affine
3895 * expressions in "maff".
3897 __isl_give isl_multi_aff *isl_multi_aff_substitute(
3898 __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos,
3899 __isl_keep isl_aff *subs)
3901 int i;
3903 maff = isl_multi_aff_cow(maff);
3904 if (!maff || !subs)
3905 return isl_multi_aff_free(maff);
3907 if (type == isl_dim_in)
3908 type = isl_dim_set;
3910 for (i = 0; i < maff->n; ++i) {
3911 maff->p[i] = isl_aff_substitute(maff->p[i], type, pos, subs);
3912 if (!maff->p[i])
3913 return isl_multi_aff_free(maff);
3916 return maff;
3919 /* Plug in "subs" for dimension "type", "pos" of "pma".
3921 * pma is of the form
3923 * A_i(v) -> M_i(v)
3925 * while subs is of the form
3927 * v' = B_j(v) -> S_j
3929 * Each pair i,j such that C_ij = A_i \cap B_i is non-empty
3930 * has a contribution in the result, in particular
3932 * C_ij(S_j) -> M_i(S_j)
3934 * Note that plugging in S_j in C_ij may also result in an empty set
3935 * and this contribution should simply be discarded.
3937 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_substitute(
3938 __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos,
3939 __isl_keep isl_pw_aff *subs)
3941 int i, j, n;
3942 isl_pw_multi_aff *res;
3944 if (!pma || !subs)
3945 return isl_pw_multi_aff_free(pma);
3947 n = pma->n * subs->n;
3948 res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma->dim), n);
3950 for (i = 0; i < pma->n; ++i) {
3951 for (j = 0; j < subs->n; ++j) {
3952 isl_set *common;
3953 isl_multi_aff *res_ij;
3954 int empty;
3956 common = isl_set_intersect(
3957 isl_set_copy(pma->p[i].set),
3958 isl_set_copy(subs->p[j].set));
3959 common = isl_set_substitute(common,
3960 type, pos, subs->p[j].aff);
3961 empty = isl_set_plain_is_empty(common);
3962 if (empty < 0 || empty) {
3963 isl_set_free(common);
3964 if (empty < 0)
3965 goto error;
3966 continue;
3969 res_ij = isl_multi_aff_substitute(
3970 isl_multi_aff_copy(pma->p[i].maff),
3971 type, pos, subs->p[j].aff);
3973 res = isl_pw_multi_aff_add_piece(res, common, res_ij);
3977 isl_pw_multi_aff_free(pma);
3978 return res;
3979 error:
3980 isl_pw_multi_aff_free(pma);
3981 isl_pw_multi_aff_free(res);
3982 return NULL;
3985 /* Compute the preimage of a range of dimensions in the affine expression "src"
3986 * under "ma" and put the result in "dst". The number of dimensions in "src"
3987 * that precede the range is given by "n_before". The number of dimensions
3988 * in the range is given by the number of output dimensions of "ma".
3989 * The number of dimensions that follow the range is given by "n_after".
3990 * If "has_denom" is set (to one),
3991 * then "src" and "dst" have an extra initial denominator.
3992 * "n_div_ma" is the number of existentials in "ma"
3993 * "n_div_bset" is the number of existentials in "src"
3994 * The resulting "dst" (which is assumed to have been allocated by
3995 * the caller) contains coefficients for both sets of existentials,
3996 * first those in "ma" and then those in "src".
3997 * f, c1, c2 and g are temporary objects that have been initialized
3998 * by the caller.
4000 * Let src represent the expression
4002 * (a(p) + f_u u + b v + f_w w + c(divs))/d
4004 * and let ma represent the expressions
4006 * v_i = (r_i(p) + s_i(y) + t_i(divs'))/m_i
4008 * We start out with the following expression for dst:
4010 * (a(p) + f_u u + 0 y + f_w w + 0 divs' + c(divs) + f \sum_i b_i v_i)/d
4012 * with the multiplication factor f initially equal to 1
4013 * and f \sum_i b_i v_i kept separately.
4014 * For each x_i that we substitute, we multiply the numerator
4015 * (and denominator) of dst by c_1 = m_i and add the numerator
4016 * of the x_i expression multiplied by c_2 = f b_i,
4017 * after removing the common factors of c_1 and c_2.
4018 * The multiplication factor f also needs to be multiplied by c_1
4019 * for the next x_j, j > i.
4021 void isl_seq_preimage(isl_int *dst, isl_int *src,
4022 __isl_keep isl_multi_aff *ma, int n_before, int n_after,
4023 int n_div_ma, int n_div_bmap,
4024 isl_int f, isl_int c1, isl_int c2, isl_int g, int has_denom)
4026 int i;
4027 int n_param, n_in, n_out;
4028 int o_dst, o_src;
4030 n_param = isl_multi_aff_dim(ma, isl_dim_param);
4031 n_in = isl_multi_aff_dim(ma, isl_dim_in);
4032 n_out = isl_multi_aff_dim(ma, isl_dim_out);
4034 isl_seq_cpy(dst, src, has_denom + 1 + n_param + n_before);
4035 o_dst = o_src = has_denom + 1 + n_param + n_before;
4036 isl_seq_clr(dst + o_dst, n_in);
4037 o_dst += n_in;
4038 o_src += n_out;
4039 isl_seq_cpy(dst + o_dst, src + o_src, n_after);
4040 o_dst += n_after;
4041 o_src += n_after;
4042 isl_seq_clr(dst + o_dst, n_div_ma);
4043 o_dst += n_div_ma;
4044 isl_seq_cpy(dst + o_dst, src + o_src, n_div_bmap);
4046 isl_int_set_si(f, 1);
4048 for (i = 0; i < n_out; ++i) {
4049 int offset = has_denom + 1 + n_param + n_before + i;
4051 if (isl_int_is_zero(src[offset]))
4052 continue;
4053 isl_int_set(c1, ma->p[i]->v->el[0]);
4054 isl_int_mul(c2, f, src[offset]);
4055 isl_int_gcd(g, c1, c2);
4056 isl_int_divexact(c1, c1, g);
4057 isl_int_divexact(c2, c2, g);
4059 isl_int_mul(f, f, c1);
4060 o_dst = has_denom;
4061 o_src = 1;
4062 isl_seq_combine(dst + o_dst, c1, dst + o_dst,
4063 c2, ma->p[i]->v->el + o_src, 1 + n_param);
4064 o_dst += 1 + n_param;
4065 o_src += 1 + n_param;
4066 isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_before);
4067 o_dst += n_before;
4068 isl_seq_combine(dst + o_dst, c1, dst + o_dst,
4069 c2, ma->p[i]->v->el + o_src, n_in);
4070 o_dst += n_in;
4071 o_src += n_in;
4072 isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_after);
4073 o_dst += n_after;
4074 isl_seq_combine(dst + o_dst, c1, dst + o_dst,
4075 c2, ma->p[i]->v->el + o_src, n_div_ma);
4076 o_dst += n_div_ma;
4077 o_src += n_div_ma;
4078 isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_div_bmap);
4079 if (has_denom)
4080 isl_int_mul(dst[0], dst[0], c1);
4084 /* Compute the pullback of "aff" by the function represented by "ma".
4085 * In other words, plug in "ma" in "aff". The result is an affine expression
4086 * defined over the domain space of "ma".
4088 * If "aff" is represented by
4090 * (a(p) + b x + c(divs))/d
4092 * and ma is represented by
4094 * x = D(p) + F(y) + G(divs')
4096 * then the result is
4098 * (a(p) + b D(p) + b F(y) + b G(divs') + c(divs))/d
4100 * The divs in the local space of the input are similarly adjusted
4101 * through a call to isl_local_space_preimage_multi_aff.
4103 __isl_give isl_aff *isl_aff_pullback_multi_aff(__isl_take isl_aff *aff,
4104 __isl_take isl_multi_aff *ma)
4106 isl_aff *res = NULL;
4107 isl_local_space *ls;
4108 int n_div_aff, n_div_ma;
4109 isl_int f, c1, c2, g;
4111 ma = isl_multi_aff_align_divs(ma);
4112 if (!aff || !ma)
4113 goto error;
4115 n_div_aff = isl_aff_dim(aff, isl_dim_div);
4116 n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0;
4118 ls = isl_aff_get_domain_local_space(aff);
4119 ls = isl_local_space_preimage_multi_aff(ls, isl_multi_aff_copy(ma));
4120 res = isl_aff_alloc(ls);
4121 if (!res)
4122 goto error;
4124 isl_int_init(f);
4125 isl_int_init(c1);
4126 isl_int_init(c2);
4127 isl_int_init(g);
4129 isl_seq_preimage(res->v->el, aff->v->el, ma, 0, 0, n_div_ma, n_div_aff,
4130 f, c1, c2, g, 1);
4132 isl_int_clear(f);
4133 isl_int_clear(c1);
4134 isl_int_clear(c2);
4135 isl_int_clear(g);
4137 isl_aff_free(aff);
4138 isl_multi_aff_free(ma);
4139 res = isl_aff_normalize(res);
4140 return res;
4141 error:
4142 isl_aff_free(aff);
4143 isl_multi_aff_free(ma);
4144 isl_aff_free(res);
4145 return NULL;
4148 /* Compute the pullback of "ma1" by the function represented by "ma2".
4149 * In other words, plug in "ma2" in "ma1".
4151 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
4152 __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
4154 int i;
4155 isl_space *space = NULL;
4157 ma2 = isl_multi_aff_align_divs(ma2);
4158 ma1 = isl_multi_aff_cow(ma1);
4159 if (!ma1 || !ma2)
4160 goto error;
4162 space = isl_space_join(isl_multi_aff_get_space(ma2),
4163 isl_multi_aff_get_space(ma1));
4165 for (i = 0; i < ma1->n; ++i) {
4166 ma1->p[i] = isl_aff_pullback_multi_aff(ma1->p[i],
4167 isl_multi_aff_copy(ma2));
4168 if (!ma1->p[i])
4169 goto error;
4172 ma1 = isl_multi_aff_reset_space(ma1, space);
4173 isl_multi_aff_free(ma2);
4174 return ma1;
4175 error:
4176 isl_space_free(space);
4177 isl_multi_aff_free(ma2);
4178 isl_multi_aff_free(ma1);
4179 return NULL;
4182 /* Extend the local space of "dst" to include the divs
4183 * in the local space of "src".
4185 __isl_give isl_aff *isl_aff_align_divs(__isl_take isl_aff *dst,
4186 __isl_keep isl_aff *src)
4188 isl_ctx *ctx;
4189 int *exp1 = NULL;
4190 int *exp2 = NULL;
4191 isl_mat *div;
4193 if (!src || !dst)
4194 return isl_aff_free(dst);
4196 ctx = isl_aff_get_ctx(src);
4197 if (!isl_space_is_equal(src->ls->dim, dst->ls->dim))
4198 isl_die(ctx, isl_error_invalid,
4199 "spaces don't match", goto error);
4201 if (src->ls->div->n_row == 0)
4202 return dst;
4204 exp1 = isl_alloc_array(ctx, int, src->ls->div->n_row);
4205 exp2 = isl_alloc_array(ctx, int, dst->ls->div->n_row);
4206 if (!exp1 || !exp2)
4207 goto error;
4209 div = isl_merge_divs(src->ls->div, dst->ls->div, exp1, exp2);
4210 dst = isl_aff_expand_divs(dst, div, exp2);
4211 free(exp1);
4212 free(exp2);
4214 return dst;
4215 error:
4216 free(exp1);
4217 free(exp2);
4218 return isl_aff_free(dst);
4221 /* Adjust the local spaces of the affine expressions in "maff"
4222 * such that they all have the save divs.
4224 __isl_give isl_multi_aff *isl_multi_aff_align_divs(
4225 __isl_take isl_multi_aff *maff)
4227 int i;
4229 if (!maff)
4230 return NULL;
4231 if (maff->n == 0)
4232 return maff;
4233 maff = isl_multi_aff_cow(maff);
4234 if (!maff)
4235 return NULL;
4237 for (i = 1; i < maff->n; ++i)
4238 maff->p[0] = isl_aff_align_divs(maff->p[0], maff->p[i]);
4239 for (i = 1; i < maff->n; ++i) {
4240 maff->p[i] = isl_aff_align_divs(maff->p[i], maff->p[0]);
4241 if (!maff->p[i])
4242 return isl_multi_aff_free(maff);
4245 return maff;
4248 __isl_give isl_aff *isl_aff_lift(__isl_take isl_aff *aff)
4250 aff = isl_aff_cow(aff);
4251 if (!aff)
4252 return NULL;
4254 aff->ls = isl_local_space_lift(aff->ls);
4255 if (!aff->ls)
4256 return isl_aff_free(aff);
4258 return aff;
4261 /* Lift "maff" to a space with extra dimensions such that the result
4262 * has no more existentially quantified variables.
4263 * If "ls" is not NULL, then *ls is assigned the local space that lies
4264 * at the basis of the lifting applied to "maff".
4266 __isl_give isl_multi_aff *isl_multi_aff_lift(__isl_take isl_multi_aff *maff,
4267 __isl_give isl_local_space **ls)
4269 int i;
4270 isl_space *space;
4271 unsigned n_div;
4273 if (ls)
4274 *ls = NULL;
4276 if (!maff)
4277 return NULL;
4279 if (maff->n == 0) {
4280 if (ls) {
4281 isl_space *space = isl_multi_aff_get_domain_space(maff);
4282 *ls = isl_local_space_from_space(space);
4283 if (!*ls)
4284 return isl_multi_aff_free(maff);
4286 return maff;
4289 maff = isl_multi_aff_cow(maff);
4290 maff = isl_multi_aff_align_divs(maff);
4291 if (!maff)
4292 return NULL;
4294 n_div = isl_aff_dim(maff->p[0], isl_dim_div);
4295 space = isl_multi_aff_get_space(maff);
4296 space = isl_space_lift(isl_space_domain(space), n_div);
4297 space = isl_space_extend_domain_with_range(space,
4298 isl_multi_aff_get_space(maff));
4299 if (!space)
4300 return isl_multi_aff_free(maff);
4301 isl_space_free(maff->space);
4302 maff->space = space;
4304 if (ls) {
4305 *ls = isl_aff_get_domain_local_space(maff->p[0]);
4306 if (!*ls)
4307 return isl_multi_aff_free(maff);
4310 for (i = 0; i < maff->n; ++i) {
4311 maff->p[i] = isl_aff_lift(maff->p[i]);
4312 if (!maff->p[i])
4313 goto error;
4316 return maff;
4317 error:
4318 if (ls)
4319 isl_local_space_free(*ls);
4320 return isl_multi_aff_free(maff);
4324 /* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma".
4326 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
4327 __isl_keep isl_pw_multi_aff *pma, int pos)
4329 int i;
4330 int n_out;
4331 isl_space *space;
4332 isl_pw_aff *pa;
4334 if (!pma)
4335 return NULL;
4337 n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
4338 if (pos < 0 || pos >= n_out)
4339 isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
4340 "index out of bounds", return NULL);
4342 space = isl_pw_multi_aff_get_space(pma);
4343 space = isl_space_drop_dims(space, isl_dim_out,
4344 pos + 1, n_out - pos - 1);
4345 space = isl_space_drop_dims(space, isl_dim_out, 0, pos);
4347 pa = isl_pw_aff_alloc_size(space, pma->n);
4348 for (i = 0; i < pma->n; ++i) {
4349 isl_aff *aff;
4350 aff = isl_multi_aff_get_aff(pma->p[i].maff, pos);
4351 pa = isl_pw_aff_add_piece(pa, isl_set_copy(pma->p[i].set), aff);
4354 return pa;
4357 /* Return an isl_pw_multi_aff with the given "set" as domain and
4358 * an unnamed zero-dimensional range.
4360 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
4361 __isl_take isl_set *set)
4363 isl_multi_aff *ma;
4364 isl_space *space;
4366 space = isl_set_get_space(set);
4367 space = isl_space_from_domain(space);
4368 ma = isl_multi_aff_zero(space);
4369 return isl_pw_multi_aff_alloc(set, ma);
4372 /* Add an isl_pw_multi_aff with the given "set" as domain and
4373 * an unnamed zero-dimensional range to *user.
4375 static int add_pw_multi_aff_from_domain(__isl_take isl_set *set, void *user)
4377 isl_union_pw_multi_aff **upma = user;
4378 isl_pw_multi_aff *pma;
4380 pma = isl_pw_multi_aff_from_domain(set);
4381 *upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
4383 return 0;
4386 /* Return an isl_union_pw_multi_aff with the given "uset" as domain and
4387 * an unnamed zero-dimensional range.
4389 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_domain(
4390 __isl_take isl_union_set *uset)
4392 isl_space *space;
4393 isl_union_pw_multi_aff *upma;
4395 if (!uset)
4396 return NULL;
4398 space = isl_union_set_get_space(uset);
4399 upma = isl_union_pw_multi_aff_empty(space);
4401 if (isl_union_set_foreach_set(uset,
4402 &add_pw_multi_aff_from_domain, &upma) < 0)
4403 goto error;
4405 isl_union_set_free(uset);
4406 return upma;
4407 error:
4408 isl_union_set_free(uset);
4409 isl_union_pw_multi_aff_free(upma);
4410 return NULL;
4413 /* Convert "pma" to an isl_map and add it to *umap.
4415 static int map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma, void *user)
4417 isl_union_map **umap = user;
4418 isl_map *map;
4420 map = isl_map_from_pw_multi_aff(pma);
4421 *umap = isl_union_map_add_map(*umap, map);
4423 return 0;
4426 /* Construct a union map mapping the domain of the union
4427 * piecewise multi-affine expression to its range, with each dimension
4428 * in the range equated to the corresponding affine expression on its cell.
4430 __isl_give isl_union_map *isl_union_map_from_union_pw_multi_aff(
4431 __isl_take isl_union_pw_multi_aff *upma)
4433 isl_space *space;
4434 isl_union_map *umap;
4436 if (!upma)
4437 return NULL;
4439 space = isl_union_pw_multi_aff_get_space(upma);
4440 umap = isl_union_map_empty(space);
4442 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
4443 &map_from_pw_multi_aff, &umap) < 0)
4444 goto error;
4446 isl_union_pw_multi_aff_free(upma);
4447 return umap;
4448 error:
4449 isl_union_pw_multi_aff_free(upma);
4450 isl_union_map_free(umap);
4451 return NULL;
4454 /* Local data for bin_entry and the callback "fn".
4456 struct isl_union_pw_multi_aff_bin_data {
4457 isl_union_pw_multi_aff *upma2;
4458 isl_union_pw_multi_aff *res;
4459 isl_pw_multi_aff *pma;
4460 int (*fn)(void **entry, void *user);
4463 /* Given an isl_pw_multi_aff from upma1, store it in data->pma
4464 * and call data->fn for each isl_pw_multi_aff in data->upma2.
4466 static int bin_entry(void **entry, void *user)
4468 struct isl_union_pw_multi_aff_bin_data *data = user;
4469 isl_pw_multi_aff *pma = *entry;
4471 data->pma = pma;
4472 if (isl_hash_table_foreach(data->upma2->dim->ctx, &data->upma2->table,
4473 data->fn, data) < 0)
4474 return -1;
4476 return 0;
4479 /* Call "fn" on each pair of isl_pw_multi_affs in "upma1" and "upma2".
4480 * The isl_pw_multi_aff from upma1 is stored in data->pma (where data is
4481 * passed as user field) and the isl_pw_multi_aff from upma2 is available
4482 * as *entry. The callback should adjust data->res if desired.
4484 static __isl_give isl_union_pw_multi_aff *bin_op(
4485 __isl_take isl_union_pw_multi_aff *upma1,
4486 __isl_take isl_union_pw_multi_aff *upma2,
4487 int (*fn)(void **entry, void *user))
4489 isl_space *space;
4490 struct isl_union_pw_multi_aff_bin_data data = { NULL, NULL, NULL, fn };
4492 space = isl_union_pw_multi_aff_get_space(upma2);
4493 upma1 = isl_union_pw_multi_aff_align_params(upma1, space);
4494 space = isl_union_pw_multi_aff_get_space(upma1);
4495 upma2 = isl_union_pw_multi_aff_align_params(upma2, space);
4497 if (!upma1 || !upma2)
4498 goto error;
4500 data.upma2 = upma2;
4501 data.res = isl_union_pw_multi_aff_alloc(isl_space_copy(upma1->dim),
4502 upma1->table.n);
4503 if (isl_hash_table_foreach(upma1->dim->ctx, &upma1->table,
4504 &bin_entry, &data) < 0)
4505 goto error;
4507 isl_union_pw_multi_aff_free(upma1);
4508 isl_union_pw_multi_aff_free(upma2);
4509 return data.res;
4510 error:
4511 isl_union_pw_multi_aff_free(upma1);
4512 isl_union_pw_multi_aff_free(upma2);
4513 isl_union_pw_multi_aff_free(data.res);
4514 return NULL;
4517 /* Given two aligned isl_pw_multi_affs A -> B and C -> D,
4518 * construct an isl_pw_multi_aff (A * C) -> [B -> D].
4520 static __isl_give isl_pw_multi_aff *pw_multi_aff_range_product(
4521 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
4523 isl_space *space;
4525 space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
4526 isl_pw_multi_aff_get_space(pma2));
4527 return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
4528 &isl_multi_aff_range_product);
4531 /* Given two isl_pw_multi_affs A -> B and C -> D,
4532 * construct an isl_pw_multi_aff (A * C) -> [B -> D].
4534 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_product(
4535 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
4537 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
4538 &pw_multi_aff_range_product);
4541 /* Given two aligned isl_pw_multi_affs A -> B and C -> D,
4542 * construct an isl_pw_multi_aff (A * C) -> (B, D).
4544 static __isl_give isl_pw_multi_aff *pw_multi_aff_flat_range_product(
4545 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
4547 isl_space *space;
4549 space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
4550 isl_pw_multi_aff_get_space(pma2));
4551 space = isl_space_flatten_range(space);
4552 return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
4553 &isl_multi_aff_flat_range_product);
4556 /* Given two isl_pw_multi_affs A -> B and C -> D,
4557 * construct an isl_pw_multi_aff (A * C) -> (B, D).
4559 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_flat_range_product(
4560 __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
4562 return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
4563 &pw_multi_aff_flat_range_product);
4566 /* If data->pma and *entry have the same domain space, then compute
4567 * their flat range product and the result to data->res.
4569 static int flat_range_product_entry(void **entry, void *user)
4571 struct isl_union_pw_multi_aff_bin_data *data = user;
4572 isl_pw_multi_aff *pma2 = *entry;
4574 if (!isl_space_tuple_match(data->pma->dim, isl_dim_in,
4575 pma2->dim, isl_dim_in))
4576 return 0;
4578 pma2 = isl_pw_multi_aff_flat_range_product(
4579 isl_pw_multi_aff_copy(data->pma),
4580 isl_pw_multi_aff_copy(pma2));
4582 data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2);
4584 return 0;
4587 /* Given two isl_union_pw_multi_affs A -> B and C -> D,
4588 * construct an isl_union_pw_multi_aff (A * C) -> (B, D).
4590 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_flat_range_product(
4591 __isl_take isl_union_pw_multi_aff *upma1,
4592 __isl_take isl_union_pw_multi_aff *upma2)
4594 return bin_op(upma1, upma2, &flat_range_product_entry);
4597 /* Replace the affine expressions at position "pos" in "pma" by "pa".
4598 * The parameters are assumed to have been aligned.
4600 * The implementation essentially performs an isl_pw_*_on_shared_domain,
4601 * except that it works on two different isl_pw_* types.
4603 static __isl_give isl_pw_multi_aff *pw_multi_aff_set_pw_aff(
4604 __isl_take isl_pw_multi_aff *pma, unsigned pos,
4605 __isl_take isl_pw_aff *pa)
4607 int i, j, n;
4608 isl_pw_multi_aff *res = NULL;
4610 if (!pma || !pa)
4611 goto error;
4613 if (!isl_space_tuple_match(pma->dim, isl_dim_in, pa->dim, isl_dim_in))
4614 isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
4615 "domains don't match", goto error);
4616 if (pos >= isl_pw_multi_aff_dim(pma, isl_dim_out))
4617 isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
4618 "index out of bounds", goto error);
4620 n = pma->n * pa->n;
4621 res = isl_pw_multi_aff_alloc_size(isl_pw_multi_aff_get_space(pma), n);
4623 for (i = 0; i < pma->n; ++i) {
4624 for (j = 0; j < pa->n; ++j) {
4625 isl_set *common;
4626 isl_multi_aff *res_ij;
4627 int empty;
4629 common = isl_set_intersect(isl_set_copy(pma->p[i].set),
4630 isl_set_copy(pa->p[j].set));
4631 empty = isl_set_plain_is_empty(common);
4632 if (empty < 0 || empty) {
4633 isl_set_free(common);
4634 if (empty < 0)
4635 goto error;
4636 continue;
4639 res_ij = isl_multi_aff_set_aff(
4640 isl_multi_aff_copy(pma->p[i].maff), pos,
4641 isl_aff_copy(pa->p[j].aff));
4642 res_ij = isl_multi_aff_gist(res_ij,
4643 isl_set_copy(common));
4645 res = isl_pw_multi_aff_add_piece(res, common, res_ij);
4649 isl_pw_multi_aff_free(pma);
4650 isl_pw_aff_free(pa);
4651 return res;
4652 error:
4653 isl_pw_multi_aff_free(pma);
4654 isl_pw_aff_free(pa);
4655 return isl_pw_multi_aff_free(res);
4658 /* Replace the affine expressions at position "pos" in "pma" by "pa".
4660 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
4661 __isl_take isl_pw_multi_aff *pma, unsigned pos,
4662 __isl_take isl_pw_aff *pa)
4664 if (!pma || !pa)
4665 goto error;
4666 if (isl_space_match(pma->dim, isl_dim_param, pa->dim, isl_dim_param))
4667 return pw_multi_aff_set_pw_aff(pma, pos, pa);
4668 if (!isl_space_has_named_params(pma->dim) ||
4669 !isl_space_has_named_params(pa->dim))
4670 isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
4671 "unaligned unnamed parameters", goto error);
4672 pma = isl_pw_multi_aff_align_params(pma, isl_pw_aff_get_space(pa));
4673 pa = isl_pw_aff_align_params(pa, isl_pw_multi_aff_get_space(pma));
4674 return pw_multi_aff_set_pw_aff(pma, pos, pa);
4675 error:
4676 isl_pw_multi_aff_free(pma);
4677 isl_pw_aff_free(pa);
4678 return NULL;
4681 #undef BASE
4682 #define BASE pw_aff
4684 #include <isl_multi_templ.c>
4686 /* Scale the first elements of "ma" by the corresponding elements of "vec".
4688 __isl_give isl_multi_aff *isl_multi_aff_scale_vec(__isl_take isl_multi_aff *ma,
4689 __isl_take isl_vec *vec)
4691 int i, n;
4692 isl_int v;
4694 if (!ma || !vec)
4695 goto error;
4697 n = isl_multi_aff_dim(ma, isl_dim_out);
4698 if (isl_vec_size(vec) < n)
4699 n = isl_vec_size(vec);
4701 isl_int_init(v);
4702 for (i = 0; i < n; ++i) {
4703 isl_aff *aff;
4705 isl_vec_get_element(vec, i, &v);
4707 aff = isl_multi_aff_get_aff(ma, i);
4708 aff = isl_aff_scale(aff, v);
4709 ma = isl_multi_aff_set_aff(ma, i, aff);
4711 isl_int_clear(v);
4713 isl_vec_free(vec);
4714 return ma;
4715 error:
4716 isl_vec_free(vec);
4717 isl_multi_aff_free(ma);
4718 return NULL;
4721 /* Scale the first elements of "pma" by the corresponding elements of "vec".
4723 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_vec(
4724 __isl_take isl_pw_multi_aff *pma, __isl_take isl_vec *v)
4726 int i;
4728 pma = isl_pw_multi_aff_cow(pma);
4729 if (!pma || !v)
4730 goto error;
4732 for (i = 0; i < pma->n; ++i) {
4733 pma->p[i].maff = isl_multi_aff_scale_vec(pma->p[i].maff,
4734 isl_vec_copy(v));
4735 if (!pma->p[i].maff)
4736 goto error;
4739 isl_vec_free(v);
4740 return pma;
4741 error:
4742 isl_vec_free(v);
4743 isl_pw_multi_aff_free(pma);
4744 return NULL;
4747 /* This function is called for each entry of an isl_union_pw_multi_aff.
4748 * Replace the entry by the result of applying isl_pw_multi_aff_scale_vec
4749 * to the original entry with the isl_vec in "user" as extra argument.
4751 static int union_pw_multi_aff_scale_vec_entry(void **entry, void *user)
4753 isl_pw_multi_aff **pma = (isl_pw_multi_aff **) entry;
4754 isl_vec *v = user;
4756 *pma = isl_pw_multi_aff_scale_vec(*pma, isl_vec_copy(v));
4757 if (!*pma)
4758 return -1;
4760 return 0;
4763 /* Scale the first elements of "upma" by the corresponding elements of "vec".
4765 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_vec(
4766 __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_vec *v)
4768 upma = isl_union_pw_multi_aff_cow(upma);
4769 if (!upma || !v)
4770 goto error;
4772 if (isl_hash_table_foreach(upma->dim->ctx, &upma->table,
4773 &union_pw_multi_aff_scale_vec_entry, v) < 0)
4774 goto error;
4776 isl_vec_free(v);
4777 return upma;
4778 error:
4779 isl_vec_free(v);
4780 isl_union_pw_multi_aff_free(upma);
4781 return NULL;