3 #include "isl_map_private.h"
4 #include "isl_equalities.h"
6 /* Given a set of modulo constraints
10 * this function computes a particular solution y_0
12 * The input is given as a matrix B = [ c A ] and a vector d.
14 * The output is matrix containing the solution y_0 or
15 * a zero-column matrix if the constraints admit no integer solution.
17 * The given set of constrains is equivalent to
21 * with D = diag d and x a fresh set of variables.
22 * Reducing both c and A modulo d does not change the
23 * value of y in the solution and may lead to smaller coefficients.
24 * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
30 * [ H 0 ] U^{-1} [ y ] = - c
33 * [ B ] = U^{-1} [ y ]
37 * so B may be chosen arbitrarily, e.g., B = 0, and then
40 * U^{-1} [ y ] = [ 0 ]
48 * If any of the coordinates of this y are non-integer
49 * then the constraints admit no integer solution and
50 * a zero-column matrix is returned.
52 static struct isl_mat
*particular_solution(struct isl_ctx
*ctx
,
53 struct isl_mat
*B
, struct isl_vec
*d
)
56 struct isl_mat
*M
= NULL
;
57 struct isl_mat
*C
= NULL
;
58 struct isl_mat
*U
= NULL
;
59 struct isl_mat
*H
= NULL
;
60 struct isl_mat
*cst
= NULL
;
61 struct isl_mat
*T
= NULL
;
63 M
= isl_mat_alloc(ctx
, B
->n_row
, B
->n_row
+ B
->n_col
- 1);
64 C
= isl_mat_alloc(ctx
, 1 + B
->n_row
, 1);
67 isl_int_set_si(C
->row
[0][0], 1);
68 for (i
= 0; i
< B
->n_row
; ++i
) {
69 isl_seq_clr(M
->row
[i
], B
->n_row
);
70 isl_int_set(M
->row
[i
][i
], d
->block
.data
[i
]);
71 isl_int_neg(C
->row
[1 + i
][0], B
->row
[i
][0]);
72 isl_int_fdiv_r(C
->row
[1+i
][0], C
->row
[1+i
][0], M
->row
[i
][i
]);
73 for (j
= 0; j
< B
->n_col
- 1; ++j
)
74 isl_int_fdiv_r(M
->row
[i
][B
->n_row
+ j
],
75 B
->row
[i
][1 + j
], M
->row
[i
][i
]);
77 M
= isl_mat_left_hermite(ctx
, M
, 0, &U
, NULL
);
80 H
= isl_mat_sub_alloc(ctx
, M
->row
, 0, B
->n_row
, 0, B
->n_row
);
81 H
= isl_mat_lin_to_aff(ctx
, H
);
82 C
= isl_mat_inverse_product(ctx
, H
, C
);
85 for (i
= 0; i
< B
->n_row
; ++i
) {
86 if (!isl_int_is_divisible_by(C
->row
[1+i
][0], C
->row
[0][0]))
88 isl_int_divexact(C
->row
[1+i
][0], C
->row
[1+i
][0], C
->row
[0][0]);
91 cst
= isl_mat_alloc(ctx
, B
->n_row
, 0);
93 cst
= isl_mat_sub_alloc(ctx
, C
->row
, 1, B
->n_row
, 0, 1);
94 T
= isl_mat_sub_alloc(ctx
, U
->row
, B
->n_row
, B
->n_col
- 1, 0, B
->n_row
);
95 cst
= isl_mat_product(ctx
, T
, cst
);
101 isl_mat_free(ctx
, M
);
102 isl_mat_free(ctx
, C
);
103 isl_mat_free(ctx
, U
);
107 /* Compute and return the matrix
109 * U_1^{-1} diag(d_1, 1, ..., 1)
111 * with U_1 the unimodular completion of the first (and only) row of B.
112 * The columns of this matrix generate the lattice that satisfies
113 * the single (linear) modulo constraint.
115 static struct isl_mat
*parameter_compression_1(struct isl_ctx
*ctx
,
116 struct isl_mat
*B
, struct isl_vec
*d
)
120 U
= isl_mat_alloc(ctx
, B
->n_col
- 1, B
->n_col
- 1);
123 isl_seq_cpy(U
->row
[0], B
->row
[0] + 1, B
->n_col
- 1);
124 U
= isl_mat_unimodular_complete(ctx
, U
, 1);
125 U
= isl_mat_right_inverse(ctx
, U
);
128 isl_mat_col_mul(U
, 0, d
->block
.data
[0], 0);
129 U
= isl_mat_lin_to_aff(ctx
, U
);
132 isl_mat_free(ctx
, U
);
136 /* Compute a common lattice of solutions to the linear modulo
137 * constraints specified by B and d.
138 * See also the documentation of isl_mat_parameter_compression.
141 * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
143 * on a common denominator. This denominator D is the lcm of modulos d.
144 * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
145 * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
146 * Putting this on the common denominator, we have
147 * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
149 static struct isl_mat
*parameter_compression_multi(struct isl_ctx
*ctx
,
150 struct isl_mat
*B
, struct isl_vec
*d
)
155 struct isl_mat
*A
= NULL
, *U
= NULL
;
161 isl_vec_lcm(ctx
, d
, &D
);
164 A
= isl_mat_alloc(ctx
, size
, B
->n_row
* size
);
165 U
= isl_mat_alloc(ctx
, size
, size
);
168 for (i
= 0; i
< B
->n_row
; ++i
) {
169 isl_seq_cpy(U
->row
[0], B
->row
[i
] + 1, size
);
170 U
= isl_mat_unimodular_complete(ctx
, U
, 1);
173 isl_int_divexact(D
, D
, d
->block
.data
[i
]);
174 for (k
= 0; k
< U
->n_col
; ++k
)
175 isl_int_mul(A
->row
[k
][i
*size
+0], D
, U
->row
[0][k
]);
176 isl_int_mul(D
, D
, d
->block
.data
[i
]);
177 for (j
= 1; j
< U
->n_row
; ++j
)
178 for (k
= 0; k
< U
->n_col
; ++k
)
179 isl_int_mul(A
->row
[k
][i
*size
+j
],
182 A
= isl_mat_left_hermite(ctx
, A
, 0, NULL
, NULL
);
183 T
= isl_mat_sub_alloc(ctx
, A
->row
, 0, A
->n_row
, 0, A
->n_row
);
184 T
= isl_mat_lin_to_aff(ctx
, T
);
185 isl_int_set(T
->row
[0][0], D
);
186 T
= isl_mat_right_inverse(ctx
, T
);
187 isl_assert(ctx
, isl_int_is_one(T
->row
[0][0]), goto error
);
188 T
= isl_mat_transpose(ctx
, T
);
189 isl_mat_free(ctx
, A
);
190 isl_mat_free(ctx
, U
);
195 isl_mat_free(ctx
, A
);
196 isl_mat_free(ctx
, U
);
201 /* Given a set of modulo constraints
205 * this function returns an affine transformation T,
209 * that bijectively maps the integer vectors y' to integer
210 * vectors y that satisfy the modulo constraints.
212 * This function is inspired by Section 2.5.3
213 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
214 * Model. Applications to Program Analysis and Optimization".
215 * However, the implementation only follows the algorithm of that
216 * section for computing a particular solution and not for computing
217 * a general homogeneous solution. The latter is incomplete and
218 * may remove some valid solutions.
219 * Instead, we use an adaptation of the algorithm in Section 7 of
220 * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
221 * Model: Bringing the Power of Quasi-Polynomials to the Masses".
223 * The input is given as a matrix B = [ c A ] and a vector d.
224 * Each element of the vector d corresponds to a row in B.
225 * The output is a lower triangular matrix.
226 * If no integer vector y satisfies the given constraints then
227 * a matrix with zero columns is returned.
229 * We first compute a particular solution y_0 to the given set of
230 * modulo constraints in particular_solution. If no such solution
231 * exists, then we return a zero-columned transformation matrix.
232 * Otherwise, we compute the generic solution to
236 * That is we want to compute G such that
240 * with y'' integer, describes the set of solutions.
242 * We first remove the common factors of each row.
243 * In particular if gcd(A_i,d_i) != 1, then we divide the whole
244 * row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1,
245 * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
246 * In the later case, we simply drop the row (in both A and d).
248 * If there are no rows left in A, the G is the identity matrix. Otherwise,
249 * for each row i, we now determine the lattice of integer vectors
250 * that satisfies this row. Let U_i be the unimodular extension of the
251 * row A_i. This unimodular extension exists because gcd(A_i) = 1.
252 * The first component of
256 * needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''.
259 * y = U_i^{-1} diag(d_i, 1, ..., 1) y''
261 * for arbitrary integer vectors y''. That is, y belongs to the lattice
262 * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
263 * If there is only one row, then G = L_1.
265 * If there is more than one row left, we need to compute the intersection
266 * of the lattices. That is, we need to compute an L such that
268 * L = L_i L_i' for all i
270 * with L_i' some integer matrices. Let A be constructed as follows
272 * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
274 * and computed the Hermite Normal Form of A = [ H 0 ] U
277 * L_i^{-T} = H U_{1,i}
281 * H^{-T} = L_i U_{1,i}^T
283 * In other words G = L = H^{-T}.
284 * To ensure that G is lower triangular, we compute and use its Hermite
287 * The affine transformation matrix returned is then
292 * as any y = y_0 + G y' with y' integer is a solution to the original
293 * modulo constraints.
295 struct isl_mat
*isl_mat_parameter_compression(struct isl_ctx
*ctx
,
296 struct isl_mat
*B
, struct isl_vec
*d
)
299 struct isl_mat
*cst
= NULL
;
300 struct isl_mat
*T
= NULL
;
305 isl_assert(ctx
, B
->n_row
== d
->size
, goto error
);
306 cst
= particular_solution(ctx
, B
, d
);
309 if (cst
->n_col
== 0) {
310 T
= isl_mat_alloc(ctx
, B
->n_col
, 0);
311 isl_mat_free(ctx
, cst
);
312 isl_mat_free(ctx
, B
);
313 isl_vec_free(ctx
, d
);
317 /* Replace a*g*row = 0 mod g*m by row = 0 mod m */
318 for (i
= 0; i
< B
->n_row
; ++i
) {
319 isl_seq_gcd(B
->row
[i
] + 1, B
->n_col
- 1, &D
);
320 if (isl_int_is_one(D
))
322 if (isl_int_is_zero(D
)) {
323 B
= isl_mat_drop_rows(ctx
, B
, i
, 1);
324 d
= isl_vec_cow(ctx
, d
);
327 isl_seq_cpy(d
->block
.data
+i
, d
->block
.data
+i
+1,
333 B
= isl_mat_cow(ctx
, B
);
336 isl_seq_scale_down(B
->row
[i
] + 1, B
->row
[i
] + 1, D
, B
->n_col
-1);
337 isl_int_gcd(D
, D
, d
->block
.data
[i
]);
338 d
= isl_vec_cow(ctx
, d
);
341 isl_int_divexact(d
->block
.data
[i
], d
->block
.data
[i
], D
);
345 T
= isl_mat_identity(ctx
, B
->n_col
);
346 else if (B
->n_row
== 1)
347 T
= parameter_compression_1(ctx
, B
, d
);
349 T
= parameter_compression_multi(ctx
, B
, d
);
350 T
= isl_mat_left_hermite(ctx
, T
, 0, NULL
, NULL
);
353 isl_mat_sub_copy(ctx
, T
->row
+ 1, cst
->row
, cst
->n_row
, 0, 0, 1);
354 isl_mat_free(ctx
, cst
);
355 isl_mat_free(ctx
, B
);
356 isl_vec_free(ctx
, d
);
361 isl_mat_free(ctx
, cst
);
362 isl_mat_free(ctx
, B
);
363 isl_vec_free(ctx
, d
);
367 /* Given a set of equalities
371 * this function computes unimodular transformation from a lower-dimensional
372 * space to the original space that bijectively maps the integer points x'
373 * in the lower-dimensional space to the integer points x in the original
374 * space that satisfy the equalities.
376 * The input is given as a matrix B = [ -c M ] and the out is a
377 * matrix that maps [1 x'] to [1 x].
378 * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
380 * First compute the (left) Hermite normal form of M,
382 * M [U1 U2] = M U = H = [H1 0]
384 * M = H Q = [H1 0] [Q1]
387 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
388 * Define the transformed variables as
390 * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
393 * The equalities then become
395 * H1 x1' - c = 0 or x1' = H1^{-1} c = c'
397 * If any of the c' is non-integer, then the original set has no
398 * integer solutions (since the x' are a unimodular transformation
400 * Otherwise, the transformation is given by
402 * x = U1 H1^{-1} c + U2 x2'
404 * The inverse transformation is simply
408 struct isl_mat
*isl_mat_variable_compression(struct isl_ctx
*ctx
,
409 struct isl_mat
*B
, struct isl_mat
**T2
)
412 struct isl_mat
*H
= NULL
, *C
= NULL
, *H1
, *U
= NULL
, *U1
, *U2
, *TC
;
421 H
= isl_mat_sub_alloc(ctx
, B
->row
, 0, B
->n_row
, 1, dim
);
422 H
= isl_mat_left_hermite(ctx
, H
, 0, &U
, T2
);
423 if (!H
|| !U
|| (T2
&& !*T2
))
426 *T2
= isl_mat_drop_rows(ctx
, *T2
, 0, B
->n_row
);
427 *T2
= isl_mat_lin_to_aff(ctx
, *T2
);
431 C
= isl_mat_alloc(ctx
, 1+B
->n_row
, 1);
434 isl_int_set_si(C
->row
[0][0], 1);
435 isl_mat_sub_neg(ctx
, C
->row
+1, B
->row
, B
->n_row
, 0, 0, 1);
436 H1
= isl_mat_sub_alloc(ctx
, H
->row
, 0, H
->n_row
, 0, H
->n_row
);
437 H1
= isl_mat_lin_to_aff(ctx
, H1
);
438 TC
= isl_mat_inverse_product(ctx
, H1
, C
);
441 isl_mat_free(ctx
, H
);
442 if (!isl_int_is_one(TC
->row
[0][0])) {
443 for (i
= 0; i
< B
->n_row
; ++i
) {
444 if (!isl_int_is_divisible_by(TC
->row
[1+i
][0], TC
->row
[0][0])) {
445 isl_mat_free(ctx
, B
);
446 isl_mat_free(ctx
, TC
);
447 isl_mat_free(ctx
, U
);
449 isl_mat_free(ctx
, *T2
);
452 return isl_mat_alloc(ctx
, 1 + dim
, 0);
454 isl_seq_scale_down(TC
->row
[1+i
], TC
->row
[1+i
], TC
->row
[0][0], 1);
456 isl_int_set_si(TC
->row
[0][0], 1);
458 U1
= isl_mat_sub_alloc(ctx
, U
->row
, 0, U
->n_row
, 0, B
->n_row
);
459 U1
= isl_mat_lin_to_aff(ctx
, U1
);
460 U2
= isl_mat_sub_alloc(ctx
, U
->row
, 0, U
->n_row
,
461 B
->n_row
, U
->n_row
- B
->n_row
);
462 U2
= isl_mat_lin_to_aff(ctx
, U2
);
463 isl_mat_free(ctx
, U
);
464 TC
= isl_mat_product(ctx
, U1
, TC
);
465 TC
= isl_mat_aff_direct_sum(ctx
, TC
, U2
);
467 isl_mat_free(ctx
, B
);
471 isl_mat_free(ctx
, B
);
472 isl_mat_free(ctx
, H
);
473 isl_mat_free(ctx
, U
);
475 isl_mat_free(ctx
, *T2
);
481 /* Use the n equalities of bset to unimodularly transform the
482 * variables x such that n transformed variables x1' have a constant value
483 * and rewrite the constraints of bset in terms of the remaining
484 * transformed variables x2'. The matrix pointed to by T maps
485 * the new variables x2' back to the original variables x, while T2
486 * maps the original variables to the new variables.
488 static struct isl_basic_set
*compress_variables(struct isl_ctx
*ctx
,
489 struct isl_basic_set
*bset
, struct isl_mat
**T
, struct isl_mat
**T2
)
491 struct isl_mat
*B
, *TC
;
500 isl_assert(ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
501 isl_assert(ctx
, bset
->n_div
== 0, goto error
);
502 dim
= isl_basic_set_n_dim(bset
);
503 isl_assert(ctx
, bset
->n_eq
<= dim
, goto error
);
507 B
= isl_mat_sub_alloc(ctx
, bset
->eq
, 0, bset
->n_eq
, 0, 1 + dim
);
508 TC
= isl_mat_variable_compression(ctx
, B
, T2
);
511 if (TC
->n_col
== 0) {
512 isl_mat_free(ctx
, TC
);
514 isl_mat_free(ctx
, *T2
);
517 return isl_basic_set_set_to_empty(bset
);
520 bset
= isl_basic_set_preimage(bset
, T
? isl_mat_copy(ctx
, TC
) : TC
);
525 isl_basic_set_free(bset
);
529 struct isl_basic_set
*isl_basic_set_remove_equalities(
530 struct isl_basic_set
*bset
, struct isl_mat
**T
, struct isl_mat
**T2
)
538 isl_assert(bset
->ctx
, isl_basic_set_n_param(bset
) == 0, goto error
);
539 bset
= isl_basic_set_gauss(bset
, NULL
);
540 if (ISL_F_ISSET(bset
, ISL_BASIC_SET_EMPTY
))
542 bset
= compress_variables(bset
->ctx
, bset
, T
, T2
);
545 isl_basic_set_free(bset
);
550 /* Check if dimension dim belongs to a residue class
551 * i_dim \equiv r mod m
552 * with m != 1 and if so return m in *modulo and r in *residue.
554 int isl_basic_set_dim_residue_class(struct isl_basic_set
*bset
,
555 int pos
, isl_int
*modulo
, isl_int
*residue
)
558 struct isl_mat
*H
= NULL
, *U
= NULL
, *C
, *H1
, *U1
;
562 if (!bset
|| !modulo
|| !residue
)
566 total
= isl_basic_set_total_dim(bset
);
567 nparam
= isl_basic_set_n_param(bset
);
568 H
= isl_mat_sub_alloc(ctx
, bset
->eq
, 0, bset
->n_eq
, 1, total
);
569 H
= isl_mat_left_hermite(ctx
, H
, 0, &U
, NULL
);
573 isl_seq_gcd(U
->row
[nparam
+ pos
]+bset
->n_eq
,
574 total
-bset
->n_eq
, modulo
);
575 if (isl_int_is_zero(*modulo
) || isl_int_is_one(*modulo
)) {
576 isl_int_set_si(*residue
, 0);
577 isl_mat_free(ctx
, H
);
578 isl_mat_free(ctx
, U
);
582 C
= isl_mat_alloc(ctx
, 1+bset
->n_eq
, 1);
585 isl_int_set_si(C
->row
[0][0], 1);
586 isl_mat_sub_neg(ctx
, C
->row
+1, bset
->eq
, bset
->n_eq
, 0, 0, 1);
587 H1
= isl_mat_sub_alloc(ctx
, H
->row
, 0, H
->n_row
, 0, H
->n_row
);
588 H1
= isl_mat_lin_to_aff(ctx
, H1
);
589 C
= isl_mat_inverse_product(ctx
, H1
, C
);
590 isl_mat_free(ctx
, H
);
591 U1
= isl_mat_sub_alloc(ctx
, U
->row
, nparam
+pos
, 1, 0, bset
->n_eq
);
592 U1
= isl_mat_lin_to_aff(ctx
, U1
);
593 isl_mat_free(ctx
, U
);
594 C
= isl_mat_product(ctx
, U1
, C
);
597 if (!isl_int_is_divisible_by(C
->row
[1][0], C
->row
[0][0])) {
598 bset
= isl_basic_set_copy(bset
);
599 bset
= isl_basic_set_set_to_empty(bset
);
600 isl_basic_set_free(bset
);
601 isl_int_set_si(*modulo
, 0);
602 isl_int_set_si(*residue
, 0);
605 isl_int_divexact(*residue
, C
->row
[1][0], C
->row
[0][0]);
606 isl_int_fdiv_r(*residue
, *residue
, *modulo
);
607 isl_mat_free(ctx
, C
);
610 isl_mat_free(ctx
, H
);
611 isl_mat_free(ctx
, U
);