add isl_map_plain_get_val_if_fixed
[isl.git] / isl_schedule.c
blobdd7cac88152b8a6a4d164570a90978d8ab46b26a
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl/aff.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl/set.h>
22 #include <isl/seq.h>
23 #include <isl_tab.h>
24 #include <isl_dim_map.h>
25 #include <isl_hmap_map_basic_set.h>
26 #include <isl_sort.h>
27 #include <isl_schedule_private.h>
28 #include <isl_band_private.h>
29 #include <isl_options_private.h>
30 #include <isl_tarjan.h>
33 * The scheduling algorithm implemented in this file was inspired by
34 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
35 * Parallelization and Locality Optimization in the Polyhedral Model".
39 /* Internal information about a node that is used during the construction
40 * of a schedule.
41 * dim represents the space in which the domain lives
42 * sched is a matrix representation of the schedule being constructed
43 * for this node
44 * sched_map is an isl_map representation of the same (partial) schedule
45 * sched_map may be NULL
46 * rank is the number of linearly independent rows in the linear part
47 * of sched
48 * the columns of cmap represent a change of basis for the schedule
49 * coefficients; the first rank columns span the linear part of
50 * the schedule rows
51 * start is the first variable in the LP problem in the sequences that
52 * represents the schedule coefficients of this node
53 * nvar is the dimension of the domain
54 * nparam is the number of parameters or 0 if we are not constructing
55 * a parametric schedule
57 * scc is the index of SCC (or WCC) this node belongs to
59 * band contains the band index for each of the rows of the schedule.
60 * band_id is used to differentiate between separate bands at the same
61 * level within the same parent band, i.e., bands that are separated
62 * by the parent band or bands that are independent of each other.
63 * zero contains a boolean for each of the rows of the schedule,
64 * indicating whether the corresponding scheduling dimension results
65 * in zero dependence distances within its band and with respect
66 * to the proximity edges.
68 struct isl_sched_node {
69 isl_space *dim;
70 isl_mat *sched;
71 isl_map *sched_map;
72 int rank;
73 isl_mat *cmap;
74 int start;
75 int nvar;
76 int nparam;
78 int scc;
80 int *band;
81 int *band_id;
82 int *zero;
85 static int node_has_dim(const void *entry, const void *val)
87 struct isl_sched_node *node = (struct isl_sched_node *)entry;
88 isl_space *dim = (isl_space *)val;
90 return isl_space_is_equal(node->dim, dim);
93 /* An edge in the dependence graph. An edge may be used to
94 * ensure validity of the generated schedule, to minimize the dependence
95 * distance or both
97 * map is the dependence relation
98 * src is the source node
99 * dst is the sink node
100 * validity is set if the edge is used to ensure correctness
101 * proximity is set if the edge is used to minimize dependence distances
103 * For validity edges, start and end mark the sequence of inequality
104 * constraints in the LP problem that encode the validity constraint
105 * corresponding to this edge.
107 struct isl_sched_edge {
108 isl_map *map;
110 struct isl_sched_node *src;
111 struct isl_sched_node *dst;
113 int validity;
114 int proximity;
116 int start;
117 int end;
120 enum isl_edge_type {
121 isl_edge_validity = 0,
122 isl_edge_first = isl_edge_validity,
123 isl_edge_proximity,
124 isl_edge_last = isl_edge_proximity
127 /* Internal information about the dependence graph used during
128 * the construction of the schedule.
130 * intra_hmap is a cache, mapping dependence relations to their dual,
131 * for dependences from a node to itself
132 * inter_hmap is a cache, mapping dependence relations to their dual,
133 * for dependences between distinct nodes
135 * n is the number of nodes
136 * node is the list of nodes
137 * maxvar is the maximal number of variables over all nodes
138 * max_row is the allocated number of rows in the schedule
139 * n_row is the current (maximal) number of linearly independent
140 * rows in the node schedules
141 * n_total_row is the current number of rows in the node schedules
142 * n_band is the current number of completed bands
143 * band_start is the starting row in the node schedules of the current band
144 * root is set if this graph is the original dependence graph,
145 * without any splitting
147 * sorted contains a list of node indices sorted according to the
148 * SCC to which a node belongs
150 * n_edge is the number of edges
151 * edge is the list of edges
152 * max_edge contains the maximal number of edges of each type;
153 * in particular, it contains the number of edges in the inital graph.
154 * edge_table contains pointers into the edge array, hashed on the source
155 * and sink spaces; there is one such table for each type;
156 * a given edge may be referenced from more than one table
157 * if the corresponding relation appears in more than of the
158 * sets of dependences
160 * node_table contains pointers into the node array, hashed on the space
162 * region contains a list of variable sequences that should be non-trivial
164 * lp contains the (I)LP problem used to obtain new schedule rows
166 * src_scc and dst_scc are the source and sink SCCs of an edge with
167 * conflicting constraints
169 * scc represents the number of components
171 struct isl_sched_graph {
172 isl_hmap_map_basic_set *intra_hmap;
173 isl_hmap_map_basic_set *inter_hmap;
175 struct isl_sched_node *node;
176 int n;
177 int maxvar;
178 int max_row;
179 int n_row;
181 int *sorted;
183 int n_band;
184 int n_total_row;
185 int band_start;
187 int root;
189 struct isl_sched_edge *edge;
190 int n_edge;
191 int max_edge[isl_edge_last + 1];
192 struct isl_hash_table *edge_table[isl_edge_last + 1];
194 struct isl_hash_table *node_table;
195 struct isl_region *region;
197 isl_basic_set *lp;
199 int src_scc;
200 int dst_scc;
202 int scc;
205 /* Initialize node_table based on the list of nodes.
207 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
209 int i;
211 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
212 if (!graph->node_table)
213 return -1;
215 for (i = 0; i < graph->n; ++i) {
216 struct isl_hash_table_entry *entry;
217 uint32_t hash;
219 hash = isl_space_get_hash(graph->node[i].dim);
220 entry = isl_hash_table_find(ctx, graph->node_table, hash,
221 &node_has_dim,
222 graph->node[i].dim, 1);
223 if (!entry)
224 return -1;
225 entry->data = &graph->node[i];
228 return 0;
231 /* Return a pointer to the node that lives within the given space,
232 * or NULL if there is no such node.
234 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
235 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
237 struct isl_hash_table_entry *entry;
238 uint32_t hash;
240 hash = isl_space_get_hash(dim);
241 entry = isl_hash_table_find(ctx, graph->node_table, hash,
242 &node_has_dim, dim, 0);
244 return entry ? entry->data : NULL;
247 static int edge_has_src_and_dst(const void *entry, const void *val)
249 const struct isl_sched_edge *edge = entry;
250 const struct isl_sched_edge *temp = val;
252 return edge->src == temp->src && edge->dst == temp->dst;
255 /* Add the given edge to graph->edge_table[type].
257 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
258 enum isl_edge_type type, struct isl_sched_edge *edge)
260 struct isl_hash_table_entry *entry;
261 uint32_t hash;
263 hash = isl_hash_init();
264 hash = isl_hash_builtin(hash, edge->src);
265 hash = isl_hash_builtin(hash, edge->dst);
266 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
267 &edge_has_src_and_dst, edge, 1);
268 if (!entry)
269 return -1;
270 entry->data = edge;
272 return 0;
275 /* Allocate the edge_tables based on the maximal number of edges of
276 * each type.
278 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
280 int i;
282 for (i = 0; i <= isl_edge_last; ++i) {
283 graph->edge_table[i] = isl_hash_table_alloc(ctx,
284 graph->max_edge[i]);
285 if (!graph->edge_table[i])
286 return -1;
289 return 0;
292 /* If graph->edge_table[type] contains an edge from the given source
293 * to the given destination, then return the hash table entry of this edge.
294 * Otherwise, return NULL.
296 static struct isl_hash_table_entry *graph_find_edge_entry(
297 struct isl_sched_graph *graph,
298 enum isl_edge_type type,
299 struct isl_sched_node *src, struct isl_sched_node *dst)
301 isl_ctx *ctx = isl_space_get_ctx(src->dim);
302 uint32_t hash;
303 struct isl_sched_edge temp = { .src = src, .dst = dst };
305 hash = isl_hash_init();
306 hash = isl_hash_builtin(hash, temp.src);
307 hash = isl_hash_builtin(hash, temp.dst);
308 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
309 &edge_has_src_and_dst, &temp, 0);
313 /* If graph->edge_table[type] contains an edge from the given source
314 * to the given destination, then return this edge.
315 * Otherwise, return NULL.
317 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
318 enum isl_edge_type type,
319 struct isl_sched_node *src, struct isl_sched_node *dst)
321 struct isl_hash_table_entry *entry;
323 entry = graph_find_edge_entry(graph, type, src, dst);
324 if (!entry)
325 return NULL;
327 return entry->data;
330 /* Check whether the dependence graph has an edge of the given type
331 * between the given two nodes.
333 static int graph_has_edge(struct isl_sched_graph *graph,
334 enum isl_edge_type type,
335 struct isl_sched_node *src, struct isl_sched_node *dst)
337 struct isl_sched_edge *edge;
338 int empty;
340 edge = graph_find_edge(graph, type, src, dst);
341 if (!edge)
342 return 0;
344 empty = isl_map_plain_is_empty(edge->map);
345 if (empty < 0)
346 return -1;
348 return !empty;
351 /* If there is an edge from the given source to the given destination
352 * of any type then return this edge.
353 * Otherwise, return NULL.
355 static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
356 struct isl_sched_node *src, struct isl_sched_node *dst)
358 enum isl_edge_type i;
359 struct isl_sched_edge *edge;
361 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
362 edge = graph_find_edge(graph, i, src, dst);
363 if (edge)
364 return edge;
367 return NULL;
370 /* Remove the given edge from all the edge_tables that refer to it.
372 static void graph_remove_edge(struct isl_sched_graph *graph,
373 struct isl_sched_edge *edge)
375 isl_ctx *ctx = isl_map_get_ctx(edge->map);
376 enum isl_edge_type i;
378 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
379 struct isl_hash_table_entry *entry;
381 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
382 if (!entry)
383 continue;
384 if (entry->data != edge)
385 continue;
386 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
390 /* Check whether the dependence graph has any edge
391 * between the given two nodes.
393 static int graph_has_any_edge(struct isl_sched_graph *graph,
394 struct isl_sched_node *src, struct isl_sched_node *dst)
396 enum isl_edge_type i;
397 int r;
399 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
400 r = graph_has_edge(graph, i, src, dst);
401 if (r < 0 || r)
402 return r;
405 return r;
408 /* Check whether the dependence graph has a validity edge
409 * between the given two nodes.
411 static int graph_has_validity_edge(struct isl_sched_graph *graph,
412 struct isl_sched_node *src, struct isl_sched_node *dst)
414 return graph_has_edge(graph, isl_edge_validity, src, dst);
417 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
418 int n_node, int n_edge)
420 int i;
422 graph->n = n_node;
423 graph->n_edge = n_edge;
424 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
425 graph->sorted = isl_calloc_array(ctx, int, graph->n);
426 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
427 graph->edge = isl_calloc_array(ctx,
428 struct isl_sched_edge, graph->n_edge);
430 graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
431 graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
433 if (!graph->node || !graph->region || !graph->edge || !graph->sorted)
434 return -1;
436 for(i = 0; i < graph->n; ++i)
437 graph->sorted[i] = i;
439 return 0;
442 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
444 int i;
446 isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
447 isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
449 for (i = 0; i < graph->n; ++i) {
450 isl_space_free(graph->node[i].dim);
451 isl_mat_free(graph->node[i].sched);
452 isl_map_free(graph->node[i].sched_map);
453 isl_mat_free(graph->node[i].cmap);
454 if (graph->root) {
455 free(graph->node[i].band);
456 free(graph->node[i].band_id);
457 free(graph->node[i].zero);
460 free(graph->node);
461 free(graph->sorted);
462 for (i = 0; i < graph->n_edge; ++i)
463 isl_map_free(graph->edge[i].map);
464 free(graph->edge);
465 free(graph->region);
466 for (i = 0; i <= isl_edge_last; ++i)
467 isl_hash_table_free(ctx, graph->edge_table[i]);
468 isl_hash_table_free(ctx, graph->node_table);
469 isl_basic_set_free(graph->lp);
472 /* For each "set" on which this function is called, increment
473 * graph->n by one and update graph->maxvar.
475 static int init_n_maxvar(__isl_take isl_set *set, void *user)
477 struct isl_sched_graph *graph = user;
478 int nvar = isl_set_dim(set, isl_dim_set);
480 graph->n++;
481 if (nvar > graph->maxvar)
482 graph->maxvar = nvar;
484 isl_set_free(set);
486 return 0;
489 /* Compute the number of rows that should be allocated for the schedule.
490 * The graph can be split at most "n - 1" times, there can be at most
491 * two rows for each dimension in the iteration domains (in particular,
492 * we usually have one row, but it may be split by split_scaled),
493 * and there can be one extra row for ordering the statements.
494 * Note that if we have actually split "n - 1" times, then no ordering
495 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
497 static int compute_max_row(struct isl_sched_graph *graph,
498 __isl_keep isl_union_set *domain)
500 graph->n = 0;
501 graph->maxvar = 0;
502 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
503 return -1;
504 graph->max_row = graph->n + 2 * graph->maxvar;
506 return 0;
509 /* Add a new node to the graph representing the given set.
511 static int extract_node(__isl_take isl_set *set, void *user)
513 int nvar, nparam;
514 isl_ctx *ctx;
515 isl_space *dim;
516 isl_mat *sched;
517 struct isl_sched_graph *graph = user;
518 int *band, *band_id, *zero;
520 ctx = isl_set_get_ctx(set);
521 dim = isl_set_get_space(set);
522 isl_set_free(set);
523 nvar = isl_space_dim(dim, isl_dim_set);
524 nparam = isl_space_dim(dim, isl_dim_param);
525 if (!ctx->opt->schedule_parametric)
526 nparam = 0;
527 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
528 graph->node[graph->n].dim = dim;
529 graph->node[graph->n].nvar = nvar;
530 graph->node[graph->n].nparam = nparam;
531 graph->node[graph->n].sched = sched;
532 graph->node[graph->n].sched_map = NULL;
533 band = isl_alloc_array(ctx, int, graph->max_row);
534 graph->node[graph->n].band = band;
535 band_id = isl_calloc_array(ctx, int, graph->max_row);
536 graph->node[graph->n].band_id = band_id;
537 zero = isl_calloc_array(ctx, int, graph->max_row);
538 graph->node[graph->n].zero = zero;
539 graph->n++;
541 if (!sched || !band || !band_id || !zero)
542 return -1;
544 return 0;
547 struct isl_extract_edge_data {
548 enum isl_edge_type type;
549 struct isl_sched_graph *graph;
552 /* Add a new edge to the graph based on the given map
553 * and add it to data->graph->edge_table[data->type].
554 * If a dependence relation of a given type happens to be identical
555 * to one of the dependence relations of a type that was added before,
556 * then we don't create a new edge, but instead mark the original edge
557 * as also representing a dependence of the current type.
559 static int extract_edge(__isl_take isl_map *map, void *user)
561 isl_ctx *ctx = isl_map_get_ctx(map);
562 struct isl_extract_edge_data *data = user;
563 struct isl_sched_graph *graph = data->graph;
564 struct isl_sched_node *src, *dst;
565 isl_space *dim;
566 struct isl_sched_edge *edge;
567 int is_equal;
569 dim = isl_space_domain(isl_map_get_space(map));
570 src = graph_find_node(ctx, graph, dim);
571 isl_space_free(dim);
572 dim = isl_space_range(isl_map_get_space(map));
573 dst = graph_find_node(ctx, graph, dim);
574 isl_space_free(dim);
576 if (!src || !dst) {
577 isl_map_free(map);
578 return 0;
581 graph->edge[graph->n_edge].src = src;
582 graph->edge[graph->n_edge].dst = dst;
583 graph->edge[graph->n_edge].map = map;
584 if (data->type == isl_edge_validity) {
585 graph->edge[graph->n_edge].validity = 1;
586 graph->edge[graph->n_edge].proximity = 0;
588 if (data->type == isl_edge_proximity) {
589 graph->edge[graph->n_edge].validity = 0;
590 graph->edge[graph->n_edge].proximity = 1;
592 graph->n_edge++;
594 edge = graph_find_any_edge(graph, src, dst);
595 if (!edge)
596 return graph_edge_table_add(ctx, graph, data->type,
597 &graph->edge[graph->n_edge - 1]);
598 is_equal = isl_map_plain_is_equal(map, edge->map);
599 if (is_equal < 0)
600 return -1;
601 if (!is_equal)
602 return graph_edge_table_add(ctx, graph, data->type,
603 &graph->edge[graph->n_edge - 1]);
605 graph->n_edge--;
606 edge->validity |= graph->edge[graph->n_edge].validity;
607 edge->proximity |= graph->edge[graph->n_edge].proximity;
608 isl_map_free(map);
610 return graph_edge_table_add(ctx, graph, data->type, edge);
613 /* Check whether there is any dependence from node[j] to node[i]
614 * or from node[i] to node[j].
616 static int node_follows_weak(int i, int j, void *user)
618 int f;
619 struct isl_sched_graph *graph = user;
621 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
622 if (f < 0 || f)
623 return f;
624 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
627 /* Check whether there is a validity dependence from node[j] to node[i],
628 * forcing node[i] to follow node[j].
630 static int node_follows_strong(int i, int j, void *user)
632 struct isl_sched_graph *graph = user;
634 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
637 /* Use Tarjan's algorithm for computing the strongly connected components
638 * in the dependence graph (only validity edges).
639 * If weak is set, we consider the graph to be undirected and
640 * we effectively compute the (weakly) connected components.
641 * Additionally, we also consider other edges when weak is set.
643 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
645 int i, n;
646 struct isl_tarjan_graph *g = NULL;
648 g = isl_tarjan_graph_init(ctx, graph->n,
649 weak ? &node_follows_weak : &node_follows_strong, graph);
650 if (!g)
651 return -1;
653 graph->scc = 0;
654 i = 0;
655 n = graph->n;
656 while (n) {
657 while (g->order[i] != -1) {
658 graph->node[g->order[i]].scc = graph->scc;
659 --n;
660 ++i;
662 ++i;
663 graph->scc++;
666 isl_tarjan_graph_free(g);
668 return 0;
671 /* Apply Tarjan's algorithm to detect the strongly connected components
672 * in the dependence graph.
674 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
676 return detect_ccs(ctx, graph, 0);
679 /* Apply Tarjan's algorithm to detect the (weakly) connected components
680 * in the dependence graph.
682 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
684 return detect_ccs(ctx, graph, 1);
687 static int cmp_scc(const void *a, const void *b, void *data)
689 struct isl_sched_graph *graph = data;
690 const int *i1 = a;
691 const int *i2 = b;
693 return graph->node[*i1].scc - graph->node[*i2].scc;
696 /* Sort the elements of graph->sorted according to the corresponding SCCs.
698 static int sort_sccs(struct isl_sched_graph *graph)
700 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
703 /* Given a dependence relation R from a node to itself,
704 * construct the set of coefficients of valid constraints for elements
705 * in that dependence relation.
706 * In particular, the result contains tuples of coefficients
707 * c_0, c_n, c_x such that
709 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
711 * or, equivalently,
713 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
715 * We choose here to compute the dual of delta R.
716 * Alternatively, we could have computed the dual of R, resulting
717 * in a set of tuples c_0, c_n, c_x, c_y, and then
718 * plugged in (c_0, c_n, c_x, -c_x).
720 static __isl_give isl_basic_set *intra_coefficients(
721 struct isl_sched_graph *graph, __isl_take isl_map *map)
723 isl_ctx *ctx = isl_map_get_ctx(map);
724 isl_set *delta;
725 isl_basic_set *coef;
727 if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
728 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
730 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
731 coef = isl_set_coefficients(delta);
732 isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
733 isl_basic_set_copy(coef));
735 return coef;
738 /* Given a dependence relation R, * construct the set of coefficients
739 * of valid constraints for elements in that dependence relation.
740 * In particular, the result contains tuples of coefficients
741 * c_0, c_n, c_x, c_y such that
743 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
746 static __isl_give isl_basic_set *inter_coefficients(
747 struct isl_sched_graph *graph, __isl_take isl_map *map)
749 isl_ctx *ctx = isl_map_get_ctx(map);
750 isl_set *set;
751 isl_basic_set *coef;
753 if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
754 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
756 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
757 coef = isl_set_coefficients(set);
758 isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
759 isl_basic_set_copy(coef));
761 return coef;
764 /* Add constraints to graph->lp that force validity for the given
765 * dependence from a node i to itself.
766 * That is, add constraints that enforce
768 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
769 * = c_i_x (y - x) >= 0
771 * for each (x,y) in R.
772 * We obtain general constraints on coefficients (c_0, c_n, c_x)
773 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
774 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
775 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
777 * Actually, we do not construct constraints for the c_i_x themselves,
778 * but for the coefficients of c_i_x written as a linear combination
779 * of the columns in node->cmap.
781 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
782 struct isl_sched_edge *edge)
784 unsigned total;
785 isl_map *map = isl_map_copy(edge->map);
786 isl_ctx *ctx = isl_map_get_ctx(map);
787 isl_space *dim;
788 isl_dim_map *dim_map;
789 isl_basic_set *coef;
790 struct isl_sched_node *node = edge->src;
792 coef = intra_coefficients(graph, map);
794 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
796 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
797 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
798 if (!coef)
799 goto error;
801 total = isl_basic_set_total_dim(graph->lp);
802 dim_map = isl_dim_map_alloc(ctx, total);
803 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
804 isl_space_dim(dim, isl_dim_set), 1,
805 node->nvar, -1);
806 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
807 isl_space_dim(dim, isl_dim_set), 1,
808 node->nvar, 1);
809 graph->lp = isl_basic_set_extend_constraints(graph->lp,
810 coef->n_eq, coef->n_ineq);
811 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
812 coef, dim_map);
813 isl_space_free(dim);
815 return 0;
816 error:
817 isl_space_free(dim);
818 return -1;
821 /* Add constraints to graph->lp that force validity for the given
822 * dependence from node i to node j.
823 * That is, add constraints that enforce
825 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
827 * for each (x,y) in R.
828 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
829 * of valid constraints for R and then plug in
830 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
831 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
832 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
833 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
835 * Actually, we do not construct constraints for the c_*_x themselves,
836 * but for the coefficients of c_*_x written as a linear combination
837 * of the columns in node->cmap.
839 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
840 struct isl_sched_edge *edge)
842 unsigned total;
843 isl_map *map = isl_map_copy(edge->map);
844 isl_ctx *ctx = isl_map_get_ctx(map);
845 isl_space *dim;
846 isl_dim_map *dim_map;
847 isl_basic_set *coef;
848 struct isl_sched_node *src = edge->src;
849 struct isl_sched_node *dst = edge->dst;
851 coef = inter_coefficients(graph, map);
853 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
855 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
856 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
857 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
858 isl_space_dim(dim, isl_dim_set) + src->nvar,
859 isl_mat_copy(dst->cmap));
860 if (!coef)
861 goto error;
863 total = isl_basic_set_total_dim(graph->lp);
864 dim_map = isl_dim_map_alloc(ctx, total);
866 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
867 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
868 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
869 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
870 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
871 dst->nvar, -1);
872 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
873 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
874 dst->nvar, 1);
876 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
877 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
878 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
879 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
880 isl_space_dim(dim, isl_dim_set), 1,
881 src->nvar, 1);
882 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
883 isl_space_dim(dim, isl_dim_set), 1,
884 src->nvar, -1);
886 edge->start = graph->lp->n_ineq;
887 graph->lp = isl_basic_set_extend_constraints(graph->lp,
888 coef->n_eq, coef->n_ineq);
889 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
890 coef, dim_map);
891 if (!graph->lp)
892 goto error;
893 isl_space_free(dim);
894 edge->end = graph->lp->n_ineq;
896 return 0;
897 error:
898 isl_space_free(dim);
899 return -1;
902 /* Add constraints to graph->lp that bound the dependence distance for the given
903 * dependence from a node i to itself.
904 * If s = 1, we add the constraint
906 * c_i_x (y - x) <= m_0 + m_n n
908 * or
910 * -c_i_x (y - x) + m_0 + m_n n >= 0
912 * for each (x,y) in R.
913 * If s = -1, we add the constraint
915 * -c_i_x (y - x) <= m_0 + m_n n
917 * or
919 * c_i_x (y - x) + m_0 + m_n n >= 0
921 * for each (x,y) in R.
922 * We obtain general constraints on coefficients (c_0, c_n, c_x)
923 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
924 * with each coefficient (except m_0) represented as a pair of non-negative
925 * coefficients.
927 * Actually, we do not construct constraints for the c_i_x themselves,
928 * but for the coefficients of c_i_x written as a linear combination
929 * of the columns in node->cmap.
931 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
932 struct isl_sched_edge *edge, int s)
934 unsigned total;
935 unsigned nparam;
936 isl_map *map = isl_map_copy(edge->map);
937 isl_ctx *ctx = isl_map_get_ctx(map);
938 isl_space *dim;
939 isl_dim_map *dim_map;
940 isl_basic_set *coef;
941 struct isl_sched_node *node = edge->src;
943 coef = intra_coefficients(graph, map);
945 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
947 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
948 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
949 if (!coef)
950 goto error;
952 nparam = isl_space_dim(node->dim, isl_dim_param);
953 total = isl_basic_set_total_dim(graph->lp);
954 dim_map = isl_dim_map_alloc(ctx, total);
955 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
956 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
957 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
958 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
959 isl_space_dim(dim, isl_dim_set), 1,
960 node->nvar, s);
961 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
962 isl_space_dim(dim, isl_dim_set), 1,
963 node->nvar, -s);
964 graph->lp = isl_basic_set_extend_constraints(graph->lp,
965 coef->n_eq, coef->n_ineq);
966 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
967 coef, dim_map);
968 isl_space_free(dim);
970 return 0;
971 error:
972 isl_space_free(dim);
973 return -1;
976 /* Add constraints to graph->lp that bound the dependence distance for the given
977 * dependence from node i to node j.
978 * If s = 1, we add the constraint
980 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
981 * <= m_0 + m_n n
983 * or
985 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
986 * m_0 + m_n n >= 0
988 * for each (x,y) in R.
989 * If s = -1, we add the constraint
991 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
992 * <= m_0 + m_n n
994 * or
996 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
997 * m_0 + m_n n >= 0
999 * for each (x,y) in R.
1000 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1001 * of valid constraints for R and then plug in
1002 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1003 * -s*c_j_x+s*c_i_x)
1004 * with each coefficient (except m_0, c_j_0 and c_i_0)
1005 * represented as a pair of non-negative coefficients.
1007 * Actually, we do not construct constraints for the c_*_x themselves,
1008 * but for the coefficients of c_*_x written as a linear combination
1009 * of the columns in node->cmap.
1011 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1012 struct isl_sched_edge *edge, int s)
1014 unsigned total;
1015 unsigned nparam;
1016 isl_map *map = isl_map_copy(edge->map);
1017 isl_ctx *ctx = isl_map_get_ctx(map);
1018 isl_space *dim;
1019 isl_dim_map *dim_map;
1020 isl_basic_set *coef;
1021 struct isl_sched_node *src = edge->src;
1022 struct isl_sched_node *dst = edge->dst;
1024 coef = inter_coefficients(graph, map);
1026 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1028 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1029 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1030 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1031 isl_space_dim(dim, isl_dim_set) + src->nvar,
1032 isl_mat_copy(dst->cmap));
1033 if (!coef)
1034 goto error;
1036 nparam = isl_space_dim(src->dim, isl_dim_param);
1037 total = isl_basic_set_total_dim(graph->lp);
1038 dim_map = isl_dim_map_alloc(ctx, total);
1040 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1041 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1042 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1044 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1045 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1046 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1047 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1048 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1049 dst->nvar, s);
1050 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1051 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1052 dst->nvar, -s);
1054 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1055 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1056 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1057 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1058 isl_space_dim(dim, isl_dim_set), 1,
1059 src->nvar, -s);
1060 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1061 isl_space_dim(dim, isl_dim_set), 1,
1062 src->nvar, s);
1064 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1065 coef->n_eq, coef->n_ineq);
1066 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1067 coef, dim_map);
1068 isl_space_free(dim);
1070 return 0;
1071 error:
1072 isl_space_free(dim);
1073 return -1;
1076 static int add_all_validity_constraints(struct isl_sched_graph *graph)
1078 int i;
1080 for (i = 0; i < graph->n_edge; ++i) {
1081 struct isl_sched_edge *edge= &graph->edge[i];
1082 if (!edge->validity)
1083 continue;
1084 if (edge->src != edge->dst)
1085 continue;
1086 if (add_intra_validity_constraints(graph, edge) < 0)
1087 return -1;
1090 for (i = 0; i < graph->n_edge; ++i) {
1091 struct isl_sched_edge *edge = &graph->edge[i];
1092 if (!edge->validity)
1093 continue;
1094 if (edge->src == edge->dst)
1095 continue;
1096 if (add_inter_validity_constraints(graph, edge) < 0)
1097 return -1;
1100 return 0;
1103 /* Add constraints to graph->lp that bound the dependence distance
1104 * for all dependence relations.
1105 * If a given proximity dependence is identical to a validity
1106 * dependence, then the dependence distance is already bounded
1107 * from below (by zero), so we only need to bound the distance
1108 * from above.
1109 * Otherwise, we need to bound the distance both from above and from below.
1111 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
1113 int i;
1115 for (i = 0; i < graph->n_edge; ++i) {
1116 struct isl_sched_edge *edge= &graph->edge[i];
1117 if (!edge->proximity)
1118 continue;
1119 if (edge->src == edge->dst &&
1120 add_intra_proximity_constraints(graph, edge, 1) < 0)
1121 return -1;
1122 if (edge->src != edge->dst &&
1123 add_inter_proximity_constraints(graph, edge, 1) < 0)
1124 return -1;
1125 if (edge->validity)
1126 continue;
1127 if (edge->src == edge->dst &&
1128 add_intra_proximity_constraints(graph, edge, -1) < 0)
1129 return -1;
1130 if (edge->src != edge->dst &&
1131 add_inter_proximity_constraints(graph, edge, -1) < 0)
1132 return -1;
1135 return 0;
1138 /* Compute a basis for the rows in the linear part of the schedule
1139 * and extend this basis to a full basis. The remaining rows
1140 * can then be used to force linear independence from the rows
1141 * in the schedule.
1143 * In particular, given the schedule rows S, we compute
1145 * S = H Q
1147 * with H the Hermite normal form of S. That is, all but the
1148 * first rank columns of Q are zero and so each row in S is
1149 * a linear combination of the first rank rows of Q.
1150 * The matrix Q is then transposed because we will write the
1151 * coefficients of the next schedule row as a column vector s
1152 * and express this s as a linear combination s = Q c of the
1153 * computed basis.
1155 static int node_update_cmap(struct isl_sched_node *node)
1157 isl_mat *H, *Q;
1158 int n_row = isl_mat_rows(node->sched);
1160 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1161 1 + node->nparam, node->nvar);
1163 H = isl_mat_left_hermite(H, 0, NULL, &Q);
1164 isl_mat_free(node->cmap);
1165 node->cmap = isl_mat_transpose(Q);
1166 node->rank = isl_mat_initial_non_zero_cols(H);
1167 isl_mat_free(H);
1169 if (!node->cmap || node->rank < 0)
1170 return -1;
1171 return 0;
1174 /* Count the number of equality and inequality constraints
1175 * that will be added for the given map.
1176 * If carry is set, then we are counting the number of (validity)
1177 * constraints that will be added in setup_carry_lp and we count
1178 * each edge exactly once. Otherwise, we count as follows
1179 * validity -> 1 (>= 0)
1180 * validity+proximity -> 2 (>= 0 and upper bound)
1181 * proximity -> 2 (lower and upper bound)
1183 static int count_map_constraints(struct isl_sched_graph *graph,
1184 struct isl_sched_edge *edge, __isl_take isl_map *map,
1185 int *n_eq, int *n_ineq, int carry)
1187 isl_basic_set *coef;
1188 int f = carry ? 1 : edge->proximity ? 2 : 1;
1190 if (carry && !edge->validity) {
1191 isl_map_free(map);
1192 return 0;
1195 if (edge->src == edge->dst)
1196 coef = intra_coefficients(graph, map);
1197 else
1198 coef = inter_coefficients(graph, map);
1199 if (!coef)
1200 return -1;
1201 *n_eq += f * coef->n_eq;
1202 *n_ineq += f * coef->n_ineq;
1203 isl_basic_set_free(coef);
1205 return 0;
1208 /* Count the number of equality and inequality constraints
1209 * that will be added to the main lp problem.
1210 * We count as follows
1211 * validity -> 1 (>= 0)
1212 * validity+proximity -> 2 (>= 0 and upper bound)
1213 * proximity -> 2 (lower and upper bound)
1215 static int count_constraints(struct isl_sched_graph *graph,
1216 int *n_eq, int *n_ineq)
1218 int i;
1220 *n_eq = *n_ineq = 0;
1221 for (i = 0; i < graph->n_edge; ++i) {
1222 struct isl_sched_edge *edge= &graph->edge[i];
1223 isl_map *map = isl_map_copy(edge->map);
1225 if (count_map_constraints(graph, edge, map,
1226 n_eq, n_ineq, 0) < 0)
1227 return -1;
1230 return 0;
1233 /* Add constraints that bound the values of the variable and parameter
1234 * coefficients of the schedule.
1236 * The maximal value of the coefficients is defined by the option
1237 * 'schedule_max_coefficient'.
1239 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1240 struct isl_sched_graph *graph)
1242 int i, j, k;
1243 int max_coefficient;
1244 int total;
1246 max_coefficient = ctx->opt->schedule_max_coefficient;
1248 if (max_coefficient == -1)
1249 return 0;
1251 total = isl_basic_set_total_dim(graph->lp);
1253 for (i = 0; i < graph->n; ++i) {
1254 struct isl_sched_node *node = &graph->node[i];
1255 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1256 int dim;
1257 k = isl_basic_set_alloc_inequality(graph->lp);
1258 if (k < 0)
1259 return -1;
1260 dim = 1 + node->start + 1 + j;
1261 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1262 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1263 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1267 return 0;
1270 /* Construct an ILP problem for finding schedule coefficients
1271 * that result in non-negative, but small dependence distances
1272 * over all dependences.
1273 * In particular, the dependence distances over proximity edges
1274 * are bounded by m_0 + m_n n and we compute schedule coefficients
1275 * with small values (preferably zero) of m_n and m_0.
1277 * All variables of the ILP are non-negative. The actual coefficients
1278 * may be negative, so each coefficient is represented as the difference
1279 * of two non-negative variables. The negative part always appears
1280 * immediately before the positive part.
1281 * Other than that, the variables have the following order
1283 * - sum of positive and negative parts of m_n coefficients
1284 * - m_0
1285 * - sum of positive and negative parts of all c_n coefficients
1286 * (unconstrained when computing non-parametric schedules)
1287 * - sum of positive and negative parts of all c_x coefficients
1288 * - positive and negative parts of m_n coefficients
1289 * - for each node
1290 * - c_i_0
1291 * - positive and negative parts of c_i_n (if parametric)
1292 * - positive and negative parts of c_i_x
1294 * The c_i_x are not represented directly, but through the columns of
1295 * node->cmap. That is, the computed values are for variable t_i_x
1296 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1298 * The constraints are those from the edges plus two or three equalities
1299 * to express the sums.
1301 * If force_zero is set, then we add equalities to ensure that
1302 * the sum of the m_n coefficients and m_0 are both zero.
1304 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1305 int force_zero)
1307 int i, j;
1308 int k;
1309 unsigned nparam;
1310 unsigned total;
1311 isl_space *dim;
1312 int parametric;
1313 int param_pos;
1314 int n_eq, n_ineq;
1315 int max_constant_term;
1316 int max_coefficient;
1318 max_constant_term = ctx->opt->schedule_max_constant_term;
1319 max_coefficient = ctx->opt->schedule_max_coefficient;
1321 parametric = ctx->opt->schedule_parametric;
1322 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1323 param_pos = 4;
1324 total = param_pos + 2 * nparam;
1325 for (i = 0; i < graph->n; ++i) {
1326 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1327 if (node_update_cmap(node) < 0)
1328 return -1;
1329 node->start = total;
1330 total += 1 + 2 * (node->nparam + node->nvar);
1333 if (count_constraints(graph, &n_eq, &n_ineq) < 0)
1334 return -1;
1336 dim = isl_space_set_alloc(ctx, 0, total);
1337 isl_basic_set_free(graph->lp);
1338 n_eq += 2 + parametric + force_zero;
1339 if (max_constant_term != -1)
1340 n_ineq += graph->n;
1341 if (max_coefficient != -1)
1342 for (i = 0; i < graph->n; ++i)
1343 n_ineq += 2 * graph->node[i].nparam +
1344 2 * graph->node[i].nvar;
1346 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1348 k = isl_basic_set_alloc_equality(graph->lp);
1349 if (k < 0)
1350 return -1;
1351 isl_seq_clr(graph->lp->eq[k], 1 + total);
1352 if (!force_zero)
1353 isl_int_set_si(graph->lp->eq[k][1], -1);
1354 for (i = 0; i < 2 * nparam; ++i)
1355 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1357 if (force_zero) {
1358 k = isl_basic_set_alloc_equality(graph->lp);
1359 if (k < 0)
1360 return -1;
1361 isl_seq_clr(graph->lp->eq[k], 1 + total);
1362 isl_int_set_si(graph->lp->eq[k][2], -1);
1365 if (parametric) {
1366 k = isl_basic_set_alloc_equality(graph->lp);
1367 if (k < 0)
1368 return -1;
1369 isl_seq_clr(graph->lp->eq[k], 1 + total);
1370 isl_int_set_si(graph->lp->eq[k][3], -1);
1371 for (i = 0; i < graph->n; ++i) {
1372 int pos = 1 + graph->node[i].start + 1;
1374 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1375 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1379 k = isl_basic_set_alloc_equality(graph->lp);
1380 if (k < 0)
1381 return -1;
1382 isl_seq_clr(graph->lp->eq[k], 1 + total);
1383 isl_int_set_si(graph->lp->eq[k][4], -1);
1384 for (i = 0; i < graph->n; ++i) {
1385 struct isl_sched_node *node = &graph->node[i];
1386 int pos = 1 + node->start + 1 + 2 * node->nparam;
1388 for (j = 0; j < 2 * node->nvar; ++j)
1389 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1392 if (max_constant_term != -1)
1393 for (i = 0; i < graph->n; ++i) {
1394 struct isl_sched_node *node = &graph->node[i];
1395 k = isl_basic_set_alloc_inequality(graph->lp);
1396 if (k < 0)
1397 return -1;
1398 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1399 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1400 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1403 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1404 return -1;
1405 if (add_all_validity_constraints(graph) < 0)
1406 return -1;
1407 if (add_all_proximity_constraints(graph) < 0)
1408 return -1;
1410 return 0;
1413 /* Analyze the conflicting constraint found by
1414 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1415 * constraint of one of the edges between distinct nodes, living, moreover
1416 * in distinct SCCs, then record the source and sink SCC as this may
1417 * be a good place to cut between SCCs.
1419 static int check_conflict(int con, void *user)
1421 int i;
1422 struct isl_sched_graph *graph = user;
1424 if (graph->src_scc >= 0)
1425 return 0;
1427 con -= graph->lp->n_eq;
1429 if (con >= graph->lp->n_ineq)
1430 return 0;
1432 for (i = 0; i < graph->n_edge; ++i) {
1433 if (!graph->edge[i].validity)
1434 continue;
1435 if (graph->edge[i].src == graph->edge[i].dst)
1436 continue;
1437 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1438 continue;
1439 if (graph->edge[i].start > con)
1440 continue;
1441 if (graph->edge[i].end <= con)
1442 continue;
1443 graph->src_scc = graph->edge[i].src->scc;
1444 graph->dst_scc = graph->edge[i].dst->scc;
1447 return 0;
1450 /* Check whether the next schedule row of the given node needs to be
1451 * non-trivial. Lower-dimensional domains may have some trivial rows,
1452 * but as soon as the number of remaining required non-trivial rows
1453 * is as large as the number or remaining rows to be computed,
1454 * all remaining rows need to be non-trivial.
1456 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1458 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1461 /* Solve the ILP problem constructed in setup_lp.
1462 * For each node such that all the remaining rows of its schedule
1463 * need to be non-trivial, we construct a non-triviality region.
1464 * This region imposes that the next row is independent of previous rows.
1465 * In particular the coefficients c_i_x are represented by t_i_x
1466 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1467 * its first columns span the rows of the previously computed part
1468 * of the schedule. The non-triviality region enforces that at least
1469 * one of the remaining components of t_i_x is non-zero, i.e.,
1470 * that the new schedule row depends on at least one of the remaining
1471 * columns of Q.
1473 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1475 int i;
1476 isl_vec *sol;
1477 isl_basic_set *lp;
1479 for (i = 0; i < graph->n; ++i) {
1480 struct isl_sched_node *node = &graph->node[i];
1481 int skip = node->rank;
1482 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1483 if (needs_row(graph, node))
1484 graph->region[i].len = 2 * (node->nvar - skip);
1485 else
1486 graph->region[i].len = 0;
1488 lp = isl_basic_set_copy(graph->lp);
1489 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1490 graph->region, &check_conflict, graph);
1491 return sol;
1494 /* Update the schedules of all nodes based on the given solution
1495 * of the LP problem.
1496 * The new row is added to the current band.
1497 * All possibly negative coefficients are encoded as a difference
1498 * of two non-negative variables, so we need to perform the subtraction
1499 * here. Moreover, if use_cmap is set, then the solution does
1500 * not refer to the actual coefficients c_i_x, but instead to variables
1501 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1502 * In this case, we then also need to perform this multiplication
1503 * to obtain the values of c_i_x.
1505 * If check_zero is set, then the first two coordinates of sol are
1506 * assumed to correspond to the dependence distance. If these two
1507 * coordinates are zero, then the corresponding scheduling dimension
1508 * is marked as being zero distance.
1510 static int update_schedule(struct isl_sched_graph *graph,
1511 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1513 int i, j;
1514 int zero = 0;
1515 isl_vec *csol = NULL;
1517 if (!sol)
1518 goto error;
1519 if (sol->size == 0)
1520 isl_die(sol->ctx, isl_error_internal,
1521 "no solution found", goto error);
1522 if (graph->n_total_row >= graph->max_row)
1523 isl_die(sol->ctx, isl_error_internal,
1524 "too many schedule rows", goto error);
1526 if (check_zero)
1527 zero = isl_int_is_zero(sol->el[1]) &&
1528 isl_int_is_zero(sol->el[2]);
1530 for (i = 0; i < graph->n; ++i) {
1531 struct isl_sched_node *node = &graph->node[i];
1532 int pos = node->start;
1533 int row = isl_mat_rows(node->sched);
1535 isl_vec_free(csol);
1536 csol = isl_vec_alloc(sol->ctx, node->nvar);
1537 if (!csol)
1538 goto error;
1540 isl_map_free(node->sched_map);
1541 node->sched_map = NULL;
1542 node->sched = isl_mat_add_rows(node->sched, 1);
1543 if (!node->sched)
1544 goto error;
1545 node->sched = isl_mat_set_element(node->sched, row, 0,
1546 sol->el[1 + pos]);
1547 for (j = 0; j < node->nparam + node->nvar; ++j)
1548 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1549 sol->el[1 + pos + 1 + 2 * j + 1],
1550 sol->el[1 + pos + 1 + 2 * j]);
1551 for (j = 0; j < node->nparam; ++j)
1552 node->sched = isl_mat_set_element(node->sched,
1553 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1554 for (j = 0; j < node->nvar; ++j)
1555 isl_int_set(csol->el[j],
1556 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1557 if (use_cmap)
1558 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1559 csol);
1560 if (!csol)
1561 goto error;
1562 for (j = 0; j < node->nvar; ++j)
1563 node->sched = isl_mat_set_element(node->sched,
1564 row, 1 + node->nparam + j, csol->el[j]);
1565 node->band[graph->n_total_row] = graph->n_band;
1566 node->zero[graph->n_total_row] = zero;
1568 isl_vec_free(sol);
1569 isl_vec_free(csol);
1571 graph->n_row++;
1572 graph->n_total_row++;
1574 return 0;
1575 error:
1576 isl_vec_free(sol);
1577 isl_vec_free(csol);
1578 return -1;
1581 /* Convert node->sched into a multi_aff and return this multi_aff.
1583 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
1584 struct isl_sched_node *node)
1586 int i, j;
1587 isl_space *space;
1588 isl_local_space *ls;
1589 isl_aff *aff;
1590 isl_multi_aff *ma;
1591 int nrow, ncol;
1592 isl_int v;
1594 nrow = isl_mat_rows(node->sched);
1595 ncol = isl_mat_cols(node->sched) - 1;
1596 space = isl_space_from_domain(isl_space_copy(node->dim));
1597 space = isl_space_add_dims(space, isl_dim_out, nrow);
1598 ma = isl_multi_aff_zero(space);
1599 ls = isl_local_space_from_space(isl_space_copy(node->dim));
1601 isl_int_init(v);
1603 for (i = 0; i < nrow; ++i) {
1604 aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1605 isl_mat_get_element(node->sched, i, 0, &v);
1606 aff = isl_aff_set_constant(aff, v);
1607 for (j = 0; j < node->nparam; ++j) {
1608 isl_mat_get_element(node->sched, i, 1 + j, &v);
1609 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
1611 for (j = 0; j < node->nvar; ++j) {
1612 isl_mat_get_element(node->sched,
1613 i, 1 + node->nparam + j, &v);
1614 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
1616 ma = isl_multi_aff_set_aff(ma, i, aff);
1619 isl_int_clear(v);
1621 isl_local_space_free(ls);
1623 return ma;
1626 /* Convert node->sched into a map and return this map.
1628 * The result is cached in node->sched_map, which needs to be released
1629 * whenever node->sched is updated.
1631 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1633 if (!node->sched_map) {
1634 isl_multi_aff *ma;
1636 ma = node_extract_schedule_multi_aff(node);
1637 node->sched_map = isl_map_from_multi_aff(ma);
1640 return isl_map_copy(node->sched_map);
1643 /* Update the given dependence relation based on the current schedule.
1644 * That is, intersect the dependence relation with a map expressing
1645 * that source and sink are executed within the same iteration of
1646 * the current schedule.
1647 * This is not the most efficient way, but this shouldn't be a critical
1648 * operation.
1650 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1651 struct isl_sched_node *src, struct isl_sched_node *dst)
1653 isl_map *src_sched, *dst_sched, *id;
1655 src_sched = node_extract_schedule(src);
1656 dst_sched = node_extract_schedule(dst);
1657 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1658 return isl_map_intersect(map, id);
1661 /* Update the dependence relations of all edges based on the current schedule.
1662 * If a dependence is carried completely by the current schedule, then
1663 * it is removed from the edge_tables. It is kept in the list of edges
1664 * as otherwise all edge_tables would have to be recomputed.
1666 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1668 int i;
1670 for (i = graph->n_edge - 1; i >= 0; --i) {
1671 struct isl_sched_edge *edge = &graph->edge[i];
1672 edge->map = specialize(edge->map, edge->src, edge->dst);
1673 if (!edge->map)
1674 return -1;
1676 if (isl_map_plain_is_empty(edge->map))
1677 graph_remove_edge(graph, edge);
1680 return 0;
1683 static void next_band(struct isl_sched_graph *graph)
1685 graph->band_start = graph->n_total_row;
1686 graph->n_band++;
1689 /* Topologically sort statements mapped to the same schedule iteration
1690 * and add a row to the schedule corresponding to this order.
1692 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1694 int i, j;
1696 if (graph->n <= 1)
1697 return 0;
1699 if (update_edges(ctx, graph) < 0)
1700 return -1;
1702 if (graph->n_edge == 0)
1703 return 0;
1705 if (detect_sccs(ctx, graph) < 0)
1706 return -1;
1708 if (graph->n_total_row >= graph->max_row)
1709 isl_die(ctx, isl_error_internal,
1710 "too many schedule rows", return -1);
1712 for (i = 0; i < graph->n; ++i) {
1713 struct isl_sched_node *node = &graph->node[i];
1714 int row = isl_mat_rows(node->sched);
1715 int cols = isl_mat_cols(node->sched);
1717 isl_map_free(node->sched_map);
1718 node->sched_map = NULL;
1719 node->sched = isl_mat_add_rows(node->sched, 1);
1720 if (!node->sched)
1721 return -1;
1722 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1723 node->scc);
1724 for (j = 1; j < cols; ++j)
1725 node->sched = isl_mat_set_element_si(node->sched,
1726 row, j, 0);
1727 node->band[graph->n_total_row] = graph->n_band;
1730 graph->n_total_row++;
1731 next_band(graph);
1733 return 0;
1736 /* Construct an isl_schedule based on the computed schedule stored
1737 * in graph and with parameters specified by dim.
1739 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1740 __isl_take isl_space *dim)
1742 int i;
1743 isl_ctx *ctx;
1744 isl_schedule *sched = NULL;
1746 if (!dim)
1747 return NULL;
1749 ctx = isl_space_get_ctx(dim);
1750 sched = isl_calloc(ctx, struct isl_schedule,
1751 sizeof(struct isl_schedule) +
1752 (graph->n - 1) * sizeof(struct isl_schedule_node));
1753 if (!sched)
1754 goto error;
1756 sched->ref = 1;
1757 sched->n = graph->n;
1758 sched->n_band = graph->n_band;
1759 sched->n_total_row = graph->n_total_row;
1761 for (i = 0; i < sched->n; ++i) {
1762 int r, b;
1763 int *band_end, *band_id, *zero;
1765 sched->node[i].sched =
1766 node_extract_schedule_multi_aff(&graph->node[i]);
1767 if (!sched->node[i].sched)
1768 goto error;
1770 sched->node[i].n_band = graph->n_band;
1771 if (graph->n_band == 0)
1772 continue;
1774 band_end = isl_alloc_array(ctx, int, graph->n_band);
1775 band_id = isl_alloc_array(ctx, int, graph->n_band);
1776 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1777 sched->node[i].band_end = band_end;
1778 sched->node[i].band_id = band_id;
1779 sched->node[i].zero = zero;
1780 if (!band_end || !band_id || !zero)
1781 goto error;
1783 for (r = 0; r < graph->n_total_row; ++r)
1784 zero[r] = graph->node[i].zero[r];
1785 for (r = b = 0; r < graph->n_total_row; ++r) {
1786 if (graph->node[i].band[r] == b)
1787 continue;
1788 band_end[b++] = r;
1789 if (graph->node[i].band[r] == -1)
1790 break;
1792 if (r == graph->n_total_row)
1793 band_end[b++] = r;
1794 sched->node[i].n_band = b;
1795 for (--b; b >= 0; --b)
1796 band_id[b] = graph->node[i].band_id[b];
1799 sched->dim = dim;
1801 return sched;
1802 error:
1803 isl_space_free(dim);
1804 isl_schedule_free(sched);
1805 return NULL;
1808 /* Copy nodes that satisfy node_pred from the src dependence graph
1809 * to the dst dependence graph.
1811 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1812 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1814 int i;
1816 dst->n = 0;
1817 for (i = 0; i < src->n; ++i) {
1818 if (!node_pred(&src->node[i], data))
1819 continue;
1820 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1821 dst->node[dst->n].nvar = src->node[i].nvar;
1822 dst->node[dst->n].nparam = src->node[i].nparam;
1823 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1824 dst->node[dst->n].sched_map =
1825 isl_map_copy(src->node[i].sched_map);
1826 dst->node[dst->n].band = src->node[i].band;
1827 dst->node[dst->n].band_id = src->node[i].band_id;
1828 dst->node[dst->n].zero = src->node[i].zero;
1829 dst->n++;
1832 return 0;
1835 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1836 * to the dst dependence graph.
1837 * If the source or destination node of the edge is not in the destination
1838 * graph, then it must be a backward proximity edge and it should simply
1839 * be ignored.
1841 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1842 struct isl_sched_graph *src,
1843 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1845 int i;
1846 enum isl_edge_type t;
1848 dst->n_edge = 0;
1849 for (i = 0; i < src->n_edge; ++i) {
1850 struct isl_sched_edge *edge = &src->edge[i];
1851 isl_map *map;
1852 struct isl_sched_node *dst_src, *dst_dst;
1854 if (!edge_pred(edge, data))
1855 continue;
1857 if (isl_map_plain_is_empty(edge->map))
1858 continue;
1860 dst_src = graph_find_node(ctx, dst, edge->src->dim);
1861 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
1862 if (!dst_src || !dst_dst) {
1863 if (edge->validity)
1864 isl_die(ctx, isl_error_internal,
1865 "backward validity edge", return -1);
1866 continue;
1869 map = isl_map_copy(edge->map);
1871 dst->edge[dst->n_edge].src = dst_src;
1872 dst->edge[dst->n_edge].dst = dst_dst;
1873 dst->edge[dst->n_edge].map = map;
1874 dst->edge[dst->n_edge].validity = edge->validity;
1875 dst->edge[dst->n_edge].proximity = edge->proximity;
1876 dst->n_edge++;
1878 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
1879 if (edge !=
1880 graph_find_edge(src, t, edge->src, edge->dst))
1881 continue;
1882 if (graph_edge_table_add(ctx, dst, t,
1883 &dst->edge[dst->n_edge - 1]) < 0)
1884 return -1;
1888 return 0;
1891 /* Given a "src" dependence graph that contains the nodes from "dst"
1892 * that satisfy node_pred, copy the schedule computed in "src"
1893 * for those nodes back to "dst".
1895 static int copy_schedule(struct isl_sched_graph *dst,
1896 struct isl_sched_graph *src,
1897 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1899 int i;
1901 src->n = 0;
1902 for (i = 0; i < dst->n; ++i) {
1903 if (!node_pred(&dst->node[i], data))
1904 continue;
1905 isl_mat_free(dst->node[i].sched);
1906 isl_map_free(dst->node[i].sched_map);
1907 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1908 dst->node[i].sched_map =
1909 isl_map_copy(src->node[src->n].sched_map);
1910 src->n++;
1913 dst->max_row = src->max_row;
1914 dst->n_total_row = src->n_total_row;
1915 dst->n_band = src->n_band;
1917 return 0;
1920 /* Compute the maximal number of variables over all nodes.
1921 * This is the maximal number of linearly independent schedule
1922 * rows that we need to compute.
1923 * Just in case we end up in a part of the dependence graph
1924 * with only lower-dimensional domains, we make sure we will
1925 * compute the required amount of extra linearly independent rows.
1927 static int compute_maxvar(struct isl_sched_graph *graph)
1929 int i;
1931 graph->maxvar = 0;
1932 for (i = 0; i < graph->n; ++i) {
1933 struct isl_sched_node *node = &graph->node[i];
1934 int nvar;
1936 if (node_update_cmap(node) < 0)
1937 return -1;
1938 nvar = node->nvar + graph->n_row - node->rank;
1939 if (nvar > graph->maxvar)
1940 graph->maxvar = nvar;
1943 return 0;
1946 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1947 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1949 /* Compute a schedule for a subgraph of "graph". In particular, for
1950 * the graph composed of nodes that satisfy node_pred and edges that
1951 * that satisfy edge_pred. The caller should precompute the number
1952 * of nodes and edges that satisfy these predicates and pass them along
1953 * as "n" and "n_edge".
1954 * If the subgraph is known to consist of a single component, then wcc should
1955 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1956 * Otherwise, we call compute_schedule, which will check whether the subgraph
1957 * is connected.
1959 static int compute_sub_schedule(isl_ctx *ctx,
1960 struct isl_sched_graph *graph, int n, int n_edge,
1961 int (*node_pred)(struct isl_sched_node *node, int data),
1962 int (*edge_pred)(struct isl_sched_edge *edge, int data),
1963 int data, int wcc)
1965 struct isl_sched_graph split = { 0 };
1966 int t;
1968 if (graph_alloc(ctx, &split, n, n_edge) < 0)
1969 goto error;
1970 if (copy_nodes(&split, graph, node_pred, data) < 0)
1971 goto error;
1972 if (graph_init_table(ctx, &split) < 0)
1973 goto error;
1974 for (t = 0; t <= isl_edge_last; ++t)
1975 split.max_edge[t] = graph->max_edge[t];
1976 if (graph_init_edge_tables(ctx, &split) < 0)
1977 goto error;
1978 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1979 goto error;
1980 split.n_row = graph->n_row;
1981 split.max_row = graph->max_row;
1982 split.n_total_row = graph->n_total_row;
1983 split.n_band = graph->n_band;
1984 split.band_start = graph->band_start;
1986 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
1987 goto error;
1988 if (!wcc && compute_schedule(ctx, &split) < 0)
1989 goto error;
1991 copy_schedule(graph, &split, node_pred, data);
1993 graph_free(ctx, &split);
1994 return 0;
1995 error:
1996 graph_free(ctx, &split);
1997 return -1;
2000 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2002 return node->scc == scc;
2005 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2007 return node->scc <= scc;
2010 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2012 return node->scc >= scc;
2015 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2017 return edge->src->scc == scc && edge->dst->scc == scc;
2020 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2022 return edge->dst->scc <= scc;
2025 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2027 return edge->src->scc >= scc;
2030 /* Pad the schedules of all nodes with zero rows such that in the end
2031 * they all have graph->n_total_row rows.
2032 * The extra rows don't belong to any band, so they get assigned band number -1.
2034 static int pad_schedule(struct isl_sched_graph *graph)
2036 int i, j;
2038 for (i = 0; i < graph->n; ++i) {
2039 struct isl_sched_node *node = &graph->node[i];
2040 int row = isl_mat_rows(node->sched);
2041 if (graph->n_total_row > row) {
2042 isl_map_free(node->sched_map);
2043 node->sched_map = NULL;
2045 node->sched = isl_mat_add_zero_rows(node->sched,
2046 graph->n_total_row - row);
2047 if (!node->sched)
2048 return -1;
2049 for (j = row; j < graph->n_total_row; ++j)
2050 node->band[j] = -1;
2053 return 0;
2056 /* Split the current graph into two parts and compute a schedule for each
2057 * part individually. In particular, one part consists of all SCCs up
2058 * to and including graph->src_scc, while the other part contains the other
2059 * SCCS.
2061 * The split is enforced in the schedule by constant rows with two different
2062 * values (0 and 1). These constant rows replace the previously computed rows
2063 * in the current band.
2064 * It would be possible to reuse them as the first rows in the next
2065 * band, but recomputing them may result in better rows as we are looking
2066 * at a smaller part of the dependence graph.
2067 * compute_split_schedule is only called when no zero-distance schedule row
2068 * could be found on the entire graph, so we wark the splitting row as
2069 * non zero-distance.
2071 * The band_id of the second group is set to n, where n is the number
2072 * of nodes in the first group. This ensures that the band_ids over
2073 * the two groups remain disjoint, even if either or both of the two
2074 * groups contain independent components.
2076 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2078 int i, j, n, e1, e2;
2079 int n_total_row, orig_total_row;
2080 int n_band, orig_band;
2081 int drop;
2083 if (graph->n_total_row >= graph->max_row)
2084 isl_die(ctx, isl_error_internal,
2085 "too many schedule rows", return -1);
2087 drop = graph->n_total_row - graph->band_start;
2088 graph->n_total_row -= drop;
2089 graph->n_row -= drop;
2091 n = 0;
2092 for (i = 0; i < graph->n; ++i) {
2093 struct isl_sched_node *node = &graph->node[i];
2094 int row = isl_mat_rows(node->sched) - drop;
2095 int cols = isl_mat_cols(node->sched);
2096 int before = node->scc <= graph->src_scc;
2098 if (before)
2099 n++;
2101 isl_map_free(node->sched_map);
2102 node->sched_map = NULL;
2103 node->sched = isl_mat_drop_rows(node->sched,
2104 graph->band_start, drop);
2105 node->sched = isl_mat_add_rows(node->sched, 1);
2106 if (!node->sched)
2107 return -1;
2108 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2109 !before);
2110 for (j = 1; j < cols; ++j)
2111 node->sched = isl_mat_set_element_si(node->sched,
2112 row, j, 0);
2113 node->band[graph->n_total_row] = graph->n_band;
2114 node->zero[graph->n_total_row] = 0;
2117 e1 = e2 = 0;
2118 for (i = 0; i < graph->n_edge; ++i) {
2119 if (graph->edge[i].dst->scc <= graph->src_scc)
2120 e1++;
2121 if (graph->edge[i].src->scc > graph->src_scc)
2122 e2++;
2125 graph->n_total_row++;
2126 next_band(graph);
2128 for (i = 0; i < graph->n; ++i) {
2129 struct isl_sched_node *node = &graph->node[i];
2130 if (node->scc > graph->src_scc)
2131 node->band_id[graph->n_band] = n;
2134 orig_total_row = graph->n_total_row;
2135 orig_band = graph->n_band;
2136 if (compute_sub_schedule(ctx, graph, n, e1,
2137 &node_scc_at_most, &edge_dst_scc_at_most,
2138 graph->src_scc, 0) < 0)
2139 return -1;
2140 n_total_row = graph->n_total_row;
2141 graph->n_total_row = orig_total_row;
2142 n_band = graph->n_band;
2143 graph->n_band = orig_band;
2144 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2145 &node_scc_at_least, &edge_src_scc_at_least,
2146 graph->src_scc + 1, 0) < 0)
2147 return -1;
2148 if (n_total_row > graph->n_total_row)
2149 graph->n_total_row = n_total_row;
2150 if (n_band > graph->n_band)
2151 graph->n_band = n_band;
2153 return pad_schedule(graph);
2156 /* Compute the next band of the schedule after updating the dependence
2157 * relations based on the the current schedule.
2159 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2161 if (update_edges(ctx, graph) < 0)
2162 return -1;
2163 next_band(graph);
2165 return compute_schedule(ctx, graph);
2168 /* Add constraints to graph->lp that force the dependence "map" (which
2169 * is part of the dependence relation of "edge")
2170 * to be respected and attempt to carry it, where the edge is one from
2171 * a node j to itself. "pos" is the sequence number of the given map.
2172 * That is, add constraints that enforce
2174 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2175 * = c_j_x (y - x) >= e_i
2177 * for each (x,y) in R.
2178 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2179 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2180 * with each coefficient in c_j_x represented as a pair of non-negative
2181 * coefficients.
2183 static int add_intra_constraints(struct isl_sched_graph *graph,
2184 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2186 unsigned total;
2187 isl_ctx *ctx = isl_map_get_ctx(map);
2188 isl_space *dim;
2189 isl_dim_map *dim_map;
2190 isl_basic_set *coef;
2191 struct isl_sched_node *node = edge->src;
2193 coef = intra_coefficients(graph, map);
2194 if (!coef)
2195 return -1;
2197 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2199 total = isl_basic_set_total_dim(graph->lp);
2200 dim_map = isl_dim_map_alloc(ctx, total);
2201 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2202 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2203 isl_space_dim(dim, isl_dim_set), 1,
2204 node->nvar, -1);
2205 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2206 isl_space_dim(dim, isl_dim_set), 1,
2207 node->nvar, 1);
2208 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2209 coef->n_eq, coef->n_ineq);
2210 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2211 coef, dim_map);
2212 isl_space_free(dim);
2214 return 0;
2217 /* Add constraints to graph->lp that force the dependence "map" (which
2218 * is part of the dependence relation of "edge")
2219 * to be respected and attempt to carry it, where the edge is one from
2220 * node j to node k. "pos" is the sequence number of the given map.
2221 * That is, add constraints that enforce
2223 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2225 * for each (x,y) in R.
2226 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2227 * of valid constraints for R and then plug in
2228 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2229 * with each coefficient (except e_i, c_k_0 and c_j_0)
2230 * represented as a pair of non-negative coefficients.
2232 static int add_inter_constraints(struct isl_sched_graph *graph,
2233 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2235 unsigned total;
2236 isl_ctx *ctx = isl_map_get_ctx(map);
2237 isl_space *dim;
2238 isl_dim_map *dim_map;
2239 isl_basic_set *coef;
2240 struct isl_sched_node *src = edge->src;
2241 struct isl_sched_node *dst = edge->dst;
2243 coef = inter_coefficients(graph, map);
2244 if (!coef)
2245 return -1;
2247 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2249 total = isl_basic_set_total_dim(graph->lp);
2250 dim_map = isl_dim_map_alloc(ctx, total);
2252 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2254 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2255 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2256 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2257 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2258 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2259 dst->nvar, -1);
2260 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2261 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2262 dst->nvar, 1);
2264 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2265 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2266 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2267 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2268 isl_space_dim(dim, isl_dim_set), 1,
2269 src->nvar, 1);
2270 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2271 isl_space_dim(dim, isl_dim_set), 1,
2272 src->nvar, -1);
2274 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2275 coef->n_eq, coef->n_ineq);
2276 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2277 coef, dim_map);
2278 isl_space_free(dim);
2280 return 0;
2283 /* Add constraints to graph->lp that force all validity dependences
2284 * to be respected and attempt to carry them.
2286 static int add_all_constraints(struct isl_sched_graph *graph)
2288 int i, j;
2289 int pos;
2291 pos = 0;
2292 for (i = 0; i < graph->n_edge; ++i) {
2293 struct isl_sched_edge *edge= &graph->edge[i];
2295 if (!edge->validity)
2296 continue;
2298 for (j = 0; j < edge->map->n; ++j) {
2299 isl_basic_map *bmap;
2300 isl_map *map;
2302 bmap = isl_basic_map_copy(edge->map->p[j]);
2303 map = isl_map_from_basic_map(bmap);
2305 if (edge->src == edge->dst &&
2306 add_intra_constraints(graph, edge, map, pos) < 0)
2307 return -1;
2308 if (edge->src != edge->dst &&
2309 add_inter_constraints(graph, edge, map, pos) < 0)
2310 return -1;
2311 ++pos;
2315 return 0;
2318 /* Count the number of equality and inequality constraints
2319 * that will be added to the carry_lp problem.
2320 * We count each edge exactly once.
2322 static int count_all_constraints(struct isl_sched_graph *graph,
2323 int *n_eq, int *n_ineq)
2325 int i, j;
2327 *n_eq = *n_ineq = 0;
2328 for (i = 0; i < graph->n_edge; ++i) {
2329 struct isl_sched_edge *edge= &graph->edge[i];
2330 for (j = 0; j < edge->map->n; ++j) {
2331 isl_basic_map *bmap;
2332 isl_map *map;
2334 bmap = isl_basic_map_copy(edge->map->p[j]);
2335 map = isl_map_from_basic_map(bmap);
2337 if (count_map_constraints(graph, edge, map,
2338 n_eq, n_ineq, 1) < 0)
2339 return -1;
2343 return 0;
2346 /* Construct an LP problem for finding schedule coefficients
2347 * such that the schedule carries as many dependences as possible.
2348 * In particular, for each dependence i, we bound the dependence distance
2349 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2350 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2351 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2352 * Note that if the dependence relation is a union of basic maps,
2353 * then we have to consider each basic map individually as it may only
2354 * be possible to carry the dependences expressed by some of those
2355 * basic maps and not all off them.
2356 * Below, we consider each of those basic maps as a separate "edge".
2358 * All variables of the LP are non-negative. The actual coefficients
2359 * may be negative, so each coefficient is represented as the difference
2360 * of two non-negative variables. The negative part always appears
2361 * immediately before the positive part.
2362 * Other than that, the variables have the following order
2364 * - sum of (1 - e_i) over all edges
2365 * - sum of positive and negative parts of all c_n coefficients
2366 * (unconstrained when computing non-parametric schedules)
2367 * - sum of positive and negative parts of all c_x coefficients
2368 * - for each edge
2369 * - e_i
2370 * - for each node
2371 * - c_i_0
2372 * - positive and negative parts of c_i_n (if parametric)
2373 * - positive and negative parts of c_i_x
2375 * The constraints are those from the (validity) edges plus three equalities
2376 * to express the sums and n_edge inequalities to express e_i <= 1.
2378 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2380 int i, j;
2381 int k;
2382 isl_space *dim;
2383 unsigned total;
2384 int n_eq, n_ineq;
2385 int n_edge;
2387 n_edge = 0;
2388 for (i = 0; i < graph->n_edge; ++i)
2389 n_edge += graph->edge[i].map->n;
2391 total = 3 + n_edge;
2392 for (i = 0; i < graph->n; ++i) {
2393 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2394 node->start = total;
2395 total += 1 + 2 * (node->nparam + node->nvar);
2398 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2399 return -1;
2401 dim = isl_space_set_alloc(ctx, 0, total);
2402 isl_basic_set_free(graph->lp);
2403 n_eq += 3;
2404 n_ineq += n_edge;
2405 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2406 graph->lp = isl_basic_set_set_rational(graph->lp);
2408 k = isl_basic_set_alloc_equality(graph->lp);
2409 if (k < 0)
2410 return -1;
2411 isl_seq_clr(graph->lp->eq[k], 1 + total);
2412 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2413 isl_int_set_si(graph->lp->eq[k][1], 1);
2414 for (i = 0; i < n_edge; ++i)
2415 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2417 k = isl_basic_set_alloc_equality(graph->lp);
2418 if (k < 0)
2419 return -1;
2420 isl_seq_clr(graph->lp->eq[k], 1 + total);
2421 isl_int_set_si(graph->lp->eq[k][2], -1);
2422 for (i = 0; i < graph->n; ++i) {
2423 int pos = 1 + graph->node[i].start + 1;
2425 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2426 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2429 k = isl_basic_set_alloc_equality(graph->lp);
2430 if (k < 0)
2431 return -1;
2432 isl_seq_clr(graph->lp->eq[k], 1 + total);
2433 isl_int_set_si(graph->lp->eq[k][3], -1);
2434 for (i = 0; i < graph->n; ++i) {
2435 struct isl_sched_node *node = &graph->node[i];
2436 int pos = 1 + node->start + 1 + 2 * node->nparam;
2438 for (j = 0; j < 2 * node->nvar; ++j)
2439 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2442 for (i = 0; i < n_edge; ++i) {
2443 k = isl_basic_set_alloc_inequality(graph->lp);
2444 if (k < 0)
2445 return -1;
2446 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2447 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2448 isl_int_set_si(graph->lp->ineq[k][0], 1);
2451 if (add_all_constraints(graph) < 0)
2452 return -1;
2454 return 0;
2457 /* If the schedule_split_scaled option is set and if the linear
2458 * parts of the scheduling rows for all nodes in the graphs have
2459 * non-trivial common divisor, then split off the constant term
2460 * from the linear part.
2461 * The constant term is then placed in a separate band and
2462 * the linear part is reduced.
2464 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2466 int i;
2467 int row;
2468 isl_int gcd, gcd_i;
2470 if (!ctx->opt->schedule_split_scaled)
2471 return 0;
2472 if (graph->n <= 1)
2473 return 0;
2475 if (graph->n_total_row >= graph->max_row)
2476 isl_die(ctx, isl_error_internal,
2477 "too many schedule rows", return -1);
2479 isl_int_init(gcd);
2480 isl_int_init(gcd_i);
2482 isl_int_set_si(gcd, 0);
2484 row = isl_mat_rows(graph->node[0].sched) - 1;
2486 for (i = 0; i < graph->n; ++i) {
2487 struct isl_sched_node *node = &graph->node[i];
2488 int cols = isl_mat_cols(node->sched);
2490 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2491 isl_int_gcd(gcd, gcd, gcd_i);
2494 isl_int_clear(gcd_i);
2496 if (isl_int_cmp_si(gcd, 1) <= 0) {
2497 isl_int_clear(gcd);
2498 return 0;
2501 next_band(graph);
2503 for (i = 0; i < graph->n; ++i) {
2504 struct isl_sched_node *node = &graph->node[i];
2506 isl_map_free(node->sched_map);
2507 node->sched_map = NULL;
2508 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2509 if (!node->sched)
2510 goto error;
2511 isl_int_fdiv_r(node->sched->row[row + 1][0],
2512 node->sched->row[row][0], gcd);
2513 isl_int_fdiv_q(node->sched->row[row][0],
2514 node->sched->row[row][0], gcd);
2515 isl_int_mul(node->sched->row[row][0],
2516 node->sched->row[row][0], gcd);
2517 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2518 if (!node->sched)
2519 goto error;
2520 node->band[graph->n_total_row] = graph->n_band;
2523 graph->n_total_row++;
2525 isl_int_clear(gcd);
2526 return 0;
2527 error:
2528 isl_int_clear(gcd);
2529 return -1;
2532 static int compute_component_schedule(isl_ctx *ctx,
2533 struct isl_sched_graph *graph);
2535 /* Is the schedule row "sol" trivial on node "node"?
2536 * That is, is the solution zero on the dimensions orthogonal to
2537 * the previously found solutions?
2538 * Each coefficient is represented as the difference between
2539 * two non-negative values in "sol". The coefficient is then
2540 * zero if those two values are equal to each other.
2542 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
2544 int i;
2545 int pos;
2546 int len;
2548 pos = 1 + node->start + 1 + 2 * (node->nparam + node->rank);
2549 len = 2 * (node->nvar - node->rank);
2551 if (len == 0)
2552 return 0;
2554 for (i = 0; i < len; i += 2)
2555 if (isl_int_ne(sol->el[pos + i], sol->el[pos + i + 1]))
2556 return 0;
2558 return 1;
2561 /* Is the schedule row "sol" trivial on any node where it should
2562 * not be trivial?
2564 static int is_any_trivial(struct isl_sched_graph *graph,
2565 __isl_keep isl_vec *sol)
2567 int i;
2569 for (i = 0; i < graph->n; ++i) {
2570 struct isl_sched_node *node = &graph->node[i];
2572 if (!needs_row(graph, node))
2573 continue;
2574 if (is_trivial(node, sol))
2575 return 1;
2578 return 0;
2581 /* Construct a schedule row for each node such that as many dependences
2582 * as possible are carried and then continue with the next band.
2584 * If the computed schedule row turns out to be trivial on one or
2585 * more nodes where it should not be trivial, then we throw it away
2586 * and try again on each component separately.
2588 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2590 int i;
2591 int n_edge;
2592 isl_vec *sol;
2593 isl_basic_set *lp;
2595 n_edge = 0;
2596 for (i = 0; i < graph->n_edge; ++i)
2597 n_edge += graph->edge[i].map->n;
2599 if (setup_carry_lp(ctx, graph) < 0)
2600 return -1;
2602 lp = isl_basic_set_copy(graph->lp);
2603 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2604 if (!sol)
2605 return -1;
2607 if (sol->size == 0) {
2608 isl_vec_free(sol);
2609 isl_die(ctx, isl_error_internal,
2610 "error in schedule construction", return -1);
2613 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
2614 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2615 isl_vec_free(sol);
2616 isl_die(ctx, isl_error_unknown,
2617 "unable to carry dependences", return -1);
2620 if (is_any_trivial(graph, sol)) {
2621 isl_vec_free(sol);
2622 if (graph->scc > 1)
2623 return compute_component_schedule(ctx, graph);
2624 isl_die(ctx, isl_error_unknown,
2625 "unable to construct non-trivial solution", return -1);
2628 if (update_schedule(graph, sol, 0, 0) < 0)
2629 return -1;
2631 if (split_scaled(ctx, graph) < 0)
2632 return -1;
2634 return compute_next_band(ctx, graph);
2637 /* Are there any (non-empty) validity edges in the graph?
2639 static int has_validity_edges(struct isl_sched_graph *graph)
2641 int i;
2643 for (i = 0; i < graph->n_edge; ++i) {
2644 int empty;
2646 empty = isl_map_plain_is_empty(graph->edge[i].map);
2647 if (empty < 0)
2648 return -1;
2649 if (empty)
2650 continue;
2651 if (graph->edge[i].validity)
2652 return 1;
2655 return 0;
2658 /* Should we apply a Feautrier step?
2659 * That is, did the user request the Feautrier algorithm and are
2660 * there any validity dependences (left)?
2662 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2664 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2665 return 0;
2667 return has_validity_edges(graph);
2670 /* Compute a schedule for a connected dependence graph using Feautrier's
2671 * multi-dimensional scheduling algorithm.
2672 * The original algorithm is described in [1].
2673 * The main idea is to minimize the number of scheduling dimensions, by
2674 * trying to satisfy as many dependences as possible per scheduling dimension.
2676 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2677 * Problem, Part II: Multi-Dimensional Time.
2678 * In Intl. Journal of Parallel Programming, 1992.
2680 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2681 struct isl_sched_graph *graph)
2683 return carry_dependences(ctx, graph);
2686 /* Compute a schedule for a connected dependence graph.
2687 * We try to find a sequence of as many schedule rows as possible that result
2688 * in non-negative dependence distances (independent of the previous rows
2689 * in the sequence, i.e., such that the sequence is tilable).
2690 * If we can't find any more rows we either
2691 * - split between SCCs and start over (assuming we found an interesting
2692 * pair of SCCs between which to split)
2693 * - continue with the next band (assuming the current band has at least
2694 * one row)
2695 * - try to carry as many dependences as possible and continue with the next
2696 * band
2698 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2699 * as many validity dependences as possible. When all validity dependences
2700 * are satisfied we extend the schedule to a full-dimensional schedule.
2702 * If we manage to complete the schedule, we finish off by topologically
2703 * sorting the statements based on the remaining dependences.
2705 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2706 * outermost dimension in the current band to be zero distance. If this
2707 * turns out to be impossible, we fall back on the general scheme above
2708 * and try to carry as many dependences as possible.
2710 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2712 int force_zero = 0;
2714 if (detect_sccs(ctx, graph) < 0)
2715 return -1;
2716 if (sort_sccs(graph) < 0)
2717 return -1;
2719 if (compute_maxvar(graph) < 0)
2720 return -1;
2722 if (need_feautrier_step(ctx, graph))
2723 return compute_schedule_wcc_feautrier(ctx, graph);
2725 if (ctx->opt->schedule_outer_zero_distance)
2726 force_zero = 1;
2728 while (graph->n_row < graph->maxvar) {
2729 isl_vec *sol;
2731 graph->src_scc = -1;
2732 graph->dst_scc = -1;
2734 if (setup_lp(ctx, graph, force_zero) < 0)
2735 return -1;
2736 sol = solve_lp(graph);
2737 if (!sol)
2738 return -1;
2739 if (sol->size == 0) {
2740 isl_vec_free(sol);
2741 if (!ctx->opt->schedule_maximize_band_depth &&
2742 graph->n_total_row > graph->band_start)
2743 return compute_next_band(ctx, graph);
2744 if (graph->src_scc >= 0)
2745 return compute_split_schedule(ctx, graph);
2746 if (graph->n_total_row > graph->band_start)
2747 return compute_next_band(ctx, graph);
2748 return carry_dependences(ctx, graph);
2750 if (update_schedule(graph, sol, 1, 1) < 0)
2751 return -1;
2752 force_zero = 0;
2755 if (graph->n_total_row > graph->band_start)
2756 next_band(graph);
2757 return sort_statements(ctx, graph);
2760 /* Add a row to the schedules that separates the SCCs and move
2761 * to the next band.
2763 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
2765 int i;
2767 if (graph->n_total_row >= graph->max_row)
2768 isl_die(ctx, isl_error_internal,
2769 "too many schedule rows", return -1);
2771 for (i = 0; i < graph->n; ++i) {
2772 struct isl_sched_node *node = &graph->node[i];
2773 int row = isl_mat_rows(node->sched);
2775 isl_map_free(node->sched_map);
2776 node->sched_map = NULL;
2777 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2778 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2779 node->scc);
2780 if (!node->sched)
2781 return -1;
2782 node->band[graph->n_total_row] = graph->n_band;
2785 graph->n_total_row++;
2786 next_band(graph);
2788 return 0;
2791 /* Compute a schedule for each component (identified by node->scc)
2792 * of the dependence graph separately and then combine the results.
2793 * Depending on the setting of schedule_fuse, a component may be
2794 * either weakly or strongly connected.
2796 * The band_id is adjusted such that each component has a separate id.
2797 * Note that the band_id may have already been set to a value different
2798 * from zero by compute_split_schedule.
2800 static int compute_component_schedule(isl_ctx *ctx,
2801 struct isl_sched_graph *graph)
2803 int wcc, i;
2804 int n, n_edge;
2805 int n_total_row, orig_total_row;
2806 int n_band, orig_band;
2808 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
2809 ctx->opt->schedule_separate_components)
2810 if (split_on_scc(ctx, graph) < 0)
2811 return -1;
2813 n_total_row = 0;
2814 orig_total_row = graph->n_total_row;
2815 n_band = 0;
2816 orig_band = graph->n_band;
2817 for (i = 0; i < graph->n; ++i)
2818 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2819 for (wcc = 0; wcc < graph->scc; ++wcc) {
2820 n = 0;
2821 for (i = 0; i < graph->n; ++i)
2822 if (graph->node[i].scc == wcc)
2823 n++;
2824 n_edge = 0;
2825 for (i = 0; i < graph->n_edge; ++i)
2826 if (graph->edge[i].src->scc == wcc &&
2827 graph->edge[i].dst->scc == wcc)
2828 n_edge++;
2830 if (compute_sub_schedule(ctx, graph, n, n_edge,
2831 &node_scc_exactly,
2832 &edge_scc_exactly, wcc, 1) < 0)
2833 return -1;
2834 if (graph->n_total_row > n_total_row)
2835 n_total_row = graph->n_total_row;
2836 graph->n_total_row = orig_total_row;
2837 if (graph->n_band > n_band)
2838 n_band = graph->n_band;
2839 graph->n_band = orig_band;
2842 graph->n_total_row = n_total_row;
2843 graph->n_band = n_band;
2845 return pad_schedule(graph);
2848 /* Compute a schedule for the given dependence graph.
2849 * We first check if the graph is connected (through validity dependences)
2850 * and, if not, compute a schedule for each component separately.
2851 * If schedule_fuse is set to minimal fusion, then we check for strongly
2852 * connected components instead and compute a separate schedule for
2853 * each such strongly connected component.
2855 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2857 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
2858 if (detect_sccs(ctx, graph) < 0)
2859 return -1;
2860 } else {
2861 if (detect_wccs(ctx, graph) < 0)
2862 return -1;
2865 if (graph->scc > 1)
2866 return compute_component_schedule(ctx, graph);
2868 return compute_schedule_wcc(ctx, graph);
2871 /* Compute a schedule for the given union of domains that respects
2872 * all the validity dependences.
2873 * If the default isl scheduling algorithm is used, it tries to minimize
2874 * the dependence distances over the proximity dependences.
2875 * If Feautrier's scheduling algorithm is used, the proximity dependence
2876 * distances are only minimized during the extension to a full-dimensional
2877 * schedule.
2879 __isl_give isl_schedule *isl_union_set_compute_schedule(
2880 __isl_take isl_union_set *domain,
2881 __isl_take isl_union_map *validity,
2882 __isl_take isl_union_map *proximity)
2884 isl_ctx *ctx = isl_union_set_get_ctx(domain);
2885 isl_space *dim;
2886 struct isl_sched_graph graph = { 0 };
2887 isl_schedule *sched;
2888 struct isl_extract_edge_data data;
2890 domain = isl_union_set_align_params(domain,
2891 isl_union_map_get_space(validity));
2892 domain = isl_union_set_align_params(domain,
2893 isl_union_map_get_space(proximity));
2894 dim = isl_union_set_get_space(domain);
2895 validity = isl_union_map_align_params(validity, isl_space_copy(dim));
2896 proximity = isl_union_map_align_params(proximity, dim);
2898 if (!domain)
2899 goto error;
2901 graph.n = isl_union_set_n_set(domain);
2902 if (graph.n == 0)
2903 goto empty;
2904 if (graph_alloc(ctx, &graph, graph.n,
2905 isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2906 goto error;
2907 if (compute_max_row(&graph, domain) < 0)
2908 goto error;
2909 graph.root = 1;
2910 graph.n = 0;
2911 if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2912 goto error;
2913 if (graph_init_table(ctx, &graph) < 0)
2914 goto error;
2915 graph.max_edge[isl_edge_validity] = isl_union_map_n_map(validity);
2916 graph.max_edge[isl_edge_proximity] = isl_union_map_n_map(proximity);
2917 if (graph_init_edge_tables(ctx, &graph) < 0)
2918 goto error;
2919 graph.n_edge = 0;
2920 data.graph = &graph;
2921 data.type = isl_edge_validity;
2922 if (isl_union_map_foreach_map(validity, &extract_edge, &data) < 0)
2923 goto error;
2924 data.type = isl_edge_proximity;
2925 if (isl_union_map_foreach_map(proximity, &extract_edge, &data) < 0)
2926 goto error;
2928 if (compute_schedule(ctx, &graph) < 0)
2929 goto error;
2931 empty:
2932 sched = extract_schedule(&graph, isl_union_set_get_space(domain));
2934 graph_free(ctx, &graph);
2935 isl_union_set_free(domain);
2936 isl_union_map_free(validity);
2937 isl_union_map_free(proximity);
2939 return sched;
2940 error:
2941 graph_free(ctx, &graph);
2942 isl_union_set_free(domain);
2943 isl_union_map_free(validity);
2944 isl_union_map_free(proximity);
2945 return NULL;
2948 void *isl_schedule_free(__isl_take isl_schedule *sched)
2950 int i;
2951 if (!sched)
2952 return NULL;
2954 if (--sched->ref > 0)
2955 return NULL;
2957 for (i = 0; i < sched->n; ++i) {
2958 isl_multi_aff_free(sched->node[i].sched);
2959 free(sched->node[i].band_end);
2960 free(sched->node[i].band_id);
2961 free(sched->node[i].zero);
2963 isl_space_free(sched->dim);
2964 isl_band_list_free(sched->band_forest);
2965 free(sched);
2966 return NULL;
2969 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2971 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
2974 /* Set max_out to the maximal number of output dimensions over
2975 * all maps.
2977 static int update_max_out(__isl_take isl_map *map, void *user)
2979 int *max_out = user;
2980 int n_out = isl_map_dim(map, isl_dim_out);
2982 if (n_out > *max_out)
2983 *max_out = n_out;
2985 isl_map_free(map);
2986 return 0;
2989 /* Internal data structure for map_pad_range.
2991 * "max_out" is the maximal schedule dimension.
2992 * "res" collects the results.
2994 struct isl_pad_schedule_map_data {
2995 int max_out;
2996 isl_union_map *res;
2999 /* Pad the range of the given map with zeros to data->max_out and
3000 * then add the result to data->res.
3002 static int map_pad_range(__isl_take isl_map *map, void *user)
3004 struct isl_pad_schedule_map_data *data = user;
3005 int i;
3006 int n_out = isl_map_dim(map, isl_dim_out);
3008 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3009 for (i = n_out; i < data->max_out; ++i)
3010 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3012 data->res = isl_union_map_add_map(data->res, map);
3013 if (!data->res)
3014 return -1;
3016 return 0;
3019 /* Pad the ranges of the maps in the union map with zeros such they all have
3020 * the same dimension.
3022 static __isl_give isl_union_map *pad_schedule_map(
3023 __isl_take isl_union_map *umap)
3025 struct isl_pad_schedule_map_data data;
3027 if (!umap)
3028 return NULL;
3029 if (isl_union_map_n_map(umap) <= 1)
3030 return umap;
3032 data.max_out = 0;
3033 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3034 return isl_union_map_free(umap);
3036 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3037 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3038 data.res = isl_union_map_free(data.res);
3040 isl_union_map_free(umap);
3041 return data.res;
3044 /* Return an isl_union_map of the schedule. If we have already constructed
3045 * a band forest, then this band forest may have been modified so we need
3046 * to extract the isl_union_map from the forest rather than from
3047 * the originally computed schedule. This reconstructed schedule map
3048 * then needs to be padded with zeros to unify the schedule space
3049 * since the result of isl_band_list_get_suffix_schedule may not have
3050 * a unified schedule space.
3052 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3054 int i;
3055 isl_union_map *umap;
3057 if (!sched)
3058 return NULL;
3060 if (sched->band_forest) {
3061 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3062 return pad_schedule_map(umap);
3065 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3066 for (i = 0; i < sched->n; ++i) {
3067 isl_multi_aff *ma;
3069 ma = isl_multi_aff_copy(sched->node[i].sched);
3070 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3073 return umap;
3076 static __isl_give isl_band_list *construct_band_list(
3077 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3078 int band_nr, int *parent_active, int n_active);
3080 /* Construct an isl_band structure for the band in the given schedule
3081 * with sequence number band_nr for the n_active nodes marked by active.
3082 * If the nodes don't have a band with the given sequence number,
3083 * then a band without members is created.
3085 * Because of the way the schedule is constructed, we know that
3086 * the position of the band inside the schedule of a node is the same
3087 * for all active nodes.
3089 * The partial schedule for the band is created before the children
3090 * are created to that construct_band_list can refer to the partial
3091 * schedule of the parent.
3093 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3094 __isl_keep isl_band *parent,
3095 int band_nr, int *active, int n_active)
3097 int i, j;
3098 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3099 isl_band *band;
3100 unsigned start, end;
3102 band = isl_band_alloc(ctx);
3103 if (!band)
3104 return NULL;
3106 band->schedule = schedule;
3107 band->parent = parent;
3109 for (i = 0; i < schedule->n; ++i)
3110 if (active[i])
3111 break;
3113 if (i >= schedule->n)
3114 isl_die(ctx, isl_error_internal,
3115 "band without active statements", goto error);
3117 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
3118 end = band_nr < schedule->node[i].n_band ?
3119 schedule->node[i].band_end[band_nr] : start;
3120 band->n = end - start;
3122 band->zero = isl_alloc_array(ctx, int, band->n);
3123 if (!band->zero)
3124 goto error;
3126 for (j = 0; j < band->n; ++j)
3127 band->zero[j] = schedule->node[i].zero[start + j];
3129 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
3130 for (i = 0; i < schedule->n; ++i) {
3131 isl_multi_aff *ma;
3132 isl_pw_multi_aff *pma;
3133 unsigned n_out;
3135 if (!active[i])
3136 continue;
3138 ma = isl_multi_aff_copy(schedule->node[i].sched);
3139 n_out = isl_multi_aff_dim(ma, isl_dim_out);
3140 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
3141 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
3142 pma = isl_pw_multi_aff_from_multi_aff(ma);
3143 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
3144 pma);
3146 if (!band->pma)
3147 goto error;
3149 for (i = 0; i < schedule->n; ++i)
3150 if (active[i] && schedule->node[i].n_band > band_nr + 1)
3151 break;
3153 if (i < schedule->n) {
3154 band->children = construct_band_list(schedule, band,
3155 band_nr + 1, active, n_active);
3156 if (!band->children)
3157 goto error;
3160 return band;
3161 error:
3162 isl_band_free(band);
3163 return NULL;
3166 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3168 * r is set to a negative value if anything goes wrong.
3170 * c1 stores the result of extract_int.
3171 * c2 is a temporary value used inside cmp_band_in_ancestor.
3172 * t is a temporary value used inside extract_int.
3174 * first and equal are used inside extract_int.
3175 * first is set if we are looking at the first isl_multi_aff inside
3176 * the isl_union_pw_multi_aff.
3177 * equal is set if all the isl_multi_affs have been equal so far.
3179 struct isl_cmp_band_data {
3180 int r;
3182 int first;
3183 int equal;
3185 isl_int t;
3186 isl_int c1;
3187 isl_int c2;
3190 /* Check if "ma" assigns a constant value.
3191 * Note that this function is only called on isl_multi_affs
3192 * with a single output dimension.
3194 * If "ma" assigns a constant value then we compare it to data->c1
3195 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3196 * If "ma" does not assign a constant value or if it assigns a value
3197 * that is different from data->c1, then we set data->equal to zero
3198 * and terminate the check.
3200 static int multi_aff_extract_int(__isl_take isl_set *set,
3201 __isl_take isl_multi_aff *ma, void *user)
3203 isl_aff *aff;
3204 struct isl_cmp_band_data *data = user;
3206 aff = isl_multi_aff_get_aff(ma, 0);
3207 data->r = isl_aff_is_cst(aff);
3208 if (data->r >= 0 && data->r) {
3209 isl_aff_get_constant(aff, &data->t);
3210 if (data->first) {
3211 isl_int_set(data->c1, data->t);
3212 data->first = 0;
3213 } else if (!isl_int_eq(data->c1, data->t))
3214 data->equal = 0;
3215 } else if (data->r >= 0 && !data->r)
3216 data->equal = 0;
3218 isl_aff_free(aff);
3219 isl_set_free(set);
3220 isl_multi_aff_free(ma);
3222 if (data->r < 0)
3223 return -1;
3224 if (!data->equal)
3225 return -1;
3226 return 0;
3229 /* This function is called for each isl_pw_multi_aff in
3230 * the isl_union_pw_multi_aff checked by extract_int.
3231 * Check all the isl_multi_affs inside "pma".
3233 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
3234 void *user)
3236 int r;
3238 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
3239 isl_pw_multi_aff_free(pma);
3241 return r;
3244 /* Check if "upma" assigns a single constant value to its domain.
3245 * If so, return 1 and store the result in data->c1.
3246 * If not, return 0.
3248 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3249 * means that either an error occurred or that we have broken off the check
3250 * because we already know the result is going to be negative.
3251 * In the latter case, data->equal is set to zero.
3253 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
3254 struct isl_cmp_band_data *data)
3256 data->first = 1;
3257 data->equal = 1;
3259 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
3260 &pw_multi_aff_extract_int, data) < 0) {
3261 if (!data->equal)
3262 return 0;
3263 return -1;
3266 return !data->first && data->equal;
3269 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3270 * "ancestor".
3272 * If the parent of "ancestor" also has a single member, then we
3273 * first try to compare the two band based on the partial schedule
3274 * of this parent.
3276 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3277 * of "ancestor" itself.
3278 * In particular, we specialize the parent schedule based
3279 * on the domains of the child schedules, check if both assign
3280 * a single constant value and, if so, compare the two constant values.
3281 * If the specialized parent schedules do not assign a constant value,
3282 * then they cannot be used to order the two bands and so in this case
3283 * we return 0.
3285 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
3286 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
3287 __isl_keep isl_band *ancestor)
3289 isl_union_pw_multi_aff *upma;
3290 isl_union_set *domain;
3291 int r;
3293 if (data->r < 0)
3294 return 0;
3296 if (ancestor->parent && ancestor->parent->n == 1) {
3297 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
3298 if (data->r < 0)
3299 return 0;
3300 if (r)
3301 return r;
3304 upma = isl_union_pw_multi_aff_copy(b1->pma);
3305 domain = isl_union_pw_multi_aff_domain(upma);
3306 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3307 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3308 r = extract_int(upma, data);
3309 isl_union_pw_multi_aff_free(upma);
3311 if (r < 0)
3312 data->r = -1;
3313 if (r < 0 || !r)
3314 return 0;
3316 isl_int_set(data->c2, data->c1);
3318 upma = isl_union_pw_multi_aff_copy(b2->pma);
3319 domain = isl_union_pw_multi_aff_domain(upma);
3320 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3321 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3322 r = extract_int(upma, data);
3323 isl_union_pw_multi_aff_free(upma);
3325 if (r < 0)
3326 data->r = -1;
3327 if (r < 0 || !r)
3328 return 0;
3330 return isl_int_cmp(data->c2, data->c1);
3333 /* Compare "a" and "b" based on the parent schedule of their parent.
3335 static int cmp_band(const void *a, const void *b, void *user)
3337 isl_band *b1 = *(isl_band * const *) a;
3338 isl_band *b2 = *(isl_band * const *) b;
3339 struct isl_cmp_band_data *data = user;
3341 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
3344 /* Sort the elements in "list" based on the partial schedules of its parent
3345 * (and ancestors). In particular if the parent assigns constant values
3346 * to the domains of the bands in "list", then the elements are sorted
3347 * according to that order.
3348 * This order should be a more "natural" order for the user, but otherwise
3349 * shouldn't have any effect.
3350 * If we would be constructing an isl_band forest directly in
3351 * isl_union_set_compute_schedule then there wouldn't be any need
3352 * for a reordering, since the children would be added to the list
3353 * in their natural order automatically.
3355 * If there is only one element in the list, then there is no need to sort
3356 * anything.
3357 * If the partial schedule of the parent has more than one member
3358 * (or if there is no parent), then it's
3359 * defnitely not assigning constant values to the different children in
3360 * the list and so we wouldn't be able to use it to sort the list.
3362 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
3363 __isl_keep isl_band *parent)
3365 struct isl_cmp_band_data data;
3367 if (!list)
3368 return NULL;
3369 if (list->n <= 1)
3370 return list;
3371 if (!parent || parent->n != 1)
3372 return list;
3374 data.r = 0;
3375 isl_int_init(data.c1);
3376 isl_int_init(data.c2);
3377 isl_int_init(data.t);
3378 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
3379 if (data.r < 0)
3380 list = isl_band_list_free(list);
3381 isl_int_clear(data.c1);
3382 isl_int_clear(data.c2);
3383 isl_int_clear(data.t);
3385 return list;
3388 /* Construct a list of bands that start at the same position (with
3389 * sequence number band_nr) in the schedules of the nodes that
3390 * were active in the parent band.
3392 * A separate isl_band structure is created for each band_id
3393 * and for each node that does not have a band with sequence
3394 * number band_nr. In the latter case, a band without members
3395 * is created.
3396 * This ensures that if a band has any children, then each node
3397 * that was active in the band is active in exactly one of the children.
3399 static __isl_give isl_band_list *construct_band_list(
3400 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3401 int band_nr, int *parent_active, int n_active)
3403 int i, j;
3404 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3405 int *active;
3406 int n_band;
3407 isl_band_list *list;
3409 n_band = 0;
3410 for (i = 0; i < n_active; ++i) {
3411 for (j = 0; j < schedule->n; ++j) {
3412 if (!parent_active[j])
3413 continue;
3414 if (schedule->node[j].n_band <= band_nr)
3415 continue;
3416 if (schedule->node[j].band_id[band_nr] == i) {
3417 n_band++;
3418 break;
3422 for (j = 0; j < schedule->n; ++j)
3423 if (schedule->node[j].n_band <= band_nr)
3424 n_band++;
3426 if (n_band == 1) {
3427 isl_band *band;
3428 list = isl_band_list_alloc(ctx, n_band);
3429 band = construct_band(schedule, parent, band_nr,
3430 parent_active, n_active);
3431 return isl_band_list_add(list, band);
3434 active = isl_alloc_array(ctx, int, schedule->n);
3435 if (!active)
3436 return NULL;
3438 list = isl_band_list_alloc(ctx, n_band);
3440 for (i = 0; i < n_active; ++i) {
3441 int n = 0;
3442 isl_band *band;
3444 for (j = 0; j < schedule->n; ++j) {
3445 active[j] = parent_active[j] &&
3446 schedule->node[j].n_band > band_nr &&
3447 schedule->node[j].band_id[band_nr] == i;
3448 if (active[j])
3449 n++;
3451 if (n == 0)
3452 continue;
3454 band = construct_band(schedule, parent, band_nr, active, n);
3456 list = isl_band_list_add(list, band);
3458 for (i = 0; i < schedule->n; ++i) {
3459 isl_band *band;
3460 if (!parent_active[i])
3461 continue;
3462 if (schedule->node[i].n_band > band_nr)
3463 continue;
3464 for (j = 0; j < schedule->n; ++j)
3465 active[j] = j == i;
3466 band = construct_band(schedule, parent, band_nr, active, 1);
3467 list = isl_band_list_add(list, band);
3470 free(active);
3472 list = sort_band_list(list, parent);
3474 return list;
3477 /* Construct a band forest representation of the schedule and
3478 * return the list of roots.
3480 static __isl_give isl_band_list *construct_forest(
3481 __isl_keep isl_schedule *schedule)
3483 int i;
3484 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3485 isl_band_list *forest;
3486 int *active;
3488 active = isl_alloc_array(ctx, int, schedule->n);
3489 if (!active)
3490 return NULL;
3492 for (i = 0; i < schedule->n; ++i)
3493 active[i] = 1;
3495 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
3497 free(active);
3499 return forest;
3502 /* Return the roots of a band forest representation of the schedule.
3504 __isl_give isl_band_list *isl_schedule_get_band_forest(
3505 __isl_keep isl_schedule *schedule)
3507 if (!schedule)
3508 return NULL;
3509 if (!schedule->band_forest)
3510 schedule->band_forest = construct_forest(schedule);
3511 return isl_band_list_dup(schedule->band_forest);
3514 /* Call "fn" on each band in the schedule in depth-first post-order.
3516 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
3517 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
3519 int r;
3520 isl_band_list *forest;
3522 if (!sched)
3523 return -1;
3525 forest = isl_schedule_get_band_forest(sched);
3526 r = isl_band_list_foreach_band(forest, fn, user);
3527 isl_band_list_free(forest);
3529 return r;
3532 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3533 __isl_keep isl_band_list *list);
3535 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
3536 __isl_keep isl_band *band)
3538 isl_band_list *children;
3540 p = isl_printer_start_line(p);
3541 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
3542 p = isl_printer_end_line(p);
3544 if (!isl_band_has_children(band))
3545 return p;
3547 children = isl_band_get_children(band);
3549 p = isl_printer_indent(p, 4);
3550 p = print_band_list(p, children);
3551 p = isl_printer_indent(p, -4);
3553 isl_band_list_free(children);
3555 return p;
3558 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3559 __isl_keep isl_band_list *list)
3561 int i, n;
3563 n = isl_band_list_n_band(list);
3564 for (i = 0; i < n; ++i) {
3565 isl_band *band;
3566 band = isl_band_list_get_band(list, i);
3567 p = print_band(p, band);
3568 isl_band_free(band);
3571 return p;
3574 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
3575 __isl_keep isl_schedule *schedule)
3577 isl_band_list *forest;
3579 forest = isl_schedule_get_band_forest(schedule);
3581 p = print_band_list(p, forest);
3583 isl_band_list_free(forest);
3585 return p;
3588 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
3590 isl_printer *printer;
3592 if (!schedule)
3593 return;
3595 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
3596 printer = isl_printer_print_schedule(printer, schedule);
3598 isl_printer_free(printer);