Make pass-by-reference explicit by using pointers
[isl.git] / isl_map_simplify.c
blob0f3da78cb5d44aa4c066143a26a4c66dd408f570
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <strings.h>
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
28 isl_int *t = bmap->eq[a];
29 bmap->eq[a] = bmap->eq[b];
30 bmap->eq[b] = t;
33 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
35 if (a != b) {
36 isl_int *t = bmap->ineq[a];
37 bmap->ineq[a] = bmap->ineq[b];
38 bmap->ineq[b] = t;
42 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
44 isl_seq_cpy(c, c + n, rem);
45 isl_seq_clr(c + rem, n);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set *isl_basic_set_drop_dims(
56 struct isl_basic_set *bset, unsigned first, unsigned n)
58 int i;
60 if (!bset)
61 goto error;
63 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
65 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
66 return bset;
68 bset = isl_basic_set_cow(bset);
69 if (!bset)
70 return NULL;
72 for (i = 0; i < bset->n_eq; ++i)
73 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_ineq; ++i)
77 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 for (i = 0; i < bset->n_div; ++i)
81 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
82 (bset->dim->n_out-first-n)+bset->extra);
84 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
85 if (!bset->dim)
86 goto error;
88 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
89 bset = isl_basic_set_simplify(bset);
90 return isl_basic_set_finalize(bset);
91 error:
92 isl_basic_set_free(bset);
93 return NULL;
96 struct isl_set *isl_set_drop_dims(
97 struct isl_set *set, unsigned first, unsigned n)
99 int i;
101 if (!set)
102 goto error;
104 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
106 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
107 return set;
108 set = isl_set_cow(set);
109 if (!set)
110 goto error;
111 set->dim = isl_space_drop_outputs(set->dim, first, n);
112 if (!set->dim)
113 goto error;
115 for (i = 0; i < set->n; ++i) {
116 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
117 if (!set->p[i])
118 goto error;
121 ISL_F_CLR(set, ISL_SET_NORMALIZED);
122 return set;
123 error:
124 isl_set_free(set);
125 return NULL;
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
131 unsigned first, unsigned n)
133 isl_int **div;
134 int i;
136 if (first + n == bmap->n_div)
137 return bmap;
139 div = isl_alloc_array(bmap->ctx, isl_int *, n);
140 if (!div)
141 goto error;
142 for (i = 0; i < n; ++i)
143 div[i] = bmap->div[first + i];
144 for (i = 0; i < bmap->n_div - first - n; ++i)
145 bmap->div[first + i] = bmap->div[first + n + i];
146 for (i = 0; i < n; ++i)
147 bmap->div[bmap->n_div - n + i] = div[i];
148 free(div);
149 return bmap;
150 error:
151 isl_basic_map_free(bmap);
152 return NULL;
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
163 enum isl_dim_type type, unsigned first, unsigned n)
165 int i;
166 unsigned dim;
167 unsigned offset;
168 unsigned left;
170 if (!bmap)
171 goto error;
173 dim = isl_basic_map_dim(bmap, type);
174 isl_assert(bmap->ctx, first + n <= dim, goto error);
176 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
177 return bmap;
179 bmap = isl_basic_map_cow(bmap);
180 if (!bmap)
181 return NULL;
183 offset = isl_basic_map_offset(bmap, type) + first;
184 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
185 for (i = 0; i < bmap->n_eq; ++i)
186 constraint_drop_vars(bmap->eq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_ineq; ++i)
189 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
191 for (i = 0; i < bmap->n_div; ++i)
192 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
194 if (type == isl_dim_div) {
195 bmap = move_divs_last(bmap, first, n);
196 if (!bmap)
197 goto error;
198 isl_basic_map_free_div(bmap, n);
199 } else
200 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
201 if (!bmap->dim)
202 goto error;
204 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
205 bmap = isl_basic_map_simplify(bmap);
206 return isl_basic_map_finalize(bmap);
207 error:
208 isl_basic_map_free(bmap);
209 return NULL;
212 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
213 enum isl_dim_type type, unsigned first, unsigned n)
215 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
216 type, first, n);
219 struct isl_basic_map *isl_basic_map_drop_inputs(
220 struct isl_basic_map *bmap, unsigned first, unsigned n)
222 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
225 struct isl_map *isl_map_drop(struct isl_map *map,
226 enum isl_dim_type type, unsigned first, unsigned n)
228 int i;
230 if (!map)
231 goto error;
233 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
235 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
236 return map;
237 map = isl_map_cow(map);
238 if (!map)
239 goto error;
240 map->dim = isl_space_drop_dims(map->dim, type, first, n);
241 if (!map->dim)
242 goto error;
244 for (i = 0; i < map->n; ++i) {
245 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
246 if (!map->p[i])
247 goto error;
249 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
251 return map;
252 error:
253 isl_map_free(map);
254 return NULL;
257 struct isl_set *isl_set_drop(struct isl_set *set,
258 enum isl_dim_type type, unsigned first, unsigned n)
260 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
263 struct isl_map *isl_map_drop_inputs(
264 struct isl_map *map, unsigned first, unsigned n)
266 return isl_map_drop(map, isl_dim_in, first, n);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map *isl_basic_map_drop_div(
273 struct isl_basic_map *bmap, unsigned div)
275 int i;
276 unsigned pos;
278 if (!bmap)
279 goto error;
281 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
283 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
285 for (i = 0; i < bmap->n_eq; ++i)
286 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
288 for (i = 0; i < bmap->n_ineq; ++i) {
289 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
290 isl_basic_map_drop_inequality(bmap, i);
291 --i;
292 continue;
294 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
297 for (i = 0; i < bmap->n_div; ++i)
298 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
300 if (div != bmap->n_div - 1) {
301 int j;
302 isl_int *t = bmap->div[div];
304 for (j = div; j < bmap->n_div - 1; ++j)
305 bmap->div[j] = bmap->div[j+1];
307 bmap->div[bmap->n_div - 1] = t;
309 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
310 isl_basic_map_free_div(bmap, 1);
312 return bmap;
313 error:
314 isl_basic_map_free(bmap);
315 return NULL;
318 struct isl_basic_map *isl_basic_map_normalize_constraints(
319 struct isl_basic_map *bmap)
321 int i;
322 isl_int gcd;
323 unsigned total = isl_basic_map_total_dim(bmap);
325 if (!bmap)
326 return NULL;
328 isl_int_init(gcd);
329 for (i = bmap->n_eq - 1; i >= 0; --i) {
330 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
331 if (isl_int_is_zero(gcd)) {
332 if (!isl_int_is_zero(bmap->eq[i][0])) {
333 bmap = isl_basic_map_set_to_empty(bmap);
334 break;
336 isl_basic_map_drop_equality(bmap, i);
337 continue;
339 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
340 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
341 if (isl_int_is_one(gcd))
342 continue;
343 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
344 bmap = isl_basic_map_set_to_empty(bmap);
345 break;
347 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
350 for (i = bmap->n_ineq - 1; i >= 0; --i) {
351 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
352 if (isl_int_is_zero(gcd)) {
353 if (isl_int_is_neg(bmap->ineq[i][0])) {
354 bmap = isl_basic_map_set_to_empty(bmap);
355 break;
357 isl_basic_map_drop_inequality(bmap, i);
358 continue;
360 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
361 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
362 if (isl_int_is_one(gcd))
363 continue;
364 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
365 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
367 isl_int_clear(gcd);
369 return bmap;
372 struct isl_basic_set *isl_basic_set_normalize_constraints(
373 struct isl_basic_set *bset)
375 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map *)bset);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
385 * then replace it by
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
394 unsigned total = isl_basic_map_total_dim(bmap);
395 isl_ctx *ctx = bmap->ctx;
397 if (isl_int_is_zero(bmap->div[div][0]))
398 return;
399 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
400 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
401 if (isl_int_is_one(ctx->normalize_gcd))
402 return;
403 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
404 ctx->normalize_gcd);
405 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
406 ctx->normalize_gcd);
407 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
408 ctx->normalize_gcd, total);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
417 * and replace it by
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map *normalize_div_expressions(
425 __isl_take isl_basic_map *bmap)
427 int i;
429 if (!bmap)
430 return NULL;
431 if (bmap->n_div == 0)
432 return bmap;
434 for (i = 0; i < bmap->n_div; ++i)
435 normalize_div_expression(bmap, i);
437 return bmap;
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
443 unsigned pos, isl_int *eq, int keep_divs, int *progress)
445 unsigned total;
446 unsigned space_total;
447 int k;
448 int last_div;
450 total = isl_basic_map_total_dim(bmap);
451 space_total = isl_space_dim(bmap->dim, isl_dim_all);
452 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
453 for (k = 0; k < bmap->n_eq; ++k) {
454 if (bmap->eq[k] == eq)
455 continue;
456 if (isl_int_is_zero(bmap->eq[k][1+pos]))
457 continue;
458 if (progress)
459 *progress = 1;
460 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
461 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
464 for (k = 0; k < bmap->n_ineq; ++k) {
465 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
466 continue;
467 if (progress)
468 *progress = 1;
469 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
470 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
471 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
474 for (k = 0; k < bmap->n_div; ++k) {
475 if (isl_int_is_zero(bmap->div[k][0]))
476 continue;
477 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
478 continue;
479 if (progress)
480 *progress = 1;
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
486 * is still ordered.
488 if (last_div == -1 || (keep_divs && last_div < k)) {
489 isl_seq_elim(bmap->div[k]+1, eq,
490 1+pos, 1+total, &bmap->div[k][0]);
491 normalize_div_expression(bmap, k);
492 } else
493 isl_seq_clr(bmap->div[k], 1 + total);
494 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
501 isl_int *eq, unsigned div, int keep_divs)
503 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
505 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
507 bmap = isl_basic_map_drop_div(bmap, div);
509 return bmap;
512 /* Check if elimination of div "div" using equality "eq" would not
513 * result in a div depending on a later div.
515 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
516 unsigned div)
518 int k;
519 int last_div;
520 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
521 unsigned pos = space_total + div;
523 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
524 if (last_div < 0 || last_div <= div)
525 return 1;
527 for (k = 0; k <= last_div; ++k) {
528 if (isl_int_is_zero(bmap->div[k][0]))
529 return 1;
530 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
531 return 0;
534 return 1;
537 /* Elimininate divs based on equalities
539 static struct isl_basic_map *eliminate_divs_eq(
540 struct isl_basic_map *bmap, int *progress)
542 int d;
543 int i;
544 int modified = 0;
545 unsigned off;
547 bmap = isl_basic_map_order_divs(bmap);
549 if (!bmap)
550 return NULL;
552 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
554 for (d = bmap->n_div - 1; d >= 0 ; --d) {
555 for (i = 0; i < bmap->n_eq; ++i) {
556 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
557 !isl_int_is_negone(bmap->eq[i][off + d]))
558 continue;
559 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
560 continue;
561 modified = 1;
562 *progress = 1;
563 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
564 if (isl_basic_map_drop_equality(bmap, i) < 0)
565 return isl_basic_map_free(bmap);
566 break;
569 if (modified)
570 return eliminate_divs_eq(bmap, progress);
571 return bmap;
574 /* Elimininate divs based on inequalities
576 static struct isl_basic_map *eliminate_divs_ineq(
577 struct isl_basic_map *bmap, int *progress)
579 int d;
580 int i;
581 unsigned off;
582 struct isl_ctx *ctx;
584 if (!bmap)
585 return NULL;
587 ctx = bmap->ctx;
588 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
590 for (d = bmap->n_div - 1; d >= 0 ; --d) {
591 for (i = 0; i < bmap->n_eq; ++i)
592 if (!isl_int_is_zero(bmap->eq[i][off + d]))
593 break;
594 if (i < bmap->n_eq)
595 continue;
596 for (i = 0; i < bmap->n_ineq; ++i)
597 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
598 break;
599 if (i < bmap->n_ineq)
600 continue;
601 *progress = 1;
602 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
603 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
604 break;
605 bmap = isl_basic_map_drop_div(bmap, d);
606 if (!bmap)
607 break;
609 return bmap;
612 struct isl_basic_map *isl_basic_map_gauss(
613 struct isl_basic_map *bmap, int *progress)
615 int k;
616 int done;
617 int last_var;
618 unsigned total_var;
619 unsigned total;
621 bmap = isl_basic_map_order_divs(bmap);
623 if (!bmap)
624 return NULL;
626 total = isl_basic_map_total_dim(bmap);
627 total_var = total - bmap->n_div;
629 last_var = total - 1;
630 for (done = 0; done < bmap->n_eq; ++done) {
631 for (; last_var >= 0; --last_var) {
632 for (k = done; k < bmap->n_eq; ++k)
633 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
634 break;
635 if (k < bmap->n_eq)
636 break;
638 if (last_var < 0)
639 break;
640 if (k != done)
641 swap_equality(bmap, k, done);
642 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
643 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
645 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
646 progress);
648 if (last_var >= total_var &&
649 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
650 unsigned div = last_var - total_var;
651 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
652 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
653 isl_int_set(bmap->div[div][0],
654 bmap->eq[done][1+last_var]);
655 if (progress)
656 *progress = 1;
657 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
660 if (done == bmap->n_eq)
661 return bmap;
662 for (k = done; k < bmap->n_eq; ++k) {
663 if (isl_int_is_zero(bmap->eq[k][0]))
664 continue;
665 return isl_basic_map_set_to_empty(bmap);
667 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
668 return bmap;
671 struct isl_basic_set *isl_basic_set_gauss(
672 struct isl_basic_set *bset, int *progress)
674 return (struct isl_basic_set*)isl_basic_map_gauss(
675 (struct isl_basic_map *)bset, progress);
679 static unsigned int round_up(unsigned int v)
681 int old_v = v;
683 while (v) {
684 old_v = v;
685 v ^= v & -v;
687 return old_v << 1;
690 static int hash_index(isl_int ***index, unsigned int size, int bits,
691 struct isl_basic_map *bmap, int k)
693 int h;
694 unsigned total = isl_basic_map_total_dim(bmap);
695 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
696 for (h = hash; index[h]; h = (h+1) % size)
697 if (&bmap->ineq[k] != index[h] &&
698 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
699 break;
700 return h;
703 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
704 struct isl_basic_set *bset, int k)
706 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
709 /* If we can eliminate more than one div, then we need to make
710 * sure we do it from last div to first div, in order not to
711 * change the position of the other divs that still need to
712 * be removed.
714 static struct isl_basic_map *remove_duplicate_divs(
715 struct isl_basic_map *bmap, int *progress)
717 unsigned int size;
718 int *index;
719 int *elim_for;
720 int k, l, h;
721 int bits;
722 struct isl_blk eq;
723 unsigned total_var;
724 unsigned total;
725 struct isl_ctx *ctx;
727 bmap = isl_basic_map_order_divs(bmap);
728 if (!bmap || bmap->n_div <= 1)
729 return bmap;
731 total_var = isl_space_dim(bmap->dim, isl_dim_all);
732 total = total_var + bmap->n_div;
734 ctx = bmap->ctx;
735 for (k = bmap->n_div - 1; k >= 0; --k)
736 if (!isl_int_is_zero(bmap->div[k][0]))
737 break;
738 if (k <= 0)
739 return bmap;
741 size = round_up(4 * bmap->n_div / 3 - 1);
742 if (size == 0)
743 return bmap;
744 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
745 bits = ffs(size) - 1;
746 index = isl_calloc_array(ctx, int, size);
747 if (!elim_for || !index)
748 goto out;
749 eq = isl_blk_alloc(ctx, 1+total);
750 if (isl_blk_is_error(eq))
751 goto out;
753 isl_seq_clr(eq.data, 1+total);
754 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
755 for (--k; k >= 0; --k) {
756 uint32_t hash;
758 if (isl_int_is_zero(bmap->div[k][0]))
759 continue;
761 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
762 for (h = hash; index[h]; h = (h+1) % size)
763 if (isl_seq_eq(bmap->div[k],
764 bmap->div[index[h]-1], 2+total))
765 break;
766 if (index[h]) {
767 *progress = 1;
768 l = index[h] - 1;
769 elim_for[l] = k + 1;
771 index[h] = k+1;
773 for (l = bmap->n_div - 1; l >= 0; --l) {
774 if (!elim_for[l])
775 continue;
776 k = elim_for[l] - 1;
777 isl_int_set_si(eq.data[1+total_var+k], -1);
778 isl_int_set_si(eq.data[1+total_var+l], 1);
779 bmap = eliminate_div(bmap, eq.data, l, 1);
780 if (!bmap)
781 break;
782 isl_int_set_si(eq.data[1+total_var+k], 0);
783 isl_int_set_si(eq.data[1+total_var+l], 0);
786 isl_blk_free(ctx, eq);
787 out:
788 free(index);
789 free(elim_for);
790 return bmap;
793 static int n_pure_div_eq(struct isl_basic_map *bmap)
795 int i, j;
796 unsigned total;
798 total = isl_space_dim(bmap->dim, isl_dim_all);
799 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
800 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
801 --j;
802 if (j < 0)
803 break;
804 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
805 return 0;
807 return i;
810 /* Normalize divs that appear in equalities.
812 * In particular, we assume that bmap contains some equalities
813 * of the form
815 * a x = m * e_i
817 * and we want to replace the set of e_i by a minimal set and
818 * such that the new e_i have a canonical representation in terms
819 * of the vector x.
820 * If any of the equalities involves more than one divs, then
821 * we currently simply bail out.
823 * Let us first additionally assume that all equalities involve
824 * a div. The equalities then express modulo constraints on the
825 * remaining variables and we can use "parameter compression"
826 * to find a minimal set of constraints. The result is a transformation
828 * x = T(x') = x_0 + G x'
830 * with G a lower-triangular matrix with all elements below the diagonal
831 * non-negative and smaller than the diagonal element on the same row.
832 * We first normalize x_0 by making the same property hold in the affine
833 * T matrix.
834 * The rows i of G with a 1 on the diagonal do not impose any modulo
835 * constraint and simply express x_i = x'_i.
836 * For each of the remaining rows i, we introduce a div and a corresponding
837 * equality. In particular
839 * g_ii e_j = x_i - g_i(x')
841 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
842 * corresponding div (if g_kk != 1).
844 * If there are any equalities not involving any div, then we
845 * first apply a variable compression on the variables x:
847 * x = C x'' x'' = C_2 x
849 * and perform the above parameter compression on A C instead of on A.
850 * The resulting compression is then of the form
852 * x'' = T(x') = x_0 + G x'
854 * and in constructing the new divs and the corresponding equalities,
855 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
856 * by the corresponding row from C_2.
858 static struct isl_basic_map *normalize_divs(
859 struct isl_basic_map *bmap, int *progress)
861 int i, j, k;
862 int total;
863 int div_eq;
864 struct isl_mat *B;
865 struct isl_vec *d;
866 struct isl_mat *T = NULL;
867 struct isl_mat *C = NULL;
868 struct isl_mat *C2 = NULL;
869 isl_int v;
870 int *pos;
871 int dropped, needed;
873 if (!bmap)
874 return NULL;
876 if (bmap->n_div == 0)
877 return bmap;
879 if (bmap->n_eq == 0)
880 return bmap;
882 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
883 return bmap;
885 total = isl_space_dim(bmap->dim, isl_dim_all);
886 div_eq = n_pure_div_eq(bmap);
887 if (div_eq == 0)
888 return bmap;
890 if (div_eq < bmap->n_eq) {
891 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
892 bmap->n_eq - div_eq, 0, 1 + total);
893 C = isl_mat_variable_compression(B, &C2);
894 if (!C || !C2)
895 goto error;
896 if (C->n_col == 0) {
897 bmap = isl_basic_map_set_to_empty(bmap);
898 isl_mat_free(C);
899 isl_mat_free(C2);
900 goto done;
904 d = isl_vec_alloc(bmap->ctx, div_eq);
905 if (!d)
906 goto error;
907 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
908 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
909 --j;
910 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
912 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
914 if (C) {
915 B = isl_mat_product(B, C);
916 C = NULL;
919 T = isl_mat_parameter_compression(B, d);
920 if (!T)
921 goto error;
922 if (T->n_col == 0) {
923 bmap = isl_basic_map_set_to_empty(bmap);
924 isl_mat_free(C2);
925 isl_mat_free(T);
926 goto done;
928 isl_int_init(v);
929 for (i = 0; i < T->n_row - 1; ++i) {
930 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
931 if (isl_int_is_zero(v))
932 continue;
933 isl_mat_col_submul(T, 0, v, 1 + i);
935 isl_int_clear(v);
936 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
937 if (!pos)
938 goto error;
939 /* We have to be careful because dropping equalities may reorder them */
940 dropped = 0;
941 for (j = bmap->n_div - 1; j >= 0; --j) {
942 for (i = 0; i < bmap->n_eq; ++i)
943 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
944 break;
945 if (i < bmap->n_eq) {
946 bmap = isl_basic_map_drop_div(bmap, j);
947 isl_basic_map_drop_equality(bmap, i);
948 ++dropped;
951 pos[0] = 0;
952 needed = 0;
953 for (i = 1; i < T->n_row; ++i) {
954 if (isl_int_is_one(T->row[i][i]))
955 pos[i] = i;
956 else
957 needed++;
959 if (needed > dropped) {
960 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
961 needed, needed, 0);
962 if (!bmap)
963 goto error;
965 for (i = 1; i < T->n_row; ++i) {
966 if (isl_int_is_one(T->row[i][i]))
967 continue;
968 k = isl_basic_map_alloc_div(bmap);
969 pos[i] = 1 + total + k;
970 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
971 isl_int_set(bmap->div[k][0], T->row[i][i]);
972 if (C2)
973 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
974 else
975 isl_int_set_si(bmap->div[k][1 + i], 1);
976 for (j = 0; j < i; ++j) {
977 if (isl_int_is_zero(T->row[i][j]))
978 continue;
979 if (pos[j] < T->n_row && C2)
980 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
981 C2->row[pos[j]], 1 + total);
982 else
983 isl_int_neg(bmap->div[k][1 + pos[j]],
984 T->row[i][j]);
986 j = isl_basic_map_alloc_equality(bmap);
987 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
988 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
990 free(pos);
991 isl_mat_free(C2);
992 isl_mat_free(T);
994 if (progress)
995 *progress = 1;
996 done:
997 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
999 return bmap;
1000 error:
1001 isl_mat_free(C);
1002 isl_mat_free(C2);
1003 isl_mat_free(T);
1004 return bmap;
1007 static struct isl_basic_map *set_div_from_lower_bound(
1008 struct isl_basic_map *bmap, int div, int ineq)
1010 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1012 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1013 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1014 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1015 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1016 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1018 return bmap;
1021 /* Check whether it is ok to define a div based on an inequality.
1022 * To avoid the introduction of circular definitions of divs, we
1023 * do not allow such a definition if the resulting expression would refer to
1024 * any other undefined divs or if any known div is defined in
1025 * terms of the unknown div.
1027 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1028 int div, int ineq)
1030 int j;
1031 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1033 /* Not defined in terms of unknown divs */
1034 for (j = 0; j < bmap->n_div; ++j) {
1035 if (div == j)
1036 continue;
1037 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1038 continue;
1039 if (isl_int_is_zero(bmap->div[j][0]))
1040 return 0;
1043 /* No other div defined in terms of this one => avoid loops */
1044 for (j = 0; j < bmap->n_div; ++j) {
1045 if (div == j)
1046 continue;
1047 if (isl_int_is_zero(bmap->div[j][0]))
1048 continue;
1049 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1050 return 0;
1053 return 1;
1056 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1057 * be a better expression than the current one?
1059 * If we do not have any expression yet, then any expression would be better.
1060 * Otherwise we check if the last variable involved in the inequality
1061 * (disregarding the div that it would define) is in an earlier position
1062 * than the last variable involved in the current div expression.
1064 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1065 int div, int ineq)
1067 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1068 int last_div;
1069 int last_ineq;
1071 if (isl_int_is_zero(bmap->div[div][0]))
1072 return 1;
1074 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1075 bmap->n_div - (div + 1)) >= 0)
1076 return 0;
1078 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1079 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1080 total + bmap->n_div);
1082 return last_ineq < last_div;
1085 /* Given two constraints "k" and "l" that are opposite to each other,
1086 * except for the constant term, check if we can use them
1087 * to obtain an expression for one of the hitherto unknown divs or
1088 * a "better" expression for a div for which we already have an expression.
1089 * "sum" is the sum of the constant terms of the constraints.
1090 * If this sum is strictly smaller than the coefficient of one
1091 * of the divs, then this pair can be used define the div.
1092 * To avoid the introduction of circular definitions of divs, we
1093 * do not use the pair if the resulting expression would refer to
1094 * any other undefined divs or if any known div is defined in
1095 * terms of the unknown div.
1097 static struct isl_basic_map *check_for_div_constraints(
1098 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1100 int i;
1101 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1103 for (i = 0; i < bmap->n_div; ++i) {
1104 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1105 continue;
1106 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1107 continue;
1108 if (!better_div_constraint(bmap, i, k))
1109 continue;
1110 if (!ok_to_set_div_from_bound(bmap, i, k))
1111 break;
1112 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1113 bmap = set_div_from_lower_bound(bmap, i, k);
1114 else
1115 bmap = set_div_from_lower_bound(bmap, i, l);
1116 if (progress)
1117 *progress = 1;
1118 break;
1120 return bmap;
1123 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1124 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1126 unsigned int size;
1127 isl_int ***index;
1128 int k, l, h;
1129 int bits;
1130 unsigned total = isl_basic_map_total_dim(bmap);
1131 isl_int sum;
1132 isl_ctx *ctx;
1134 if (!bmap || bmap->n_ineq <= 1)
1135 return bmap;
1137 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1138 if (size == 0)
1139 return bmap;
1140 bits = ffs(size) - 1;
1141 ctx = isl_basic_map_get_ctx(bmap);
1142 index = isl_calloc_array(ctx, isl_int **, size);
1143 if (!index)
1144 return bmap;
1146 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1147 for (k = 1; k < bmap->n_ineq; ++k) {
1148 h = hash_index(index, size, bits, bmap, k);
1149 if (!index[h]) {
1150 index[h] = &bmap->ineq[k];
1151 continue;
1153 if (progress)
1154 *progress = 1;
1155 l = index[h] - &bmap->ineq[0];
1156 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1157 swap_inequality(bmap, k, l);
1158 isl_basic_map_drop_inequality(bmap, k);
1159 --k;
1161 isl_int_init(sum);
1162 for (k = 0; k < bmap->n_ineq-1; ++k) {
1163 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1164 h = hash_index(index, size, bits, bmap, k);
1165 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1166 if (!index[h])
1167 continue;
1168 l = index[h] - &bmap->ineq[0];
1169 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1170 if (isl_int_is_pos(sum)) {
1171 if (detect_divs)
1172 bmap = check_for_div_constraints(bmap, k, l,
1173 sum, progress);
1174 continue;
1176 if (isl_int_is_zero(sum)) {
1177 /* We need to break out of the loop after these
1178 * changes since the contents of the hash
1179 * will no longer be valid.
1180 * Plus, we probably we want to regauss first.
1182 if (progress)
1183 *progress = 1;
1184 isl_basic_map_drop_inequality(bmap, l);
1185 isl_basic_map_inequality_to_equality(bmap, k);
1186 } else
1187 bmap = isl_basic_map_set_to_empty(bmap);
1188 break;
1190 isl_int_clear(sum);
1192 free(index);
1193 return bmap;
1196 /* Detect all pairs of inequalities that form an equality.
1198 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1199 * Call it repeatedly while it is making progress.
1201 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1202 __isl_take isl_basic_map *bmap, int *progress)
1204 int duplicate;
1206 do {
1207 duplicate = 0;
1208 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1209 &duplicate, 0);
1210 if (progress && duplicate)
1211 *progress = 1;
1212 } while (duplicate);
1214 return bmap;
1217 /* Eliminate knowns divs from constraints where they appear with
1218 * a (positive or negative) unit coefficient.
1220 * That is, replace
1222 * floor(e/m) + f >= 0
1224 * by
1226 * e + m f >= 0
1228 * and
1230 * -floor(e/m) + f >= 0
1232 * by
1234 * -e + m f + m - 1 >= 0
1236 * The first conversion is valid because floor(e/m) >= -f is equivalent
1237 * to e/m >= -f because -f is an integral expression.
1238 * The second conversion follows from the fact that
1240 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1243 * Note that one of the div constraints may have been eliminated
1244 * due to being redundant with respect to the constraint that is
1245 * being modified by this function. The modified constraint may
1246 * no longer imply this div constraint, so we add it back to make
1247 * sure we do not lose any information.
1249 * We skip integral divs, i.e., those with denominator 1, as we would
1250 * risk eliminating the div from the div constraints. We do not need
1251 * to handle those divs here anyway since the div constraints will turn
1252 * out to form an equality and this equality can then be use to eliminate
1253 * the div from all constraints.
1255 static __isl_give isl_basic_map *eliminate_unit_divs(
1256 __isl_take isl_basic_map *bmap, int *progress)
1258 int i, j;
1259 isl_ctx *ctx;
1260 unsigned total;
1262 if (!bmap)
1263 return NULL;
1265 ctx = isl_basic_map_get_ctx(bmap);
1266 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1268 for (i = 0; i < bmap->n_div; ++i) {
1269 if (isl_int_is_zero(bmap->div[i][0]))
1270 continue;
1271 if (isl_int_is_one(bmap->div[i][0]))
1272 continue;
1273 for (j = 0; j < bmap->n_ineq; ++j) {
1274 int s;
1276 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1277 !isl_int_is_negone(bmap->ineq[j][total + i]))
1278 continue;
1280 *progress = 1;
1282 s = isl_int_sgn(bmap->ineq[j][total + i]);
1283 isl_int_set_si(bmap->ineq[j][total + i], 0);
1284 if (s < 0)
1285 isl_seq_combine(bmap->ineq[j],
1286 ctx->negone, bmap->div[i] + 1,
1287 bmap->div[i][0], bmap->ineq[j],
1288 total + bmap->n_div);
1289 else
1290 isl_seq_combine(bmap->ineq[j],
1291 ctx->one, bmap->div[i] + 1,
1292 bmap->div[i][0], bmap->ineq[j],
1293 total + bmap->n_div);
1294 if (s < 0) {
1295 isl_int_add(bmap->ineq[j][0],
1296 bmap->ineq[j][0], bmap->div[i][0]);
1297 isl_int_sub_ui(bmap->ineq[j][0],
1298 bmap->ineq[j][0], 1);
1301 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1302 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1303 return isl_basic_map_free(bmap);
1307 return bmap;
1310 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1312 int progress = 1;
1313 if (!bmap)
1314 return NULL;
1315 while (progress) {
1316 progress = 0;
1317 if (!bmap)
1318 break;
1319 if (isl_basic_map_plain_is_empty(bmap))
1320 break;
1321 bmap = isl_basic_map_normalize_constraints(bmap);
1322 bmap = normalize_div_expressions(bmap);
1323 bmap = remove_duplicate_divs(bmap, &progress);
1324 bmap = eliminate_unit_divs(bmap, &progress);
1325 bmap = eliminate_divs_eq(bmap, &progress);
1326 bmap = eliminate_divs_ineq(bmap, &progress);
1327 bmap = isl_basic_map_gauss(bmap, &progress);
1328 /* requires equalities in normal form */
1329 bmap = normalize_divs(bmap, &progress);
1330 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1331 &progress, 1);
1332 if (bmap && progress)
1333 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1335 return bmap;
1338 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1340 return (struct isl_basic_set *)
1341 isl_basic_map_simplify((struct isl_basic_map *)bset);
1345 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1346 isl_int *constraint, unsigned div)
1348 unsigned pos;
1350 if (!bmap)
1351 return -1;
1353 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1355 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1356 int neg;
1357 isl_int_sub(bmap->div[div][1],
1358 bmap->div[div][1], bmap->div[div][0]);
1359 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1360 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1361 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1362 isl_int_add(bmap->div[div][1],
1363 bmap->div[div][1], bmap->div[div][0]);
1364 if (!neg)
1365 return 0;
1366 if (isl_seq_first_non_zero(constraint+pos+1,
1367 bmap->n_div-div-1) != -1)
1368 return 0;
1369 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1370 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1371 return 0;
1372 if (isl_seq_first_non_zero(constraint+pos+1,
1373 bmap->n_div-div-1) != -1)
1374 return 0;
1375 } else
1376 return 0;
1378 return 1;
1381 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1382 isl_int *constraint, unsigned div)
1384 return isl_basic_map_is_div_constraint(bset, constraint, div);
1388 /* If the only constraints a div d=floor(f/m)
1389 * appears in are its two defining constraints
1391 * f - m d >=0
1392 * -(f - (m - 1)) + m d >= 0
1394 * then it can safely be removed.
1396 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1398 int i;
1399 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1401 for (i = 0; i < bmap->n_eq; ++i)
1402 if (!isl_int_is_zero(bmap->eq[i][pos]))
1403 return 0;
1405 for (i = 0; i < bmap->n_ineq; ++i) {
1406 if (isl_int_is_zero(bmap->ineq[i][pos]))
1407 continue;
1408 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1409 return 0;
1412 for (i = 0; i < bmap->n_div; ++i) {
1413 if (isl_int_is_zero(bmap->div[i][0]))
1414 continue;
1415 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1416 return 0;
1419 return 1;
1423 * Remove divs that don't occur in any of the constraints or other divs.
1424 * These can arise when dropping constraints from a basic map or
1425 * when the divs of a basic map have been temporarily aligned
1426 * with the divs of another basic map.
1428 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1430 int i;
1432 if (!bmap)
1433 return NULL;
1435 for (i = bmap->n_div-1; i >= 0; --i) {
1436 if (!div_is_redundant(bmap, i))
1437 continue;
1438 bmap = isl_basic_map_drop_div(bmap, i);
1440 return bmap;
1443 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1445 bmap = remove_redundant_divs(bmap);
1446 if (!bmap)
1447 return NULL;
1448 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1449 return bmap;
1452 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1454 return (struct isl_basic_set *)
1455 isl_basic_map_finalize((struct isl_basic_map *)bset);
1458 struct isl_set *isl_set_finalize(struct isl_set *set)
1460 int i;
1462 if (!set)
1463 return NULL;
1464 for (i = 0; i < set->n; ++i) {
1465 set->p[i] = isl_basic_set_finalize(set->p[i]);
1466 if (!set->p[i])
1467 goto error;
1469 return set;
1470 error:
1471 isl_set_free(set);
1472 return NULL;
1475 struct isl_map *isl_map_finalize(struct isl_map *map)
1477 int i;
1479 if (!map)
1480 return NULL;
1481 for (i = 0; i < map->n; ++i) {
1482 map->p[i] = isl_basic_map_finalize(map->p[i]);
1483 if (!map->p[i])
1484 goto error;
1486 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1487 return map;
1488 error:
1489 isl_map_free(map);
1490 return NULL;
1494 /* Remove definition of any div that is defined in terms of the given variable.
1495 * The div itself is not removed. Functions such as
1496 * eliminate_divs_ineq depend on the other divs remaining in place.
1498 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1499 int pos)
1501 int i;
1503 if (!bmap)
1504 return NULL;
1506 for (i = 0; i < bmap->n_div; ++i) {
1507 if (isl_int_is_zero(bmap->div[i][0]))
1508 continue;
1509 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1510 continue;
1511 isl_int_set_si(bmap->div[i][0], 0);
1513 return bmap;
1516 /* Eliminate the specified variables from the constraints using
1517 * Fourier-Motzkin. The variables themselves are not removed.
1519 struct isl_basic_map *isl_basic_map_eliminate_vars(
1520 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1522 int d;
1523 int i, j, k;
1524 unsigned total;
1525 int need_gauss = 0;
1527 if (n == 0)
1528 return bmap;
1529 if (!bmap)
1530 return NULL;
1531 total = isl_basic_map_total_dim(bmap);
1533 bmap = isl_basic_map_cow(bmap);
1534 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1535 bmap = remove_dependent_vars(bmap, d);
1536 if (!bmap)
1537 return NULL;
1539 for (d = pos + n - 1;
1540 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1541 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1542 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1543 int n_lower, n_upper;
1544 if (!bmap)
1545 return NULL;
1546 for (i = 0; i < bmap->n_eq; ++i) {
1547 if (isl_int_is_zero(bmap->eq[i][1+d]))
1548 continue;
1549 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1550 isl_basic_map_drop_equality(bmap, i);
1551 need_gauss = 1;
1552 break;
1554 if (i < bmap->n_eq)
1555 continue;
1556 n_lower = 0;
1557 n_upper = 0;
1558 for (i = 0; i < bmap->n_ineq; ++i) {
1559 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1560 n_lower++;
1561 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1562 n_upper++;
1564 bmap = isl_basic_map_extend_constraints(bmap,
1565 0, n_lower * n_upper);
1566 if (!bmap)
1567 goto error;
1568 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1569 int last;
1570 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1571 continue;
1572 last = -1;
1573 for (j = 0; j < i; ++j) {
1574 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1575 continue;
1576 last = j;
1577 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1578 isl_int_sgn(bmap->ineq[j][1+d]))
1579 continue;
1580 k = isl_basic_map_alloc_inequality(bmap);
1581 if (k < 0)
1582 goto error;
1583 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1584 1+total);
1585 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1586 1+d, 1+total, NULL);
1588 isl_basic_map_drop_inequality(bmap, i);
1589 i = last + 1;
1591 if (n_lower > 0 && n_upper > 0) {
1592 bmap = isl_basic_map_normalize_constraints(bmap);
1593 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1594 NULL, 0);
1595 bmap = isl_basic_map_gauss(bmap, NULL);
1596 bmap = isl_basic_map_remove_redundancies(bmap);
1597 need_gauss = 0;
1598 if (!bmap)
1599 goto error;
1600 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1601 break;
1604 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1605 if (need_gauss)
1606 bmap = isl_basic_map_gauss(bmap, NULL);
1607 return bmap;
1608 error:
1609 isl_basic_map_free(bmap);
1610 return NULL;
1613 struct isl_basic_set *isl_basic_set_eliminate_vars(
1614 struct isl_basic_set *bset, unsigned pos, unsigned n)
1616 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1617 (struct isl_basic_map *)bset, pos, n);
1620 /* Eliminate the specified n dimensions starting at first from the
1621 * constraints, without removing the dimensions from the space.
1622 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1623 * Otherwise, they are projected out and the original space is restored.
1625 __isl_give isl_basic_map *isl_basic_map_eliminate(
1626 __isl_take isl_basic_map *bmap,
1627 enum isl_dim_type type, unsigned first, unsigned n)
1629 isl_space *space;
1631 if (!bmap)
1632 return NULL;
1633 if (n == 0)
1634 return bmap;
1636 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1637 isl_die(bmap->ctx, isl_error_invalid,
1638 "index out of bounds", goto error);
1640 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1641 first += isl_basic_map_offset(bmap, type) - 1;
1642 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1643 return isl_basic_map_finalize(bmap);
1646 space = isl_basic_map_get_space(bmap);
1647 bmap = isl_basic_map_project_out(bmap, type, first, n);
1648 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1649 bmap = isl_basic_map_reset_space(bmap, space);
1650 return bmap;
1651 error:
1652 isl_basic_map_free(bmap);
1653 return NULL;
1656 __isl_give isl_basic_set *isl_basic_set_eliminate(
1657 __isl_take isl_basic_set *bset,
1658 enum isl_dim_type type, unsigned first, unsigned n)
1660 return isl_basic_map_eliminate(bset, type, first, n);
1663 /* Don't assume equalities are in order, because align_divs
1664 * may have changed the order of the divs.
1666 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1668 int d, i;
1669 unsigned total;
1671 total = isl_space_dim(bmap->dim, isl_dim_all);
1672 for (d = 0; d < total; ++d)
1673 elim[d] = -1;
1674 for (i = 0; i < bmap->n_eq; ++i) {
1675 for (d = total - 1; d >= 0; --d) {
1676 if (isl_int_is_zero(bmap->eq[i][1+d]))
1677 continue;
1678 elim[d] = i;
1679 break;
1684 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1686 compute_elimination_index((struct isl_basic_map *)bset, elim);
1689 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1690 struct isl_basic_map *bmap, int *elim)
1692 int d;
1693 int copied = 0;
1694 unsigned total;
1696 total = isl_space_dim(bmap->dim, isl_dim_all);
1697 for (d = total - 1; d >= 0; --d) {
1698 if (isl_int_is_zero(src[1+d]))
1699 continue;
1700 if (elim[d] == -1)
1701 continue;
1702 if (!copied) {
1703 isl_seq_cpy(dst, src, 1 + total);
1704 copied = 1;
1706 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1708 return copied;
1711 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1712 struct isl_basic_set *bset, int *elim)
1714 return reduced_using_equalities(dst, src,
1715 (struct isl_basic_map *)bset, elim);
1718 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1719 struct isl_basic_set *bset, struct isl_basic_set *context)
1721 int i;
1722 int *elim;
1724 if (!bset || !context)
1725 goto error;
1727 if (context->n_eq == 0) {
1728 isl_basic_set_free(context);
1729 return bset;
1732 bset = isl_basic_set_cow(bset);
1733 if (!bset)
1734 goto error;
1736 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1737 if (!elim)
1738 goto error;
1739 set_compute_elimination_index(context, elim);
1740 for (i = 0; i < bset->n_eq; ++i)
1741 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1742 context, elim);
1743 for (i = 0; i < bset->n_ineq; ++i)
1744 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1745 context, elim);
1746 isl_basic_set_free(context);
1747 free(elim);
1748 bset = isl_basic_set_simplify(bset);
1749 bset = isl_basic_set_finalize(bset);
1750 return bset;
1751 error:
1752 isl_basic_set_free(bset);
1753 isl_basic_set_free(context);
1754 return NULL;
1757 static struct isl_basic_set *remove_shifted_constraints(
1758 struct isl_basic_set *bset, struct isl_basic_set *context)
1760 unsigned int size;
1761 isl_int ***index;
1762 int bits;
1763 int k, h, l;
1764 isl_ctx *ctx;
1766 if (!bset || !context)
1767 return bset;
1769 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1770 if (size == 0)
1771 return bset;
1772 bits = ffs(size) - 1;
1773 ctx = isl_basic_set_get_ctx(bset);
1774 index = isl_calloc_array(ctx, isl_int **, size);
1775 if (!index)
1776 return bset;
1778 for (k = 0; k < context->n_ineq; ++k) {
1779 h = set_hash_index(index, size, bits, context, k);
1780 index[h] = &context->ineq[k];
1782 for (k = 0; k < bset->n_ineq; ++k) {
1783 h = set_hash_index(index, size, bits, bset, k);
1784 if (!index[h])
1785 continue;
1786 l = index[h] - &context->ineq[0];
1787 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1788 continue;
1789 bset = isl_basic_set_cow(bset);
1790 if (!bset)
1791 goto error;
1792 isl_basic_set_drop_inequality(bset, k);
1793 --k;
1795 free(index);
1796 return bset;
1797 error:
1798 free(index);
1799 return bset;
1802 /* Remove constraints from "bmap" that are identical to constraints
1803 * in "context" or that are more relaxed (greater constant term).
1805 * We perform the test for shifted copies on the pure constraints
1806 * in remove_shifted_constraints.
1808 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1809 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1811 isl_basic_set *bset, *bset_context;
1813 if (!bmap || !context)
1814 goto error;
1816 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1817 isl_basic_map_free(context);
1818 return bmap;
1821 context = isl_basic_map_align_divs(context, bmap);
1822 bmap = isl_basic_map_align_divs(bmap, context);
1824 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1825 bset_context = isl_basic_map_underlying_set(context);
1826 bset = remove_shifted_constraints(bset, bset_context);
1827 isl_basic_set_free(bset_context);
1829 bmap = isl_basic_map_overlying_set(bset, bmap);
1831 return bmap;
1832 error:
1833 isl_basic_map_free(bmap);
1834 isl_basic_map_free(context);
1835 return NULL;
1838 /* Does the (linear part of a) constraint "c" involve any of the "len"
1839 * "relevant" dimensions?
1841 static int is_related(isl_int *c, int len, int *relevant)
1843 int i;
1845 for (i = 0; i < len; ++i) {
1846 if (!relevant[i])
1847 continue;
1848 if (!isl_int_is_zero(c[i]))
1849 return 1;
1852 return 0;
1855 /* Drop constraints from "bset" that do not involve any of
1856 * the dimensions marked "relevant".
1858 static __isl_give isl_basic_set *drop_unrelated_constraints(
1859 __isl_take isl_basic_set *bset, int *relevant)
1861 int i, dim;
1863 dim = isl_basic_set_dim(bset, isl_dim_set);
1864 for (i = 0; i < dim; ++i)
1865 if (!relevant[i])
1866 break;
1867 if (i >= dim)
1868 return bset;
1870 for (i = bset->n_eq - 1; i >= 0; --i)
1871 if (!is_related(bset->eq[i] + 1, dim, relevant))
1872 isl_basic_set_drop_equality(bset, i);
1874 for (i = bset->n_ineq - 1; i >= 0; --i)
1875 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1876 isl_basic_set_drop_inequality(bset, i);
1878 return bset;
1881 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1883 * In particular, for any variable involved in the constraint,
1884 * find the actual group id from before and replace the group
1885 * of the corresponding variable by the minimal group of all
1886 * the variables involved in the constraint considered so far
1887 * (if this minimum is smaller) or replace the minimum by this group
1888 * (if the minimum is larger).
1890 * At the end, all the variables in "c" will (indirectly) point
1891 * to the minimal of the groups that they referred to originally.
1893 static void update_groups(int dim, int *group, isl_int *c)
1895 int j;
1896 int min = dim;
1898 for (j = 0; j < dim; ++j) {
1899 if (isl_int_is_zero(c[j]))
1900 continue;
1901 while (group[j] >= 0 && group[group[j]] != group[j])
1902 group[j] = group[group[j]];
1903 if (group[j] == min)
1904 continue;
1905 if (group[j] < min) {
1906 if (min >= 0 && min < dim)
1907 group[min] = group[j];
1908 min = group[j];
1909 } else
1910 group[group[j]] = min;
1914 /* Drop constraints from "context" that are irrelevant for computing
1915 * the gist of "bset".
1917 * In particular, drop constraints in variables that are not related
1918 * to any of the variables involved in the constraints of "bset"
1919 * in the sense that there is no sequence of constraints that connects them.
1921 * We construct groups of variables that collect variables that
1922 * (indirectly) appear in some common constraint of "context".
1923 * Each group is identified by the first variable in the group,
1924 * except for the special group of variables that appear in "bset"
1925 * (or are related to those variables), which is identified by -1.
1926 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1927 * otherwise the group of i is the group of group[i].
1929 * We first initialize the -1 group with the variables that appear in "bset".
1930 * Then we initialize groups for the remaining variables.
1931 * Then we iterate over the constraints of "context" and update the
1932 * group of the variables in the constraint by the smallest group.
1933 * Finally, we resolve indirect references to groups by running over
1934 * the variables.
1936 * After computing the groups, we drop constraints that do not involve
1937 * any variables in the -1 group.
1939 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1940 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1942 isl_ctx *ctx;
1943 int *group;
1944 int dim;
1945 int i, j;
1946 int last;
1948 if (!context || !bset)
1949 return isl_basic_set_free(context);
1951 dim = isl_basic_set_dim(bset, isl_dim_set);
1952 ctx = isl_basic_set_get_ctx(bset);
1953 group = isl_calloc_array(ctx, int, dim);
1955 if (!group)
1956 goto error;
1958 for (i = 0; i < dim; ++i) {
1959 for (j = 0; j < bset->n_eq; ++j)
1960 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1961 break;
1962 if (j < bset->n_eq) {
1963 group[i] = -1;
1964 continue;
1966 for (j = 0; j < bset->n_ineq; ++j)
1967 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1968 break;
1969 if (j < bset->n_ineq)
1970 group[i] = -1;
1973 last = -1;
1974 for (i = 0; i < dim; ++i)
1975 if (group[i] >= 0)
1976 last = group[i] = i;
1977 if (last < 0) {
1978 free(group);
1979 return context;
1982 for (i = 0; i < context->n_eq; ++i)
1983 update_groups(dim, group, context->eq[i] + 1);
1984 for (i = 0; i < context->n_ineq; ++i)
1985 update_groups(dim, group, context->ineq[i] + 1);
1987 for (i = 0; i < dim; ++i)
1988 if (group[i] >= 0)
1989 group[i] = group[group[i]];
1991 for (i = 0; i < dim; ++i)
1992 group[i] = group[i] == -1;
1994 context = drop_unrelated_constraints(context, group);
1996 free(group);
1997 return context;
1998 error:
1999 free(group);
2000 return isl_basic_set_free(context);
2003 /* Remove all information from bset that is redundant in the context
2004 * of context. Both bset and context are assumed to be full-dimensional.
2006 * We first remove the inequalities from "bset"
2007 * that are obviously redundant with respect to some inequality in "context".
2008 * Then we remove those constraints from "context" that have become
2009 * irrelevant for computing the gist of "bset".
2010 * Note that this removal of constraints cannot be replaced by
2011 * a factorization because factors in "bset" may still be connected
2012 * to each other through constraints in "context".
2014 * If there are any inequalities left, we construct a tableau for
2015 * the context and then add the inequalities of "bset".
2016 * Before adding these inequalities, we freeze all constraints such that
2017 * they won't be considered redundant in terms of the constraints of "bset".
2018 * Then we detect all redundant constraints (among the
2019 * constraints that weren't frozen), first by checking for redundancy in the
2020 * the tableau and then by checking if replacing a constraint by its negation
2021 * would lead to an empty set. This last step is fairly expensive
2022 * and could be optimized by more reuse of the tableau.
2023 * Finally, we update bset according to the results.
2025 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2026 __isl_take isl_basic_set *context)
2028 int i, k;
2029 isl_basic_set *combined = NULL;
2030 struct isl_tab *tab = NULL;
2031 unsigned context_ineq;
2032 unsigned total;
2034 if (!bset || !context)
2035 goto error;
2037 if (isl_basic_set_is_universe(bset)) {
2038 isl_basic_set_free(context);
2039 return bset;
2042 if (isl_basic_set_is_universe(context)) {
2043 isl_basic_set_free(context);
2044 return bset;
2047 bset = remove_shifted_constraints(bset, context);
2048 if (!bset)
2049 goto error;
2050 if (bset->n_ineq == 0)
2051 goto done;
2053 context = drop_irrelevant_constraints(context, bset);
2054 if (!context)
2055 goto error;
2056 if (isl_basic_set_is_universe(context)) {
2057 isl_basic_set_free(context);
2058 return bset;
2061 context_ineq = context->n_ineq;
2062 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2063 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2064 tab = isl_tab_from_basic_set(combined, 0);
2065 for (i = 0; i < context_ineq; ++i)
2066 if (isl_tab_freeze_constraint(tab, i) < 0)
2067 goto error;
2068 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2069 goto error;
2070 for (i = 0; i < bset->n_ineq; ++i)
2071 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
2072 goto error;
2073 bset = isl_basic_set_add_constraints(combined, bset, 0);
2074 combined = NULL;
2075 if (!bset)
2076 goto error;
2077 if (isl_tab_detect_redundant(tab) < 0)
2078 goto error;
2079 total = isl_basic_set_total_dim(bset);
2080 for (i = context_ineq; i < bset->n_ineq; ++i) {
2081 int is_empty;
2082 if (tab->con[i].is_redundant)
2083 continue;
2084 tab->con[i].is_redundant = 1;
2085 combined = isl_basic_set_dup(bset);
2086 combined = isl_basic_set_update_from_tab(combined, tab);
2087 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2088 k = isl_basic_set_alloc_inequality(combined);
2089 if (k < 0)
2090 goto error;
2091 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2092 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2093 is_empty = isl_basic_set_is_empty(combined);
2094 if (is_empty < 0)
2095 goto error;
2096 isl_basic_set_free(combined);
2097 combined = NULL;
2098 if (!is_empty)
2099 tab->con[i].is_redundant = 0;
2101 for (i = 0; i < context_ineq; ++i)
2102 tab->con[i].is_redundant = 1;
2103 bset = isl_basic_set_update_from_tab(bset, tab);
2104 if (bset) {
2105 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2106 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2109 isl_tab_free(tab);
2110 done:
2111 bset = isl_basic_set_simplify(bset);
2112 bset = isl_basic_set_finalize(bset);
2113 isl_basic_set_free(context);
2114 return bset;
2115 error:
2116 isl_tab_free(tab);
2117 isl_basic_set_free(combined);
2118 isl_basic_set_free(context);
2119 isl_basic_set_free(bset);
2120 return NULL;
2123 /* Remove all information from bset that is redundant in the context
2124 * of context. In particular, equalities that are linear combinations
2125 * of those in context are removed. Then the inequalities that are
2126 * redundant in the context of the equalities and inequalities of
2127 * context are removed.
2129 * First of all, we drop those constraints from "context"
2130 * that are irrelevant for computing the gist of "bset".
2131 * Alternatively, we could factorize the intersection of "context" and "bset".
2133 * We first compute the integer affine hull of the intersection,
2134 * compute the gist inside this affine hull and then add back
2135 * those equalities that are not implied by the context.
2137 * If two constraints are mutually redundant, then uset_gist_full
2138 * will remove the second of those constraints. We therefore first
2139 * sort the constraints so that constraints not involving existentially
2140 * quantified variables are given precedence over those that do.
2141 * We have to perform this sorting before the variable compression,
2142 * because that may effect the order of the variables.
2144 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2145 __isl_take isl_basic_set *context)
2147 isl_mat *eq;
2148 isl_mat *T, *T2;
2149 isl_basic_set *aff;
2150 isl_basic_set *aff_context;
2151 unsigned total;
2153 if (!bset || !context)
2154 goto error;
2156 context = drop_irrelevant_constraints(context, bset);
2158 aff = isl_basic_set_copy(bset);
2159 aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
2160 aff = isl_basic_set_affine_hull(aff);
2161 if (!aff)
2162 goto error;
2163 if (isl_basic_set_plain_is_empty(aff)) {
2164 isl_basic_set_free(bset);
2165 isl_basic_set_free(context);
2166 return aff;
2168 bset = isl_basic_set_sort_constraints(bset);
2169 if (aff->n_eq == 0) {
2170 isl_basic_set_free(aff);
2171 return uset_gist_full(bset, context);
2173 total = isl_basic_set_total_dim(bset);
2174 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2175 eq = isl_mat_cow(eq);
2176 T = isl_mat_variable_compression(eq, &T2);
2177 if (T && T->n_col == 0) {
2178 isl_mat_free(T);
2179 isl_mat_free(T2);
2180 isl_basic_set_free(context);
2181 isl_basic_set_free(aff);
2182 return isl_basic_set_set_to_empty(bset);
2185 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2187 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2188 context = isl_basic_set_preimage(context, T);
2190 bset = uset_gist_full(bset, context);
2191 bset = isl_basic_set_preimage(bset, T2);
2192 bset = isl_basic_set_intersect(bset, aff);
2193 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2195 if (bset) {
2196 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2197 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2200 return bset;
2201 error:
2202 isl_basic_set_free(bset);
2203 isl_basic_set_free(context);
2204 return NULL;
2207 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2208 * We simply add the equalities in context to bmap and then do a regular
2209 * div normalizations. Better results can be obtained by normalizing
2210 * only the divs in bmap than do not also appear in context.
2211 * We need to be careful to reduce the divs using the equalities
2212 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2213 * spurious constraints.
2215 static struct isl_basic_map *normalize_divs_in_context(
2216 struct isl_basic_map *bmap, struct isl_basic_map *context)
2218 int i;
2219 unsigned total_context;
2220 int div_eq;
2222 div_eq = n_pure_div_eq(bmap);
2223 if (div_eq == 0)
2224 return bmap;
2226 bmap = isl_basic_map_cow(bmap);
2227 if (context->n_div > 0)
2228 bmap = isl_basic_map_align_divs(bmap, context);
2230 total_context = isl_basic_map_total_dim(context);
2231 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2232 for (i = 0; i < context->n_eq; ++i) {
2233 int k;
2234 k = isl_basic_map_alloc_equality(bmap);
2235 if (k < 0)
2236 return isl_basic_map_free(bmap);
2237 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2238 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2239 isl_basic_map_total_dim(bmap) - total_context);
2241 bmap = isl_basic_map_gauss(bmap, NULL);
2242 bmap = normalize_divs(bmap, NULL);
2243 bmap = isl_basic_map_gauss(bmap, NULL);
2244 return bmap;
2247 /* Return a basic map that has the same intersection with "context" as "bmap"
2248 * and that is as "simple" as possible.
2250 * The core computation is performed on the pure constraints.
2251 * When we add back the meaning of the integer divisions, we need
2252 * to (re)introduce the div constraints. If we happen to have
2253 * discovered that some of these integer divisions are equal to
2254 * some affine combination of other variables, then these div
2255 * constraints may end up getting simplified in terms of the equalities,
2256 * resulting in extra inequalities on the other variables that
2257 * may have been removed already or that may not even have been
2258 * part of the input. We try and remove those constraints of
2259 * this form that are most obviously redundant with respect to
2260 * the context. We also remove those div constraints that are
2261 * redundant with respect to the other constraints in the result.
2263 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2264 struct isl_basic_map *context)
2266 isl_basic_set *bset, *eq;
2267 isl_basic_map *eq_bmap;
2268 unsigned n_div, n_eq, n_ineq;
2270 if (!bmap || !context)
2271 goto error;
2273 if (isl_basic_map_is_universe(bmap)) {
2274 isl_basic_map_free(context);
2275 return bmap;
2277 if (isl_basic_map_plain_is_empty(context)) {
2278 isl_space *space = isl_basic_map_get_space(bmap);
2279 isl_basic_map_free(bmap);
2280 isl_basic_map_free(context);
2281 return isl_basic_map_universe(space);
2283 if (isl_basic_map_plain_is_empty(bmap)) {
2284 isl_basic_map_free(context);
2285 return bmap;
2288 bmap = isl_basic_map_remove_redundancies(bmap);
2289 context = isl_basic_map_remove_redundancies(context);
2290 if (!context)
2291 goto error;
2293 if (context->n_eq)
2294 bmap = normalize_divs_in_context(bmap, context);
2296 context = isl_basic_map_align_divs(context, bmap);
2297 bmap = isl_basic_map_align_divs(bmap, context);
2298 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2300 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2301 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2303 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2304 isl_basic_set_plain_is_empty(bset)) {
2305 isl_basic_map_free(context);
2306 return isl_basic_map_overlying_set(bset, bmap);
2309 n_eq = bset->n_eq;
2310 n_ineq = bset->n_ineq;
2311 eq = isl_basic_set_copy(bset);
2312 eq = isl_basic_set_cow(eq);
2313 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2314 eq = isl_basic_set_free(eq);
2315 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2316 bset = isl_basic_set_free(bset);
2318 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2319 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2320 bmap = isl_basic_map_overlying_set(bset, bmap);
2321 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2322 bmap = isl_basic_map_remove_redundancies(bmap);
2324 return bmap;
2325 error:
2326 isl_basic_map_free(bmap);
2327 isl_basic_map_free(context);
2328 return NULL;
2332 * Assumes context has no implicit divs.
2334 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2335 __isl_take isl_basic_map *context)
2337 int i;
2339 if (!map || !context)
2340 goto error;
2342 if (isl_basic_map_plain_is_empty(context)) {
2343 isl_space *space = isl_map_get_space(map);
2344 isl_map_free(map);
2345 isl_basic_map_free(context);
2346 return isl_map_universe(space);
2349 context = isl_basic_map_remove_redundancies(context);
2350 map = isl_map_cow(map);
2351 if (!map || !context)
2352 goto error;
2353 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2354 map = isl_map_compute_divs(map);
2355 if (!map)
2356 goto error;
2357 for (i = map->n - 1; i >= 0; --i) {
2358 map->p[i] = isl_basic_map_gist(map->p[i],
2359 isl_basic_map_copy(context));
2360 if (!map->p[i])
2361 goto error;
2362 if (isl_basic_map_plain_is_empty(map->p[i])) {
2363 isl_basic_map_free(map->p[i]);
2364 if (i != map->n - 1)
2365 map->p[i] = map->p[map->n - 1];
2366 map->n--;
2369 isl_basic_map_free(context);
2370 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2371 return map;
2372 error:
2373 isl_map_free(map);
2374 isl_basic_map_free(context);
2375 return NULL;
2378 /* Return a map that has the same intersection with "context" as "map"
2379 * and that is as "simple" as possible.
2381 * If "map" is already the universe, then we cannot make it any simpler.
2382 * Similarly, if "context" is the universe, then we cannot exploit it
2383 * to simplify "map"
2384 * If "map" and "context" are identical to each other, then we can
2385 * return the corresponding universe.
2387 * If none of these cases apply, we have to work a bit harder.
2388 * During this computation, we make use of a single disjunct context,
2389 * so if the original context consists of more than one disjunct
2390 * then we need to approximate the context by a single disjunct set.
2391 * Simply taking the simple hull may drop constraints that are
2392 * only implicitly available in each disjunct. We therefore also
2393 * look for constraints among those defining "map" that are valid
2394 * for the context. These can then be used to simplify away
2395 * the corresponding constraints in "map".
2397 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2398 __isl_take isl_map *context)
2400 int equal;
2401 int is_universe;
2402 isl_basic_map *hull;
2404 is_universe = isl_map_plain_is_universe(map);
2405 if (is_universe >= 0 && !is_universe)
2406 is_universe = isl_map_plain_is_universe(context);
2407 if (is_universe < 0)
2408 goto error;
2409 if (is_universe) {
2410 isl_map_free(context);
2411 return map;
2414 equal = isl_map_plain_is_equal(map, context);
2415 if (equal < 0)
2416 goto error;
2417 if (equal) {
2418 isl_map *res = isl_map_universe(isl_map_get_space(map));
2419 isl_map_free(map);
2420 isl_map_free(context);
2421 return res;
2424 context = isl_map_compute_divs(context);
2425 if (!context)
2426 goto error;
2427 if (isl_map_n_basic_map(context) == 1) {
2428 hull = isl_map_simple_hull(context);
2429 } else {
2430 isl_ctx *ctx;
2431 isl_map_list *list;
2433 ctx = isl_map_get_ctx(map);
2434 list = isl_map_list_alloc(ctx, 2);
2435 list = isl_map_list_add(list, isl_map_copy(context));
2436 list = isl_map_list_add(list, isl_map_copy(map));
2437 hull = isl_map_unshifted_simple_hull_from_map_list(context,
2438 list);
2440 return isl_map_gist_basic_map(map, hull);
2441 error:
2442 isl_map_free(map);
2443 isl_map_free(context);
2444 return NULL;
2447 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2448 __isl_take isl_map *context)
2450 return isl_map_align_params_map_map_and(map, context, &map_gist);
2453 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2454 struct isl_basic_set *context)
2456 return (struct isl_basic_set *)isl_basic_map_gist(
2457 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2460 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2461 __isl_take isl_basic_set *context)
2463 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2464 (struct isl_basic_map *)context);
2467 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2468 __isl_take isl_basic_set *context)
2470 isl_space *space = isl_set_get_space(set);
2471 isl_basic_set *dom_context = isl_basic_set_universe(space);
2472 dom_context = isl_basic_set_intersect_params(dom_context, context);
2473 return isl_set_gist_basic_set(set, dom_context);
2476 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2477 __isl_take isl_set *context)
2479 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2480 (struct isl_map *)context);
2483 /* Compute the gist of "bmap" with respect to the constraints "context"
2484 * on the domain.
2486 __isl_give isl_basic_map *isl_basic_map_gist_domain(
2487 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
2489 isl_space *space = isl_basic_map_get_space(bmap);
2490 isl_basic_map *bmap_context = isl_basic_map_universe(space);
2492 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
2493 return isl_basic_map_gist(bmap, bmap_context);
2496 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2497 __isl_take isl_set *context)
2499 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2500 map_context = isl_map_intersect_domain(map_context, context);
2501 return isl_map_gist(map, map_context);
2504 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2505 __isl_take isl_set *context)
2507 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2508 map_context = isl_map_intersect_range(map_context, context);
2509 return isl_map_gist(map, map_context);
2512 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2513 __isl_take isl_set *context)
2515 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2516 map_context = isl_map_intersect_params(map_context, context);
2517 return isl_map_gist(map, map_context);
2520 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2521 __isl_take isl_set *context)
2523 return isl_map_gist_params(set, context);
2526 /* Quick check to see if two basic maps are disjoint.
2527 * In particular, we reduce the equalities and inequalities of
2528 * one basic map in the context of the equalities of the other
2529 * basic map and check if we get a contradiction.
2531 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2532 __isl_keep isl_basic_map *bmap2)
2534 struct isl_vec *v = NULL;
2535 int *elim = NULL;
2536 unsigned total;
2537 int i;
2539 if (!bmap1 || !bmap2)
2540 return isl_bool_error;
2541 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2542 return isl_bool_error);
2543 if (bmap1->n_div || bmap2->n_div)
2544 return isl_bool_false;
2545 if (!bmap1->n_eq && !bmap2->n_eq)
2546 return isl_bool_false;
2548 total = isl_space_dim(bmap1->dim, isl_dim_all);
2549 if (total == 0)
2550 return isl_bool_false;
2551 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2552 if (!v)
2553 goto error;
2554 elim = isl_alloc_array(bmap1->ctx, int, total);
2555 if (!elim)
2556 goto error;
2557 compute_elimination_index(bmap1, elim);
2558 for (i = 0; i < bmap2->n_eq; ++i) {
2559 int reduced;
2560 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2561 bmap1, elim);
2562 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2563 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2564 goto disjoint;
2566 for (i = 0; i < bmap2->n_ineq; ++i) {
2567 int reduced;
2568 reduced = reduced_using_equalities(v->block.data,
2569 bmap2->ineq[i], bmap1, elim);
2570 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2571 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2572 goto disjoint;
2574 compute_elimination_index(bmap2, elim);
2575 for (i = 0; i < bmap1->n_ineq; ++i) {
2576 int reduced;
2577 reduced = reduced_using_equalities(v->block.data,
2578 bmap1->ineq[i], bmap2, elim);
2579 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2580 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2581 goto disjoint;
2583 isl_vec_free(v);
2584 free(elim);
2585 return isl_bool_false;
2586 disjoint:
2587 isl_vec_free(v);
2588 free(elim);
2589 return isl_bool_true;
2590 error:
2591 isl_vec_free(v);
2592 free(elim);
2593 return isl_bool_error;
2596 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2597 __isl_keep isl_basic_set *bset2)
2599 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2600 (struct isl_basic_map *)bset2);
2603 /* Are "map1" and "map2" obviously disjoint?
2605 * If one of them is empty or if they live in different spaces (ignoring
2606 * parameters), then they are clearly disjoint.
2608 * If they have different parameters, then we skip any further tests.
2610 * If they are obviously equal, but not obviously empty, then we will
2611 * not be able to detect if they are disjoint.
2613 * Otherwise we check if each basic map in "map1" is obviously disjoint
2614 * from each basic map in "map2".
2616 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2617 __isl_keep isl_map *map2)
2619 int i, j;
2620 isl_bool disjoint;
2621 isl_bool intersect;
2622 isl_bool match;
2624 if (!map1 || !map2)
2625 return isl_bool_error;
2627 disjoint = isl_map_plain_is_empty(map1);
2628 if (disjoint < 0 || disjoint)
2629 return disjoint;
2631 disjoint = isl_map_plain_is_empty(map2);
2632 if (disjoint < 0 || disjoint)
2633 return disjoint;
2635 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
2636 map2->dim, isl_dim_in);
2637 if (match < 0 || !match)
2638 return match < 0 ? isl_bool_error : isl_bool_true;
2640 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
2641 map2->dim, isl_dim_out);
2642 if (match < 0 || !match)
2643 return match < 0 ? isl_bool_error : isl_bool_true;
2645 match = isl_space_match(map1->dim, isl_dim_param,
2646 map2->dim, isl_dim_param);
2647 if (match < 0 || !match)
2648 return match < 0 ? isl_bool_error : isl_bool_false;
2650 intersect = isl_map_plain_is_equal(map1, map2);
2651 if (intersect < 0 || intersect)
2652 return intersect < 0 ? isl_bool_error : isl_bool_false;
2654 for (i = 0; i < map1->n; ++i) {
2655 for (j = 0; j < map2->n; ++j) {
2656 isl_bool d = isl_basic_map_plain_is_disjoint(map1->p[i],
2657 map2->p[j]);
2658 if (d != isl_bool_true)
2659 return d;
2662 return isl_bool_true;
2665 /* Are "map1" and "map2" disjoint?
2667 * They are disjoint if they are "obviously disjoint" or if one of them
2668 * is empty. Otherwise, they are not disjoint if one of them is universal.
2669 * If none of these cases apply, we compute the intersection and see if
2670 * the result is empty.
2672 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2674 isl_bool disjoint;
2675 isl_bool intersect;
2676 isl_map *test;
2678 disjoint = isl_map_plain_is_disjoint(map1, map2);
2679 if (disjoint < 0 || disjoint)
2680 return disjoint;
2682 disjoint = isl_map_is_empty(map1);
2683 if (disjoint < 0 || disjoint)
2684 return disjoint;
2686 disjoint = isl_map_is_empty(map2);
2687 if (disjoint < 0 || disjoint)
2688 return disjoint;
2690 intersect = isl_map_plain_is_universe(map1);
2691 if (intersect < 0 || intersect)
2692 return intersect < 0 ? isl_bool_error : isl_bool_false;
2694 intersect = isl_map_plain_is_universe(map2);
2695 if (intersect < 0 || intersect)
2696 return intersect < 0 ? isl_bool_error : isl_bool_false;
2698 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2699 disjoint = isl_map_is_empty(test);
2700 isl_map_free(test);
2702 return disjoint;
2705 /* Are "bmap1" and "bmap2" disjoint?
2707 * They are disjoint if they are "obviously disjoint" or if one of them
2708 * is empty. Otherwise, they are not disjoint if one of them is universal.
2709 * If none of these cases apply, we compute the intersection and see if
2710 * the result is empty.
2712 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2713 __isl_keep isl_basic_map *bmap2)
2715 isl_bool disjoint;
2716 isl_bool intersect;
2717 isl_basic_map *test;
2719 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2720 if (disjoint < 0 || disjoint)
2721 return disjoint;
2723 disjoint = isl_basic_map_is_empty(bmap1);
2724 if (disjoint < 0 || disjoint)
2725 return disjoint;
2727 disjoint = isl_basic_map_is_empty(bmap2);
2728 if (disjoint < 0 || disjoint)
2729 return disjoint;
2731 intersect = isl_basic_map_is_universe(bmap1);
2732 if (intersect < 0 || intersect)
2733 return intersect < 0 ? isl_bool_error : isl_bool_false;
2735 intersect = isl_basic_map_is_universe(bmap2);
2736 if (intersect < 0 || intersect)
2737 return intersect < 0 ? isl_bool_error : isl_bool_false;
2739 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2740 isl_basic_map_copy(bmap2));
2741 disjoint = isl_basic_map_is_empty(test);
2742 isl_basic_map_free(test);
2744 return disjoint;
2747 /* Are "bset1" and "bset2" disjoint?
2749 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2750 __isl_keep isl_basic_set *bset2)
2752 return isl_basic_map_is_disjoint(bset1, bset2);
2755 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2756 __isl_keep isl_set *set2)
2758 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2759 (struct isl_map *)set2);
2762 /* Are "set1" and "set2" disjoint?
2764 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2766 return isl_map_is_disjoint(set1, set2);
2769 /* Check if we can combine a given div with lower bound l and upper
2770 * bound u with some other div and if so return that other div.
2771 * Otherwise return -1.
2773 * We first check that
2774 * - the bounds are opposites of each other (except for the constant
2775 * term)
2776 * - the bounds do not reference any other div
2777 * - no div is defined in terms of this div
2779 * Let m be the size of the range allowed on the div by the bounds.
2780 * That is, the bounds are of the form
2782 * e <= a <= e + m - 1
2784 * with e some expression in the other variables.
2785 * We look for another div b such that no third div is defined in terms
2786 * of this second div b and such that in any constraint that contains
2787 * a (except for the given lower and upper bound), also contains b
2788 * with a coefficient that is m times that of b.
2789 * That is, all constraints (execpt for the lower and upper bound)
2790 * are of the form
2792 * e + f (a + m b) >= 0
2794 * If so, we return b so that "a + m b" can be replaced by
2795 * a single div "c = a + m b".
2797 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2798 unsigned div, unsigned l, unsigned u)
2800 int i, j;
2801 unsigned dim;
2802 int coalesce = -1;
2804 if (bmap->n_div <= 1)
2805 return -1;
2806 dim = isl_space_dim(bmap->dim, isl_dim_all);
2807 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2808 return -1;
2809 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2810 bmap->n_div - div - 1) != -1)
2811 return -1;
2812 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2813 dim + bmap->n_div))
2814 return -1;
2816 for (i = 0; i < bmap->n_div; ++i) {
2817 if (isl_int_is_zero(bmap->div[i][0]))
2818 continue;
2819 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2820 return -1;
2823 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2824 if (isl_int_is_neg(bmap->ineq[l][0])) {
2825 isl_int_sub(bmap->ineq[l][0],
2826 bmap->ineq[l][0], bmap->ineq[u][0]);
2827 bmap = isl_basic_map_copy(bmap);
2828 bmap = isl_basic_map_set_to_empty(bmap);
2829 isl_basic_map_free(bmap);
2830 return -1;
2832 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2833 for (i = 0; i < bmap->n_div; ++i) {
2834 if (i == div)
2835 continue;
2836 if (!pairs[i])
2837 continue;
2838 for (j = 0; j < bmap->n_div; ++j) {
2839 if (isl_int_is_zero(bmap->div[j][0]))
2840 continue;
2841 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2842 break;
2844 if (j < bmap->n_div)
2845 continue;
2846 for (j = 0; j < bmap->n_ineq; ++j) {
2847 int valid;
2848 if (j == l || j == u)
2849 continue;
2850 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2851 continue;
2852 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2853 break;
2854 isl_int_mul(bmap->ineq[j][1 + dim + div],
2855 bmap->ineq[j][1 + dim + div],
2856 bmap->ineq[l][0]);
2857 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2858 bmap->ineq[j][1 + dim + i]);
2859 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2860 bmap->ineq[j][1 + dim + div],
2861 bmap->ineq[l][0]);
2862 if (!valid)
2863 break;
2865 if (j < bmap->n_ineq)
2866 continue;
2867 coalesce = i;
2868 break;
2870 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2871 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2872 return coalesce;
2875 /* Given a lower and an upper bound on div i, construct an inequality
2876 * that when nonnegative ensures that this pair of bounds always allows
2877 * for an integer value of the given div.
2878 * The lower bound is inequality l, while the upper bound is inequality u.
2879 * The constructed inequality is stored in ineq.
2880 * g, fl, fu are temporary scalars.
2882 * Let the upper bound be
2884 * -n_u a + e_u >= 0
2886 * and the lower bound
2888 * n_l a + e_l >= 0
2890 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2891 * We have
2893 * - f_u e_l <= f_u f_l g a <= f_l e_u
2895 * Since all variables are integer valued, this is equivalent to
2897 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2899 * If this interval is at least f_u f_l g, then it contains at least
2900 * one integer value for a.
2901 * That is, the test constraint is
2903 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2905 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2906 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2908 unsigned dim;
2909 dim = isl_space_dim(bmap->dim, isl_dim_all);
2911 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2912 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2913 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2914 isl_int_neg(fu, fu);
2915 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2916 1 + dim + bmap->n_div);
2917 isl_int_add(ineq[0], ineq[0], fl);
2918 isl_int_add(ineq[0], ineq[0], fu);
2919 isl_int_sub_ui(ineq[0], ineq[0], 1);
2920 isl_int_mul(g, g, fl);
2921 isl_int_mul(g, g, fu);
2922 isl_int_sub(ineq[0], ineq[0], g);
2925 /* Remove more kinds of divs that are not strictly needed.
2926 * In particular, if all pairs of lower and upper bounds on a div
2927 * are such that they allow at least one integer value of the div,
2928 * the we can eliminate the div using Fourier-Motzkin without
2929 * introducing any spurious solutions.
2931 static struct isl_basic_map *drop_more_redundant_divs(
2932 struct isl_basic_map *bmap, int *pairs, int n)
2934 struct isl_tab *tab = NULL;
2935 struct isl_vec *vec = NULL;
2936 unsigned dim;
2937 int remove = -1;
2938 isl_int g, fl, fu;
2940 isl_int_init(g);
2941 isl_int_init(fl);
2942 isl_int_init(fu);
2944 if (!bmap)
2945 goto error;
2947 dim = isl_space_dim(bmap->dim, isl_dim_all);
2948 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2949 if (!vec)
2950 goto error;
2952 tab = isl_tab_from_basic_map(bmap, 0);
2954 while (n > 0) {
2955 int i, l, u;
2956 int best = -1;
2957 enum isl_lp_result res;
2959 for (i = 0; i < bmap->n_div; ++i) {
2960 if (!pairs[i])
2961 continue;
2962 if (best >= 0 && pairs[best] <= pairs[i])
2963 continue;
2964 best = i;
2967 i = best;
2968 for (l = 0; l < bmap->n_ineq; ++l) {
2969 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2970 continue;
2971 for (u = 0; u < bmap->n_ineq; ++u) {
2972 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2973 continue;
2974 construct_test_ineq(bmap, i, l, u,
2975 vec->el, g, fl, fu);
2976 res = isl_tab_min(tab, vec->el,
2977 bmap->ctx->one, &g, NULL, 0);
2978 if (res == isl_lp_error)
2979 goto error;
2980 if (res == isl_lp_empty) {
2981 bmap = isl_basic_map_set_to_empty(bmap);
2982 break;
2984 if (res != isl_lp_ok || isl_int_is_neg(g))
2985 break;
2987 if (u < bmap->n_ineq)
2988 break;
2990 if (l == bmap->n_ineq) {
2991 remove = i;
2992 break;
2994 pairs[i] = 0;
2995 --n;
2998 isl_tab_free(tab);
2999 isl_vec_free(vec);
3001 isl_int_clear(g);
3002 isl_int_clear(fl);
3003 isl_int_clear(fu);
3005 free(pairs);
3007 if (remove < 0)
3008 return bmap;
3010 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
3011 return isl_basic_map_drop_redundant_divs(bmap);
3012 error:
3013 free(pairs);
3014 isl_basic_map_free(bmap);
3015 isl_tab_free(tab);
3016 isl_vec_free(vec);
3017 isl_int_clear(g);
3018 isl_int_clear(fl);
3019 isl_int_clear(fu);
3020 return NULL;
3023 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3024 * and the upper bound u, div1 always occurs together with div2 in the form
3025 * (div1 + m div2), where m is the constant range on the variable div1
3026 * allowed by l and u, replace the pair div1 and div2 by a single
3027 * div that is equal to div1 + m div2.
3029 * The new div will appear in the location that contains div2.
3030 * We need to modify all constraints that contain
3031 * div2 = (div - div1) / m
3032 * (If a constraint does not contain div2, it will also not contain div1.)
3033 * If the constraint also contains div1, then we know they appear
3034 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3035 * i.e., the coefficient of div is f.
3037 * Otherwise, we first need to introduce div1 into the constraint.
3038 * Let the l be
3040 * div1 + f >=0
3042 * and u
3044 * -div1 + f' >= 0
3046 * A lower bound on div2
3048 * n div2 + t >= 0
3050 * can be replaced by
3052 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3054 * with g = gcd(m,n).
3055 * An upper bound
3057 * -n div2 + t >= 0
3059 * can be replaced by
3061 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3063 * These constraint are those that we would obtain from eliminating
3064 * div1 using Fourier-Motzkin.
3066 * After all constraints have been modified, we drop the lower and upper
3067 * bound and then drop div1.
3069 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3070 unsigned div1, unsigned div2, unsigned l, unsigned u)
3072 isl_int a;
3073 isl_int b;
3074 isl_int m;
3075 unsigned dim, total;
3076 int i;
3078 dim = isl_space_dim(bmap->dim, isl_dim_all);
3079 total = 1 + dim + bmap->n_div;
3081 isl_int_init(a);
3082 isl_int_init(b);
3083 isl_int_init(m);
3084 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3085 isl_int_add_ui(m, m, 1);
3087 for (i = 0; i < bmap->n_ineq; ++i) {
3088 if (i == l || i == u)
3089 continue;
3090 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3091 continue;
3092 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3093 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3094 isl_int_divexact(a, m, b);
3095 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3096 if (isl_int_is_pos(b)) {
3097 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3098 b, bmap->ineq[l], total);
3099 } else {
3100 isl_int_neg(b, b);
3101 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3102 b, bmap->ineq[u], total);
3105 isl_int_set(bmap->ineq[i][1 + dim + div2],
3106 bmap->ineq[i][1 + dim + div1]);
3107 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3110 isl_int_clear(a);
3111 isl_int_clear(b);
3112 isl_int_clear(m);
3113 if (l > u) {
3114 isl_basic_map_drop_inequality(bmap, l);
3115 isl_basic_map_drop_inequality(bmap, u);
3116 } else {
3117 isl_basic_map_drop_inequality(bmap, u);
3118 isl_basic_map_drop_inequality(bmap, l);
3120 bmap = isl_basic_map_drop_div(bmap, div1);
3121 return bmap;
3124 /* First check if we can coalesce any pair of divs and
3125 * then continue with dropping more redundant divs.
3127 * We loop over all pairs of lower and upper bounds on a div
3128 * with coefficient 1 and -1, respectively, check if there
3129 * is any other div "c" with which we can coalesce the div
3130 * and if so, perform the coalescing.
3132 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3133 struct isl_basic_map *bmap, int *pairs, int n)
3135 int i, l, u;
3136 unsigned dim;
3138 dim = isl_space_dim(bmap->dim, isl_dim_all);
3140 for (i = 0; i < bmap->n_div; ++i) {
3141 if (!pairs[i])
3142 continue;
3143 for (l = 0; l < bmap->n_ineq; ++l) {
3144 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3145 continue;
3146 for (u = 0; u < bmap->n_ineq; ++u) {
3147 int c;
3149 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3150 continue;
3151 c = div_find_coalesce(bmap, pairs, i, l, u);
3152 if (c < 0)
3153 continue;
3154 free(pairs);
3155 bmap = coalesce_divs(bmap, i, c, l, u);
3156 return isl_basic_map_drop_redundant_divs(bmap);
3161 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3162 return bmap;
3164 return drop_more_redundant_divs(bmap, pairs, n);
3167 /* Remove divs that are not strictly needed.
3168 * In particular, if a div only occurs positively (or negatively)
3169 * in constraints, then it can simply be dropped.
3170 * Also, if a div occurs in only two constraints and if moreover
3171 * those two constraints are opposite to each other, except for the constant
3172 * term and if the sum of the constant terms is such that for any value
3173 * of the other values, there is always at least one integer value of the
3174 * div, i.e., if one plus this sum is greater than or equal to
3175 * the (absolute value) of the coefficent of the div in the constraints,
3176 * then we can also simply drop the div.
3178 * We skip divs that appear in equalities or in the definition of other divs.
3179 * Divs that appear in the definition of other divs usually occur in at least
3180 * 4 constraints, but the constraints may have been simplified.
3182 * If any divs are left after these simple checks then we move on
3183 * to more complicated cases in drop_more_redundant_divs.
3185 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3186 struct isl_basic_map *bmap)
3188 int i, j;
3189 unsigned off;
3190 int *pairs = NULL;
3191 int n = 0;
3193 if (!bmap)
3194 goto error;
3195 if (bmap->n_div == 0)
3196 return bmap;
3198 off = isl_space_dim(bmap->dim, isl_dim_all);
3199 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3200 if (!pairs)
3201 goto error;
3203 for (i = 0; i < bmap->n_div; ++i) {
3204 int pos, neg;
3205 int last_pos, last_neg;
3206 int redundant;
3207 int defined;
3209 defined = !isl_int_is_zero(bmap->div[i][0]);
3210 for (j = i; j < bmap->n_div; ++j)
3211 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3212 break;
3213 if (j < bmap->n_div)
3214 continue;
3215 for (j = 0; j < bmap->n_eq; ++j)
3216 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3217 break;
3218 if (j < bmap->n_eq)
3219 continue;
3220 ++n;
3221 pos = neg = 0;
3222 for (j = 0; j < bmap->n_ineq; ++j) {
3223 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3224 last_pos = j;
3225 ++pos;
3227 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3228 last_neg = j;
3229 ++neg;
3232 pairs[i] = pos * neg;
3233 if (pairs[i] == 0) {
3234 for (j = bmap->n_ineq - 1; j >= 0; --j)
3235 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3236 isl_basic_map_drop_inequality(bmap, j);
3237 bmap = isl_basic_map_drop_div(bmap, i);
3238 free(pairs);
3239 return isl_basic_map_drop_redundant_divs(bmap);
3241 if (pairs[i] != 1)
3242 continue;
3243 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3244 bmap->ineq[last_neg] + 1,
3245 off + bmap->n_div))
3246 continue;
3248 isl_int_add(bmap->ineq[last_pos][0],
3249 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3250 isl_int_add_ui(bmap->ineq[last_pos][0],
3251 bmap->ineq[last_pos][0], 1);
3252 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3253 bmap->ineq[last_pos][1+off+i]);
3254 isl_int_sub_ui(bmap->ineq[last_pos][0],
3255 bmap->ineq[last_pos][0], 1);
3256 isl_int_sub(bmap->ineq[last_pos][0],
3257 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3258 if (!redundant) {
3259 if (defined ||
3260 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3261 pairs[i] = 0;
3262 --n;
3263 continue;
3265 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3266 bmap = isl_basic_map_simplify(bmap);
3267 free(pairs);
3268 return isl_basic_map_drop_redundant_divs(bmap);
3270 if (last_pos > last_neg) {
3271 isl_basic_map_drop_inequality(bmap, last_pos);
3272 isl_basic_map_drop_inequality(bmap, last_neg);
3273 } else {
3274 isl_basic_map_drop_inequality(bmap, last_neg);
3275 isl_basic_map_drop_inequality(bmap, last_pos);
3277 bmap = isl_basic_map_drop_div(bmap, i);
3278 free(pairs);
3279 return isl_basic_map_drop_redundant_divs(bmap);
3282 if (n > 0)
3283 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3285 free(pairs);
3286 return bmap;
3287 error:
3288 free(pairs);
3289 isl_basic_map_free(bmap);
3290 return NULL;
3293 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3294 struct isl_basic_set *bset)
3296 return (struct isl_basic_set *)
3297 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3300 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3302 int i;
3304 if (!map)
3305 return NULL;
3306 for (i = 0; i < map->n; ++i) {
3307 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3308 if (!map->p[i])
3309 goto error;
3311 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3312 return map;
3313 error:
3314 isl_map_free(map);
3315 return NULL;
3318 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3320 return (struct isl_set *)
3321 isl_map_drop_redundant_divs((struct isl_map *)set);
3324 /* Does "bmap" satisfy any equality that involves more than 2 variables
3325 * and/or has coefficients different from -1 and 1?
3327 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
3329 int i;
3330 unsigned total;
3332 total = isl_basic_map_dim(bmap, isl_dim_all);
3334 for (i = 0; i < bmap->n_eq; ++i) {
3335 int j, k;
3337 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
3338 if (j < 0)
3339 continue;
3340 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3341 !isl_int_is_negone(bmap->eq[i][1 + j]))
3342 return 1;
3344 j += 1;
3345 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3346 if (k < 0)
3347 continue;
3348 j += k;
3349 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3350 !isl_int_is_negone(bmap->eq[i][1 + j]))
3351 return 1;
3353 j += 1;
3354 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3355 if (k >= 0)
3356 return 1;
3359 return 0;
3362 /* Remove any common factor g from the constraint coefficients in "v".
3363 * The constant term is stored in the first position and is replaced
3364 * by floor(c/g). If any common factor is removed and if this results
3365 * in a tightening of the constraint, then set *tightened.
3367 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
3368 int *tightened)
3370 isl_ctx *ctx;
3372 if (!v)
3373 return NULL;
3374 ctx = isl_vec_get_ctx(v);
3375 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
3376 if (isl_int_is_zero(ctx->normalize_gcd))
3377 return v;
3378 if (isl_int_is_one(ctx->normalize_gcd))
3379 return v;
3380 v = isl_vec_cow(v);
3381 if (!v)
3382 return NULL;
3383 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
3384 *tightened = 1;
3385 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
3386 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
3387 v->size - 1);
3388 return v;
3391 /* If "bmap" is an integer set that satisfies any equality involving
3392 * more than 2 variables and/or has coefficients different from -1 and 1,
3393 * then use variable compression to reduce the coefficients by removing
3394 * any (hidden) common factor.
3395 * In particular, apply the variable compression to each constraint,
3396 * factor out any common factor in the non-constant coefficients and
3397 * then apply the inverse of the compression.
3398 * At the end, we mark the basic map as having reduced constants.
3399 * If this flag is still set on the next invocation of this function,
3400 * then we skip the computation.
3402 * Removing a common factor may result in a tightening of some of
3403 * the constraints. If this happens, then we may end up with two
3404 * opposite inequalities that can be replaced by an equality.
3405 * We therefore call isl_basic_map_detect_inequality_pairs,
3406 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3407 * and isl_basic_map_gauss if such a pair was found.
3409 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
3410 __isl_take isl_basic_map *bmap)
3412 unsigned total;
3413 isl_ctx *ctx;
3414 isl_vec *v;
3415 isl_mat *eq, *T, *T2;
3416 int i;
3417 int tightened;
3419 if (!bmap)
3420 return NULL;
3421 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
3422 return bmap;
3423 if (isl_basic_map_is_rational(bmap))
3424 return bmap;
3425 if (bmap->n_eq == 0)
3426 return bmap;
3427 if (!has_multiple_var_equality(bmap))
3428 return bmap;
3430 total = isl_basic_map_dim(bmap, isl_dim_all);
3431 ctx = isl_basic_map_get_ctx(bmap);
3432 v = isl_vec_alloc(ctx, 1 + total);
3433 if (!v)
3434 return isl_basic_map_free(bmap);
3436 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3437 T = isl_mat_variable_compression(eq, &T2);
3438 if (!T || !T2)
3439 goto error;
3440 if (T->n_col == 0) {
3441 isl_mat_free(T);
3442 isl_mat_free(T2);
3443 isl_vec_free(v);
3444 return isl_basic_map_set_to_empty(bmap);
3447 tightened = 0;
3448 for (i = 0; i < bmap->n_ineq; ++i) {
3449 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
3450 v = isl_vec_mat_product(v, isl_mat_copy(T));
3451 v = normalize_constraint(v, &tightened);
3452 v = isl_vec_mat_product(v, isl_mat_copy(T2));
3453 if (!v)
3454 goto error;
3455 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
3458 isl_mat_free(T);
3459 isl_mat_free(T2);
3460 isl_vec_free(v);
3462 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
3464 if (tightened) {
3465 int progress = 0;
3467 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
3468 if (progress) {
3469 bmap = eliminate_divs_eq(bmap, &progress);
3470 bmap = isl_basic_map_gauss(bmap, NULL);
3474 return bmap;
3475 error:
3476 isl_mat_free(T);
3477 isl_mat_free(T2);
3478 isl_vec_free(v);
3479 return isl_basic_map_free(bmap);
3482 /* Shift the integer division at position "div" of "bmap" by "shift".
3484 * That is, if the integer division has the form
3486 * floor(f(x)/d)
3488 * then replace it by
3490 * floor((f(x) + shift * d)/d) - shift
3492 __isl_give isl_basic_map *isl_basic_map_shift_div(
3493 __isl_take isl_basic_map *bmap, int div, isl_int shift)
3495 int i;
3496 unsigned total;
3498 if (!bmap)
3499 return NULL;
3501 total = isl_basic_map_dim(bmap, isl_dim_all);
3502 total -= isl_basic_map_dim(bmap, isl_dim_div);
3504 isl_int_addmul(bmap->div[div][1], shift, bmap->div[div][0]);
3506 for (i = 0; i < bmap->n_eq; ++i) {
3507 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
3508 continue;
3509 isl_int_submul(bmap->eq[i][0],
3510 shift, bmap->eq[i][1 + total + div]);
3512 for (i = 0; i < bmap->n_ineq; ++i) {
3513 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
3514 continue;
3515 isl_int_submul(bmap->ineq[i][0],
3516 shift, bmap->ineq[i][1 + total + div]);
3518 for (i = 0; i < bmap->n_div; ++i) {
3519 if (isl_int_is_zero(bmap->div[i][0]))
3520 continue;
3521 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
3522 continue;
3523 isl_int_submul(bmap->div[i][1],
3524 shift, bmap->div[i][1 + 1 + total + div]);
3527 return bmap;