2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
6 * Copyright 2014 Ecole Normale Superieure
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
11 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
12 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
13 * B-3001 Leuven, Belgium
14 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
15 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
24 #include <isl/schedule_node.h>
27 enum isl_restriction_type
{
28 isl_restriction_type_empty
,
29 isl_restriction_type_none
,
30 isl_restriction_type_input
,
31 isl_restriction_type_output
34 struct isl_restriction
{
35 enum isl_restriction_type type
;
41 /* Create a restriction of the given type.
43 static __isl_give isl_restriction
*isl_restriction_alloc(
44 __isl_take isl_map
*source_map
, enum isl_restriction_type type
)
47 isl_restriction
*restr
;
52 ctx
= isl_map_get_ctx(source_map
);
53 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
59 isl_map_free(source_map
);
62 isl_map_free(source_map
);
66 /* Create a restriction that doesn't restrict anything.
68 __isl_give isl_restriction
*isl_restriction_none(__isl_take isl_map
*source_map
)
70 return isl_restriction_alloc(source_map
, isl_restriction_type_none
);
73 /* Create a restriction that removes everything.
75 __isl_give isl_restriction
*isl_restriction_empty(
76 __isl_take isl_map
*source_map
)
78 return isl_restriction_alloc(source_map
, isl_restriction_type_empty
);
81 /* Create a restriction on the input of the maximization problem
82 * based on the given source and sink restrictions.
84 __isl_give isl_restriction
*isl_restriction_input(
85 __isl_take isl_set
*source_restr
, __isl_take isl_set
*sink_restr
)
88 isl_restriction
*restr
;
90 if (!source_restr
|| !sink_restr
)
93 ctx
= isl_set_get_ctx(source_restr
);
94 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
98 restr
->type
= isl_restriction_type_input
;
99 restr
->source
= source_restr
;
100 restr
->sink
= sink_restr
;
104 isl_set_free(source_restr
);
105 isl_set_free(sink_restr
);
109 /* Create a restriction on the output of the maximization problem
110 * based on the given source restriction.
112 __isl_give isl_restriction
*isl_restriction_output(
113 __isl_take isl_set
*source_restr
)
116 isl_restriction
*restr
;
121 ctx
= isl_set_get_ctx(source_restr
);
122 restr
= isl_calloc_type(ctx
, struct isl_restriction
);
126 restr
->type
= isl_restriction_type_output
;
127 restr
->source
= source_restr
;
131 isl_set_free(source_restr
);
135 __isl_null isl_restriction
*isl_restriction_free(
136 __isl_take isl_restriction
*restr
)
141 isl_set_free(restr
->source
);
142 isl_set_free(restr
->sink
);
147 isl_ctx
*isl_restriction_get_ctx(__isl_keep isl_restriction
*restr
)
149 return restr
? isl_set_get_ctx(restr
->source
) : NULL
;
152 /* A private structure to keep track of a mapping together with
153 * a user-specified identifier and a boolean indicating whether
154 * the map represents a must or may access/dependence.
156 struct isl_labeled_map
{
162 /* A structure containing the input for dependence analysis:
164 * - n_must + n_may (<= max_source) sources
165 * - a function for determining the relative order of sources and sink
166 * The must sources are placed before the may sources.
168 * domain_map is an auxiliary map that maps the sink access relation
169 * to the domain of this access relation.
171 * restrict_fn is a callback that (if not NULL) will be called
172 * right before any lexicographical maximization.
174 struct isl_access_info
{
176 struct isl_labeled_map sink
;
177 isl_access_level_before level_before
;
179 isl_access_restrict restrict_fn
;
185 struct isl_labeled_map source
[1];
188 /* A structure containing the output of dependence analysis:
189 * - n_source dependences
190 * - a wrapped subset of the sink for which definitely no source could be found
191 * - a wrapped subset of the sink for which possibly no source could be found
194 isl_set
*must_no_source
;
195 isl_set
*may_no_source
;
197 struct isl_labeled_map
*dep
;
200 /* Construct an isl_access_info structure and fill it up with
201 * the given data. The number of sources is set to 0.
203 __isl_give isl_access_info
*isl_access_info_alloc(__isl_take isl_map
*sink
,
204 void *sink_user
, isl_access_level_before fn
, int max_source
)
207 struct isl_access_info
*acc
;
212 ctx
= isl_map_get_ctx(sink
);
213 isl_assert(ctx
, max_source
>= 0, goto error
);
215 acc
= isl_calloc(ctx
, struct isl_access_info
,
216 sizeof(struct isl_access_info
) +
217 (max_source
- 1) * sizeof(struct isl_labeled_map
));
221 acc
->sink
.map
= sink
;
222 acc
->sink
.data
= sink_user
;
223 acc
->level_before
= fn
;
224 acc
->max_source
= max_source
;
234 /* Free the given isl_access_info structure.
236 __isl_null isl_access_info
*isl_access_info_free(
237 __isl_take isl_access_info
*acc
)
243 isl_map_free(acc
->domain_map
);
244 isl_map_free(acc
->sink
.map
);
245 for (i
= 0; i
< acc
->n_must
+ acc
->n_may
; ++i
)
246 isl_map_free(acc
->source
[i
].map
);
251 isl_ctx
*isl_access_info_get_ctx(__isl_keep isl_access_info
*acc
)
253 return acc
? isl_map_get_ctx(acc
->sink
.map
) : NULL
;
256 __isl_give isl_access_info
*isl_access_info_set_restrict(
257 __isl_take isl_access_info
*acc
, isl_access_restrict fn
, void *user
)
261 acc
->restrict_fn
= fn
;
262 acc
->restrict_user
= user
;
266 /* Add another source to an isl_access_info structure, making
267 * sure the "must" sources are placed before the "may" sources.
268 * This function may be called at most max_source times on a
269 * given isl_access_info structure, with max_source as specified
270 * in the call to isl_access_info_alloc that constructed the structure.
272 __isl_give isl_access_info
*isl_access_info_add_source(
273 __isl_take isl_access_info
*acc
, __isl_take isl_map
*source
,
274 int must
, void *source_user
)
280 ctx
= isl_map_get_ctx(acc
->sink
.map
);
281 isl_assert(ctx
, acc
->n_must
+ acc
->n_may
< acc
->max_source
, goto error
);
285 acc
->source
[acc
->n_must
+ acc
->n_may
] =
286 acc
->source
[acc
->n_must
];
287 acc
->source
[acc
->n_must
].map
= source
;
288 acc
->source
[acc
->n_must
].data
= source_user
;
289 acc
->source
[acc
->n_must
].must
= 1;
292 acc
->source
[acc
->n_must
+ acc
->n_may
].map
= source
;
293 acc
->source
[acc
->n_must
+ acc
->n_may
].data
= source_user
;
294 acc
->source
[acc
->n_must
+ acc
->n_may
].must
= 0;
300 isl_map_free(source
);
301 isl_access_info_free(acc
);
305 /* Return -n, 0 or n (with n a positive value), depending on whether
306 * the source access identified by p1 should be sorted before, together
307 * or after that identified by p2.
309 * If p1 appears before p2, then it should be sorted first.
310 * For more generic initial schedules, it is possible that neither
311 * p1 nor p2 appears before the other, or at least not in any obvious way.
312 * We therefore also check if p2 appears before p1, in which case p2
313 * should be sorted first.
314 * If not, we try to order the two statements based on the description
315 * of the iteration domains. This results in an arbitrary, but fairly
318 static int access_sort_cmp(const void *p1
, const void *p2
, void *user
)
320 isl_access_info
*acc
= user
;
321 const struct isl_labeled_map
*i1
, *i2
;
324 i1
= (const struct isl_labeled_map
*) p1
;
325 i2
= (const struct isl_labeled_map
*) p2
;
327 level1
= acc
->level_before(i1
->data
, i2
->data
);
331 level2
= acc
->level_before(i2
->data
, i1
->data
);
335 h1
= isl_map_get_hash(i1
->map
);
336 h2
= isl_map_get_hash(i2
->map
);
337 return h1
> h2
? 1 : h1
< h2
? -1 : 0;
340 /* Sort the must source accesses in their textual order.
342 static __isl_give isl_access_info
*isl_access_info_sort_sources(
343 __isl_take isl_access_info
*acc
)
347 if (acc
->n_must
<= 1)
350 if (isl_sort(acc
->source
, acc
->n_must
, sizeof(struct isl_labeled_map
),
351 access_sort_cmp
, acc
) < 0)
352 return isl_access_info_free(acc
);
357 /* Align the parameters of the two spaces if needed and then call
360 static __isl_give isl_space
*space_align_and_join(__isl_take isl_space
*left
,
361 __isl_take isl_space
*right
)
363 if (isl_space_match(left
, isl_dim_param
, right
, isl_dim_param
))
364 return isl_space_join(left
, right
);
366 left
= isl_space_align_params(left
, isl_space_copy(right
));
367 right
= isl_space_align_params(right
, isl_space_copy(left
));
368 return isl_space_join(left
, right
);
371 /* Initialize an empty isl_flow structure corresponding to a given
372 * isl_access_info structure.
373 * For each must access, two dependences are created (initialized
374 * to the empty relation), one for the resulting must dependences
375 * and one for the resulting may dependences. May accesses can
376 * only lead to may dependences, so only one dependence is created
378 * This function is private as isl_flow structures are only supposed
379 * to be created by isl_access_info_compute_flow.
381 static __isl_give isl_flow
*isl_flow_alloc(__isl_keep isl_access_info
*acc
)
385 struct isl_flow
*dep
;
390 ctx
= isl_map_get_ctx(acc
->sink
.map
);
391 dep
= isl_calloc_type(ctx
, struct isl_flow
);
395 n
= 2 * acc
->n_must
+ acc
->n_may
;
396 dep
->dep
= isl_calloc_array(ctx
, struct isl_labeled_map
, n
);
401 for (i
= 0; i
< acc
->n_must
; ++i
) {
403 dim
= space_align_and_join(
404 isl_map_get_space(acc
->source
[i
].map
),
405 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
406 dep
->dep
[2 * i
].map
= isl_map_empty(dim
);
407 dep
->dep
[2 * i
+ 1].map
= isl_map_copy(dep
->dep
[2 * i
].map
);
408 dep
->dep
[2 * i
].data
= acc
->source
[i
].data
;
409 dep
->dep
[2 * i
+ 1].data
= acc
->source
[i
].data
;
410 dep
->dep
[2 * i
].must
= 1;
411 dep
->dep
[2 * i
+ 1].must
= 0;
412 if (!dep
->dep
[2 * i
].map
|| !dep
->dep
[2 * i
+ 1].map
)
415 for (i
= acc
->n_must
; i
< acc
->n_must
+ acc
->n_may
; ++i
) {
417 dim
= space_align_and_join(
418 isl_map_get_space(acc
->source
[i
].map
),
419 isl_space_reverse(isl_map_get_space(acc
->sink
.map
)));
420 dep
->dep
[acc
->n_must
+ i
].map
= isl_map_empty(dim
);
421 dep
->dep
[acc
->n_must
+ i
].data
= acc
->source
[i
].data
;
422 dep
->dep
[acc
->n_must
+ i
].must
= 0;
423 if (!dep
->dep
[acc
->n_must
+ i
].map
)
433 /* Iterate over all sources and for each resulting flow dependence
434 * that is not empty, call the user specfied function.
435 * The second argument in this function call identifies the source,
436 * while the third argument correspond to the final argument of
437 * the isl_flow_foreach call.
439 isl_stat
isl_flow_foreach(__isl_keep isl_flow
*deps
,
440 isl_stat (*fn
)(__isl_take isl_map
*dep
, int must
, void *dep_user
,
447 return isl_stat_error
;
449 for (i
= 0; i
< deps
->n_source
; ++i
) {
450 if (isl_map_plain_is_empty(deps
->dep
[i
].map
))
452 if (fn(isl_map_copy(deps
->dep
[i
].map
), deps
->dep
[i
].must
,
453 deps
->dep
[i
].data
, user
) < 0)
454 return isl_stat_error
;
460 /* Return a copy of the subset of the sink for which no source could be found.
462 __isl_give isl_map
*isl_flow_get_no_source(__isl_keep isl_flow
*deps
, int must
)
468 return isl_set_unwrap(isl_set_copy(deps
->must_no_source
));
470 return isl_set_unwrap(isl_set_copy(deps
->may_no_source
));
473 void isl_flow_free(__isl_take isl_flow
*deps
)
479 isl_set_free(deps
->must_no_source
);
480 isl_set_free(deps
->may_no_source
);
482 for (i
= 0; i
< deps
->n_source
; ++i
)
483 isl_map_free(deps
->dep
[i
].map
);
489 isl_ctx
*isl_flow_get_ctx(__isl_keep isl_flow
*deps
)
491 return deps
? isl_set_get_ctx(deps
->must_no_source
) : NULL
;
494 /* Return a map that enforces that the domain iteration occurs after
495 * the range iteration at the given level.
496 * If level is odd, then the domain iteration should occur after
497 * the target iteration in their shared level/2 outermost loops.
498 * In this case we simply need to enforce that these outermost
499 * loop iterations are the same.
500 * If level is even, then the loop iterator of the domain should
501 * be greater than the loop iterator of the range at the last
502 * of the level/2 shared loops, i.e., loop level/2 - 1.
504 static __isl_give isl_map
*after_at_level(__isl_take isl_space
*dim
, int level
)
506 struct isl_basic_map
*bmap
;
509 bmap
= isl_basic_map_equal(dim
, level
/2);
511 bmap
= isl_basic_map_more_at(dim
, level
/2 - 1);
513 return isl_map_from_basic_map(bmap
);
516 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
517 * but first check if the user has set acc->restrict_fn and if so
518 * update either the input or the output of the maximization problem
519 * with respect to the resulting restriction.
521 * Since the user expects a mapping from sink iterations to source iterations,
522 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
523 * to accessed array elements, we first need to project out the accessed
524 * sink array elements by applying acc->domain_map.
525 * Similarly, the sink restriction specified by the user needs to be
526 * converted back to the wrapped map.
528 static __isl_give isl_map
*restricted_partial_lexmax(
529 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*dep
,
530 int source
, __isl_take isl_set
*sink
, __isl_give isl_set
**empty
)
533 isl_restriction
*restr
;
534 isl_set
*sink_domain
;
538 if (!acc
->restrict_fn
)
539 return isl_map_partial_lexmax(dep
, sink
, empty
);
541 source_map
= isl_map_copy(dep
);
542 source_map
= isl_map_apply_domain(source_map
,
543 isl_map_copy(acc
->domain_map
));
544 sink_domain
= isl_set_copy(sink
);
545 sink_domain
= isl_set_apply(sink_domain
, isl_map_copy(acc
->domain_map
));
546 restr
= acc
->restrict_fn(source_map
, sink_domain
,
547 acc
->source
[source
].data
, acc
->restrict_user
);
548 isl_set_free(sink_domain
);
549 isl_map_free(source_map
);
553 if (restr
->type
== isl_restriction_type_input
) {
554 dep
= isl_map_intersect_range(dep
, isl_set_copy(restr
->source
));
555 sink_restr
= isl_set_copy(restr
->sink
);
556 sink_restr
= isl_set_apply(sink_restr
,
557 isl_map_reverse(isl_map_copy(acc
->domain_map
)));
558 sink
= isl_set_intersect(sink
, sink_restr
);
559 } else if (restr
->type
== isl_restriction_type_empty
) {
560 isl_space
*space
= isl_map_get_space(dep
);
562 dep
= isl_map_empty(space
);
565 res
= isl_map_partial_lexmax(dep
, sink
, empty
);
567 if (restr
->type
== isl_restriction_type_output
)
568 res
= isl_map_intersect_range(res
, isl_set_copy(restr
->source
));
570 isl_restriction_free(restr
);
579 /* Compute the last iteration of must source j that precedes the sink
580 * at the given level for sink iterations in set_C.
581 * The subset of set_C for which no such iteration can be found is returned
584 static struct isl_map
*last_source(struct isl_access_info
*acc
,
585 struct isl_set
*set_C
,
586 int j
, int level
, struct isl_set
**empty
)
588 struct isl_map
*read_map
;
589 struct isl_map
*write_map
;
590 struct isl_map
*dep_map
;
591 struct isl_map
*after
;
592 struct isl_map
*result
;
594 read_map
= isl_map_copy(acc
->sink
.map
);
595 write_map
= isl_map_copy(acc
->source
[j
].map
);
596 write_map
= isl_map_reverse(write_map
);
597 dep_map
= isl_map_apply_range(read_map
, write_map
);
598 after
= after_at_level(isl_map_get_space(dep_map
), level
);
599 dep_map
= isl_map_intersect(dep_map
, after
);
600 result
= restricted_partial_lexmax(acc
, dep_map
, j
, set_C
, empty
);
601 result
= isl_map_reverse(result
);
606 /* For a given mapping between iterations of must source j and iterations
607 * of the sink, compute the last iteration of must source k preceding
608 * the sink at level before_level for any of the sink iterations,
609 * but following the corresponding iteration of must source j at level
612 static struct isl_map
*last_later_source(struct isl_access_info
*acc
,
613 struct isl_map
*old_map
,
614 int j
, int before_level
,
615 int k
, int after_level
,
616 struct isl_set
**empty
)
619 struct isl_set
*set_C
;
620 struct isl_map
*read_map
;
621 struct isl_map
*write_map
;
622 struct isl_map
*dep_map
;
623 struct isl_map
*after_write
;
624 struct isl_map
*before_read
;
625 struct isl_map
*result
;
627 set_C
= isl_map_range(isl_map_copy(old_map
));
628 read_map
= isl_map_copy(acc
->sink
.map
);
629 write_map
= isl_map_copy(acc
->source
[k
].map
);
631 write_map
= isl_map_reverse(write_map
);
632 dep_map
= isl_map_apply_range(read_map
, write_map
);
633 dim
= space_align_and_join(isl_map_get_space(acc
->source
[k
].map
),
634 isl_space_reverse(isl_map_get_space(acc
->source
[j
].map
)));
635 after_write
= after_at_level(dim
, after_level
);
636 after_write
= isl_map_apply_range(after_write
, old_map
);
637 after_write
= isl_map_reverse(after_write
);
638 dep_map
= isl_map_intersect(dep_map
, after_write
);
639 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
640 dep_map
= isl_map_intersect(dep_map
, before_read
);
641 result
= restricted_partial_lexmax(acc
, dep_map
, k
, set_C
, empty
);
642 result
= isl_map_reverse(result
);
647 /* Given a shared_level between two accesses, return 1 if the
648 * the first can precede the second at the requested target_level.
649 * If the target level is odd, i.e., refers to a statement level
650 * dimension, then first needs to precede second at the requested
651 * level, i.e., shared_level must be equal to target_level.
652 * If the target level is odd, then the two loops should share
653 * at least the requested number of outer loops.
655 static int can_precede_at_level(int shared_level
, int target_level
)
657 if (shared_level
< target_level
)
659 if ((target_level
% 2) && shared_level
> target_level
)
664 /* Given a possible flow dependence temp_rel[j] between source j and the sink
665 * at level sink_level, remove those elements for which
666 * there is an iteration of another source k < j that is closer to the sink.
667 * The flow dependences temp_rel[k] are updated with the improved sources.
668 * Any improved source needs to precede the sink at the same level
669 * and needs to follow source j at the same or a deeper level.
670 * The lower this level, the later the execution date of source k.
671 * We therefore consider lower levels first.
673 * If temp_rel[j] is empty, then there can be no improvement and
674 * we return immediately.
676 static int intermediate_sources(__isl_keep isl_access_info
*acc
,
677 struct isl_map
**temp_rel
, int j
, int sink_level
)
680 int depth
= 2 * isl_map_dim(acc
->source
[j
].map
, isl_dim_in
) + 1;
682 if (isl_map_plain_is_empty(temp_rel
[j
]))
685 for (k
= j
- 1; k
>= 0; --k
) {
687 plevel
= acc
->level_before(acc
->source
[k
].data
, acc
->sink
.data
);
688 if (!can_precede_at_level(plevel
, sink_level
))
691 plevel2
= acc
->level_before(acc
->source
[j
].data
,
692 acc
->source
[k
].data
);
694 for (level
= sink_level
; level
<= depth
; ++level
) {
696 struct isl_set
*trest
;
697 struct isl_map
*copy
;
699 if (!can_precede_at_level(plevel2
, level
))
702 copy
= isl_map_copy(temp_rel
[j
]);
703 T
= last_later_source(acc
, copy
, j
, sink_level
, k
,
705 if (isl_map_plain_is_empty(T
)) {
710 temp_rel
[j
] = isl_map_intersect_range(temp_rel
[j
], trest
);
711 temp_rel
[k
] = isl_map_union_disjoint(temp_rel
[k
], T
);
718 /* Compute all iterations of may source j that precedes the sink at the given
719 * level for sink iterations in set_C.
721 static __isl_give isl_map
*all_sources(__isl_keep isl_access_info
*acc
,
722 __isl_take isl_set
*set_C
, int j
, int level
)
729 read_map
= isl_map_copy(acc
->sink
.map
);
730 read_map
= isl_map_intersect_domain(read_map
, set_C
);
731 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
732 write_map
= isl_map_reverse(write_map
);
733 dep_map
= isl_map_apply_range(read_map
, write_map
);
734 after
= after_at_level(isl_map_get_space(dep_map
), level
);
735 dep_map
= isl_map_intersect(dep_map
, after
);
737 return isl_map_reverse(dep_map
);
740 /* For a given mapping between iterations of must source k and iterations
741 * of the sink, compute the all iteration of may source j preceding
742 * the sink at level before_level for any of the sink iterations,
743 * but following the corresponding iteration of must source k at level
746 static __isl_give isl_map
*all_later_sources(__isl_keep isl_access_info
*acc
,
747 __isl_take isl_map
*old_map
,
748 int j
, int before_level
, int k
, int after_level
)
755 isl_map
*after_write
;
756 isl_map
*before_read
;
758 set_C
= isl_map_range(isl_map_copy(old_map
));
759 read_map
= isl_map_copy(acc
->sink
.map
);
760 read_map
= isl_map_intersect_domain(read_map
, set_C
);
761 write_map
= isl_map_copy(acc
->source
[acc
->n_must
+ j
].map
);
763 write_map
= isl_map_reverse(write_map
);
764 dep_map
= isl_map_apply_range(read_map
, write_map
);
765 dim
= isl_space_join(isl_map_get_space(acc
->source
[acc
->n_must
+ j
].map
),
766 isl_space_reverse(isl_map_get_space(acc
->source
[k
].map
)));
767 after_write
= after_at_level(dim
, after_level
);
768 after_write
= isl_map_apply_range(after_write
, old_map
);
769 after_write
= isl_map_reverse(after_write
);
770 dep_map
= isl_map_intersect(dep_map
, after_write
);
771 before_read
= after_at_level(isl_map_get_space(dep_map
), before_level
);
772 dep_map
= isl_map_intersect(dep_map
, before_read
);
773 return isl_map_reverse(dep_map
);
776 /* Given the must and may dependence relations for the must accesses
777 * for level sink_level, check if there are any accesses of may access j
778 * that occur in between and return their union.
779 * If some of these accesses are intermediate with respect to
780 * (previously thought to be) must dependences, then these
781 * must dependences are turned into may dependences.
783 static __isl_give isl_map
*all_intermediate_sources(
784 __isl_keep isl_access_info
*acc
, __isl_take isl_map
*map
,
785 struct isl_map
**must_rel
, struct isl_map
**may_rel
,
786 int j
, int sink_level
)
789 int depth
= 2 * isl_map_dim(acc
->source
[acc
->n_must
+ j
].map
,
792 for (k
= 0; k
< acc
->n_must
; ++k
) {
795 if (isl_map_plain_is_empty(may_rel
[k
]) &&
796 isl_map_plain_is_empty(must_rel
[k
]))
799 plevel
= acc
->level_before(acc
->source
[k
].data
,
800 acc
->source
[acc
->n_must
+ j
].data
);
802 for (level
= sink_level
; level
<= depth
; ++level
) {
807 if (!can_precede_at_level(plevel
, level
))
810 copy
= isl_map_copy(may_rel
[k
]);
811 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
812 map
= isl_map_union(map
, T
);
814 copy
= isl_map_copy(must_rel
[k
]);
815 T
= all_later_sources(acc
, copy
, j
, sink_level
, k
, level
);
816 ran
= isl_map_range(isl_map_copy(T
));
817 map
= isl_map_union(map
, T
);
818 may_rel
[k
] = isl_map_union_disjoint(may_rel
[k
],
819 isl_map_intersect_range(isl_map_copy(must_rel
[k
]),
821 T
= isl_map_from_domain_and_range(
823 isl_space_domain(isl_map_get_space(must_rel
[k
]))),
825 must_rel
[k
] = isl_map_subtract(must_rel
[k
], T
);
832 /* Compute dependences for the case where all accesses are "may"
833 * accesses, which boils down to computing memory based dependences.
834 * The generic algorithm would also work in this case, but it would
835 * be overkill to use it.
837 static __isl_give isl_flow
*compute_mem_based_dependences(
838 __isl_keep isl_access_info
*acc
)
845 res
= isl_flow_alloc(acc
);
849 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
850 maydo
= isl_set_copy(mustdo
);
852 for (i
= 0; i
< acc
->n_may
; ++i
) {
859 plevel
= acc
->level_before(acc
->source
[i
].data
, acc
->sink
.data
);
860 is_before
= plevel
& 1;
863 dim
= isl_map_get_space(res
->dep
[i
].map
);
865 before
= isl_map_lex_le_first(dim
, plevel
);
867 before
= isl_map_lex_lt_first(dim
, plevel
);
868 dep
= isl_map_apply_range(isl_map_copy(acc
->source
[i
].map
),
869 isl_map_reverse(isl_map_copy(acc
->sink
.map
)));
870 dep
= isl_map_intersect(dep
, before
);
871 mustdo
= isl_set_subtract(mustdo
,
872 isl_map_range(isl_map_copy(dep
)));
873 res
->dep
[i
].map
= isl_map_union(res
->dep
[i
].map
, dep
);
876 res
->may_no_source
= isl_set_subtract(maydo
, isl_set_copy(mustdo
));
877 res
->must_no_source
= mustdo
;
882 /* Compute dependences for the case where there is at least one
885 * The core algorithm considers all levels in which a source may precede
886 * the sink, where a level may either be a statement level or a loop level.
887 * The outermost statement level is 1, the first loop level is 2, etc...
888 * The algorithm basically does the following:
889 * for all levels l of the read access from innermost to outermost
890 * for all sources w that may precede the sink access at that level
891 * compute the last iteration of the source that precedes the sink access
893 * add result to possible last accesses at level l of source w
894 * for all sources w2 that we haven't considered yet at this level that may
895 * also precede the sink access
896 * for all levels l2 of w from l to innermost
897 * for all possible last accesses dep of w at l
898 * compute last iteration of w2 between the source and sink
900 * add result to possible last accesses at level l of write w2
901 * and replace possible last accesses dep by the remainder
904 * The above algorithm is applied to the must access. During the course
905 * of the algorithm, we keep track of sink iterations that still
906 * need to be considered. These iterations are split into those that
907 * haven't been matched to any source access (mustdo) and those that have only
908 * been matched to may accesses (maydo).
909 * At the end of each level, we also consider the may accesses.
910 * In particular, we consider may accesses that precede the remaining
911 * sink iterations, moving elements from mustdo to maydo when appropriate,
912 * and may accesses that occur between a must source and a sink of any
913 * dependences found at the current level, turning must dependences into
914 * may dependences when appropriate.
917 static __isl_give isl_flow
*compute_val_based_dependences(
918 __isl_keep isl_access_info
*acc
)
922 isl_set
*mustdo
= NULL
;
923 isl_set
*maydo
= NULL
;
926 isl_map
**must_rel
= NULL
;
927 isl_map
**may_rel
= NULL
;
932 res
= isl_flow_alloc(acc
);
935 ctx
= isl_map_get_ctx(acc
->sink
.map
);
937 depth
= 2 * isl_map_dim(acc
->sink
.map
, isl_dim_in
) + 1;
938 mustdo
= isl_map_domain(isl_map_copy(acc
->sink
.map
));
939 maydo
= isl_set_empty(isl_set_get_space(mustdo
));
940 if (!mustdo
|| !maydo
)
942 if (isl_set_plain_is_empty(mustdo
))
945 must_rel
= isl_alloc_array(ctx
, struct isl_map
*, acc
->n_must
);
946 may_rel
= isl_alloc_array(ctx
, struct isl_map
*, acc
->n_must
);
947 if (!must_rel
|| !may_rel
)
950 for (level
= depth
; level
>= 1; --level
) {
951 for (j
= acc
->n_must
-1; j
>=0; --j
) {
953 space
= isl_map_get_space(res
->dep
[2 * j
].map
);
954 must_rel
[j
] = isl_map_empty(space
);
955 may_rel
[j
] = isl_map_copy(must_rel
[j
]);
958 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
960 struct isl_set
*rest
;
963 plevel
= acc
->level_before(acc
->source
[j
].data
,
965 if (!can_precede_at_level(plevel
, level
))
968 T
= last_source(acc
, mustdo
, j
, level
, &rest
);
969 must_rel
[j
] = isl_map_union_disjoint(must_rel
[j
], T
);
972 intermediate_sources(acc
, must_rel
, j
, level
);
974 T
= last_source(acc
, maydo
, j
, level
, &rest
);
975 may_rel
[j
] = isl_map_union_disjoint(may_rel
[j
], T
);
978 intermediate_sources(acc
, may_rel
, j
, level
);
980 if (isl_set_plain_is_empty(mustdo
) &&
981 isl_set_plain_is_empty(maydo
))
984 for (j
= j
- 1; j
>= 0; --j
) {
987 plevel
= acc
->level_before(acc
->source
[j
].data
,
989 if (!can_precede_at_level(plevel
, level
))
992 intermediate_sources(acc
, must_rel
, j
, level
);
993 intermediate_sources(acc
, may_rel
, j
, level
);
996 for (j
= 0; j
< acc
->n_may
; ++j
) {
1001 plevel
= acc
->level_before(acc
->source
[acc
->n_must
+ j
].data
,
1003 if (!can_precede_at_level(plevel
, level
))
1006 T
= all_sources(acc
, isl_set_copy(maydo
), j
, level
);
1007 res
->dep
[2 * acc
->n_must
+ j
].map
=
1008 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1009 T
= all_sources(acc
, isl_set_copy(mustdo
), j
, level
);
1010 ran
= isl_map_range(isl_map_copy(T
));
1011 res
->dep
[2 * acc
->n_must
+ j
].map
=
1012 isl_map_union(res
->dep
[2 * acc
->n_must
+ j
].map
, T
);
1013 mustdo
= isl_set_subtract(mustdo
, isl_set_copy(ran
));
1014 maydo
= isl_set_union_disjoint(maydo
, ran
);
1016 T
= res
->dep
[2 * acc
->n_must
+ j
].map
;
1017 T
= all_intermediate_sources(acc
, T
, must_rel
, may_rel
,
1019 res
->dep
[2 * acc
->n_must
+ j
].map
= T
;
1022 for (j
= acc
->n_must
- 1; j
>= 0; --j
) {
1023 res
->dep
[2 * j
].map
=
1024 isl_map_union_disjoint(res
->dep
[2 * j
].map
,
1026 res
->dep
[2 * j
+ 1].map
=
1027 isl_map_union_disjoint(res
->dep
[2 * j
+ 1].map
,
1031 if (isl_set_plain_is_empty(mustdo
) &&
1032 isl_set_plain_is_empty(maydo
))
1039 res
->must_no_source
= mustdo
;
1040 res
->may_no_source
= maydo
;
1044 isl_set_free(mustdo
);
1045 isl_set_free(maydo
);
1051 /* Given a "sink" access, a list of n "source" accesses,
1052 * compute for each iteration of the sink access
1053 * and for each element accessed by that iteration,
1054 * the source access in the list that last accessed the
1055 * element accessed by the sink access before this sink access.
1056 * Each access is given as a map from the loop iterators
1057 * to the array indices.
1058 * The result is a list of n relations between source and sink
1059 * iterations and a subset of the domain of the sink access,
1060 * corresponding to those iterations that access an element
1061 * not previously accessed.
1063 * To deal with multi-valued sink access relations, the sink iteration
1064 * domain is first extended with dimensions that correspond to the data
1065 * space. After the computation is finished, these extra dimensions are
1066 * projected out again.
1068 __isl_give isl_flow
*isl_access_info_compute_flow(__isl_take isl_access_info
*acc
)
1071 struct isl_flow
*res
= NULL
;
1076 acc
->domain_map
= isl_map_domain_map(isl_map_copy(acc
->sink
.map
));
1077 acc
->sink
.map
= isl_map_range_map(acc
->sink
.map
);
1081 if (acc
->n_must
== 0)
1082 res
= compute_mem_based_dependences(acc
);
1084 acc
= isl_access_info_sort_sources(acc
);
1085 res
= compute_val_based_dependences(acc
);
1090 for (j
= 0; j
< res
->n_source
; ++j
) {
1091 res
->dep
[j
].map
= isl_map_apply_range(res
->dep
[j
].map
,
1092 isl_map_copy(acc
->domain_map
));
1093 if (!res
->dep
[j
].map
)
1096 if (!res
->must_no_source
|| !res
->may_no_source
)
1099 isl_access_info_free(acc
);
1102 isl_access_info_free(acc
);
1108 /* Keep track of some information about a schedule for a given
1109 * access. In particular, keep track of which dimensions
1110 * have a constant value and of the actual constant values.
1112 struct isl_sched_info
{
1117 static void sched_info_free(__isl_take
struct isl_sched_info
*info
)
1121 isl_vec_free(info
->cst
);
1126 /* Extract information on the constant dimensions of the schedule
1127 * for a given access. The "map" is of the form
1131 * with S the schedule domain, D the iteration domain and A the data domain.
1133 static __isl_give
struct isl_sched_info
*sched_info_alloc(
1134 __isl_keep isl_map
*map
)
1138 struct isl_sched_info
*info
;
1144 dim
= isl_space_unwrap(isl_space_domain(isl_map_get_space(map
)));
1147 n
= isl_space_dim(dim
, isl_dim_in
);
1148 isl_space_free(dim
);
1150 ctx
= isl_map_get_ctx(map
);
1151 info
= isl_alloc_type(ctx
, struct isl_sched_info
);
1154 info
->is_cst
= isl_alloc_array(ctx
, int, n
);
1155 info
->cst
= isl_vec_alloc(ctx
, n
);
1156 if (n
&& (!info
->is_cst
|| !info
->cst
))
1159 for (i
= 0; i
< n
; ++i
) {
1162 v
= isl_map_plain_get_val_if_fixed(map
, isl_dim_in
, i
);
1165 info
->is_cst
[i
] = !isl_val_is_nan(v
);
1166 if (info
->is_cst
[i
])
1167 info
->cst
= isl_vec_set_element_val(info
->cst
, i
, v
);
1174 sched_info_free(info
);
1178 /* This structure represents the input for a dependence analysis computation.
1180 * "sink" represents the sink accesses.
1181 * "must_source" represents the definite source accesses.
1182 * "may_source" represents the possible source accesses.
1184 * "schedule" or "schedule_map" represents the execution order.
1185 * Exactly one of these fields should be NULL. The other field
1186 * determines the execution order.
1188 * The domains of these four maps refer to the same iteration spaces(s).
1189 * The ranges of the first three maps also refer to the same data space(s).
1191 * After a call to isl_union_access_info_introduce_schedule,
1192 * the "schedule_map" field no longer contains useful information.
1194 struct isl_union_access_info
{
1195 isl_union_map
*sink
;
1196 isl_union_map
*must_source
;
1197 isl_union_map
*may_source
;
1199 isl_schedule
*schedule
;
1200 isl_union_map
*schedule_map
;
1203 /* Free "access" and return NULL.
1205 __isl_null isl_union_access_info
*isl_union_access_info_free(
1206 __isl_take isl_union_access_info
*access
)
1211 isl_union_map_free(access
->sink
);
1212 isl_union_map_free(access
->must_source
);
1213 isl_union_map_free(access
->may_source
);
1214 isl_schedule_free(access
->schedule
);
1215 isl_union_map_free(access
->schedule_map
);
1221 /* Return the isl_ctx to which "access" belongs.
1223 isl_ctx
*isl_union_access_info_get_ctx(__isl_keep isl_union_access_info
*access
)
1225 return access
? isl_union_map_get_ctx(access
->sink
) : NULL
;
1228 /* Create a new isl_union_access_info with the given sink accesses and
1229 * and no source accesses or schedule information.
1231 * By default, we use the schedule field of the isl_union_access_info,
1232 * but this may be overridden by a call
1233 * to isl_union_access_info_set_schedule_map.
1235 __isl_give isl_union_access_info
*isl_union_access_info_from_sink(
1236 __isl_take isl_union_map
*sink
)
1240 isl_union_map
*empty
;
1241 isl_union_access_info
*access
;
1245 ctx
= isl_union_map_get_ctx(sink
);
1246 access
= isl_alloc_type(ctx
, isl_union_access_info
);
1250 space
= isl_union_map_get_space(sink
);
1251 empty
= isl_union_map_empty(isl_space_copy(space
));
1252 access
->sink
= sink
;
1253 access
->must_source
= isl_union_map_copy(empty
);
1254 access
->may_source
= empty
;
1255 access
->schedule
= isl_schedule_empty(space
);
1256 access
->schedule_map
= NULL
;
1258 if (!access
->sink
|| !access
->must_source
||
1259 !access
->may_source
|| !access
->schedule
)
1260 return isl_union_access_info_free(access
);
1264 isl_union_map_free(sink
);
1268 /* Replace the definite source accesses of "access" by "must_source".
1270 __isl_give isl_union_access_info
*isl_union_access_info_set_must_source(
1271 __isl_take isl_union_access_info
*access
,
1272 __isl_take isl_union_map
*must_source
)
1274 if (!access
|| !must_source
)
1277 isl_union_map_free(access
->must_source
);
1278 access
->must_source
= must_source
;
1282 isl_union_access_info_free(access
);
1283 isl_union_map_free(must_source
);
1287 /* Replace the possible source accesses of "access" by "may_source".
1289 __isl_give isl_union_access_info
*isl_union_access_info_set_may_source(
1290 __isl_take isl_union_access_info
*access
,
1291 __isl_take isl_union_map
*may_source
)
1293 if (!access
|| !may_source
)
1296 isl_union_map_free(access
->may_source
);
1297 access
->may_source
= may_source
;
1301 isl_union_access_info_free(access
);
1302 isl_union_map_free(may_source
);
1306 /* Replace the schedule of "access" by "schedule".
1307 * Also free the schedule_map in case it was set last.
1309 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule(
1310 __isl_take isl_union_access_info
*access
,
1311 __isl_take isl_schedule
*schedule
)
1313 if (!access
|| !schedule
)
1316 access
->schedule_map
= isl_union_map_free(access
->schedule_map
);
1317 isl_schedule_free(access
->schedule
);
1318 access
->schedule
= schedule
;
1322 isl_union_access_info_free(access
);
1323 isl_schedule_free(schedule
);
1327 /* Replace the schedule map of "access" by "schedule_map".
1328 * Also free the schedule in case it was set last.
1330 __isl_give isl_union_access_info
*isl_union_access_info_set_schedule_map(
1331 __isl_take isl_union_access_info
*access
,
1332 __isl_take isl_union_map
*schedule_map
)
1334 if (!access
|| !schedule_map
)
1337 isl_union_map_free(access
->schedule_map
);
1338 access
->schedule
= isl_schedule_free(access
->schedule
);
1339 access
->schedule_map
= schedule_map
;
1343 isl_union_access_info_free(access
);
1344 isl_union_map_free(schedule_map
);
1348 __isl_give isl_union_access_info
*isl_union_access_info_copy(
1349 __isl_keep isl_union_access_info
*access
)
1351 isl_union_access_info
*copy
;
1355 copy
= isl_union_access_info_from_sink(
1356 isl_union_map_copy(access
->sink
));
1357 copy
= isl_union_access_info_set_must_source(copy
,
1358 isl_union_map_copy(access
->must_source
));
1359 copy
= isl_union_access_info_set_may_source(copy
,
1360 isl_union_map_copy(access
->may_source
));
1361 if (access
->schedule
)
1362 copy
= isl_union_access_info_set_schedule(copy
,
1363 isl_schedule_copy(access
->schedule
));
1365 copy
= isl_union_access_info_set_schedule_map(copy
,
1366 isl_union_map_copy(access
->schedule_map
));
1371 /* Update the fields of "access" such that they all have the same parameters,
1372 * keeping in mind that the schedule_map field may be NULL and ignoring
1373 * the schedule field.
1375 static __isl_give isl_union_access_info
*isl_union_access_info_align_params(
1376 __isl_take isl_union_access_info
*access
)
1383 space
= isl_union_map_get_space(access
->sink
);
1384 space
= isl_space_align_params(space
,
1385 isl_union_map_get_space(access
->must_source
));
1386 space
= isl_space_align_params(space
,
1387 isl_union_map_get_space(access
->may_source
));
1388 if (access
->schedule_map
)
1389 space
= isl_space_align_params(space
,
1390 isl_union_map_get_space(access
->schedule_map
));
1391 access
->sink
= isl_union_map_align_params(access
->sink
,
1392 isl_space_copy(space
));
1393 access
->must_source
= isl_union_map_align_params(access
->must_source
,
1394 isl_space_copy(space
));
1395 access
->may_source
= isl_union_map_align_params(access
->may_source
,
1396 isl_space_copy(space
));
1397 if (!access
->schedule_map
) {
1398 isl_space_free(space
);
1400 access
->schedule_map
=
1401 isl_union_map_align_params(access
->schedule_map
, space
);
1402 if (!access
->schedule_map
)
1403 return isl_union_access_info_free(access
);
1406 if (!access
->sink
|| !access
->must_source
|| !access
->may_source
)
1407 return isl_union_access_info_free(access
);
1412 /* Prepend the schedule dimensions to the iteration domains.
1414 * That is, if the schedule is of the form
1418 * while the access relations are of the form
1422 * then the updated access relations are of the form
1426 * The schedule map is also replaced by the map
1430 * that is used during the internal computation.
1431 * Neither the original schedule map nor this updated schedule map
1432 * are used after the call to this function.
1434 static __isl_give isl_union_access_info
*
1435 isl_union_access_info_introduce_schedule(
1436 __isl_take isl_union_access_info
*access
)
1443 sm
= isl_union_map_reverse(access
->schedule_map
);
1444 sm
= isl_union_map_range_map(sm
);
1445 access
->sink
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1447 access
->may_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1448 access
->may_source
);
1449 access
->must_source
= isl_union_map_apply_range(isl_union_map_copy(sm
),
1450 access
->must_source
);
1451 access
->schedule_map
= sm
;
1453 if (!access
->sink
|| !access
->must_source
||
1454 !access
->may_source
|| !access
->schedule_map
)
1455 return isl_union_access_info_free(access
);
1460 /* This structure epresents the result of a dependence analysis computation.
1462 * "must_dep" represents the definite dependences.
1463 * "may_dep" represents the non-definite dependences.
1464 * "must_no_source" represents the subset of the sink accesses for which
1465 * definitely no source was found.
1466 * "may_no_source" represents the subset of the sink accesses for which
1467 * possibly, but not definitely, no source was found.
1469 struct isl_union_flow
{
1470 isl_union_map
*must_dep
;
1471 isl_union_map
*may_dep
;
1472 isl_union_map
*must_no_source
;
1473 isl_union_map
*may_no_source
;
1476 /* Return the isl_ctx to which "flow" belongs.
1478 isl_ctx
*isl_union_flow_get_ctx(__isl_keep isl_union_flow
*flow
)
1480 return flow
? isl_union_map_get_ctx(flow
->must_dep
) : NULL
;
1483 /* Free "flow" and return NULL.
1485 __isl_null isl_union_flow
*isl_union_flow_free(__isl_take isl_union_flow
*flow
)
1489 isl_union_map_free(flow
->must_dep
);
1490 isl_union_map_free(flow
->may_dep
);
1491 isl_union_map_free(flow
->must_no_source
);
1492 isl_union_map_free(flow
->may_no_source
);
1497 void isl_union_flow_dump(__isl_keep isl_union_flow
*flow
)
1502 fprintf(stderr
, "must dependences: ");
1503 isl_union_map_dump(flow
->must_dep
);
1504 fprintf(stderr
, "may dependences: ");
1505 isl_union_map_dump(flow
->may_dep
);
1506 fprintf(stderr
, "must no source: ");
1507 isl_union_map_dump(flow
->must_no_source
);
1508 fprintf(stderr
, "may no source: ");
1509 isl_union_map_dump(flow
->may_no_source
);
1512 /* Return the definite dependences in "flow".
1514 __isl_give isl_union_map
*isl_union_flow_get_must_dependence(
1515 __isl_keep isl_union_flow
*flow
)
1519 return isl_union_map_copy(flow
->must_dep
);
1522 /* Return the possible dependences in "flow", including the definite
1525 __isl_give isl_union_map
*isl_union_flow_get_may_dependence(
1526 __isl_keep isl_union_flow
*flow
)
1530 return isl_union_map_union(isl_union_map_copy(flow
->must_dep
),
1531 isl_union_map_copy(flow
->may_dep
));
1534 /* Return the non-definite dependences in "flow".
1536 static __isl_give isl_union_map
*isl_union_flow_get_non_must_dependence(
1537 __isl_keep isl_union_flow
*flow
)
1541 return isl_union_map_copy(flow
->may_dep
);
1544 /* Return the subset of the sink accesses for which definitely
1545 * no source was found.
1547 __isl_give isl_union_map
*isl_union_flow_get_must_no_source(
1548 __isl_keep isl_union_flow
*flow
)
1552 return isl_union_map_copy(flow
->must_no_source
);
1555 /* Return the subset of the sink accesses for which possibly
1556 * no source was found, including those for which definitely
1557 * no source was found.
1559 __isl_give isl_union_map
*isl_union_flow_get_may_no_source(
1560 __isl_keep isl_union_flow
*flow
)
1564 return isl_union_map_union(isl_union_map_copy(flow
->must_no_source
),
1565 isl_union_map_copy(flow
->may_no_source
));
1568 /* Return the subset of the sink accesses for which possibly, but not
1569 * definitely, no source was found.
1571 static __isl_give isl_union_map
*isl_union_flow_get_non_must_no_source(
1572 __isl_keep isl_union_flow
*flow
)
1576 return isl_union_map_copy(flow
->may_no_source
);
1579 /* Create a new isl_union_flow object, initialized with empty
1580 * dependence relations and sink subsets.
1582 static __isl_give isl_union_flow
*isl_union_flow_alloc(
1583 __isl_take isl_space
*space
)
1586 isl_union_map
*empty
;
1587 isl_union_flow
*flow
;
1591 ctx
= isl_space_get_ctx(space
);
1592 flow
= isl_alloc_type(ctx
, isl_union_flow
);
1596 empty
= isl_union_map_empty(space
);
1597 flow
->must_dep
= isl_union_map_copy(empty
);
1598 flow
->may_dep
= isl_union_map_copy(empty
);
1599 flow
->must_no_source
= isl_union_map_copy(empty
);
1600 flow
->may_no_source
= empty
;
1602 if (!flow
->must_dep
|| !flow
->may_dep
||
1603 !flow
->must_no_source
|| !flow
->may_no_source
)
1604 return isl_union_flow_free(flow
);
1608 isl_space_free(space
);
1612 /* Drop the schedule dimensions from the iteration domains in "flow".
1613 * In particular, the schedule dimensions have been prepended
1614 * to the iteration domains prior to the dependence analysis by
1615 * replacing the iteration domain D, by the wrapped map [S -> D].
1616 * Replace these wrapped maps by the original D.
1618 static __isl_give isl_union_flow
*isl_union_flow_drop_schedule(
1619 __isl_take isl_union_flow
*flow
)
1624 flow
->must_dep
= isl_union_map_factor_range(flow
->must_dep
);
1625 flow
->may_dep
= isl_union_map_factor_range(flow
->may_dep
);
1626 flow
->must_no_source
=
1627 isl_union_map_domain_factor_range(flow
->must_no_source
);
1628 flow
->may_no_source
=
1629 isl_union_map_domain_factor_range(flow
->may_no_source
);
1631 if (!flow
->must_dep
|| !flow
->may_dep
||
1632 !flow
->must_no_source
|| !flow
->may_no_source
)
1633 return isl_union_flow_free(flow
);
1638 struct isl_compute_flow_data
{
1639 isl_union_map
*must_source
;
1640 isl_union_map
*may_source
;
1641 isl_union_flow
*flow
;
1646 struct isl_sched_info
*sink_info
;
1647 struct isl_sched_info
**source_info
;
1648 isl_access_info
*accesses
;
1651 static isl_stat
count_matching_array(__isl_take isl_map
*map
, void *user
)
1655 struct isl_compute_flow_data
*data
;
1657 data
= (struct isl_compute_flow_data
*)user
;
1659 dim
= isl_space_range(isl_map_get_space(map
));
1661 eq
= isl_space_is_equal(dim
, data
->dim
);
1663 isl_space_free(dim
);
1667 return isl_stat_error
;
1674 static isl_stat
collect_matching_array(__isl_take isl_map
*map
, void *user
)
1678 struct isl_sched_info
*info
;
1679 struct isl_compute_flow_data
*data
;
1681 data
= (struct isl_compute_flow_data
*)user
;
1683 dim
= isl_space_range(isl_map_get_space(map
));
1685 eq
= isl_space_is_equal(dim
, data
->dim
);
1687 isl_space_free(dim
);
1696 info
= sched_info_alloc(map
);
1697 data
->source_info
[data
->count
] = info
;
1699 data
->accesses
= isl_access_info_add_source(data
->accesses
,
1700 map
, data
->must
, info
);
1707 return isl_stat_error
;
1710 /* Determine the shared nesting level and the "textual order" of
1711 * the given accesses.
1713 * We first determine the minimal schedule dimension for both accesses.
1715 * If among those dimensions, we can find one where both have a fixed
1716 * value and if moreover those values are different, then the previous
1717 * dimension is the last shared nesting level and the textual order
1718 * is determined based on the order of the fixed values.
1719 * If no such fixed values can be found, then we set the shared
1720 * nesting level to the minimal schedule dimension, with no textual ordering.
1722 static int before(void *first
, void *second
)
1724 struct isl_sched_info
*info1
= first
;
1725 struct isl_sched_info
*info2
= second
;
1729 n1
= isl_vec_size(info1
->cst
);
1730 n2
= isl_vec_size(info2
->cst
);
1735 for (i
= 0; i
< n1
; ++i
) {
1739 if (!info1
->is_cst
[i
])
1741 if (!info2
->is_cst
[i
])
1743 cmp
= isl_vec_cmp_element(info1
->cst
, info2
->cst
, i
);
1747 r
= 2 * i
+ (cmp
< 0);
1755 /* Given a sink access, look for all the source accesses that access
1756 * the same array and perform dataflow analysis on them using
1757 * isl_access_info_compute_flow.
1759 static isl_stat
compute_flow(__isl_take isl_map
*map
, void *user
)
1763 struct isl_compute_flow_data
*data
;
1767 data
= (struct isl_compute_flow_data
*)user
;
1770 ctx
= isl_map_get_ctx(map
);
1772 data
->accesses
= NULL
;
1773 data
->sink_info
= NULL
;
1774 data
->source_info
= NULL
;
1776 data
->dim
= isl_space_range(isl_map_get_space(map
));
1778 if (isl_union_map_foreach_map(data
->must_source
,
1779 &count_matching_array
, data
) < 0)
1781 if (isl_union_map_foreach_map(data
->may_source
,
1782 &count_matching_array
, data
) < 0)
1785 data
->sink_info
= sched_info_alloc(map
);
1786 data
->source_info
= isl_calloc_array(ctx
, struct isl_sched_info
*,
1789 data
->accesses
= isl_access_info_alloc(isl_map_copy(map
),
1790 data
->sink_info
, &before
, data
->count
);
1791 if (!data
->sink_info
|| (data
->count
&& !data
->source_info
) ||
1796 if (isl_union_map_foreach_map(data
->must_source
,
1797 &collect_matching_array
, data
) < 0)
1800 if (isl_union_map_foreach_map(data
->may_source
,
1801 &collect_matching_array
, data
) < 0)
1804 flow
= isl_access_info_compute_flow(data
->accesses
);
1805 data
->accesses
= NULL
;
1810 df
->must_no_source
= isl_union_map_union(df
->must_no_source
,
1811 isl_union_map_from_map(isl_flow_get_no_source(flow
, 1)));
1812 df
->may_no_source
= isl_union_map_union(df
->may_no_source
,
1813 isl_union_map_from_map(isl_flow_get_no_source(flow
, 0)));
1815 for (i
= 0; i
< flow
->n_source
; ++i
) {
1817 dep
= isl_union_map_from_map(isl_map_copy(flow
->dep
[i
].map
));
1818 if (flow
->dep
[i
].must
)
1819 df
->must_dep
= isl_union_map_union(df
->must_dep
, dep
);
1821 df
->may_dep
= isl_union_map_union(df
->may_dep
, dep
);
1824 isl_flow_free(flow
);
1826 sched_info_free(data
->sink_info
);
1827 if (data
->source_info
) {
1828 for (i
= 0; i
< data
->count
; ++i
)
1829 sched_info_free(data
->source_info
[i
]);
1830 free(data
->source_info
);
1832 isl_space_free(data
->dim
);
1837 isl_access_info_free(data
->accesses
);
1838 sched_info_free(data
->sink_info
);
1839 if (data
->source_info
) {
1840 for (i
= 0; i
< data
->count
; ++i
)
1841 sched_info_free(data
->source_info
[i
]);
1842 free(data
->source_info
);
1844 isl_space_free(data
->dim
);
1847 return isl_stat_error
;
1850 /* Remove the must accesses from the may accesses.
1852 * A must access always trumps a may access, so there is no need
1853 * for a must access to also be considered as a may access. Doing so
1854 * would only cost extra computations only to find out that
1855 * the duplicated may access does not make any difference.
1857 static __isl_give isl_union_access_info
*isl_union_access_info_normalize(
1858 __isl_take isl_union_access_info
*access
)
1862 access
->may_source
= isl_union_map_subtract(access
->may_source
,
1863 isl_union_map_copy(access
->must_source
));
1864 if (!access
->may_source
)
1865 return isl_union_access_info_free(access
);
1870 /* Given a description of the "sink" accesses, the "source" accesses and
1871 * a schedule, compute for each instance of a sink access
1872 * and for each element accessed by that instance,
1873 * the possible or definite source accesses that last accessed the
1874 * element accessed by the sink access before this sink access
1875 * in the sense that there is no intermediate definite source access.
1877 * The must_no_source and may_no_source elements of the result
1878 * are subsets of access->sink. The elements must_dep and may_dep
1879 * map domain elements of access->{may,must)_source to
1880 * domain elements of access->sink.
1882 * This function is used when only the schedule map representation
1885 * We first prepend the schedule dimensions to the domain
1886 * of the accesses so that we can easily compare their relative order.
1887 * Then we consider each sink access individually in compute_flow.
1889 static __isl_give isl_union_flow
*compute_flow_union_map(
1890 __isl_take isl_union_access_info
*access
)
1892 struct isl_compute_flow_data data
;
1894 access
= isl_union_access_info_align_params(access
);
1895 access
= isl_union_access_info_introduce_schedule(access
);
1899 data
.must_source
= access
->must_source
;
1900 data
.may_source
= access
->may_source
;
1902 data
.flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
1904 if (isl_union_map_foreach_map(access
->sink
, &compute_flow
, &data
) < 0)
1907 data
.flow
= isl_union_flow_drop_schedule(data
.flow
);
1909 isl_union_access_info_free(access
);
1912 isl_union_access_info_free(access
);
1913 isl_union_flow_free(data
.flow
);
1917 /* A schedule access relation.
1919 * The access relation "access" is of the form [S -> D] -> A,
1920 * where S corresponds to the prefix schedule at "node".
1921 * "must" is only relevant for source accesses and indicates
1922 * whether the access is a must source or a may source.
1924 struct isl_scheduled_access
{
1927 isl_schedule_node
*node
;
1930 /* Data structure for keeping track of individual scheduled sink and source
1931 * accesses when computing dependence analysis based on a schedule tree.
1933 * "n_sink" is the number of used entries in "sink"
1934 * "n_source" is the number of used entries in "source"
1936 * "set_sink", "must" and "node" are only used inside collect_sink_source,
1937 * to keep track of the current node and
1938 * of what extract_sink_source needs to do.
1940 struct isl_compute_flow_schedule_data
{
1941 isl_union_access_info
*access
;
1946 struct isl_scheduled_access
*sink
;
1947 struct isl_scheduled_access
*source
;
1951 isl_schedule_node
*node
;
1954 /* Align the parameters of all sinks with all sources.
1956 * If there are no sinks or no sources, then no alignment is needed.
1958 static void isl_compute_flow_schedule_data_align_params(
1959 struct isl_compute_flow_schedule_data
*data
)
1964 if (data
->n_sink
== 0 || data
->n_source
== 0)
1967 space
= isl_map_get_space(data
->sink
[0].access
);
1969 for (i
= 1; i
< data
->n_sink
; ++i
)
1970 space
= isl_space_align_params(space
,
1971 isl_map_get_space(data
->sink
[i
].access
));
1972 for (i
= 0; i
< data
->n_source
; ++i
)
1973 space
= isl_space_align_params(space
,
1974 isl_map_get_space(data
->source
[i
].access
));
1976 for (i
= 0; i
< data
->n_sink
; ++i
)
1977 data
->sink
[i
].access
=
1978 isl_map_align_params(data
->sink
[i
].access
,
1979 isl_space_copy(space
));
1980 for (i
= 0; i
< data
->n_source
; ++i
)
1981 data
->source
[i
].access
=
1982 isl_map_align_params(data
->source
[i
].access
,
1983 isl_space_copy(space
));
1985 isl_space_free(space
);
1988 /* Free all the memory referenced from "data".
1989 * Do not free "data" itself as it may be allocated on the stack.
1991 static void isl_compute_flow_schedule_data_clear(
1992 struct isl_compute_flow_schedule_data
*data
)
1999 for (i
= 0; i
< data
->n_sink
; ++i
) {
2000 isl_map_free(data
->sink
[i
].access
);
2001 isl_schedule_node_free(data
->sink
[i
].node
);
2004 for (i
= 0; i
< data
->n_source
; ++i
) {
2005 isl_map_free(data
->source
[i
].access
);
2006 isl_schedule_node_free(data
->source
[i
].node
);
2012 /* isl_schedule_foreach_schedule_node_top_down callback for counting
2013 * (an upper bound on) the number of sinks and sources.
2015 * Sinks and sources are only extracted at leaves of the tree,
2016 * so we skip the node if it is not a leaf.
2017 * Otherwise we increment data->n_sink and data->n_source with
2018 * the number of spaces in the sink and source access domains
2019 * that reach this node.
2021 static isl_bool
count_sink_source(__isl_keep isl_schedule_node
*node
,
2024 struct isl_compute_flow_schedule_data
*data
= user
;
2025 isl_union_set
*domain
;
2026 isl_union_map
*umap
;
2027 isl_bool r
= isl_bool_false
;
2029 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2030 return isl_bool_true
;
2032 domain
= isl_schedule_node_get_universe_domain(node
);
2034 umap
= isl_union_map_copy(data
->access
->sink
);
2035 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2036 data
->n_sink
+= isl_union_map_n_map(umap
);
2037 isl_union_map_free(umap
);
2041 umap
= isl_union_map_copy(data
->access
->must_source
);
2042 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2043 data
->n_source
+= isl_union_map_n_map(umap
);
2044 isl_union_map_free(umap
);
2048 umap
= isl_union_map_copy(data
->access
->may_source
);
2049 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(domain
));
2050 data
->n_source
+= isl_union_map_n_map(umap
);
2051 isl_union_map_free(umap
);
2055 isl_union_set_free(domain
);
2060 /* Add a single scheduled sink or source (depending on data->set_sink)
2061 * with scheduled access relation "map", must property data->must and
2062 * schedule node data->node to the list of sinks or sources.
2064 static isl_stat
extract_sink_source(__isl_take isl_map
*map
, void *user
)
2066 struct isl_compute_flow_schedule_data
*data
= user
;
2067 struct isl_scheduled_access
*access
;
2070 access
= data
->sink
+ data
->n_sink
++;
2072 access
= data
->source
+ data
->n_source
++;
2074 access
->access
= map
;
2075 access
->must
= data
->must
;
2076 access
->node
= isl_schedule_node_copy(data
->node
);
2081 /* isl_schedule_foreach_schedule_node_top_down callback for collecting
2082 * individual scheduled source and sink accesses.
2084 * We only collect accesses at the leaves of the schedule tree.
2085 * We prepend the schedule dimensions at the leaf to the iteration
2086 * domains of the source and sink accesses and then extract
2087 * the individual accesses (per space).
2089 * In particular, if the prefix schedule at the node is of the form
2093 * while the access relations are of the form
2097 * then the updated access relations are of the form
2101 * Note that S consists of a single space such that introducing S
2102 * in the access relations does not increase the number of spaces.
2104 static isl_bool
collect_sink_source(__isl_keep isl_schedule_node
*node
,
2107 struct isl_compute_flow_schedule_data
*data
= user
;
2108 isl_union_map
*prefix
;
2109 isl_union_map
*umap
;
2110 isl_bool r
= isl_bool_false
;
2112 if (isl_schedule_node_get_type(node
) != isl_schedule_node_leaf
)
2113 return isl_bool_true
;
2117 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
2118 prefix
= isl_union_map_reverse(prefix
);
2119 prefix
= isl_union_map_range_map(prefix
);
2122 umap
= isl_union_map_copy(data
->access
->sink
);
2123 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2124 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2126 isl_union_map_free(umap
);
2130 umap
= isl_union_map_copy(data
->access
->must_source
);
2131 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2132 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2134 isl_union_map_free(umap
);
2138 umap
= isl_union_map_copy(data
->access
->may_source
);
2139 umap
= isl_union_map_apply_range(isl_union_map_copy(prefix
), umap
);
2140 if (isl_union_map_foreach_map(umap
, &extract_sink_source
, data
) < 0)
2142 isl_union_map_free(umap
);
2144 isl_union_map_free(prefix
);
2149 /* isl_access_info_compute_flow callback for determining whether
2150 * the shared nesting level and the ordering within that level
2151 * for two scheduled accesses for use in compute_single_flow.
2153 * The tokens passed to this function refer to the leaves
2154 * in the schedule tree where the accesses take place.
2156 * If n is the shared number of loops, then we need to return
2157 * "2 * n + 1" if "first" precedes "second" inside the innermost
2158 * shared loop and "2 * n" otherwise.
2160 * The innermost shared ancestor may be the leaves themselves
2161 * if the accesses take place in the same leaf. Otherwise,
2162 * it is either a set node or a sequence node. Only in the case
2163 * of a sequence node do we consider one access to precede the other.
2165 static int before_node(void *first
, void *second
)
2167 isl_schedule_node
*node1
= first
;
2168 isl_schedule_node
*node2
= second
;
2169 isl_schedule_node
*shared
;
2173 shared
= isl_schedule_node_get_shared_ancestor(node1
, node2
);
2177 depth
= isl_schedule_node_get_schedule_depth(shared
);
2178 if (isl_schedule_node_get_type(shared
) == isl_schedule_node_sequence
) {
2181 pos1
= isl_schedule_node_get_ancestor_child_position(node1
,
2183 pos2
= isl_schedule_node_get_ancestor_child_position(node2
,
2185 before
= pos1
< pos2
;
2188 isl_schedule_node_free(shared
);
2190 return 2 * depth
+ before
;
2193 /* Add the scheduled sources from "data" that access
2194 * the same data space as "sink" to "access".
2196 static __isl_give isl_access_info
*add_matching_sources(
2197 __isl_take isl_access_info
*access
, struct isl_scheduled_access
*sink
,
2198 struct isl_compute_flow_schedule_data
*data
)
2203 space
= isl_space_range(isl_map_get_space(sink
->access
));
2204 for (i
= 0; i
< data
->n_source
; ++i
) {
2205 struct isl_scheduled_access
*source
;
2206 isl_space
*source_space
;
2209 source
= &data
->source
[i
];
2210 source_space
= isl_map_get_space(source
->access
);
2211 source_space
= isl_space_range(source_space
);
2212 eq
= isl_space_is_equal(space
, source_space
);
2213 isl_space_free(source_space
);
2220 access
= isl_access_info_add_source(access
,
2221 isl_map_copy(source
->access
), source
->must
, source
->node
);
2224 isl_space_free(space
);
2227 isl_space_free(space
);
2228 isl_access_info_free(access
);
2232 /* Given a scheduled sink access relation "sink", compute the corresponding
2233 * dependences on the sources in "data" and add the computed dependences
2236 static __isl_give isl_union_flow
*compute_single_flow(
2237 __isl_take isl_union_flow
*uf
, struct isl_scheduled_access
*sink
,
2238 struct isl_compute_flow_schedule_data
*data
)
2241 isl_access_info
*access
;
2248 access
= isl_access_info_alloc(isl_map_copy(sink
->access
), sink
->node
,
2249 &before_node
, data
->n_source
);
2250 access
= add_matching_sources(access
, sink
, data
);
2252 flow
= isl_access_info_compute_flow(access
);
2254 return isl_union_flow_free(uf
);
2256 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 1));
2257 uf
->must_no_source
= isl_union_map_union(uf
->must_no_source
,
2258 isl_union_map_from_map(map
));
2259 map
= isl_map_domain_factor_range(isl_flow_get_no_source(flow
, 0));
2260 uf
->may_no_source
= isl_union_map_union(uf
->may_no_source
,
2261 isl_union_map_from_map(map
));
2263 for (i
= 0; i
< flow
->n_source
; ++i
) {
2266 map
= isl_map_factor_range(isl_map_copy(flow
->dep
[i
].map
));
2267 dep
= isl_union_map_from_map(map
);
2268 if (flow
->dep
[i
].must
)
2269 uf
->must_dep
= isl_union_map_union(uf
->must_dep
, dep
);
2271 uf
->may_dep
= isl_union_map_union(uf
->may_dep
, dep
);
2274 isl_flow_free(flow
);
2279 /* Given a description of the "sink" accesses, the "source" accesses and
2280 * a schedule, compute for each instance of a sink access
2281 * and for each element accessed by that instance,
2282 * the possible or definite source accesses that last accessed the
2283 * element accessed by the sink access before this sink access
2284 * in the sense that there is no intermediate definite source access.
2286 * The must_no_source and may_no_source elements of the result
2287 * are subsets of access->sink. The elements must_dep and may_dep
2288 * map domain elements of access->{may,must)_source to
2289 * domain elements of access->sink.
2291 * This function is used when a schedule tree representation
2294 * We extract the individual scheduled source and sink access relations and
2295 * then compute dependences for each scheduled sink individually.
2297 static __isl_give isl_union_flow
*compute_flow_schedule(
2298 __isl_take isl_union_access_info
*access
)
2300 struct isl_compute_flow_schedule_data data
= { access
};
2303 isl_union_flow
*flow
;
2305 ctx
= isl_union_access_info_get_ctx(access
);
2309 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
2310 &count_sink_source
, &data
) < 0)
2313 n
= data
.n_sink
+ data
.n_source
;
2314 data
.sink
= isl_calloc_array(ctx
, struct isl_scheduled_access
, n
);
2315 if (n
&& !data
.sink
)
2317 data
.source
= data
.sink
+ data
.n_sink
;
2321 if (isl_schedule_foreach_schedule_node_top_down(access
->schedule
,
2322 &collect_sink_source
, &data
) < 0)
2325 flow
= isl_union_flow_alloc(isl_union_map_get_space(access
->sink
));
2327 isl_compute_flow_schedule_data_align_params(&data
);
2329 for (i
= 0; i
< data
.n_sink
; ++i
)
2330 flow
= compute_single_flow(flow
, &data
.sink
[i
], &data
);
2332 isl_compute_flow_schedule_data_clear(&data
);
2334 isl_union_access_info_free(access
);
2337 isl_union_access_info_free(access
);
2338 isl_compute_flow_schedule_data_clear(&data
);
2342 /* Given a description of the "sink" accesses, the "source" accesses and
2343 * a schedule, compute for each instance of a sink access
2344 * and for each element accessed by that instance,
2345 * the possible or definite source accesses that last accessed the
2346 * element accessed by the sink access before this sink access
2347 * in the sense that there is no intermediate definite source access.
2349 * The must_no_source and may_no_source elements of the result
2350 * are subsets of access->sink. The elements must_dep and may_dep
2351 * map domain elements of access->{may,must)_source to
2352 * domain elements of access->sink.
2354 * We check whether the schedule is available as a schedule tree
2355 * or a schedule map and call the correpsonding function to perform
2358 __isl_give isl_union_flow
*isl_union_access_info_compute_flow(
2359 __isl_take isl_union_access_info
*access
)
2361 access
= isl_union_access_info_normalize(access
);
2364 if (access
->schedule
)
2365 return compute_flow_schedule(access
);
2367 return compute_flow_union_map(access
);
2370 /* Given a collection of "sink" and "source" accesses,
2371 * compute for each iteration of a sink access
2372 * and for each element accessed by that iteration,
2373 * the source access in the list that last accessed the
2374 * element accessed by the sink access before this sink access.
2375 * Each access is given as a map from the loop iterators
2376 * to the array indices.
2377 * The result is a relations between source and sink
2378 * iterations and a subset of the domain of the sink accesses,
2379 * corresponding to those iterations that access an element
2380 * not previously accessed.
2382 * We collect the inputs in an isl_union_access_info object,
2383 * call isl_union_access_info_compute_flow and extract
2384 * the outputs from the result.
2386 int isl_union_map_compute_flow(__isl_take isl_union_map
*sink
,
2387 __isl_take isl_union_map
*must_source
,
2388 __isl_take isl_union_map
*may_source
,
2389 __isl_take isl_union_map
*schedule
,
2390 __isl_give isl_union_map
**must_dep
, __isl_give isl_union_map
**may_dep
,
2391 __isl_give isl_union_map
**must_no_source
,
2392 __isl_give isl_union_map
**may_no_source
)
2394 isl_union_access_info
*access
;
2395 isl_union_flow
*flow
;
2397 access
= isl_union_access_info_from_sink(sink
);
2398 access
= isl_union_access_info_set_must_source(access
, must_source
);
2399 access
= isl_union_access_info_set_may_source(access
, may_source
);
2400 access
= isl_union_access_info_set_schedule_map(access
, schedule
);
2401 flow
= isl_union_access_info_compute_flow(access
);
2404 *must_dep
= isl_union_flow_get_must_dependence(flow
);
2406 *may_dep
= isl_union_flow_get_non_must_dependence(flow
);
2408 *must_no_source
= isl_union_flow_get_must_no_source(flow
);
2410 *may_no_source
= isl_union_flow_get_non_must_no_source(flow
);
2412 isl_union_flow_free(flow
);
2414 if ((must_dep
&& !*must_dep
) || (may_dep
&& !*may_dep
) ||
2415 (must_no_source
&& !*must_no_source
) ||
2416 (may_no_source
&& !*may_no_source
))
2422 *must_dep
= isl_union_map_free(*must_dep
);
2424 *may_dep
= isl_union_map_free(*may_dep
);
2426 *must_no_source
= isl_union_map_free(*must_no_source
);
2428 *may_no_source
= isl_union_map_free(*may_no_source
);