2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
29 #include <set_from_map.c>
31 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
33 isl_int
*t
= bmap
->eq
[a
];
34 bmap
->eq
[a
] = bmap
->eq
[b
];
38 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
41 isl_int
*t
= bmap
->ineq
[a
];
42 bmap
->ineq
[a
] = bmap
->ineq
[b
];
47 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
49 isl_seq_cpy(c
, c
+ n
, rem
);
50 isl_seq_clr(c
+ rem
, n
);
53 /* Drop n dimensions starting at first.
55 * In principle, this frees up some extra variables as the number
56 * of columns remains constant, but we would have to extend
57 * the div array too as the number of rows in this array is assumed
58 * to be equal to extra.
60 struct isl_basic_set
*isl_basic_set_drop_dims(
61 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
68 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
70 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
73 bset
= isl_basic_set_cow(bset
);
77 for (i
= 0; i
< bset
->n_eq
; ++i
)
78 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
79 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
81 for (i
= 0; i
< bset
->n_ineq
; ++i
)
82 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
83 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
85 for (i
= 0; i
< bset
->n_div
; ++i
)
86 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
87 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
89 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
93 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
94 bset
= isl_basic_set_simplify(bset
);
95 return isl_basic_set_finalize(bset
);
97 isl_basic_set_free(bset
);
101 struct isl_set
*isl_set_drop_dims(
102 struct isl_set
*set
, unsigned first
, unsigned n
)
109 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
111 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
113 set
= isl_set_cow(set
);
116 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
120 for (i
= 0; i
< set
->n
; ++i
) {
121 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
126 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
133 /* Move "n" divs starting at "first" to the end of the list of divs.
135 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
136 unsigned first
, unsigned n
)
141 if (first
+ n
== bmap
->n_div
)
144 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
147 for (i
= 0; i
< n
; ++i
)
148 div
[i
] = bmap
->div
[first
+ i
];
149 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
150 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
151 for (i
= 0; i
< n
; ++i
)
152 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
156 isl_basic_map_free(bmap
);
160 /* Drop "n" dimensions of type "type" starting at "first".
162 * In principle, this frees up some extra variables as the number
163 * of columns remains constant, but we would have to extend
164 * the div array too as the number of rows in this array is assumed
165 * to be equal to extra.
167 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
168 enum isl_dim_type type
, unsigned first
, unsigned n
)
178 dim
= isl_basic_map_dim(bmap
, type
);
179 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
181 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
184 bmap
= isl_basic_map_cow(bmap
);
188 offset
= isl_basic_map_offset(bmap
, type
) + first
;
189 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
190 for (i
= 0; i
< bmap
->n_eq
; ++i
)
191 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
193 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
194 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
196 for (i
= 0; i
< bmap
->n_div
; ++i
)
197 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
199 if (type
== isl_dim_div
) {
200 bmap
= move_divs_last(bmap
, first
, n
);
203 if (isl_basic_map_free_div(bmap
, n
) < 0)
204 return isl_basic_map_free(bmap
);
206 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
210 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
211 bmap
= isl_basic_map_simplify(bmap
);
212 return isl_basic_map_finalize(bmap
);
214 isl_basic_map_free(bmap
);
218 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
219 enum isl_dim_type type
, unsigned first
, unsigned n
)
221 return bset_from_bmap(isl_basic_map_drop(bset_to_bmap(bset
),
225 struct isl_basic_map
*isl_basic_map_drop_inputs(
226 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
228 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
231 struct isl_map
*isl_map_drop(struct isl_map
*map
,
232 enum isl_dim_type type
, unsigned first
, unsigned n
)
239 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
241 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
243 map
= isl_map_cow(map
);
246 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
250 for (i
= 0; i
< map
->n
; ++i
) {
251 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
255 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
263 struct isl_set
*isl_set_drop(struct isl_set
*set
,
264 enum isl_dim_type type
, unsigned first
, unsigned n
)
266 return set_from_map(isl_map_drop(set_to_map(set
), type
, first
, n
));
269 struct isl_map
*isl_map_drop_inputs(
270 struct isl_map
*map
, unsigned first
, unsigned n
)
272 return isl_map_drop(map
, isl_dim_in
, first
, n
);
276 * We don't cow, as the div is assumed to be redundant.
278 __isl_give isl_basic_map
*isl_basic_map_drop_div(
279 __isl_take isl_basic_map
*bmap
, unsigned div
)
287 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
289 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
291 for (i
= 0; i
< bmap
->n_eq
; ++i
)
292 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
294 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
295 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
296 isl_basic_map_drop_inequality(bmap
, i
);
300 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
303 for (i
= 0; i
< bmap
->n_div
; ++i
)
304 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
306 if (div
!= bmap
->n_div
- 1) {
308 isl_int
*t
= bmap
->div
[div
];
310 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
311 bmap
->div
[j
] = bmap
->div
[j
+1];
313 bmap
->div
[bmap
->n_div
- 1] = t
;
315 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
316 isl_basic_map_free_div(bmap
, 1);
320 isl_basic_map_free(bmap
);
324 struct isl_basic_map
*isl_basic_map_normalize_constraints(
325 struct isl_basic_map
*bmap
)
329 unsigned total
= isl_basic_map_total_dim(bmap
);
335 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
336 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
337 if (isl_int_is_zero(gcd
)) {
338 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
339 bmap
= isl_basic_map_set_to_empty(bmap
);
342 isl_basic_map_drop_equality(bmap
, i
);
345 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
346 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
347 if (isl_int_is_one(gcd
))
349 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
350 bmap
= isl_basic_map_set_to_empty(bmap
);
353 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
356 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
357 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
358 if (isl_int_is_zero(gcd
)) {
359 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
360 bmap
= isl_basic_map_set_to_empty(bmap
);
363 isl_basic_map_drop_inequality(bmap
, i
);
366 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
367 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
368 if (isl_int_is_one(gcd
))
370 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
371 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
378 struct isl_basic_set
*isl_basic_set_normalize_constraints(
379 struct isl_basic_set
*bset
)
381 isl_basic_map
*bmap
= bset_to_bmap(bset
);
382 return bset_from_bmap(isl_basic_map_normalize_constraints(bmap
));
385 /* Reduce the coefficient of the variable at position "pos"
386 * in integer division "div", such that it lies in the half-open
387 * interval (1/2,1/2], extracting any excess value from this integer division.
388 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
389 * corresponds to the constant term.
391 * That is, the integer division is of the form
393 * floor((... + (c * d + r) * x_pos + ...)/d)
395 * with -d < 2 * r <= d.
398 * floor((... + r * x_pos + ...)/d) + c * x_pos
400 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
401 * Otherwise, c = floor((c * d + r)/d) + 1.
403 * This is the same normalization that is performed by isl_aff_floor.
405 static __isl_give isl_basic_map
*reduce_coefficient_in_div(
406 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
412 isl_int_fdiv_r(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
413 isl_int_mul_ui(shift
, shift
, 2);
414 add_one
= isl_int_gt(shift
, bmap
->div
[div
][0]);
415 isl_int_fdiv_q(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
417 isl_int_add_ui(shift
, shift
, 1);
418 isl_int_neg(shift
, shift
);
419 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
420 isl_int_clear(shift
);
425 /* Does the coefficient of the variable at position "pos"
426 * in integer division "div" need to be reduced?
427 * That is, does it lie outside the half-open interval (1/2,1/2]?
428 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
431 static isl_bool
needs_reduction(__isl_keep isl_basic_map
*bmap
, int div
,
436 if (isl_int_is_zero(bmap
->div
[div
][1 + pos
]))
437 return isl_bool_false
;
439 isl_int_mul_ui(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][1 + pos
], 2);
440 r
= isl_int_abs_ge(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]) &&
441 !isl_int_eq(bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
442 isl_int_divexact_ui(bmap
->div
[div
][1 + pos
],
443 bmap
->div
[div
][1 + pos
], 2);
448 /* Reduce the coefficients (including the constant term) of
449 * integer division "div", if needed.
450 * In particular, make sure all coefficients lie in
451 * the half-open interval (1/2,1/2].
453 static __isl_give isl_basic_map
*reduce_div_coefficients_of_div(
454 __isl_take isl_basic_map
*bmap
, int div
)
457 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
459 for (i
= 0; i
< total
; ++i
) {
462 reduce
= needs_reduction(bmap
, div
, i
);
464 return isl_basic_map_free(bmap
);
467 bmap
= reduce_coefficient_in_div(bmap
, div
, i
);
475 /* Reduce the coefficients (including the constant term) of
476 * the known integer divisions, if needed
477 * In particular, make sure all coefficients lie in
478 * the half-open interval (1/2,1/2].
480 static __isl_give isl_basic_map
*reduce_div_coefficients(
481 __isl_take isl_basic_map
*bmap
)
487 if (bmap
->n_div
== 0)
490 for (i
= 0; i
< bmap
->n_div
; ++i
) {
491 if (isl_int_is_zero(bmap
->div
[i
][0]))
493 bmap
= reduce_div_coefficients_of_div(bmap
, i
);
501 /* Remove any common factor in numerator and denominator of the div expression,
502 * not taking into account the constant term.
503 * That is, if the div is of the form
505 * floor((a + m f(x))/(m d))
509 * floor((floor(a/m) + f(x))/d)
511 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
512 * and can therefore not influence the result of the floor.
514 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
516 unsigned total
= isl_basic_map_total_dim(bmap
);
517 isl_ctx
*ctx
= bmap
->ctx
;
519 if (isl_int_is_zero(bmap
->div
[div
][0]))
521 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
522 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
523 if (isl_int_is_one(ctx
->normalize_gcd
))
525 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
527 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
529 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
530 ctx
->normalize_gcd
, total
);
533 /* Remove any common factor in numerator and denominator of a div expression,
534 * not taking into account the constant term.
535 * That is, look for any div of the form
537 * floor((a + m f(x))/(m d))
541 * floor((floor(a/m) + f(x))/d)
543 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
544 * and can therefore not influence the result of the floor.
546 static __isl_give isl_basic_map
*normalize_div_expressions(
547 __isl_take isl_basic_map
*bmap
)
553 if (bmap
->n_div
== 0)
556 for (i
= 0; i
< bmap
->n_div
; ++i
)
557 normalize_div_expression(bmap
, i
);
562 /* Assumes divs have been ordered if keep_divs is set.
564 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
565 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
568 unsigned space_total
;
572 total
= isl_basic_map_total_dim(bmap
);
573 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
574 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
575 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
576 if (bmap
->eq
[k
] == eq
)
578 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
582 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
583 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
586 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
587 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
591 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
592 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
593 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
596 for (k
= 0; k
< bmap
->n_div
; ++k
) {
597 if (isl_int_is_zero(bmap
->div
[k
][0]))
599 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
603 /* We need to be careful about circular definitions,
604 * so for now we just remove the definition of div k
605 * if the equality contains any divs.
606 * If keep_divs is set, then the divs have been ordered
607 * and we can keep the definition as long as the result
610 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
611 isl_seq_elim(bmap
->div
[k
]+1, eq
,
612 1+pos
, 1+total
, &bmap
->div
[k
][0]);
613 normalize_div_expression(bmap
, k
);
615 isl_seq_clr(bmap
->div
[k
], 1 + total
);
616 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
620 /* Assumes divs have been ordered if keep_divs is set.
622 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
623 isl_int
*eq
, unsigned div
, int keep_divs
)
625 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
627 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
629 bmap
= isl_basic_map_drop_div(bmap
, div
);
634 /* Check if elimination of div "div" using equality "eq" would not
635 * result in a div depending on a later div.
637 static isl_bool
ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
642 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
643 unsigned pos
= space_total
+ div
;
645 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
646 if (last_div
< 0 || last_div
<= div
)
647 return isl_bool_true
;
649 for (k
= 0; k
<= last_div
; ++k
) {
650 if (isl_int_is_zero(bmap
->div
[k
][0]))
652 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
653 return isl_bool_false
;
656 return isl_bool_true
;
659 /* Eliminate divs based on equalities
661 static struct isl_basic_map
*eliminate_divs_eq(
662 struct isl_basic_map
*bmap
, int *progress
)
669 bmap
= isl_basic_map_order_divs(bmap
);
674 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
676 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
677 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
680 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
681 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
683 ok
= ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
);
685 return isl_basic_map_free(bmap
);
690 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
691 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
692 return isl_basic_map_free(bmap
);
697 return eliminate_divs_eq(bmap
, progress
);
701 /* Elimininate divs based on inequalities
703 static struct isl_basic_map
*eliminate_divs_ineq(
704 struct isl_basic_map
*bmap
, int *progress
)
715 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
717 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
718 for (i
= 0; i
< bmap
->n_eq
; ++i
)
719 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
723 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
724 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
726 if (i
< bmap
->n_ineq
)
729 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
730 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
732 bmap
= isl_basic_map_drop_div(bmap
, d
);
739 /* Does the equality constraint at position "eq" in "bmap" involve
740 * any local variables in the range [first, first + n)
741 * that are not marked as having an explicit representation?
743 static isl_bool
bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map
*bmap
,
744 int eq
, unsigned first
, unsigned n
)
750 return isl_bool_error
;
752 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
753 for (i
= 0; i
< n
; ++i
) {
756 if (isl_int_is_zero(bmap
->eq
[eq
][o_div
+ first
+ i
]))
758 unknown
= isl_basic_map_div_is_marked_unknown(bmap
, first
+ i
);
760 return isl_bool_error
;
762 return isl_bool_true
;
765 return isl_bool_false
;
768 /* The last local variable involved in the equality constraint
769 * at position "eq" in "bmap" is the local variable at position "div".
770 * It can therefore be used to extract an explicit representation
772 * Do so unless the local variable already has an explicit representation or
773 * the explicit representation would involve any other local variables
774 * that in turn do not have an explicit representation.
775 * An equality constraint involving local variables without an explicit
776 * representation can be used in isl_basic_map_drop_redundant_divs
777 * to separate out an independent local variable. Introducing
778 * an explicit representation here would block this transformation,
779 * while the partial explicit representation in itself is not very useful.
780 * Set *progress if anything is changed.
782 * The equality constraint is of the form
786 * with n a positive number. The explicit representation derived from
791 static __isl_give isl_basic_map
*set_div_from_eq(__isl_take isl_basic_map
*bmap
,
792 int div
, int eq
, int *progress
)
794 unsigned total
, o_div
;
800 if (!isl_int_is_zero(bmap
->div
[div
][0]))
803 involves
= bmap_eq_involves_unknown_divs(bmap
, eq
, 0, div
);
805 return isl_basic_map_free(bmap
);
809 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
810 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
811 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->eq
[eq
], 1 + total
);
812 isl_int_set_si(bmap
->div
[div
][1 + o_div
+ div
], 0);
813 isl_int_set(bmap
->div
[div
][0], bmap
->eq
[eq
][o_div
+ div
]);
816 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
821 struct isl_basic_map
*isl_basic_map_gauss(
822 struct isl_basic_map
*bmap
, int *progress
)
830 bmap
= isl_basic_map_order_divs(bmap
);
835 total
= isl_basic_map_total_dim(bmap
);
836 total_var
= total
- bmap
->n_div
;
838 last_var
= total
- 1;
839 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
840 for (; last_var
>= 0; --last_var
) {
841 for (k
= done
; k
< bmap
->n_eq
; ++k
)
842 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
850 swap_equality(bmap
, k
, done
);
851 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
852 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
854 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
857 if (last_var
>= total_var
)
858 bmap
= set_div_from_eq(bmap
, last_var
- total_var
,
863 if (done
== bmap
->n_eq
)
865 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
866 if (isl_int_is_zero(bmap
->eq
[k
][0]))
868 return isl_basic_map_set_to_empty(bmap
);
870 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
874 struct isl_basic_set
*isl_basic_set_gauss(
875 struct isl_basic_set
*bset
, int *progress
)
877 return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset
),
882 static unsigned int round_up(unsigned int v
)
893 /* Hash table of inequalities in a basic map.
894 * "index" is an array of addresses of inequalities in the basic map, some
895 * of which are NULL. The inequalities are hashed on the coefficients
896 * except the constant term.
897 * "size" is the number of elements in the array and is always a power of two
898 * "bits" is the number of bits need to represent an index into the array.
899 * "total" is the total dimension of the basic map.
901 struct isl_constraint_index
{
908 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
910 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
911 __isl_keep isl_basic_map
*bmap
)
917 return isl_stat_error
;
918 ci
->total
= isl_basic_set_total_dim(bmap
);
919 if (bmap
->n_ineq
== 0)
921 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
922 ci
->bits
= ffs(ci
->size
) - 1;
923 ctx
= isl_basic_map_get_ctx(bmap
);
924 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
926 return isl_stat_error
;
931 /* Free the memory allocated by create_constraint_index.
933 static void constraint_index_free(struct isl_constraint_index
*ci
)
938 /* Return the position in ci->index that contains the address of
939 * an inequality that is equal to *ineq up to the constant term,
940 * provided this address is not identical to "ineq".
941 * If there is no such inequality, then return the position where
942 * such an inequality should be inserted.
944 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
947 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
948 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
949 if (ineq
!= ci
->index
[h
] &&
950 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
955 /* Return the position in ci->index that contains the address of
956 * an inequality that is equal to the k'th inequality of "bmap"
957 * up to the constant term, provided it does not point to the very
959 * If there is no such inequality, then return the position where
960 * such an inequality should be inserted.
962 static int hash_index(struct isl_constraint_index
*ci
,
963 __isl_keep isl_basic_map
*bmap
, int k
)
965 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
968 static int set_hash_index(struct isl_constraint_index
*ci
,
969 struct isl_basic_set
*bset
, int k
)
971 return hash_index(ci
, bset
, k
);
974 /* Fill in the "ci" data structure with the inequalities of "bset".
976 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
977 __isl_keep isl_basic_set
*bset
)
981 if (create_constraint_index(ci
, bset
) < 0)
982 return isl_stat_error
;
984 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
985 h
= set_hash_index(ci
, bset
, k
);
986 ci
->index
[h
] = &bset
->ineq
[k
];
992 /* Is the inequality ineq (obviously) redundant with respect
993 * to the constraints in "ci"?
995 * Look for an inequality in "ci" with the same coefficients and then
996 * check if the contant term of "ineq" is greater than or equal
997 * to the constant term of that inequality. If so, "ineq" is clearly
1000 * Note that hash_index_ineq ignores a stored constraint if it has
1001 * the same address as the passed inequality. It is ok to pass
1002 * the address of a local variable here since it will never be
1003 * the same as the address of a constraint in "ci".
1005 static isl_bool
constraint_index_is_redundant(struct isl_constraint_index
*ci
,
1010 h
= hash_index_ineq(ci
, &ineq
);
1012 return isl_bool_false
;
1013 return isl_int_ge(ineq
[0], (*ci
->index
[h
])[0]);
1016 /* If we can eliminate more than one div, then we need to make
1017 * sure we do it from last div to first div, in order not to
1018 * change the position of the other divs that still need to
1021 static struct isl_basic_map
*remove_duplicate_divs(
1022 struct isl_basic_map
*bmap
, int *progress
)
1032 struct isl_ctx
*ctx
;
1034 bmap
= isl_basic_map_order_divs(bmap
);
1035 if (!bmap
|| bmap
->n_div
<= 1)
1038 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1039 total
= total_var
+ bmap
->n_div
;
1042 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
1043 if (!isl_int_is_zero(bmap
->div
[k
][0]))
1048 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
1051 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
1052 bits
= ffs(size
) - 1;
1053 index
= isl_calloc_array(ctx
, int, size
);
1054 if (!elim_for
|| !index
)
1056 eq
= isl_blk_alloc(ctx
, 1+total
);
1057 if (isl_blk_is_error(eq
))
1060 isl_seq_clr(eq
.data
, 1+total
);
1061 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
1062 for (--k
; k
>= 0; --k
) {
1065 if (isl_int_is_zero(bmap
->div
[k
][0]))
1068 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
1069 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
1070 if (isl_seq_eq(bmap
->div
[k
],
1071 bmap
->div
[index
[h
]-1], 2+total
))
1076 elim_for
[l
] = k
+ 1;
1080 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
1083 k
= elim_for
[l
] - 1;
1084 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
1085 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
1086 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
1089 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
1090 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
1093 isl_blk_free(ctx
, eq
);
1100 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
1105 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1106 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
1107 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1111 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
1117 /* Normalize divs that appear in equalities.
1119 * In particular, we assume that bmap contains some equalities
1124 * and we want to replace the set of e_i by a minimal set and
1125 * such that the new e_i have a canonical representation in terms
1127 * If any of the equalities involves more than one divs, then
1128 * we currently simply bail out.
1130 * Let us first additionally assume that all equalities involve
1131 * a div. The equalities then express modulo constraints on the
1132 * remaining variables and we can use "parameter compression"
1133 * to find a minimal set of constraints. The result is a transformation
1135 * x = T(x') = x_0 + G x'
1137 * with G a lower-triangular matrix with all elements below the diagonal
1138 * non-negative and smaller than the diagonal element on the same row.
1139 * We first normalize x_0 by making the same property hold in the affine
1141 * The rows i of G with a 1 on the diagonal do not impose any modulo
1142 * constraint and simply express x_i = x'_i.
1143 * For each of the remaining rows i, we introduce a div and a corresponding
1144 * equality. In particular
1146 * g_ii e_j = x_i - g_i(x')
1148 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1149 * corresponding div (if g_kk != 1).
1151 * If there are any equalities not involving any div, then we
1152 * first apply a variable compression on the variables x:
1154 * x = C x'' x'' = C_2 x
1156 * and perform the above parameter compression on A C instead of on A.
1157 * The resulting compression is then of the form
1159 * x'' = T(x') = x_0 + G x'
1161 * and in constructing the new divs and the corresponding equalities,
1162 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1163 * by the corresponding row from C_2.
1165 static struct isl_basic_map
*normalize_divs(
1166 struct isl_basic_map
*bmap
, int *progress
)
1173 struct isl_mat
*T
= NULL
;
1174 struct isl_mat
*C
= NULL
;
1175 struct isl_mat
*C2
= NULL
;
1178 int dropped
, needed
;
1183 if (bmap
->n_div
== 0)
1186 if (bmap
->n_eq
== 0)
1189 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
1192 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1193 div_eq
= n_pure_div_eq(bmap
);
1197 if (div_eq
< bmap
->n_eq
) {
1198 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
1199 bmap
->n_eq
- div_eq
, 0, 1 + total
);
1200 C
= isl_mat_variable_compression(B
, &C2
);
1203 if (C
->n_col
== 0) {
1204 bmap
= isl_basic_map_set_to_empty(bmap
);
1211 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
1214 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
1215 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1217 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
1219 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
1222 B
= isl_mat_product(B
, C
);
1226 T
= isl_mat_parameter_compression(B
, d
);
1229 if (T
->n_col
== 0) {
1230 bmap
= isl_basic_map_set_to_empty(bmap
);
1236 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
1237 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
1238 if (isl_int_is_zero(v
))
1240 isl_mat_col_submul(T
, 0, v
, 1 + i
);
1243 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
1246 /* We have to be careful because dropping equalities may reorder them */
1248 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
1249 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1250 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1252 if (i
< bmap
->n_eq
) {
1253 bmap
= isl_basic_map_drop_div(bmap
, j
);
1254 isl_basic_map_drop_equality(bmap
, i
);
1260 for (i
= 1; i
< T
->n_row
; ++i
) {
1261 if (isl_int_is_one(T
->row
[i
][i
]))
1266 if (needed
> dropped
) {
1267 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1272 for (i
= 1; i
< T
->n_row
; ++i
) {
1273 if (isl_int_is_one(T
->row
[i
][i
]))
1275 k
= isl_basic_map_alloc_div(bmap
);
1276 pos
[i
] = 1 + total
+ k
;
1277 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1278 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1280 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1282 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1283 for (j
= 0; j
< i
; ++j
) {
1284 if (isl_int_is_zero(T
->row
[i
][j
]))
1286 if (pos
[j
] < T
->n_row
&& C2
)
1287 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1288 C2
->row
[pos
[j
]], 1 + total
);
1290 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1293 j
= isl_basic_map_alloc_equality(bmap
);
1294 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1295 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1304 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1315 static struct isl_basic_map
*set_div_from_lower_bound(
1316 struct isl_basic_map
*bmap
, int div
, int ineq
)
1318 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1320 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1321 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1322 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1323 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1324 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1329 /* Check whether it is ok to define a div based on an inequality.
1330 * To avoid the introduction of circular definitions of divs, we
1331 * do not allow such a definition if the resulting expression would refer to
1332 * any other undefined divs or if any known div is defined in
1333 * terms of the unknown div.
1335 static isl_bool
ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1339 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1341 /* Not defined in terms of unknown divs */
1342 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1345 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1347 if (isl_int_is_zero(bmap
->div
[j
][0]))
1348 return isl_bool_false
;
1351 /* No other div defined in terms of this one => avoid loops */
1352 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1355 if (isl_int_is_zero(bmap
->div
[j
][0]))
1357 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1358 return isl_bool_false
;
1361 return isl_bool_true
;
1364 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1365 * be a better expression than the current one?
1367 * If we do not have any expression yet, then any expression would be better.
1368 * Otherwise we check if the last variable involved in the inequality
1369 * (disregarding the div that it would define) is in an earlier position
1370 * than the last variable involved in the current div expression.
1372 static isl_bool
better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1375 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1379 if (isl_int_is_zero(bmap
->div
[div
][0]))
1380 return isl_bool_true
;
1382 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1383 bmap
->n_div
- (div
+ 1)) >= 0)
1384 return isl_bool_false
;
1386 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1387 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1388 total
+ bmap
->n_div
);
1390 return last_ineq
< last_div
;
1393 /* Given two constraints "k" and "l" that are opposite to each other,
1394 * except for the constant term, check if we can use them
1395 * to obtain an expression for one of the hitherto unknown divs or
1396 * a "better" expression for a div for which we already have an expression.
1397 * "sum" is the sum of the constant terms of the constraints.
1398 * If this sum is strictly smaller than the coefficient of one
1399 * of the divs, then this pair can be used define the div.
1400 * To avoid the introduction of circular definitions of divs, we
1401 * do not use the pair if the resulting expression would refer to
1402 * any other undefined divs or if any known div is defined in
1403 * terms of the unknown div.
1405 static struct isl_basic_map
*check_for_div_constraints(
1406 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1409 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1411 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1414 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1416 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1418 set_div
= better_div_constraint(bmap
, i
, k
);
1419 if (set_div
>= 0 && set_div
)
1420 set_div
= ok_to_set_div_from_bound(bmap
, i
, k
);
1422 return isl_basic_map_free(bmap
);
1425 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1426 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1428 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1436 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1437 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1439 struct isl_constraint_index ci
;
1441 unsigned total
= isl_basic_map_total_dim(bmap
);
1444 if (!bmap
|| bmap
->n_ineq
<= 1)
1447 if (create_constraint_index(&ci
, bmap
) < 0)
1450 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1451 ci
.index
[h
] = &bmap
->ineq
[0];
1452 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1453 h
= hash_index(&ci
, bmap
, k
);
1455 ci
.index
[h
] = &bmap
->ineq
[k
];
1460 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1461 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1462 swap_inequality(bmap
, k
, l
);
1463 isl_basic_map_drop_inequality(bmap
, k
);
1467 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1468 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1469 h
= hash_index(&ci
, bmap
, k
);
1470 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1473 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1474 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1475 if (isl_int_is_pos(sum
)) {
1477 bmap
= check_for_div_constraints(bmap
, k
, l
,
1481 if (isl_int_is_zero(sum
)) {
1482 /* We need to break out of the loop after these
1483 * changes since the contents of the hash
1484 * will no longer be valid.
1485 * Plus, we probably we want to regauss first.
1489 isl_basic_map_drop_inequality(bmap
, l
);
1490 isl_basic_map_inequality_to_equality(bmap
, k
);
1492 bmap
= isl_basic_map_set_to_empty(bmap
);
1497 constraint_index_free(&ci
);
1501 /* Detect all pairs of inequalities that form an equality.
1503 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1504 * Call it repeatedly while it is making progress.
1506 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1507 __isl_take isl_basic_map
*bmap
, int *progress
)
1513 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1515 if (progress
&& duplicate
)
1517 } while (duplicate
);
1522 /* Eliminate knowns divs from constraints where they appear with
1523 * a (positive or negative) unit coefficient.
1527 * floor(e/m) + f >= 0
1535 * -floor(e/m) + f >= 0
1539 * -e + m f + m - 1 >= 0
1541 * The first conversion is valid because floor(e/m) >= -f is equivalent
1542 * to e/m >= -f because -f is an integral expression.
1543 * The second conversion follows from the fact that
1545 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1548 * Note that one of the div constraints may have been eliminated
1549 * due to being redundant with respect to the constraint that is
1550 * being modified by this function. The modified constraint may
1551 * no longer imply this div constraint, so we add it back to make
1552 * sure we do not lose any information.
1554 * We skip integral divs, i.e., those with denominator 1, as we would
1555 * risk eliminating the div from the div constraints. We do not need
1556 * to handle those divs here anyway since the div constraints will turn
1557 * out to form an equality and this equality can then be used to eliminate
1558 * the div from all constraints.
1560 static __isl_give isl_basic_map
*eliminate_unit_divs(
1561 __isl_take isl_basic_map
*bmap
, int *progress
)
1570 ctx
= isl_basic_map_get_ctx(bmap
);
1571 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1573 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1574 if (isl_int_is_zero(bmap
->div
[i
][0]))
1576 if (isl_int_is_one(bmap
->div
[i
][0]))
1578 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1581 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1582 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1587 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1588 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1590 isl_seq_combine(bmap
->ineq
[j
],
1591 ctx
->negone
, bmap
->div
[i
] + 1,
1592 bmap
->div
[i
][0], bmap
->ineq
[j
],
1593 total
+ bmap
->n_div
);
1595 isl_seq_combine(bmap
->ineq
[j
],
1596 ctx
->one
, bmap
->div
[i
] + 1,
1597 bmap
->div
[i
][0], bmap
->ineq
[j
],
1598 total
+ bmap
->n_div
);
1600 isl_int_add(bmap
->ineq
[j
][0],
1601 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1602 isl_int_sub_ui(bmap
->ineq
[j
][0],
1603 bmap
->ineq
[j
][0], 1);
1606 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1607 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1608 return isl_basic_map_free(bmap
);
1615 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1624 empty
= isl_basic_map_plain_is_empty(bmap
);
1626 return isl_basic_map_free(bmap
);
1629 bmap
= isl_basic_map_normalize_constraints(bmap
);
1630 bmap
= reduce_div_coefficients(bmap
);
1631 bmap
= normalize_div_expressions(bmap
);
1632 bmap
= remove_duplicate_divs(bmap
, &progress
);
1633 bmap
= eliminate_unit_divs(bmap
, &progress
);
1634 bmap
= eliminate_divs_eq(bmap
, &progress
);
1635 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1636 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1637 /* requires equalities in normal form */
1638 bmap
= normalize_divs(bmap
, &progress
);
1639 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1641 if (bmap
&& progress
)
1642 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1647 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1649 return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset
)));
1653 isl_bool
isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1654 isl_int
*constraint
, unsigned div
)
1659 return isl_bool_error
;
1661 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1663 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1665 isl_int_sub(bmap
->div
[div
][1],
1666 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1667 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1668 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1669 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1670 isl_int_add(bmap
->div
[div
][1],
1671 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1673 return isl_bool_false
;
1674 if (isl_seq_first_non_zero(constraint
+pos
+1,
1675 bmap
->n_div
-div
-1) != -1)
1676 return isl_bool_false
;
1677 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1678 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1679 return isl_bool_false
;
1680 if (isl_seq_first_non_zero(constraint
+pos
+1,
1681 bmap
->n_div
-div
-1) != -1)
1682 return isl_bool_false
;
1684 return isl_bool_false
;
1686 return isl_bool_true
;
1689 isl_bool
isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1690 isl_int
*constraint
, unsigned div
)
1692 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1696 /* If the only constraints a div d=floor(f/m)
1697 * appears in are its two defining constraints
1700 * -(f - (m - 1)) + m d >= 0
1702 * then it can safely be removed.
1704 static isl_bool
div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1707 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1709 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1710 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1711 return isl_bool_false
;
1713 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1716 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1718 red
= isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
);
1719 if (red
< 0 || !red
)
1723 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1724 if (isl_int_is_zero(bmap
->div
[i
][0]))
1726 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1727 return isl_bool_false
;
1730 return isl_bool_true
;
1734 * Remove divs that don't occur in any of the constraints or other divs.
1735 * These can arise when dropping constraints from a basic map or
1736 * when the divs of a basic map have been temporarily aligned
1737 * with the divs of another basic map.
1739 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1746 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1749 redundant
= div_is_redundant(bmap
, i
);
1751 return isl_basic_map_free(bmap
);
1754 bmap
= isl_basic_map_drop_div(bmap
, i
);
1759 /* Mark "bmap" as final, without checking for obviously redundant
1760 * integer divisions. This function should be used when "bmap"
1761 * is known not to involve any such integer divisions.
1763 __isl_give isl_basic_map
*isl_basic_map_mark_final(
1764 __isl_take isl_basic_map
*bmap
)
1768 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1772 /* Mark "bmap" as final, after removing obviously redundant integer divisions.
1774 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1776 bmap
= remove_redundant_divs(bmap
);
1777 bmap
= isl_basic_map_mark_final(bmap
);
1781 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1783 return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset
)));
1786 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1792 for (i
= 0; i
< set
->n
; ++i
) {
1793 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1803 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1809 for (i
= 0; i
< map
->n
; ++i
) {
1810 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1814 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1822 /* Remove definition of any div that is defined in terms of the given variable.
1823 * The div itself is not removed. Functions such as
1824 * eliminate_divs_ineq depend on the other divs remaining in place.
1826 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1834 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1835 if (isl_int_is_zero(bmap
->div
[i
][0]))
1837 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1839 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
1846 /* Eliminate the specified variables from the constraints using
1847 * Fourier-Motzkin. The variables themselves are not removed.
1849 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1850 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1861 total
= isl_basic_map_total_dim(bmap
);
1863 bmap
= isl_basic_map_cow(bmap
);
1864 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1865 bmap
= remove_dependent_vars(bmap
, d
);
1869 for (d
= pos
+ n
- 1;
1870 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1871 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1872 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1873 int n_lower
, n_upper
;
1876 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1877 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1879 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1880 isl_basic_map_drop_equality(bmap
, i
);
1888 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1889 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1891 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1894 bmap
= isl_basic_map_extend_constraints(bmap
,
1895 0, n_lower
* n_upper
);
1898 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1900 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1903 for (j
= 0; j
< i
; ++j
) {
1904 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1907 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1908 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1910 k
= isl_basic_map_alloc_inequality(bmap
);
1913 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1915 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1916 1+d
, 1+total
, NULL
);
1918 isl_basic_map_drop_inequality(bmap
, i
);
1921 if (n_lower
> 0 && n_upper
> 0) {
1922 bmap
= isl_basic_map_normalize_constraints(bmap
);
1923 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1925 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1926 bmap
= isl_basic_map_remove_redundancies(bmap
);
1930 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1934 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1936 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1939 isl_basic_map_free(bmap
);
1943 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1944 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1946 return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset
),
1950 /* Eliminate the specified n dimensions starting at first from the
1951 * constraints, without removing the dimensions from the space.
1952 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1953 * Otherwise, they are projected out and the original space is restored.
1955 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1956 __isl_take isl_basic_map
*bmap
,
1957 enum isl_dim_type type
, unsigned first
, unsigned n
)
1966 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1967 isl_die(bmap
->ctx
, isl_error_invalid
,
1968 "index out of bounds", goto error
);
1970 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1971 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1972 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1973 return isl_basic_map_finalize(bmap
);
1976 space
= isl_basic_map_get_space(bmap
);
1977 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1978 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1979 bmap
= isl_basic_map_reset_space(bmap
, space
);
1982 isl_basic_map_free(bmap
);
1986 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1987 __isl_take isl_basic_set
*bset
,
1988 enum isl_dim_type type
, unsigned first
, unsigned n
)
1990 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1993 /* Remove all constraints from "bmap" that reference any unknown local
1994 * variables (directly or indirectly).
1996 * Dropping all constraints on a local variable will make it redundant,
1997 * so it will get removed implicitly by
1998 * isl_basic_map_drop_constraints_involving_dims. Some other local
1999 * variables may also end up becoming redundant if they only appear
2000 * in constraints together with the unknown local variable.
2001 * Therefore, start over after calling
2002 * isl_basic_map_drop_constraints_involving_dims.
2004 __isl_give isl_basic_map
*isl_basic_map_drop_constraint_involving_unknown_divs(
2005 __isl_take isl_basic_map
*bmap
)
2008 int i
, n_div
, o_div
;
2010 known
= isl_basic_map_divs_known(bmap
);
2012 return isl_basic_map_free(bmap
);
2016 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2017 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
) - 1;
2019 for (i
= 0; i
< n_div
; ++i
) {
2020 known
= isl_basic_map_div_is_known(bmap
, i
);
2022 return isl_basic_map_free(bmap
);
2025 bmap
= remove_dependent_vars(bmap
, o_div
+ i
);
2026 bmap
= isl_basic_map_drop_constraints_involving_dims(bmap
,
2030 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2037 /* Remove all constraints from "map" that reference any unknown local
2038 * variables (directly or indirectly).
2040 * Since constraints may get dropped from the basic maps,
2041 * they may no longer be disjoint from each other.
2043 __isl_give isl_map
*isl_map_drop_constraint_involving_unknown_divs(
2044 __isl_take isl_map
*map
)
2049 known
= isl_map_divs_known(map
);
2051 return isl_map_free(map
);
2055 map
= isl_map_cow(map
);
2059 for (i
= 0; i
< map
->n
; ++i
) {
2061 isl_basic_map_drop_constraint_involving_unknown_divs(
2064 return isl_map_free(map
);
2068 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
2073 /* Don't assume equalities are in order, because align_divs
2074 * may have changed the order of the divs.
2076 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
2081 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2082 for (d
= 0; d
< total
; ++d
)
2084 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2085 for (d
= total
- 1; d
>= 0; --d
) {
2086 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
2094 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
2096 compute_elimination_index(bset_to_bmap(bset
), elim
);
2099 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2100 struct isl_basic_map
*bmap
, int *elim
)
2106 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2107 for (d
= total
- 1; d
>= 0; --d
) {
2108 if (isl_int_is_zero(src
[1+d
]))
2113 isl_seq_cpy(dst
, src
, 1 + total
);
2116 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
2121 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
2122 struct isl_basic_set
*bset
, int *elim
)
2124 return reduced_using_equalities(dst
, src
,
2125 bset_to_bmap(bset
), elim
);
2128 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
2129 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2134 if (!bset
|| !context
)
2137 if (context
->n_eq
== 0) {
2138 isl_basic_set_free(context
);
2142 bset
= isl_basic_set_cow(bset
);
2146 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
2149 set_compute_elimination_index(context
, elim
);
2150 for (i
= 0; i
< bset
->n_eq
; ++i
)
2151 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
2153 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2154 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
2156 isl_basic_set_free(context
);
2158 bset
= isl_basic_set_simplify(bset
);
2159 bset
= isl_basic_set_finalize(bset
);
2162 isl_basic_set_free(bset
);
2163 isl_basic_set_free(context
);
2167 /* For each inequality in "ineq" that is a shifted (more relaxed)
2168 * copy of an inequality in "context", mark the corresponding entry
2170 * If an inequality only has a non-negative constant term, then
2173 static isl_stat
mark_shifted_constraints(__isl_keep isl_mat
*ineq
,
2174 __isl_keep isl_basic_set
*context
, int *row
)
2176 struct isl_constraint_index ci
;
2181 if (!ineq
|| !context
)
2182 return isl_stat_error
;
2183 if (context
->n_ineq
== 0)
2185 if (setup_constraint_index(&ci
, context
) < 0)
2186 return isl_stat_error
;
2188 n_ineq
= isl_mat_rows(ineq
);
2189 total
= isl_mat_cols(ineq
) - 1;
2190 for (k
= 0; k
< n_ineq
; ++k
) {
2194 l
= isl_seq_first_non_zero(ineq
->row
[k
] + 1, total
);
2195 if (l
< 0 && isl_int_is_nonneg(ineq
->row
[k
][0])) {
2199 redundant
= constraint_index_is_redundant(&ci
, ineq
->row
[k
]);
2206 constraint_index_free(&ci
);
2209 constraint_index_free(&ci
);
2210 return isl_stat_error
;
2213 static struct isl_basic_set
*remove_shifted_constraints(
2214 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
2216 struct isl_constraint_index ci
;
2219 if (!bset
|| !context
)
2222 if (context
->n_ineq
== 0)
2224 if (setup_constraint_index(&ci
, context
) < 0)
2227 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
2230 redundant
= constraint_index_is_redundant(&ci
, bset
->ineq
[k
]);
2235 bset
= isl_basic_set_cow(bset
);
2238 isl_basic_set_drop_inequality(bset
, k
);
2241 constraint_index_free(&ci
);
2244 constraint_index_free(&ci
);
2248 /* Remove constraints from "bmap" that are identical to constraints
2249 * in "context" or that are more relaxed (greater constant term).
2251 * We perform the test for shifted copies on the pure constraints
2252 * in remove_shifted_constraints.
2254 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
2255 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
2257 isl_basic_set
*bset
, *bset_context
;
2259 if (!bmap
|| !context
)
2262 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
2263 isl_basic_map_free(context
);
2267 context
= isl_basic_map_align_divs(context
, bmap
);
2268 bmap
= isl_basic_map_align_divs(bmap
, context
);
2270 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
2271 bset_context
= isl_basic_map_underlying_set(context
);
2272 bset
= remove_shifted_constraints(bset
, bset_context
);
2273 isl_basic_set_free(bset_context
);
2275 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2279 isl_basic_map_free(bmap
);
2280 isl_basic_map_free(context
);
2284 /* Does the (linear part of a) constraint "c" involve any of the "len"
2285 * "relevant" dimensions?
2287 static int is_related(isl_int
*c
, int len
, int *relevant
)
2291 for (i
= 0; i
< len
; ++i
) {
2294 if (!isl_int_is_zero(c
[i
]))
2301 /* Drop constraints from "bmap" that do not involve any of
2302 * the dimensions marked "relevant".
2304 static __isl_give isl_basic_map
*drop_unrelated_constraints(
2305 __isl_take isl_basic_map
*bmap
, int *relevant
)
2309 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2310 for (i
= 0; i
< dim
; ++i
)
2316 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
)
2317 if (!is_related(bmap
->eq
[i
] + 1, dim
, relevant
)) {
2318 bmap
= isl_basic_map_cow(bmap
);
2319 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
2320 return isl_basic_map_free(bmap
);
2323 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
)
2324 if (!is_related(bmap
->ineq
[i
] + 1, dim
, relevant
)) {
2325 bmap
= isl_basic_map_cow(bmap
);
2326 if (isl_basic_map_drop_inequality(bmap
, i
) < 0)
2327 return isl_basic_map_free(bmap
);
2333 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2335 * In particular, for any variable involved in the constraint,
2336 * find the actual group id from before and replace the group
2337 * of the corresponding variable by the minimal group of all
2338 * the variables involved in the constraint considered so far
2339 * (if this minimum is smaller) or replace the minimum by this group
2340 * (if the minimum is larger).
2342 * At the end, all the variables in "c" will (indirectly) point
2343 * to the minimal of the groups that they referred to originally.
2345 static void update_groups(int dim
, int *group
, isl_int
*c
)
2350 for (j
= 0; j
< dim
; ++j
) {
2351 if (isl_int_is_zero(c
[j
]))
2353 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2354 group
[j
] = group
[group
[j
]];
2355 if (group
[j
] == min
)
2357 if (group
[j
] < min
) {
2358 if (min
>= 0 && min
< dim
)
2359 group
[min
] = group
[j
];
2362 group
[group
[j
]] = min
;
2366 /* Allocate an array of groups of variables, one for each variable
2367 * in "context", initialized to zero.
2369 static int *alloc_groups(__isl_keep isl_basic_set
*context
)
2374 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2375 ctx
= isl_basic_set_get_ctx(context
);
2376 return isl_calloc_array(ctx
, int, dim
);
2379 /* Drop constraints from "bmap" that only involve variables that are
2380 * not related to any of the variables marked with a "-1" in "group".
2382 * We construct groups of variables that collect variables that
2383 * (indirectly) appear in some common constraint of "bmap".
2384 * Each group is identified by the first variable in the group,
2385 * except for the special group of variables that was already identified
2386 * in the input as -1 (or are related to those variables).
2387 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2388 * otherwise the group of i is the group of group[i].
2390 * We first initialize groups for the remaining variables.
2391 * Then we iterate over the constraints of "bmap" and update the
2392 * group of the variables in the constraint by the smallest group.
2393 * Finally, we resolve indirect references to groups by running over
2396 * After computing the groups, we drop constraints that do not involve
2397 * any variables in the -1 group.
2399 __isl_give isl_basic_map
*isl_basic_map_drop_unrelated_constraints(
2400 __isl_take isl_basic_map
*bmap
, __isl_take
int *group
)
2409 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
2412 for (i
= 0; i
< dim
; ++i
)
2414 last
= group
[i
] = i
;
2420 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2421 update_groups(dim
, group
, bmap
->eq
[i
] + 1);
2422 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
2423 update_groups(dim
, group
, bmap
->ineq
[i
] + 1);
2425 for (i
= 0; i
< dim
; ++i
)
2427 group
[i
] = group
[group
[i
]];
2429 for (i
= 0; i
< dim
; ++i
)
2430 group
[i
] = group
[i
] == -1;
2432 bmap
= drop_unrelated_constraints(bmap
, group
);
2438 /* Drop constraints from "context" that are irrelevant for computing
2439 * the gist of "bset".
2441 * In particular, drop constraints in variables that are not related
2442 * to any of the variables involved in the constraints of "bset"
2443 * in the sense that there is no sequence of constraints that connects them.
2445 * We first mark all variables that appear in "bset" as belonging
2446 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2448 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2449 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2455 if (!context
|| !bset
)
2456 return isl_basic_set_free(context
);
2458 group
= alloc_groups(context
);
2461 return isl_basic_set_free(context
);
2463 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2464 for (i
= 0; i
< dim
; ++i
) {
2465 for (j
= 0; j
< bset
->n_eq
; ++j
)
2466 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2468 if (j
< bset
->n_eq
) {
2472 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2473 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2475 if (j
< bset
->n_ineq
)
2479 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2482 /* Drop constraints from "context" that are irrelevant for computing
2483 * the gist of the inequalities "ineq".
2484 * Inequalities in "ineq" for which the corresponding element of row
2485 * is set to -1 have already been marked for removal and should be ignored.
2487 * In particular, drop constraints in variables that are not related
2488 * to any of the variables involved in "ineq"
2489 * in the sense that there is no sequence of constraints that connects them.
2491 * We first mark all variables that appear in "bset" as belonging
2492 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2494 static __isl_give isl_basic_set
*drop_irrelevant_constraints_marked(
2495 __isl_take isl_basic_set
*context
, __isl_keep isl_mat
*ineq
, int *row
)
2501 if (!context
|| !ineq
)
2502 return isl_basic_set_free(context
);
2504 group
= alloc_groups(context
);
2507 return isl_basic_set_free(context
);
2509 dim
= isl_basic_set_dim(context
, isl_dim_set
);
2510 n
= isl_mat_rows(ineq
);
2511 for (i
= 0; i
< dim
; ++i
) {
2512 for (j
= 0; j
< n
; ++j
) {
2515 if (!isl_int_is_zero(ineq
->row
[j
][1 + i
]))
2522 return isl_basic_map_drop_unrelated_constraints(context
, group
);
2525 /* Do all "n" entries of "row" contain a negative value?
2527 static int all_neg(int *row
, int n
)
2531 for (i
= 0; i
< n
; ++i
)
2538 /* Update the inequalities in "bset" based on the information in "row"
2541 * In particular, the array "row" contains either -1, meaning that
2542 * the corresponding inequality of "bset" is redundant, or the index
2543 * of an inequality in "tab".
2545 * If the row entry is -1, then drop the inequality.
2546 * Otherwise, if the constraint is marked redundant in the tableau,
2547 * then drop the inequality. Similarly, if it is marked as an equality
2548 * in the tableau, then turn the inequality into an equality and
2549 * perform Gaussian elimination.
2551 static __isl_give isl_basic_set
*update_ineq(__isl_take isl_basic_set
*bset
,
2552 __isl_keep
int *row
, struct isl_tab
*tab
)
2557 int found_equality
= 0;
2561 if (tab
&& tab
->empty
)
2562 return isl_basic_set_set_to_empty(bset
);
2564 n_ineq
= bset
->n_ineq
;
2565 for (i
= n_ineq
- 1; i
>= 0; --i
) {
2567 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2568 return isl_basic_set_free(bset
);
2574 if (isl_tab_is_equality(tab
, n_eq
+ row
[i
])) {
2575 isl_basic_map_inequality_to_equality(bset
, i
);
2577 } else if (isl_tab_is_redundant(tab
, n_eq
+ row
[i
])) {
2578 if (isl_basic_set_drop_inequality(bset
, i
) < 0)
2579 return isl_basic_set_free(bset
);
2584 bset
= isl_basic_set_gauss(bset
, NULL
);
2585 bset
= isl_basic_set_finalize(bset
);
2589 /* Update the inequalities in "bset" based on the information in "row"
2590 * and "tab" and free all arguments (other than "bset").
2592 static __isl_give isl_basic_set
*update_ineq_free(
2593 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*ineq
,
2594 __isl_take isl_basic_set
*context
, __isl_take
int *row
,
2595 struct isl_tab
*tab
)
2598 isl_basic_set_free(context
);
2600 bset
= update_ineq(bset
, row
, tab
);
2607 /* Remove all information from bset that is redundant in the context
2609 * "ineq" contains the (possibly transformed) inequalities of "bset",
2610 * in the same order.
2611 * The (explicit) equalities of "bset" are assumed to have been taken
2612 * into account by the transformation such that only the inequalities
2614 * "context" is assumed not to be empty.
2616 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2617 * A value of -1 means that the inequality is obviously redundant and may
2618 * not even appear in "tab".
2620 * We first mark the inequalities of "bset"
2621 * that are obviously redundant with respect to some inequality in "context".
2622 * Then we remove those constraints from "context" that have become
2623 * irrelevant for computing the gist of "bset".
2624 * Note that this removal of constraints cannot be replaced by
2625 * a factorization because factors in "bset" may still be connected
2626 * to each other through constraints in "context".
2628 * If there are any inequalities left, we construct a tableau for
2629 * the context and then add the inequalities of "bset".
2630 * Before adding these inequalities, we freeze all constraints such that
2631 * they won't be considered redundant in terms of the constraints of "bset".
2632 * Then we detect all redundant constraints (among the
2633 * constraints that weren't frozen), first by checking for redundancy in the
2634 * the tableau and then by checking if replacing a constraint by its negation
2635 * would lead to an empty set. This last step is fairly expensive
2636 * and could be optimized by more reuse of the tableau.
2637 * Finally, we update bset according to the results.
2639 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2640 __isl_take isl_mat
*ineq
, __isl_take isl_basic_set
*context
)
2645 isl_basic_set
*combined
= NULL
;
2646 struct isl_tab
*tab
= NULL
;
2647 unsigned n_eq
, context_ineq
;
2650 if (!bset
|| !ineq
|| !context
)
2653 if (bset
->n_ineq
== 0 || isl_basic_set_plain_is_universe(context
)) {
2654 isl_basic_set_free(context
);
2659 ctx
= isl_basic_set_get_ctx(context
);
2660 row
= isl_calloc_array(ctx
, int, bset
->n_ineq
);
2664 if (mark_shifted_constraints(ineq
, context
, row
) < 0)
2666 if (all_neg(row
, bset
->n_ineq
))
2667 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2669 context
= drop_irrelevant_constraints_marked(context
, ineq
, row
);
2672 if (isl_basic_set_plain_is_universe(context
))
2673 return update_ineq_free(bset
, ineq
, context
, row
, NULL
);
2675 n_eq
= context
->n_eq
;
2676 context_ineq
= context
->n_ineq
;
2677 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2678 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2679 tab
= isl_tab_from_basic_set(combined
, 0);
2680 for (i
= 0; i
< context_ineq
; ++i
)
2681 if (isl_tab_freeze_constraint(tab
, n_eq
+ i
) < 0)
2683 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2686 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2689 combined
= isl_basic_set_add_ineq(combined
, ineq
->row
[i
]);
2690 if (isl_tab_add_ineq(tab
, ineq
->row
[i
]) < 0)
2694 if (isl_tab_detect_implicit_equalities(tab
) < 0)
2696 if (isl_tab_detect_redundant(tab
) < 0)
2698 total
= isl_basic_set_total_dim(bset
);
2699 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
2700 isl_basic_set
*test
;
2706 if (tab
->con
[n_eq
+ r
].is_redundant
)
2708 test
= isl_basic_set_dup(combined
);
2709 if (isl_inequality_negate(test
, r
) < 0)
2710 test
= isl_basic_set_free(test
);
2711 test
= isl_basic_set_update_from_tab(test
, tab
);
2712 is_empty
= isl_basic_set_is_empty(test
);
2713 isl_basic_set_free(test
);
2717 tab
->con
[n_eq
+ r
].is_redundant
= 1;
2719 bset
= update_ineq_free(bset
, ineq
, context
, row
, tab
);
2721 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2722 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2725 isl_basic_set_free(combined
);
2731 isl_basic_set_free(combined
);
2732 isl_basic_set_free(context
);
2733 isl_basic_set_free(bset
);
2737 /* Extract the inequalities of "bset" as an isl_mat.
2739 static __isl_give isl_mat
*extract_ineq(__isl_keep isl_basic_set
*bset
)
2748 ctx
= isl_basic_set_get_ctx(bset
);
2749 total
= isl_basic_set_total_dim(bset
);
2750 ineq
= isl_mat_sub_alloc6(ctx
, bset
->ineq
, 0, bset
->n_ineq
,
2756 /* Remove all information from "bset" that is redundant in the context
2757 * of "context", for the case where both "bset" and "context" are
2760 static __isl_give isl_basic_set
*uset_gist_uncompressed(
2761 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
)
2765 ineq
= extract_ineq(bset
);
2766 return uset_gist_full(bset
, ineq
, context
);
2769 /* Remove all information from "bset" that is redundant in the context
2770 * of "context", for the case where the combined equalities of
2771 * "bset" and "context" allow for a compression that can be obtained
2772 * by preapplication of "T".
2774 * "bset" itself is not transformed by "T". Instead, the inequalities
2775 * are extracted from "bset" and those are transformed by "T".
2776 * uset_gist_full then determines which of the transformed inequalities
2777 * are redundant with respect to the transformed "context" and removes
2778 * the corresponding inequalities from "bset".
2780 * After preapplying "T" to the inequalities, any common factor is
2781 * removed from the coefficients. If this results in a tightening
2782 * of the constant term, then the same tightening is applied to
2783 * the corresponding untransformed inequality in "bset".
2784 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2788 * with 0 <= r < g, then it is equivalent to
2792 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2793 * subspace compressed by T since the latter would be transformed to
2797 static __isl_give isl_basic_set
*uset_gist_compressed(
2798 __isl_take isl_basic_set
*bset
, __isl_take isl_basic_set
*context
,
2799 __isl_take isl_mat
*T
)
2803 int i
, n_row
, n_col
;
2806 ineq
= extract_ineq(bset
);
2807 ineq
= isl_mat_product(ineq
, isl_mat_copy(T
));
2808 context
= isl_basic_set_preimage(context
, T
);
2810 if (!ineq
|| !context
)
2812 if (isl_basic_set_plain_is_empty(context
)) {
2814 isl_basic_set_free(context
);
2815 return isl_basic_set_set_to_empty(bset
);
2818 ctx
= isl_mat_get_ctx(ineq
);
2819 n_row
= isl_mat_rows(ineq
);
2820 n_col
= isl_mat_cols(ineq
);
2822 for (i
= 0; i
< n_row
; ++i
) {
2823 isl_seq_gcd(ineq
->row
[i
] + 1, n_col
- 1, &ctx
->normalize_gcd
);
2824 if (isl_int_is_zero(ctx
->normalize_gcd
))
2826 if (isl_int_is_one(ctx
->normalize_gcd
))
2828 isl_seq_scale_down(ineq
->row
[i
] + 1, ineq
->row
[i
] + 1,
2829 ctx
->normalize_gcd
, n_col
- 1);
2830 isl_int_fdiv_r(rem
, ineq
->row
[i
][0], ctx
->normalize_gcd
);
2831 isl_int_fdiv_q(ineq
->row
[i
][0],
2832 ineq
->row
[i
][0], ctx
->normalize_gcd
);
2833 if (isl_int_is_zero(rem
))
2835 bset
= isl_basic_set_cow(bset
);
2838 isl_int_sub(bset
->ineq
[i
][0], bset
->ineq
[i
][0], rem
);
2842 return uset_gist_full(bset
, ineq
, context
);
2845 isl_basic_set_free(context
);
2846 isl_basic_set_free(bset
);
2850 /* Project "bset" onto the variables that are involved in "template".
2852 static __isl_give isl_basic_set
*project_onto_involved(
2853 __isl_take isl_basic_set
*bset
, __isl_keep isl_basic_set
*template)
2857 if (!bset
|| !template)
2858 return isl_basic_set_free(bset
);
2860 n
= isl_basic_set_dim(template, isl_dim_set
);
2862 for (i
= 0; i
< n
; ++i
) {
2865 involved
= isl_basic_set_involves_dims(template,
2868 return isl_basic_set_free(bset
);
2871 bset
= isl_basic_set_eliminate_vars(bset
, i
, 1);
2877 /* Remove all information from bset that is redundant in the context
2878 * of context. In particular, equalities that are linear combinations
2879 * of those in context are removed. Then the inequalities that are
2880 * redundant in the context of the equalities and inequalities of
2881 * context are removed.
2883 * First of all, we drop those constraints from "context"
2884 * that are irrelevant for computing the gist of "bset".
2885 * Alternatively, we could factorize the intersection of "context" and "bset".
2887 * We first compute the intersection of the integer affine hulls
2888 * of "bset" and "context",
2889 * compute the gist inside this intersection and then reduce
2890 * the constraints with respect to the equalities of the context
2891 * that only involve variables already involved in the input.
2893 * If two constraints are mutually redundant, then uset_gist_full
2894 * will remove the second of those constraints. We therefore first
2895 * sort the constraints so that constraints not involving existentially
2896 * quantified variables are given precedence over those that do.
2897 * We have to perform this sorting before the variable compression,
2898 * because that may effect the order of the variables.
2900 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2901 __isl_take isl_basic_set
*context
)
2906 isl_basic_set
*aff_context
;
2909 if (!bset
|| !context
)
2912 context
= drop_irrelevant_constraints(context
, bset
);
2914 bset
= isl_basic_set_detect_equalities(bset
);
2915 aff
= isl_basic_set_copy(bset
);
2916 aff
= isl_basic_set_plain_affine_hull(aff
);
2917 context
= isl_basic_set_detect_equalities(context
);
2918 aff_context
= isl_basic_set_copy(context
);
2919 aff_context
= isl_basic_set_plain_affine_hull(aff_context
);
2920 aff
= isl_basic_set_intersect(aff
, aff_context
);
2923 if (isl_basic_set_plain_is_empty(aff
)) {
2924 isl_basic_set_free(bset
);
2925 isl_basic_set_free(context
);
2928 bset
= isl_basic_set_sort_constraints(bset
);
2929 if (aff
->n_eq
== 0) {
2930 isl_basic_set_free(aff
);
2931 return uset_gist_uncompressed(bset
, context
);
2933 total
= isl_basic_set_total_dim(bset
);
2934 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2935 eq
= isl_mat_cow(eq
);
2936 T
= isl_mat_variable_compression(eq
, NULL
);
2937 isl_basic_set_free(aff
);
2938 if (T
&& T
->n_col
== 0) {
2940 isl_basic_set_free(context
);
2941 return isl_basic_set_set_to_empty(bset
);
2944 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2945 aff_context
= project_onto_involved(aff_context
, bset
);
2947 bset
= uset_gist_compressed(bset
, context
, T
);
2948 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2951 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2952 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2957 isl_basic_set_free(bset
);
2958 isl_basic_set_free(context
);
2962 /* Return the number of equality constraints in "bmap" that involve
2963 * local variables. This function assumes that Gaussian elimination
2964 * has been applied to the equality constraints.
2966 static int n_div_eq(__isl_keep isl_basic_map
*bmap
)
2974 if (bmap
->n_eq
== 0)
2977 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
2978 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2981 for (i
= 0; i
< bmap
->n_eq
; ++i
)
2982 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
,
2989 /* Construct a basic map in "space" defined by the equality constraints in "eq".
2990 * The constraints are assumed not to involve any local variables.
2992 static __isl_give isl_basic_map
*basic_map_from_equalities(
2993 __isl_take isl_space
*space
, __isl_take isl_mat
*eq
)
2996 isl_basic_map
*bmap
= NULL
;
3001 if (1 + isl_space_dim(space
, isl_dim_all
) != eq
->n_col
)
3002 isl_die(isl_space_get_ctx(space
), isl_error_internal
,
3003 "unexpected number of columns", goto error
);
3005 bmap
= isl_basic_map_alloc_space(isl_space_copy(space
),
3007 for (i
= 0; i
< eq
->n_row
; ++i
) {
3008 k
= isl_basic_map_alloc_equality(bmap
);
3011 isl_seq_cpy(bmap
->eq
[k
], eq
->row
[i
], eq
->n_col
);
3014 isl_space_free(space
);
3018 isl_space_free(space
);
3020 isl_basic_map_free(bmap
);
3024 /* Construct and return a variable compression based on the equality
3025 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
3026 * "n1" is the number of (initial) equality constraints in "bmap1"
3027 * that do involve local variables.
3028 * "n2" is the number of (initial) equality constraints in "bmap2"
3029 * that do involve local variables.
3030 * "total" is the total number of other variables.
3031 * This function assumes that Gaussian elimination
3032 * has been applied to the equality constraints in both "bmap1" and "bmap2"
3033 * such that the equality constraints not involving local variables
3034 * are those that start at "n1" or "n2".
3036 * If either of "bmap1" and "bmap2" does not have such equality constraints,
3037 * then simply compute the compression based on the equality constraints
3038 * in the other basic map.
3039 * Otherwise, combine the equality constraints from both into a new
3040 * basic map such that Gaussian elimination can be applied to this combination
3041 * and then construct a variable compression from the resulting
3042 * equality constraints.
3044 static __isl_give isl_mat
*combined_variable_compression(
3045 __isl_keep isl_basic_map
*bmap1
, int n1
,
3046 __isl_keep isl_basic_map
*bmap2
, int n2
, int total
)
3049 isl_mat
*E1
, *E2
, *V
;
3050 isl_basic_map
*bmap
;
3052 ctx
= isl_basic_map_get_ctx(bmap1
);
3053 if (bmap1
->n_eq
== n1
) {
3054 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
3055 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
3056 return isl_mat_variable_compression(E2
, NULL
);
3058 if (bmap2
->n_eq
== n2
) {
3059 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
3060 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
3061 return isl_mat_variable_compression(E1
, NULL
);
3063 E1
= isl_mat_sub_alloc6(ctx
, bmap1
->eq
,
3064 n1
, bmap1
->n_eq
- n1
, 0, 1 + total
);
3065 E2
= isl_mat_sub_alloc6(ctx
, bmap2
->eq
,
3066 n2
, bmap2
->n_eq
- n2
, 0, 1 + total
);
3067 E1
= isl_mat_concat(E1
, E2
);
3068 bmap
= basic_map_from_equalities(isl_basic_map_get_space(bmap1
), E1
);
3069 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3072 E1
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
3073 V
= isl_mat_variable_compression(E1
, NULL
);
3074 isl_basic_map_free(bmap
);
3079 /* Extract the stride constraints from "bmap", compressed
3080 * with respect to both the stride constraints in "context" and
3081 * the remaining equality constraints in both "bmap" and "context".
3082 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
3083 * "context_n_eq" is the number of (initial) stride constraints in "context".
3085 * Let x be all variables in "bmap" (and "context") other than the local
3086 * variables. First compute a variable compression
3090 * based on the non-stride equality constraints in "bmap" and "context".
3091 * Consider the stride constraints of "context",
3095 * with y the local variables and plug in the variable compression,
3098 * A(V x') + B(y) = 0
3100 * Use these constraints to compute a parameter compression on x'
3104 * Now consider the stride constraints of "bmap"
3108 * and plug in x = V*T x''.
3109 * That is, return A = [C*V*T D].
3111 static __isl_give isl_mat
*extract_compressed_stride_constraints(
3112 __isl_keep isl_basic_map
*bmap
, int bmap_n_eq
,
3113 __isl_keep isl_basic_map
*context
, int context_n_eq
)
3117 isl_mat
*A
, *B
, *T
, *V
;
3119 total
= isl_basic_map_dim(context
, isl_dim_all
);
3120 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3123 ctx
= isl_basic_map_get_ctx(bmap
);
3125 V
= combined_variable_compression(bmap
, bmap_n_eq
,
3126 context
, context_n_eq
, total
);
3128 A
= isl_mat_sub_alloc6(ctx
, context
->eq
, 0, context_n_eq
, 0, 1 + total
);
3129 B
= isl_mat_sub_alloc6(ctx
, context
->eq
,
3130 0, context_n_eq
, 1 + total
, n_div
);
3131 A
= isl_mat_product(A
, isl_mat_copy(V
));
3132 T
= isl_mat_parameter_compression_ext(A
, B
);
3133 T
= isl_mat_product(V
, T
);
3135 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3136 T
= isl_mat_diagonal(T
, isl_mat_identity(ctx
, n_div
));
3138 A
= isl_mat_sub_alloc6(ctx
, bmap
->eq
,
3139 0, bmap_n_eq
, 0, 1 + total
+ n_div
);
3140 A
= isl_mat_product(A
, T
);
3145 /* Remove the prime factors from *g that have an exponent that
3146 * is strictly smaller than the exponent in "c".
3147 * All exponents in *g are known to be smaller than or equal
3150 * That is, if *g is equal to
3152 * p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3154 * and "c" is equal to
3156 * p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3160 * p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3161 * p_n^{e_n * (e_n = f_n)}
3163 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3164 * neither does the gcd of *g and c / *g.
3165 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3166 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3167 * Dividing *g by this gcd therefore strictly reduces the exponent
3168 * of the prime factors that need to be removed, while leaving the
3169 * other prime factors untouched.
3170 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3171 * removes all undesired factors, without removing any others.
3173 static void remove_incomplete_powers(isl_int
*g
, isl_int c
)
3179 isl_int_divexact(t
, c
, *g
);
3180 isl_int_gcd(t
, t
, *g
);
3181 if (isl_int_is_one(t
))
3183 isl_int_divexact(*g
, *g
, t
);
3188 /* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3189 * of the same stride constraints in a compressed space that exploits
3190 * all equalities in the context and the other equalities in "bmap".
3192 * If the stride constraints of "bmap" are of the form
3196 * then A is of the form
3200 * If any of these constraints involves only a single local variable y,
3201 * then the constraint appears as
3211 * Let g be the gcd of m and the coefficients of h.
3212 * Then, in particular, g is a divisor of the coefficients of h and
3216 * is known to be a multiple of g.
3217 * If some prime factor in m appears with the same exponent in g,
3218 * then it can be removed from m because f(x) is already known
3219 * to be a multiple of g and therefore in particular of this power
3220 * of the prime factors.
3221 * Prime factors that appear with a smaller exponent in g cannot
3222 * be removed from m.
3223 * Let g' be the divisor of g containing all prime factors that
3224 * appear with the same exponent in m and g, then
3228 * can be replaced by
3230 * f(x) + m/g' y_i' = 0
3232 * Note that (if g' != 1) this changes the explicit representation
3233 * of y_i to that of y_i', so the integer division at position i
3234 * is marked unknown and later recomputed by a call to
3235 * isl_basic_map_gauss.
3237 static __isl_give isl_basic_map
*reduce_stride_constraints(
3238 __isl_take isl_basic_map
*bmap
, int n
, __isl_keep isl_mat
*A
)
3246 return isl_basic_map_free(bmap
);
3248 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3249 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3253 for (i
= 0; i
< n
; ++i
) {
3256 div
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, n_div
);
3258 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
3259 "equality constraints modified unexpectedly",
3261 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
+ div
+ 1,
3262 n_div
- div
- 1) != -1)
3264 if (isl_mat_row_gcd(A
, i
, &gcd
) < 0)
3266 if (isl_int_is_one(gcd
))
3268 remove_incomplete_powers(&gcd
, bmap
->eq
[i
][1 + total
+ div
]);
3269 if (isl_int_is_one(gcd
))
3271 isl_int_divexact(bmap
->eq
[i
][1 + total
+ div
],
3272 bmap
->eq
[i
][1 + total
+ div
], gcd
);
3273 bmap
= isl_basic_map_mark_div_unknown(bmap
, div
);
3281 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3286 isl_basic_map_free(bmap
);
3290 /* Simplify the stride constraints in "bmap" based on
3291 * the remaining equality constraints in "bmap" and all equality
3292 * constraints in "context".
3293 * Only do this if both "bmap" and "context" have stride constraints.
3295 * First extract a copy of the stride constraints in "bmap" in a compressed
3296 * space exploiting all the other equality constraints and then
3297 * use this compressed copy to simplify the original stride constraints.
3299 static __isl_give isl_basic_map
*gist_strides(__isl_take isl_basic_map
*bmap
,
3300 __isl_keep isl_basic_map
*context
)
3302 int bmap_n_eq
, context_n_eq
;
3305 if (!bmap
|| !context
)
3306 return isl_basic_map_free(bmap
);
3308 bmap_n_eq
= n_div_eq(bmap
);
3309 context_n_eq
= n_div_eq(context
);
3311 if (bmap_n_eq
< 0 || context_n_eq
< 0)
3312 return isl_basic_map_free(bmap
);
3313 if (bmap_n_eq
== 0 || context_n_eq
== 0)
3316 A
= extract_compressed_stride_constraints(bmap
, bmap_n_eq
,
3317 context
, context_n_eq
);
3318 bmap
= reduce_stride_constraints(bmap
, bmap_n_eq
, A
);
3325 /* Return a basic map that has the same intersection with "context" as "bmap"
3326 * and that is as "simple" as possible.
3328 * The core computation is performed on the pure constraints.
3329 * When we add back the meaning of the integer divisions, we need
3330 * to (re)introduce the div constraints. If we happen to have
3331 * discovered that some of these integer divisions are equal to
3332 * some affine combination of other variables, then these div
3333 * constraints may end up getting simplified in terms of the equalities,
3334 * resulting in extra inequalities on the other variables that
3335 * may have been removed already or that may not even have been
3336 * part of the input. We try and remove those constraints of
3337 * this form that are most obviously redundant with respect to
3338 * the context. We also remove those div constraints that are
3339 * redundant with respect to the other constraints in the result.
3341 * The stride constraints among the equality constraints in "bmap" are
3342 * also simplified with respecting to the other equality constraints
3343 * in "bmap" and with respect to all equality constraints in "context".
3345 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
3346 struct isl_basic_map
*context
)
3348 isl_basic_set
*bset
, *eq
;
3349 isl_basic_map
*eq_bmap
;
3350 unsigned total
, n_div
, extra
, n_eq
, n_ineq
;
3352 if (!bmap
|| !context
)
3355 if (isl_basic_map_plain_is_universe(bmap
)) {
3356 isl_basic_map_free(context
);
3359 if (isl_basic_map_plain_is_empty(context
)) {
3360 isl_space
*space
= isl_basic_map_get_space(bmap
);
3361 isl_basic_map_free(bmap
);
3362 isl_basic_map_free(context
);
3363 return isl_basic_map_universe(space
);
3365 if (isl_basic_map_plain_is_empty(bmap
)) {
3366 isl_basic_map_free(context
);
3370 bmap
= isl_basic_map_remove_redundancies(bmap
);
3371 context
= isl_basic_map_remove_redundancies(context
);
3375 context
= isl_basic_map_align_divs(context
, bmap
);
3376 n_div
= isl_basic_map_dim(context
, isl_dim_div
);
3377 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3378 extra
= n_div
- isl_basic_map_dim(bmap
, isl_dim_div
);
3380 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
3381 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, extra
);
3382 bset
= uset_gist(bset
,
3383 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
3384 bset
= isl_basic_set_project_out(bset
, isl_dim_set
, total
, extra
);
3386 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
3387 isl_basic_set_plain_is_empty(bset
)) {
3388 isl_basic_map_free(context
);
3389 return isl_basic_map_overlying_set(bset
, bmap
);
3393 n_ineq
= bset
->n_ineq
;
3394 eq
= isl_basic_set_copy(bset
);
3395 eq
= isl_basic_set_cow(eq
);
3396 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
3397 eq
= isl_basic_set_free(eq
);
3398 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
3399 bset
= isl_basic_set_free(bset
);
3401 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
3402 eq_bmap
= gist_strides(eq_bmap
, context
);
3403 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
3404 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
3405 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
3406 bmap
= isl_basic_map_remove_redundancies(bmap
);
3410 isl_basic_map_free(bmap
);
3411 isl_basic_map_free(context
);
3416 * Assumes context has no implicit divs.
3418 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
3419 __isl_take isl_basic_map
*context
)
3423 if (!map
|| !context
)
3426 if (isl_basic_map_plain_is_empty(context
)) {
3427 isl_space
*space
= isl_map_get_space(map
);
3429 isl_basic_map_free(context
);
3430 return isl_map_universe(space
);
3433 context
= isl_basic_map_remove_redundancies(context
);
3434 map
= isl_map_cow(map
);
3435 if (!map
|| !context
)
3437 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
3438 map
= isl_map_compute_divs(map
);
3441 for (i
= map
->n
- 1; i
>= 0; --i
) {
3442 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
3443 isl_basic_map_copy(context
));
3446 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
3447 isl_basic_map_free(map
->p
[i
]);
3448 if (i
!= map
->n
- 1)
3449 map
->p
[i
] = map
->p
[map
->n
- 1];
3453 isl_basic_map_free(context
);
3454 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3458 isl_basic_map_free(context
);
3462 /* Drop all inequalities from "bmap" that also appear in "context".
3463 * "context" is assumed to have only known local variables and
3464 * the initial local variables of "bmap" are assumed to be the same
3465 * as those of "context".
3466 * The constraints of both "bmap" and "context" are assumed
3467 * to have been sorted using isl_basic_map_sort_constraints.
3469 * Run through the inequality constraints of "bmap" and "context"
3471 * If a constraint of "bmap" involves variables not in "context",
3472 * then it cannot appear in "context".
3473 * If a matching constraint is found, it is removed from "bmap".
3475 static __isl_give isl_basic_map
*drop_inequalities(
3476 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3479 unsigned total
, extra
;
3481 if (!bmap
|| !context
)
3482 return isl_basic_map_free(bmap
);
3484 total
= isl_basic_map_total_dim(context
);
3485 extra
= isl_basic_map_total_dim(bmap
) - total
;
3487 i1
= bmap
->n_ineq
- 1;
3488 i2
= context
->n_ineq
- 1;
3489 while (bmap
&& i1
>= 0 && i2
>= 0) {
3492 if (isl_seq_first_non_zero(bmap
->ineq
[i1
] + 1 + total
,
3497 cmp
= isl_basic_map_constraint_cmp(context
, bmap
->ineq
[i1
],
3507 if (isl_int_eq(bmap
->ineq
[i1
][0], context
->ineq
[i2
][0])) {
3508 bmap
= isl_basic_map_cow(bmap
);
3509 if (isl_basic_map_drop_inequality(bmap
, i1
) < 0)
3510 bmap
= isl_basic_map_free(bmap
);
3519 /* Drop all equalities from "bmap" that also appear in "context".
3520 * "context" is assumed to have only known local variables and
3521 * the initial local variables of "bmap" are assumed to be the same
3522 * as those of "context".
3524 * Run through the equality constraints of "bmap" and "context"
3526 * If a constraint of "bmap" involves variables not in "context",
3527 * then it cannot appear in "context".
3528 * If a matching constraint is found, it is removed from "bmap".
3530 static __isl_give isl_basic_map
*drop_equalities(
3531 __isl_take isl_basic_map
*bmap
, __isl_keep isl_basic_map
*context
)
3534 unsigned total
, extra
;
3536 if (!bmap
|| !context
)
3537 return isl_basic_map_free(bmap
);
3539 total
= isl_basic_map_total_dim(context
);
3540 extra
= isl_basic_map_total_dim(bmap
) - total
;
3542 i1
= bmap
->n_eq
- 1;
3543 i2
= context
->n_eq
- 1;
3545 while (bmap
&& i1
>= 0 && i2
>= 0) {
3548 if (isl_seq_first_non_zero(bmap
->eq
[i1
] + 1 + total
,
3551 last1
= isl_seq_last_non_zero(bmap
->eq
[i1
] + 1, total
);
3552 last2
= isl_seq_last_non_zero(context
->eq
[i2
] + 1, total
);
3553 if (last1
> last2
) {
3557 if (last1
< last2
) {
3561 if (isl_seq_eq(bmap
->eq
[i1
], context
->eq
[i2
], 1 + total
)) {
3562 bmap
= isl_basic_map_cow(bmap
);
3563 if (isl_basic_map_drop_equality(bmap
, i1
) < 0)
3564 bmap
= isl_basic_map_free(bmap
);
3573 /* Remove the constraints in "context" from "bmap".
3574 * "context" is assumed to have explicit representations
3575 * for all local variables.
3577 * First align the divs of "bmap" to those of "context" and
3578 * sort the constraints. Then drop all constraints from "bmap"
3579 * that appear in "context".
3581 __isl_give isl_basic_map
*isl_basic_map_plain_gist(
3582 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
3584 isl_bool done
, known
;
3586 done
= isl_basic_map_plain_is_universe(context
);
3587 if (done
== isl_bool_false
)
3588 done
= isl_basic_map_plain_is_universe(bmap
);
3589 if (done
== isl_bool_false
)
3590 done
= isl_basic_map_plain_is_empty(context
);
3591 if (done
== isl_bool_false
)
3592 done
= isl_basic_map_plain_is_empty(bmap
);
3596 isl_basic_map_free(context
);
3599 known
= isl_basic_map_divs_known(context
);
3603 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_invalid
,
3604 "context has unknown divs", goto error
);
3606 bmap
= isl_basic_map_align_divs(bmap
, context
);
3607 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3608 bmap
= isl_basic_map_sort_constraints(bmap
);
3609 context
= isl_basic_map_sort_constraints(context
);
3611 bmap
= drop_inequalities(bmap
, context
);
3612 bmap
= drop_equalities(bmap
, context
);
3614 isl_basic_map_free(context
);
3615 bmap
= isl_basic_map_finalize(bmap
);
3618 isl_basic_map_free(bmap
);
3619 isl_basic_map_free(context
);
3623 /* Replace "map" by the disjunct at position "pos" and free "context".
3625 static __isl_give isl_map
*replace_by_disjunct(__isl_take isl_map
*map
,
3626 int pos
, __isl_take isl_basic_map
*context
)
3628 isl_basic_map
*bmap
;
3630 bmap
= isl_basic_map_copy(map
->p
[pos
]);
3632 isl_basic_map_free(context
);
3633 return isl_map_from_basic_map(bmap
);
3636 /* Remove the constraints in "context" from "map".
3637 * If any of the disjuncts in the result turns out to be the universe,
3638 * then return this universe.
3639 * "context" is assumed to have explicit representations
3640 * for all local variables.
3642 __isl_give isl_map
*isl_map_plain_gist_basic_map(__isl_take isl_map
*map
,
3643 __isl_take isl_basic_map
*context
)
3646 isl_bool univ
, known
;
3648 univ
= isl_basic_map_plain_is_universe(context
);
3652 isl_basic_map_free(context
);
3655 known
= isl_basic_map_divs_known(context
);
3659 isl_die(isl_map_get_ctx(map
), isl_error_invalid
,
3660 "context has unknown divs", goto error
);
3662 map
= isl_map_cow(map
);
3665 for (i
= 0; i
< map
->n
; ++i
) {
3666 map
->p
[i
] = isl_basic_map_plain_gist(map
->p
[i
],
3667 isl_basic_map_copy(context
));
3668 univ
= isl_basic_map_plain_is_universe(map
->p
[i
]);
3671 if (univ
&& map
->n
> 1)
3672 return replace_by_disjunct(map
, i
, context
);
3675 isl_basic_map_free(context
);
3676 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3678 ISL_F_CLR(map
, ISL_MAP_DISJOINT
);
3682 isl_basic_map_free(context
);
3686 /* Replace "map" by a universe map in the same space and free "drop".
3688 static __isl_give isl_map
*replace_by_universe(__isl_take isl_map
*map
,
3689 __isl_take isl_map
*drop
)
3693 res
= isl_map_universe(isl_map_get_space(map
));
3699 /* Return a map that has the same intersection with "context" as "map"
3700 * and that is as "simple" as possible.
3702 * If "map" is already the universe, then we cannot make it any simpler.
3703 * Similarly, if "context" is the universe, then we cannot exploit it
3705 * If "map" and "context" are identical to each other, then we can
3706 * return the corresponding universe.
3708 * If either "map" or "context" consists of multiple disjuncts,
3709 * then check if "context" happens to be a subset of "map",
3710 * in which case all constraints can be removed.
3711 * In case of multiple disjuncts, the standard procedure
3712 * may not be able to detect that all constraints can be removed.
3714 * If none of these cases apply, we have to work a bit harder.
3715 * During this computation, we make use of a single disjunct context,
3716 * so if the original context consists of more than one disjunct
3717 * then we need to approximate the context by a single disjunct set.
3718 * Simply taking the simple hull may drop constraints that are
3719 * only implicitly available in each disjunct. We therefore also
3720 * look for constraints among those defining "map" that are valid
3721 * for the context. These can then be used to simplify away
3722 * the corresponding constraints in "map".
3724 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
3725 __isl_take isl_map
*context
)
3729 int single_disjunct_map
, single_disjunct_context
;
3731 isl_basic_map
*hull
;
3733 is_universe
= isl_map_plain_is_universe(map
);
3734 if (is_universe
>= 0 && !is_universe
)
3735 is_universe
= isl_map_plain_is_universe(context
);
3736 if (is_universe
< 0)
3739 isl_map_free(context
);
3743 equal
= isl_map_plain_is_equal(map
, context
);
3747 return replace_by_universe(map
, context
);
3749 single_disjunct_map
= isl_map_n_basic_map(map
) == 1;
3750 single_disjunct_context
= isl_map_n_basic_map(context
) == 1;
3751 if (!single_disjunct_map
|| !single_disjunct_context
) {
3752 subset
= isl_map_is_subset(context
, map
);
3756 return replace_by_universe(map
, context
);
3759 context
= isl_map_compute_divs(context
);
3762 if (single_disjunct_context
) {
3763 hull
= isl_map_simple_hull(context
);
3768 ctx
= isl_map_get_ctx(map
);
3769 list
= isl_map_list_alloc(ctx
, 2);
3770 list
= isl_map_list_add(list
, isl_map_copy(context
));
3771 list
= isl_map_list_add(list
, isl_map_copy(map
));
3772 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
3775 return isl_map_gist_basic_map(map
, hull
);
3778 isl_map_free(context
);
3782 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
3783 __isl_take isl_map
*context
)
3785 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
3788 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
3789 struct isl_basic_set
*context
)
3791 return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset
),
3792 bset_to_bmap(context
)));
3795 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
3796 __isl_take isl_basic_set
*context
)
3798 return set_from_map(isl_map_gist_basic_map(set_to_map(set
),
3799 bset_to_bmap(context
)));
3802 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
3803 __isl_take isl_basic_set
*context
)
3805 isl_space
*space
= isl_set_get_space(set
);
3806 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
3807 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
3808 return isl_set_gist_basic_set(set
, dom_context
);
3811 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
3812 __isl_take isl_set
*context
)
3814 return set_from_map(isl_map_gist(set_to_map(set
), set_to_map(context
)));
3817 /* Compute the gist of "bmap" with respect to the constraints "context"
3820 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
3821 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
3823 isl_space
*space
= isl_basic_map_get_space(bmap
);
3824 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
3826 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
3827 return isl_basic_map_gist(bmap
, bmap_context
);
3830 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
3831 __isl_take isl_set
*context
)
3833 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3834 map_context
= isl_map_intersect_domain(map_context
, context
);
3835 return isl_map_gist(map
, map_context
);
3838 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
3839 __isl_take isl_set
*context
)
3841 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3842 map_context
= isl_map_intersect_range(map_context
, context
);
3843 return isl_map_gist(map
, map_context
);
3846 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
3847 __isl_take isl_set
*context
)
3849 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
3850 map_context
= isl_map_intersect_params(map_context
, context
);
3851 return isl_map_gist(map
, map_context
);
3854 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
3855 __isl_take isl_set
*context
)
3857 return isl_map_gist_params(set
, context
);
3860 /* Quick check to see if two basic maps are disjoint.
3861 * In particular, we reduce the equalities and inequalities of
3862 * one basic map in the context of the equalities of the other
3863 * basic map and check if we get a contradiction.
3865 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
3866 __isl_keep isl_basic_map
*bmap2
)
3868 struct isl_vec
*v
= NULL
;
3873 if (!bmap1
|| !bmap2
)
3874 return isl_bool_error
;
3875 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
3876 return isl_bool_error
);
3877 if (bmap1
->n_div
|| bmap2
->n_div
)
3878 return isl_bool_false
;
3879 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
3880 return isl_bool_false
;
3882 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
3884 return isl_bool_false
;
3885 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
3888 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
3891 compute_elimination_index(bmap1
, elim
);
3892 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
3894 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
3896 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
3897 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3900 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
3902 reduced
= reduced_using_equalities(v
->block
.data
,
3903 bmap2
->ineq
[i
], bmap1
, elim
);
3904 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3905 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3908 compute_elimination_index(bmap2
, elim
);
3909 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
3911 reduced
= reduced_using_equalities(v
->block
.data
,
3912 bmap1
->ineq
[i
], bmap2
, elim
);
3913 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
3914 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
3919 return isl_bool_false
;
3923 return isl_bool_true
;
3927 return isl_bool_error
;
3930 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
3931 __isl_keep isl_basic_set
*bset2
)
3933 return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1
),
3934 bset_to_bmap(bset2
));
3937 /* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3939 static isl_bool
all_pairs(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
,
3940 isl_bool (*test
)(__isl_keep isl_basic_map
*bmap1
,
3941 __isl_keep isl_basic_map
*bmap2
))
3946 return isl_bool_error
;
3948 for (i
= 0; i
< map1
->n
; ++i
) {
3949 for (j
= 0; j
< map2
->n
; ++j
) {
3950 isl_bool d
= test(map1
->p
[i
], map2
->p
[j
]);
3951 if (d
!= isl_bool_true
)
3956 return isl_bool_true
;
3959 /* Are "map1" and "map2" obviously disjoint, based on information
3960 * that can be derived without looking at the individual basic maps?
3962 * In particular, if one of them is empty or if they live in different spaces
3963 * (ignoring parameters), then they are clearly disjoint.
3965 static isl_bool
isl_map_plain_is_disjoint_global(__isl_keep isl_map
*map1
,
3966 __isl_keep isl_map
*map2
)
3972 return isl_bool_error
;
3974 disjoint
= isl_map_plain_is_empty(map1
);
3975 if (disjoint
< 0 || disjoint
)
3978 disjoint
= isl_map_plain_is_empty(map2
);
3979 if (disjoint
< 0 || disjoint
)
3982 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
3983 map2
->dim
, isl_dim_in
);
3984 if (match
< 0 || !match
)
3985 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3987 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
3988 map2
->dim
, isl_dim_out
);
3989 if (match
< 0 || !match
)
3990 return match
< 0 ? isl_bool_error
: isl_bool_true
;
3992 return isl_bool_false
;
3995 /* Are "map1" and "map2" obviously disjoint?
3997 * If one of them is empty or if they live in different spaces (ignoring
3998 * parameters), then they are clearly disjoint.
3999 * This is checked by isl_map_plain_is_disjoint_global.
4001 * If they have different parameters, then we skip any further tests.
4003 * If they are obviously equal, but not obviously empty, then we will
4004 * not be able to detect if they are disjoint.
4006 * Otherwise we check if each basic map in "map1" is obviously disjoint
4007 * from each basic map in "map2".
4009 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
4010 __isl_keep isl_map
*map2
)
4016 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
4017 if (disjoint
< 0 || disjoint
)
4020 match
= isl_space_match(map1
->dim
, isl_dim_param
,
4021 map2
->dim
, isl_dim_param
);
4022 if (match
< 0 || !match
)
4023 return match
< 0 ? isl_bool_error
: isl_bool_false
;
4025 intersect
= isl_map_plain_is_equal(map1
, map2
);
4026 if (intersect
< 0 || intersect
)
4027 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4029 return all_pairs(map1
, map2
, &isl_basic_map_plain_is_disjoint
);
4032 /* Are "map1" and "map2" disjoint?
4034 * They are disjoint if they are "obviously disjoint" or if one of them
4035 * is empty. Otherwise, they are not disjoint if one of them is universal.
4036 * If the two inputs are (obviously) equal and not empty, then they are
4038 * If none of these cases apply, then check if all pairs of basic maps
4041 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4046 disjoint
= isl_map_plain_is_disjoint_global(map1
, map2
);
4047 if (disjoint
< 0 || disjoint
)
4050 disjoint
= isl_map_is_empty(map1
);
4051 if (disjoint
< 0 || disjoint
)
4054 disjoint
= isl_map_is_empty(map2
);
4055 if (disjoint
< 0 || disjoint
)
4058 intersect
= isl_map_plain_is_universe(map1
);
4059 if (intersect
< 0 || intersect
)
4060 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4062 intersect
= isl_map_plain_is_universe(map2
);
4063 if (intersect
< 0 || intersect
)
4064 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4066 intersect
= isl_map_plain_is_equal(map1
, map2
);
4067 if (intersect
< 0 || intersect
)
4068 return isl_bool_not(intersect
);
4070 return all_pairs(map1
, map2
, &isl_basic_map_is_disjoint
);
4073 /* Are "bmap1" and "bmap2" disjoint?
4075 * They are disjoint if they are "obviously disjoint" or if one of them
4076 * is empty. Otherwise, they are not disjoint if one of them is universal.
4077 * If none of these cases apply, we compute the intersection and see if
4078 * the result is empty.
4080 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
4081 __isl_keep isl_basic_map
*bmap2
)
4085 isl_basic_map
*test
;
4087 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
4088 if (disjoint
< 0 || disjoint
)
4091 disjoint
= isl_basic_map_is_empty(bmap1
);
4092 if (disjoint
< 0 || disjoint
)
4095 disjoint
= isl_basic_map_is_empty(bmap2
);
4096 if (disjoint
< 0 || disjoint
)
4099 intersect
= isl_basic_map_plain_is_universe(bmap1
);
4100 if (intersect
< 0 || intersect
)
4101 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4103 intersect
= isl_basic_map_plain_is_universe(bmap2
);
4104 if (intersect
< 0 || intersect
)
4105 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
4107 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
4108 isl_basic_map_copy(bmap2
));
4109 disjoint
= isl_basic_map_is_empty(test
);
4110 isl_basic_map_free(test
);
4115 /* Are "bset1" and "bset2" disjoint?
4117 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
4118 __isl_keep isl_basic_set
*bset2
)
4120 return isl_basic_map_is_disjoint(bset1
, bset2
);
4123 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
4124 __isl_keep isl_set
*set2
)
4126 return isl_map_plain_is_disjoint(set_to_map(set1
), set_to_map(set2
));
4129 /* Are "set1" and "set2" disjoint?
4131 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
4133 return isl_map_is_disjoint(set1
, set2
);
4136 /* Is "v" equal to 0, 1 or -1?
4138 static int is_zero_or_one(isl_int v
)
4140 return isl_int_is_zero(v
) || isl_int_is_one(v
) || isl_int_is_negone(v
);
4143 /* Check if we can combine a given div with lower bound l and upper
4144 * bound u with some other div and if so return that other div.
4145 * Otherwise return -1.
4147 * We first check that
4148 * - the bounds are opposites of each other (except for the constant
4150 * - the bounds do not reference any other div
4151 * - no div is defined in terms of this div
4153 * Let m be the size of the range allowed on the div by the bounds.
4154 * That is, the bounds are of the form
4156 * e <= a <= e + m - 1
4158 * with e some expression in the other variables.
4159 * We look for another div b such that no third div is defined in terms
4160 * of this second div b and such that in any constraint that contains
4161 * a (except for the given lower and upper bound), also contains b
4162 * with a coefficient that is m times that of b.
4163 * That is, all constraints (execpt for the lower and upper bound)
4166 * e + f (a + m b) >= 0
4168 * Furthermore, in the constraints that only contain b, the coefficient
4169 * of b should be equal to 1 or -1.
4170 * If so, we return b so that "a + m b" can be replaced by
4171 * a single div "c = a + m b".
4173 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
4174 unsigned div
, unsigned l
, unsigned u
)
4180 if (bmap
->n_div
<= 1)
4182 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4183 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
4185 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
4186 bmap
->n_div
- div
- 1) != -1)
4188 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
4192 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4193 if (isl_int_is_zero(bmap
->div
[i
][0]))
4195 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
4199 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4200 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
4201 isl_int_sub(bmap
->ineq
[l
][0],
4202 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4203 bmap
= isl_basic_map_copy(bmap
);
4204 bmap
= isl_basic_map_set_to_empty(bmap
);
4205 isl_basic_map_free(bmap
);
4208 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4209 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4214 for (j
= 0; j
< bmap
->n_div
; ++j
) {
4215 if (isl_int_is_zero(bmap
->div
[j
][0]))
4217 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
4220 if (j
< bmap
->n_div
)
4222 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
4224 if (j
== l
|| j
== u
)
4226 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
])) {
4227 if (is_zero_or_one(bmap
->ineq
[j
][1 + dim
+ i
]))
4231 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
4233 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
4234 bmap
->ineq
[j
][1 + dim
+ div
],
4236 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
4237 bmap
->ineq
[j
][1 + dim
+ i
]);
4238 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
4239 bmap
->ineq
[j
][1 + dim
+ div
],
4244 if (j
< bmap
->n_ineq
)
4249 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
4250 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4254 /* Internal data structure used during the construction and/or evaluation of
4255 * an inequality that ensures that a pair of bounds always allows
4256 * for an integer value.
4258 * "tab" is the tableau in which the inequality is evaluated. It may
4259 * be NULL until it is actually needed.
4260 * "v" contains the inequality coefficients.
4261 * "g", "fl" and "fu" are temporary scalars used during the construction and
4264 struct test_ineq_data
{
4265 struct isl_tab
*tab
;
4272 /* Free all the memory allocated by the fields of "data".
4274 static void test_ineq_data_clear(struct test_ineq_data
*data
)
4276 isl_tab_free(data
->tab
);
4277 isl_vec_free(data
->v
);
4278 isl_int_clear(data
->g
);
4279 isl_int_clear(data
->fl
);
4280 isl_int_clear(data
->fu
);
4283 /* Is the inequality stored in data->v satisfied by "bmap"?
4284 * That is, does it only attain non-negative values?
4285 * data->tab is a tableau corresponding to "bmap".
4287 static isl_bool
test_ineq_is_satisfied(__isl_keep isl_basic_map
*bmap
,
4288 struct test_ineq_data
*data
)
4291 enum isl_lp_result res
;
4293 ctx
= isl_basic_map_get_ctx(bmap
);
4295 data
->tab
= isl_tab_from_basic_map(bmap
, 0);
4296 res
= isl_tab_min(data
->tab
, data
->v
->el
, ctx
->one
, &data
->g
, NULL
, 0);
4297 if (res
== isl_lp_error
)
4298 return isl_bool_error
;
4299 return res
== isl_lp_ok
&& isl_int_is_nonneg(data
->g
);
4302 /* Given a lower and an upper bound on div i, do they always allow
4303 * for an integer value of the given div?
4304 * Determine this property by constructing an inequality
4305 * such that the property is guaranteed when the inequality is nonnegative.
4306 * The lower bound is inequality l, while the upper bound is inequality u.
4307 * The constructed inequality is stored in data->v.
4309 * Let the upper bound be
4313 * and the lower bound
4317 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4320 * - f_u e_l <= f_u f_l g a <= f_l e_u
4322 * Since all variables are integer valued, this is equivalent to
4324 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4326 * If this interval is at least f_u f_l g, then it contains at least
4327 * one integer value for a.
4328 * That is, the test constraint is
4330 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4334 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4336 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4337 * then the constraint can be scaled down by a factor g',
4338 * with the constant term replaced by
4339 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4340 * Note that the result of applying Fourier-Motzkin to this pair
4343 * f_l e_u + f_u e_l >= 0
4345 * If the constant term of the scaled down version of this constraint,
4346 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4347 * term of the scaled down test constraint, then the test constraint
4348 * is known to hold and no explicit evaluation is required.
4349 * This is essentially the Omega test.
4351 * If the test constraint consists of only a constant term, then
4352 * it is sufficient to look at the sign of this constant term.
4354 static isl_bool
int_between_bounds(__isl_keep isl_basic_map
*bmap
, int i
,
4355 int l
, int u
, struct test_ineq_data
*data
)
4357 unsigned offset
, n_div
;
4358 offset
= isl_basic_map_offset(bmap
, isl_dim_div
);
4359 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4361 isl_int_gcd(data
->g
,
4362 bmap
->ineq
[l
][offset
+ i
], bmap
->ineq
[u
][offset
+ i
]);
4363 isl_int_divexact(data
->fl
, bmap
->ineq
[l
][offset
+ i
], data
->g
);
4364 isl_int_divexact(data
->fu
, bmap
->ineq
[u
][offset
+ i
], data
->g
);
4365 isl_int_neg(data
->fu
, data
->fu
);
4366 isl_seq_combine(data
->v
->el
, data
->fl
, bmap
->ineq
[u
],
4367 data
->fu
, bmap
->ineq
[l
], offset
+ n_div
);
4368 isl_int_mul(data
->g
, data
->g
, data
->fl
);
4369 isl_int_mul(data
->g
, data
->g
, data
->fu
);
4370 isl_int_sub(data
->g
, data
->g
, data
->fl
);
4371 isl_int_sub(data
->g
, data
->g
, data
->fu
);
4372 isl_int_add_ui(data
->g
, data
->g
, 1);
4373 isl_int_sub(data
->fl
, data
->v
->el
[0], data
->g
);
4375 isl_seq_gcd(data
->v
->el
+ 1, offset
- 1 + n_div
, &data
->g
);
4376 if (isl_int_is_zero(data
->g
))
4377 return isl_int_is_nonneg(data
->fl
);
4378 if (isl_int_is_one(data
->g
)) {
4379 isl_int_set(data
->v
->el
[0], data
->fl
);
4380 return test_ineq_is_satisfied(bmap
, data
);
4382 isl_int_fdiv_q(data
->fl
, data
->fl
, data
->g
);
4383 isl_int_fdiv_q(data
->v
->el
[0], data
->v
->el
[0], data
->g
);
4384 if (isl_int_eq(data
->fl
, data
->v
->el
[0]))
4385 return isl_bool_true
;
4386 isl_int_set(data
->v
->el
[0], data
->fl
);
4387 isl_seq_scale_down(data
->v
->el
+ 1, data
->v
->el
+ 1, data
->g
,
4388 offset
- 1 + n_div
);
4390 return test_ineq_is_satisfied(bmap
, data
);
4393 /* Remove more kinds of divs that are not strictly needed.
4394 * In particular, if all pairs of lower and upper bounds on a div
4395 * are such that they allow at least one integer value of the div,
4396 * then we can eliminate the div using Fourier-Motzkin without
4397 * introducing any spurious solutions.
4399 * If at least one of the two constraints has a unit coefficient for the div,
4400 * then the presence of such a value is guaranteed so there is no need to check.
4401 * In particular, the value attained by the bound with unit coefficient
4402 * can serve as this intermediate value.
4404 static struct isl_basic_map
*drop_more_redundant_divs(
4405 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4408 struct test_ineq_data data
= { NULL
, NULL
};
4409 unsigned off
, n_div
;
4412 isl_int_init(data
.g
);
4413 isl_int_init(data
.fl
);
4414 isl_int_init(data
.fu
);
4419 ctx
= isl_basic_map_get_ctx(bmap
);
4420 off
= isl_basic_map_offset(bmap
, isl_dim_div
);
4421 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4422 data
.v
= isl_vec_alloc(ctx
, off
+ n_div
);
4431 for (i
= 0; i
< n_div
; ++i
) {
4434 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
4440 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4441 if (!isl_int_is_pos(bmap
->ineq
[l
][off
+ i
]))
4443 if (isl_int_is_one(bmap
->ineq
[l
][off
+ i
]))
4445 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4446 if (!isl_int_is_neg(bmap
->ineq
[u
][off
+ i
]))
4448 if (isl_int_is_negone(bmap
->ineq
[u
][off
+ i
]))
4450 has_int
= int_between_bounds(bmap
, i
, l
, u
,
4454 if (data
.tab
&& data
.tab
->empty
)
4459 if (u
< bmap
->n_ineq
)
4462 if (data
.tab
&& data
.tab
->empty
) {
4463 bmap
= isl_basic_map_set_to_empty(bmap
);
4466 if (l
== bmap
->n_ineq
) {
4474 test_ineq_data_clear(&data
);
4481 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
4482 return isl_basic_map_drop_redundant_divs(bmap
);
4485 isl_basic_map_free(bmap
);
4486 test_ineq_data_clear(&data
);
4490 /* Given a pair of divs div1 and div2 such that, except for the lower bound l
4491 * and the upper bound u, div1 always occurs together with div2 in the form
4492 * (div1 + m div2), where m is the constant range on the variable div1
4493 * allowed by l and u, replace the pair div1 and div2 by a single
4494 * div that is equal to div1 + m div2.
4496 * The new div will appear in the location that contains div2.
4497 * We need to modify all constraints that contain
4498 * div2 = (div - div1) / m
4499 * The coefficient of div2 is known to be equal to 1 or -1.
4500 * (If a constraint does not contain div2, it will also not contain div1.)
4501 * If the constraint also contains div1, then we know they appear
4502 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4503 * i.e., the coefficient of div is f.
4505 * Otherwise, we first need to introduce div1 into the constraint.
4514 * A lower bound on div2
4518 * can be replaced by
4520 * m div2 + div1 + m t + f >= 0
4526 * can be replaced by
4528 * -(m div2 + div1) + m t + f' >= 0
4530 * These constraint are those that we would obtain from eliminating
4531 * div1 using Fourier-Motzkin.
4533 * After all constraints have been modified, we drop the lower and upper
4534 * bound and then drop div1.
4536 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
4537 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
4541 unsigned dim
, total
;
4544 ctx
= isl_basic_map_get_ctx(bmap
);
4546 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4547 total
= 1 + dim
+ bmap
->n_div
;
4550 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
4551 isl_int_add_ui(m
, m
, 1);
4553 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4554 if (i
== l
|| i
== u
)
4556 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
4558 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
4559 if (isl_int_is_pos(bmap
->ineq
[i
][1 + dim
+ div2
]))
4560 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4561 ctx
->one
, bmap
->ineq
[l
], total
);
4563 isl_seq_combine(bmap
->ineq
[i
], m
, bmap
->ineq
[i
],
4564 ctx
->one
, bmap
->ineq
[u
], total
);
4566 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
4567 bmap
->ineq
[i
][1 + dim
+ div1
]);
4568 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
4573 isl_basic_map_drop_inequality(bmap
, l
);
4574 isl_basic_map_drop_inequality(bmap
, u
);
4576 isl_basic_map_drop_inequality(bmap
, u
);
4577 isl_basic_map_drop_inequality(bmap
, l
);
4579 bmap
= isl_basic_map_drop_div(bmap
, div1
);
4583 /* First check if we can coalesce any pair of divs and
4584 * then continue with dropping more redundant divs.
4586 * We loop over all pairs of lower and upper bounds on a div
4587 * with coefficient 1 and -1, respectively, check if there
4588 * is any other div "c" with which we can coalesce the div
4589 * and if so, perform the coalescing.
4591 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
4592 struct isl_basic_map
*bmap
, int *pairs
, int n
)
4597 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4599 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4602 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
4603 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
4605 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
4608 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
4610 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
4614 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
4615 return isl_basic_map_drop_redundant_divs(bmap
);
4620 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
4625 return drop_more_redundant_divs(bmap
, pairs
, n
);
4628 /* Are the "n" coefficients starting at "first" of inequality constraints
4629 * "i" and "j" of "bmap" equal to each other?
4631 static int is_parallel_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4634 return isl_seq_eq(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4637 /* Are the "n" coefficients starting at "first" of inequality constraints
4638 * "i" and "j" of "bmap" opposite to each other?
4640 static int is_opposite_part(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4643 return isl_seq_is_neg(bmap
->ineq
[i
] + first
, bmap
->ineq
[j
] + first
, n
);
4646 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4647 * apart from the constant term?
4649 static isl_bool
is_opposite(__isl_keep isl_basic_map
*bmap
, int i
, int j
)
4653 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4654 return is_opposite_part(bmap
, i
, j
, 1, total
);
4657 /* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4658 * apart from the constant term and the coefficient at position "pos"?
4660 static int is_parallel_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4665 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4666 return is_parallel_part(bmap
, i
, j
, 1, pos
- 1) &&
4667 is_parallel_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4670 /* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4671 * apart from the constant term and the coefficient at position "pos"?
4673 static int is_opposite_except(__isl_keep isl_basic_map
*bmap
, int i
, int j
,
4678 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4679 return is_opposite_part(bmap
, i
, j
, 1, pos
- 1) &&
4680 is_opposite_part(bmap
, i
, j
, pos
+ 1, total
- pos
);
4683 /* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4684 * been modified, simplying it if "simplify" is set.
4685 * Free the temporary data structure "pairs" that was associated
4686 * to the old version of "bmap".
4688 static __isl_give isl_basic_map
*drop_redundant_divs_again(
4689 __isl_take isl_basic_map
*bmap
, __isl_take
int *pairs
, int simplify
)
4692 bmap
= isl_basic_map_simplify(bmap
);
4694 return isl_basic_map_drop_redundant_divs(bmap
);
4697 /* Is "div" the single unknown existentially quantified variable
4698 * in inequality constraint "ineq" of "bmap"?
4699 * "div" is known to have a non-zero coefficient in "ineq".
4701 static isl_bool
single_unknown(__isl_keep isl_basic_map
*bmap
, int ineq
,
4705 unsigned n_div
, o_div
;
4708 known
= isl_basic_map_div_is_known(bmap
, div
);
4709 if (known
< 0 || known
)
4710 return isl_bool_not(known
);
4711 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4713 return isl_bool_true
;
4714 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4715 for (i
= 0; i
< n_div
; ++i
) {
4720 if (isl_int_is_zero(bmap
->ineq
[ineq
][o_div
+ i
]))
4722 known
= isl_basic_map_div_is_known(bmap
, i
);
4723 if (known
< 0 || !known
)
4727 return isl_bool_true
;
4730 /* Does integer division "div" have coefficient 1 in inequality constraint
4733 static isl_bool
has_coef_one(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4737 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4738 if (isl_int_is_one(bmap
->ineq
[ineq
][o_div
+ div
]))
4739 return isl_bool_true
;
4741 return isl_bool_false
;
4744 /* Turn inequality constraint "ineq" of "bmap" into an equality and
4745 * then try and drop redundant divs again,
4746 * freeing the temporary data structure "pairs" that was associated
4747 * to the old version of "bmap".
4749 static __isl_give isl_basic_map
*set_eq_and_try_again(
4750 __isl_take isl_basic_map
*bmap
, int ineq
, __isl_take
int *pairs
)
4752 bmap
= isl_basic_map_cow(bmap
);
4753 isl_basic_map_inequality_to_equality(bmap
, ineq
);
4754 return drop_redundant_divs_again(bmap
, pairs
, 1);
4757 /* Drop the integer division at position "div", along with the two
4758 * inequality constraints "ineq1" and "ineq2" in which it appears
4759 * from "bmap" and then try and drop redundant divs again,
4760 * freeing the temporary data structure "pairs" that was associated
4761 * to the old version of "bmap".
4763 static __isl_give isl_basic_map
*drop_div_and_try_again(
4764 __isl_take isl_basic_map
*bmap
, int div
, int ineq1
, int ineq2
,
4765 __isl_take
int *pairs
)
4767 if (ineq1
> ineq2
) {
4768 isl_basic_map_drop_inequality(bmap
, ineq1
);
4769 isl_basic_map_drop_inequality(bmap
, ineq2
);
4771 isl_basic_map_drop_inequality(bmap
, ineq2
);
4772 isl_basic_map_drop_inequality(bmap
, ineq1
);
4774 bmap
= isl_basic_map_drop_div(bmap
, div
);
4775 return drop_redundant_divs_again(bmap
, pairs
, 0);
4778 /* Given two inequality constraints
4780 * f(x) + n d + c >= 0, (ineq)
4782 * with d the variable at position "pos", and
4784 * f(x) + c0 >= 0, (lower)
4786 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4787 * determined by the first constraint.
4794 static void lower_bound_from_parallel(__isl_keep isl_basic_map
*bmap
,
4795 int ineq
, int lower
, int pos
, isl_int
*l
)
4797 isl_int_neg(*l
, bmap
->ineq
[ineq
][0]);
4798 isl_int_add(*l
, *l
, bmap
->ineq
[lower
][0]);
4799 isl_int_cdiv_q(*l
, *l
, bmap
->ineq
[ineq
][pos
]);
4802 /* Given two inequality constraints
4804 * f(x) + n d + c >= 0, (ineq)
4806 * with d the variable at position "pos", and
4808 * -f(x) - c0 >= 0, (upper)
4810 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4811 * determined by the first constraint.
4818 static void lower_bound_from_opposite(__isl_keep isl_basic_map
*bmap
,
4819 int ineq
, int upper
, int pos
, isl_int
*u
)
4821 isl_int_neg(*u
, bmap
->ineq
[ineq
][0]);
4822 isl_int_sub(*u
, *u
, bmap
->ineq
[upper
][0]);
4823 isl_int_cdiv_q(*u
, *u
, bmap
->ineq
[ineq
][pos
]);
4826 /* Given a lower bound constraint "ineq" on "div" in "bmap",
4827 * does the corresponding lower bound have a fixed value in "bmap"?
4829 * In particular, "ineq" is of the form
4831 * f(x) + n d + c >= 0
4833 * with n > 0, c the constant term and
4834 * d the existentially quantified variable "div".
4835 * That is, the lower bound is
4837 * ceil((-f(x) - c)/n)
4839 * Look for a pair of constraints
4844 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4845 * That is, check that
4847 * ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4849 * If so, return the index of inequality f(x) + c0 >= 0.
4850 * Otherwise, return -1.
4852 static int lower_bound_is_cst(__isl_keep isl_basic_map
*bmap
, int div
, int ineq
)
4855 int lower
= -1, upper
= -1;
4856 unsigned o_div
, n_div
;
4860 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4861 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4862 for (i
= 0; i
< bmap
->n_ineq
&& (lower
< 0 || upper
< 0); ++i
) {
4865 if (!isl_int_is_zero(bmap
->ineq
[i
][o_div
+ div
]))
4868 is_parallel_except(bmap
, ineq
, i
, o_div
+ div
)) {
4873 is_opposite_except(bmap
, ineq
, i
, o_div
+ div
)) {
4878 if (lower
< 0 || upper
< 0)
4884 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &l
);
4885 lower_bound_from_opposite(bmap
, ineq
, upper
, o_div
+ div
, &u
);
4887 equal
= isl_int_eq(l
, u
);
4892 return equal
? lower
: -1;
4895 /* Given a lower bound constraint "ineq" on the existentially quantified
4896 * variable "div", such that the corresponding lower bound has
4897 * a fixed value in "bmap", assign this fixed value to the variable and
4898 * then try and drop redundant divs again,
4899 * freeing the temporary data structure "pairs" that was associated
4900 * to the old version of "bmap".
4901 * "lower" determines the constant value for the lower bound.
4903 * In particular, "ineq" is of the form
4905 * f(x) + n d + c >= 0,
4907 * while "lower" is of the form
4911 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4912 * is ceil((c0 - c)/n).
4914 static __isl_give isl_basic_map
*fix_cst_lower(__isl_take isl_basic_map
*bmap
,
4915 int div
, int ineq
, int lower
, int *pairs
)
4922 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
4923 lower_bound_from_parallel(bmap
, ineq
, lower
, o_div
+ div
, &c
);
4924 bmap
= isl_basic_map_fix(bmap
, isl_dim_div
, div
, c
);
4929 return isl_basic_map_drop_redundant_divs(bmap
);
4932 /* Remove divs that are not strictly needed based on the inequality
4934 * In particular, if a div only occurs positively (or negatively)
4935 * in constraints, then it can simply be dropped.
4936 * Also, if a div occurs in only two constraints and if moreover
4937 * those two constraints are opposite to each other, except for the constant
4938 * term and if the sum of the constant terms is such that for any value
4939 * of the other values, there is always at least one integer value of the
4940 * div, i.e., if one plus this sum is greater than or equal to
4941 * the (absolute value) of the coefficient of the div in the constraints,
4942 * then we can also simply drop the div.
4944 * If an existentially quantified variable does not have an explicit
4945 * representation, appears in only a single lower bound that does not
4946 * involve any other such existentially quantified variables and appears
4947 * in this lower bound with coefficient 1,
4948 * then fix the variable to the value of the lower bound. That is,
4949 * turn the inequality into an equality.
4950 * If for any value of the other variables, there is any value
4951 * for the existentially quantified variable satisfying the constraints,
4952 * then this lower bound also satisfies the constraints.
4953 * It is therefore safe to pick this lower bound.
4955 * The same reasoning holds even if the coefficient is not one.
4956 * However, fixing the variable to the value of the lower bound may
4957 * in general introduce an extra integer division, in which case
4958 * it may be better to pick another value.
4959 * If this integer division has a known constant value, then plugging
4960 * in this constant value removes the existentially quantified variable
4961 * completely. In particular, if the lower bound is of the form
4962 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4963 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4964 * then the existentially quantified variable can be assigned this
4967 * We skip divs that appear in equalities or in the definition of other divs.
4968 * Divs that appear in the definition of other divs usually occur in at least
4969 * 4 constraints, but the constraints may have been simplified.
4971 * If any divs are left after these simple checks then we move on
4972 * to more complicated cases in drop_more_redundant_divs.
4974 static __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs_ineq(
4975 __isl_take isl_basic_map
*bmap
)
4984 if (bmap
->n_div
== 0)
4987 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4988 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
4992 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4994 int last_pos
, last_neg
;
4997 isl_bool opp
, set_div
;
4999 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
5000 for (j
= i
; j
< bmap
->n_div
; ++j
)
5001 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
5003 if (j
< bmap
->n_div
)
5005 for (j
= 0; j
< bmap
->n_eq
; ++j
)
5006 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
5012 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
5013 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
5017 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
5022 pairs
[i
] = pos
* neg
;
5023 if (pairs
[i
] == 0) {
5024 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
5025 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
5026 isl_basic_map_drop_inequality(bmap
, j
);
5027 bmap
= isl_basic_map_drop_div(bmap
, i
);
5028 return drop_redundant_divs_again(bmap
, pairs
, 0);
5031 opp
= isl_bool_false
;
5033 opp
= is_opposite(bmap
, last_pos
, last_neg
);
5038 isl_bool single
, one
;
5042 single
= single_unknown(bmap
, last_pos
, i
);
5047 one
= has_coef_one(bmap
, i
, last_pos
);
5051 return set_eq_and_try_again(bmap
, last_pos
,
5053 lower
= lower_bound_is_cst(bmap
, i
, last_pos
);
5055 return fix_cst_lower(bmap
, i
, last_pos
, lower
,
5060 isl_int_add(bmap
->ineq
[last_pos
][0],
5061 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5062 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
5063 bmap
->ineq
[last_pos
][0], 1);
5064 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
5065 bmap
->ineq
[last_pos
][1+off
+i
]);
5066 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
5067 bmap
->ineq
[last_pos
][0], 1);
5068 isl_int_sub(bmap
->ineq
[last_pos
][0],
5069 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
5071 return drop_div_and_try_again(bmap
, i
,
5072 last_pos
, last_neg
, pairs
);
5074 set_div
= isl_bool_false
;
5076 set_div
= ok_to_set_div_from_bound(bmap
, i
, last_pos
);
5078 return isl_basic_map_free(bmap
);
5080 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
5081 return drop_redundant_divs_again(bmap
, pairs
, 1);
5088 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
5094 isl_basic_map_free(bmap
);
5098 /* Consider the coefficients at "c" as a row vector and replace
5099 * them with their product with "T". "T" is assumed to be a square matrix.
5101 static isl_stat
preimage(isl_int
*c
, __isl_keep isl_mat
*T
)
5108 return isl_stat_error
;
5109 n
= isl_mat_rows(T
);
5110 if (isl_seq_first_non_zero(c
, n
) == -1)
5112 ctx
= isl_mat_get_ctx(T
);
5113 v
= isl_vec_alloc(ctx
, n
);
5115 return isl_stat_error
;
5116 isl_seq_swp_or_cpy(v
->el
, c
, n
);
5117 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5119 return isl_stat_error
;
5120 isl_seq_swp_or_cpy(c
, v
->el
, n
);
5126 /* Plug in T for the variables in "bmap" starting at "pos".
5127 * T is a linear unimodular matrix, i.e., without constant term.
5129 static __isl_give isl_basic_map
*isl_basic_map_preimage_vars(
5130 __isl_take isl_basic_map
*bmap
, unsigned pos
, __isl_take isl_mat
*T
)
5135 bmap
= isl_basic_map_cow(bmap
);
5139 n
= isl_mat_cols(T
);
5140 if (n
!= isl_mat_rows(T
))
5141 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5142 "expecting square matrix", goto error
);
5144 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5145 if (pos
+ n
> total
|| pos
+ n
< pos
)
5146 isl_die(isl_mat_get_ctx(T
), isl_error_invalid
,
5147 "invalid range", goto error
);
5149 for (i
= 0; i
< bmap
->n_eq
; ++i
)
5150 if (preimage(bmap
->eq
[i
] + 1 + pos
, T
) < 0)
5152 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
5153 if (preimage(bmap
->ineq
[i
] + 1 + pos
, T
) < 0)
5155 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5156 if (isl_basic_map_div_is_marked_unknown(bmap
, i
))
5158 if (preimage(bmap
->div
[i
] + 1 + 1 + pos
, T
) < 0)
5165 isl_basic_map_free(bmap
);
5170 /* Remove divs that are not strictly needed.
5172 * First look for an equality constraint involving two or more
5173 * existentially quantified variables without an explicit
5174 * representation. Replace the combination that appears
5175 * in the equality constraint by a single existentially quantified
5176 * variable such that the equality can be used to derive
5177 * an explicit representation for the variable.
5178 * If there are no more such equality constraints, then continue
5179 * with isl_basic_map_drop_redundant_divs_ineq.
5181 * In particular, if the equality constraint is of the form
5183 * f(x) + \sum_i c_i a_i = 0
5185 * with a_i existentially quantified variable without explicit
5186 * representation, then apply a transformation on the existentially
5187 * quantified variables to turn the constraint into
5191 * with g the gcd of the c_i.
5192 * In order to easily identify which existentially quantified variables
5193 * have a complete explicit representation, i.e., without being defined
5194 * in terms of other existentially quantified variables without
5195 * an explicit representation, the existentially quantified variables
5198 * The variable transformation is computed by extending the row
5199 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5201 * [a_1'] [c_1/g ... c_n/g] [ a_1 ]
5206 * with [c_1/g ... c_n/g] representing the first row of U.
5207 * The inverse of U is then plugged into the original constraints.
5208 * The call to isl_basic_map_simplify makes sure the explicit
5209 * representation for a_1' is extracted from the equality constraint.
5211 __isl_give isl_basic_map
*isl_basic_map_drop_redundant_divs(
5212 __isl_take isl_basic_map
*bmap
)
5216 unsigned o_div
, n_div
;
5223 if (isl_basic_map_divs_known(bmap
))
5224 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5225 if (bmap
->n_eq
== 0)
5226 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5227 bmap
= isl_basic_map_sort_divs(bmap
);
5231 first
= isl_basic_map_first_unknown_div(bmap
);
5233 return isl_basic_map_free(bmap
);
5235 o_div
= isl_basic_map_offset(bmap
, isl_dim_div
);
5236 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
5238 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5239 l
= isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ first
,
5244 if (isl_seq_first_non_zero(bmap
->eq
[i
] + o_div
+ l
+ 1,
5245 n_div
- (l
+ 1)) == -1)
5249 if (i
>= bmap
->n_eq
)
5250 return isl_basic_map_drop_redundant_divs_ineq(bmap
);
5252 ctx
= isl_basic_map_get_ctx(bmap
);
5253 T
= isl_mat_alloc(ctx
, n_div
- l
, n_div
- l
);
5255 return isl_basic_map_free(bmap
);
5256 isl_seq_cpy(T
->row
[0], bmap
->eq
[i
] + o_div
+ l
, n_div
- l
);
5257 T
= isl_mat_normalize_row(T
, 0);
5258 T
= isl_mat_unimodular_complete(T
, 1);
5259 T
= isl_mat_right_inverse(T
);
5261 for (i
= l
; i
< n_div
; ++i
)
5262 bmap
= isl_basic_map_mark_div_unknown(bmap
, i
);
5263 bmap
= isl_basic_map_preimage_vars(bmap
, o_div
- 1 + l
, T
);
5264 bmap
= isl_basic_map_simplify(bmap
);
5266 return isl_basic_map_drop_redundant_divs(bmap
);
5269 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
5270 struct isl_basic_set
*bset
)
5272 isl_basic_map
*bmap
= bset_to_bmap(bset
);
5273 return bset_from_bmap(isl_basic_map_drop_redundant_divs(bmap
));
5276 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
5282 for (i
= 0; i
< map
->n
; ++i
) {
5283 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
5287 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
5294 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
5296 return set_from_map(isl_map_drop_redundant_divs(set_to_map(set
)));
5299 /* Does "bmap" satisfy any equality that involves more than 2 variables
5300 * and/or has coefficients different from -1 and 1?
5302 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
5307 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5309 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5312 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
5315 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5316 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5320 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5324 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
5325 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
5329 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
5337 /* Remove any common factor g from the constraint coefficients in "v".
5338 * The constant term is stored in the first position and is replaced
5339 * by floor(c/g). If any common factor is removed and if this results
5340 * in a tightening of the constraint, then set *tightened.
5342 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
5349 ctx
= isl_vec_get_ctx(v
);
5350 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
5351 if (isl_int_is_zero(ctx
->normalize_gcd
))
5353 if (isl_int_is_one(ctx
->normalize_gcd
))
5358 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
5360 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
5361 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
5366 /* If "bmap" is an integer set that satisfies any equality involving
5367 * more than 2 variables and/or has coefficients different from -1 and 1,
5368 * then use variable compression to reduce the coefficients by removing
5369 * any (hidden) common factor.
5370 * In particular, apply the variable compression to each constraint,
5371 * factor out any common factor in the non-constant coefficients and
5372 * then apply the inverse of the compression.
5373 * At the end, we mark the basic map as having reduced constants.
5374 * If this flag is still set on the next invocation of this function,
5375 * then we skip the computation.
5377 * Removing a common factor may result in a tightening of some of
5378 * the constraints. If this happens, then we may end up with two
5379 * opposite inequalities that can be replaced by an equality.
5380 * We therefore call isl_basic_map_detect_inequality_pairs,
5381 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5382 * and isl_basic_map_gauss if such a pair was found.
5384 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
5385 __isl_take isl_basic_map
*bmap
)
5390 isl_mat
*eq
, *T
, *T2
;
5396 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
5398 if (isl_basic_map_is_rational(bmap
))
5400 if (bmap
->n_eq
== 0)
5402 if (!has_multiple_var_equality(bmap
))
5405 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5406 ctx
= isl_basic_map_get_ctx(bmap
);
5407 v
= isl_vec_alloc(ctx
, 1 + total
);
5409 return isl_basic_map_free(bmap
);
5411 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
5412 T
= isl_mat_variable_compression(eq
, &T2
);
5415 if (T
->n_col
== 0) {
5419 return isl_basic_map_set_to_empty(bmap
);
5423 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5424 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
5425 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
5426 v
= normalize_constraint(v
, &tightened
);
5427 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
5430 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
5437 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
5442 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
5444 bmap
= eliminate_divs_eq(bmap
, &progress
);
5445 bmap
= isl_basic_map_gauss(bmap
, NULL
);
5454 return isl_basic_map_free(bmap
);
5457 /* Shift the integer division at position "div" of "bmap"
5458 * by "shift" times the variable at position "pos".
5459 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5460 * corresponds to the constant term.
5462 * That is, if the integer division has the form
5466 * then replace it by
5468 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5470 __isl_give isl_basic_map
*isl_basic_map_shift_div(
5471 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
5476 if (isl_int_is_zero(shift
))
5481 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
5482 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
5484 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
5486 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
5487 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
5489 isl_int_submul(bmap
->eq
[i
][pos
],
5490 shift
, bmap
->eq
[i
][1 + total
+ div
]);
5492 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
5493 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
5495 isl_int_submul(bmap
->ineq
[i
][pos
],
5496 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
5498 for (i
= 0; i
< bmap
->n_div
; ++i
) {
5499 if (isl_int_is_zero(bmap
->div
[i
][0]))
5501 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
5503 isl_int_submul(bmap
->div
[i
][1 + pos
],
5504 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);