2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_space_private.h>
17 #include <isl_aff_private.h>
19 #include <isl/constraint.h>
20 #include <isl/schedule.h>
21 #include <isl/schedule_node.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
27 #include <isl_dim_map.h>
28 #include <isl/map_to_basic_set.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
32 #include <isl_morph.h>
35 * The scheduling algorithm implemented in this file was inspired by
36 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
37 * Parallelization and Locality Optimization in the Polyhedral Model".
41 isl_edge_validity
= 0,
42 isl_edge_first
= isl_edge_validity
,
45 isl_edge_conditional_validity
,
47 isl_edge_last
= isl_edge_proximity
50 /* The constraints that need to be satisfied by a schedule on "domain".
52 * "context" specifies extra constraints on the parameters.
54 * "validity" constraints map domain elements i to domain elements
55 * that should be scheduled after i. (Hard constraint)
56 * "proximity" constraints map domain elements i to domains elements
57 * that should be scheduled as early as possible after i (or before i).
60 * "condition" and "conditional_validity" constraints map possibly "tagged"
61 * domain elements i -> s to "tagged" domain elements j -> t.
62 * The elements of the "conditional_validity" constraints, but without the
63 * tags (i.e., the elements i -> j) are treated as validity constraints,
64 * except that during the construction of a tilable band,
65 * the elements of the "conditional_validity" constraints may be violated
66 * provided that all adjacent elements of the "condition" constraints
67 * are local within the band.
68 * A dependence is local within a band if domain and range are mapped
69 * to the same schedule point by the band.
71 struct isl_schedule_constraints
{
72 isl_union_set
*domain
;
75 isl_union_map
*constraint
[isl_edge_last
+ 1];
78 __isl_give isl_schedule_constraints
*isl_schedule_constraints_copy(
79 __isl_keep isl_schedule_constraints
*sc
)
82 isl_schedule_constraints
*sc_copy
;
85 ctx
= isl_union_set_get_ctx(sc
->domain
);
86 sc_copy
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
90 sc_copy
->domain
= isl_union_set_copy(sc
->domain
);
91 sc_copy
->context
= isl_set_copy(sc
->context
);
92 if (!sc_copy
->domain
|| !sc_copy
->context
)
93 return isl_schedule_constraints_free(sc_copy
);
95 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
96 sc_copy
->constraint
[i
] = isl_union_map_copy(sc
->constraint
[i
]);
97 if (!sc_copy
->constraint
[i
])
98 return isl_schedule_constraints_free(sc_copy
);
105 /* Construct an isl_schedule_constraints object for computing a schedule
106 * on "domain". The initial object does not impose any constraints.
108 __isl_give isl_schedule_constraints
*isl_schedule_constraints_on_domain(
109 __isl_take isl_union_set
*domain
)
113 isl_schedule_constraints
*sc
;
114 isl_union_map
*empty
;
115 enum isl_edge_type i
;
120 ctx
= isl_union_set_get_ctx(domain
);
121 sc
= isl_calloc_type(ctx
, struct isl_schedule_constraints
);
125 space
= isl_union_set_get_space(domain
);
127 sc
->context
= isl_set_universe(isl_space_copy(space
));
128 empty
= isl_union_map_empty(space
);
129 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
130 sc
->constraint
[i
] = isl_union_map_copy(empty
);
131 if (!sc
->constraint
[i
])
132 sc
->domain
= isl_union_set_free(sc
->domain
);
134 isl_union_map_free(empty
);
136 if (!sc
->domain
|| !sc
->context
)
137 return isl_schedule_constraints_free(sc
);
141 isl_union_set_free(domain
);
145 /* Replace the context of "sc" by "context".
147 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_context(
148 __isl_take isl_schedule_constraints
*sc
, __isl_take isl_set
*context
)
153 isl_set_free(sc
->context
);
154 sc
->context
= context
;
158 isl_schedule_constraints_free(sc
);
159 isl_set_free(context
);
163 /* Replace the validity constraints of "sc" by "validity".
165 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_validity(
166 __isl_take isl_schedule_constraints
*sc
,
167 __isl_take isl_union_map
*validity
)
169 if (!sc
|| !validity
)
172 isl_union_map_free(sc
->constraint
[isl_edge_validity
]);
173 sc
->constraint
[isl_edge_validity
] = validity
;
177 isl_schedule_constraints_free(sc
);
178 isl_union_map_free(validity
);
182 /* Replace the coincidence constraints of "sc" by "coincidence".
184 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_coincidence(
185 __isl_take isl_schedule_constraints
*sc
,
186 __isl_take isl_union_map
*coincidence
)
188 if (!sc
|| !coincidence
)
191 isl_union_map_free(sc
->constraint
[isl_edge_coincidence
]);
192 sc
->constraint
[isl_edge_coincidence
] = coincidence
;
196 isl_schedule_constraints_free(sc
);
197 isl_union_map_free(coincidence
);
201 /* Replace the proximity constraints of "sc" by "proximity".
203 __isl_give isl_schedule_constraints
*isl_schedule_constraints_set_proximity(
204 __isl_take isl_schedule_constraints
*sc
,
205 __isl_take isl_union_map
*proximity
)
207 if (!sc
|| !proximity
)
210 isl_union_map_free(sc
->constraint
[isl_edge_proximity
]);
211 sc
->constraint
[isl_edge_proximity
] = proximity
;
215 isl_schedule_constraints_free(sc
);
216 isl_union_map_free(proximity
);
220 /* Replace the conditional validity constraints of "sc" by "condition"
223 __isl_give isl_schedule_constraints
*
224 isl_schedule_constraints_set_conditional_validity(
225 __isl_take isl_schedule_constraints
*sc
,
226 __isl_take isl_union_map
*condition
,
227 __isl_take isl_union_map
*validity
)
229 if (!sc
|| !condition
|| !validity
)
232 isl_union_map_free(sc
->constraint
[isl_edge_condition
]);
233 sc
->constraint
[isl_edge_condition
] = condition
;
234 isl_union_map_free(sc
->constraint
[isl_edge_conditional_validity
]);
235 sc
->constraint
[isl_edge_conditional_validity
] = validity
;
239 isl_schedule_constraints_free(sc
);
240 isl_union_map_free(condition
);
241 isl_union_map_free(validity
);
245 __isl_null isl_schedule_constraints
*isl_schedule_constraints_free(
246 __isl_take isl_schedule_constraints
*sc
)
248 enum isl_edge_type i
;
253 isl_union_set_free(sc
->domain
);
254 isl_set_free(sc
->context
);
255 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
256 isl_union_map_free(sc
->constraint
[i
]);
263 isl_ctx
*isl_schedule_constraints_get_ctx(
264 __isl_keep isl_schedule_constraints
*sc
)
266 return sc
? isl_union_set_get_ctx(sc
->domain
) : NULL
;
269 /* Return the validity constraints of "sc".
271 __isl_give isl_union_map
*isl_schedule_constraints_get_validity(
272 __isl_keep isl_schedule_constraints
*sc
)
277 return isl_union_map_copy(sc
->constraint
[isl_edge_validity
]);
280 /* Return the coincidence constraints of "sc".
282 __isl_give isl_union_map
*isl_schedule_constraints_get_coincidence(
283 __isl_keep isl_schedule_constraints
*sc
)
288 return isl_union_map_copy(sc
->constraint
[isl_edge_coincidence
]);
291 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints
*sc
)
296 fprintf(stderr
, "domain: ");
297 isl_union_set_dump(sc
->domain
);
298 fprintf(stderr
, "context: ");
299 isl_set_dump(sc
->context
);
300 fprintf(stderr
, "validity: ");
301 isl_union_map_dump(sc
->constraint
[isl_edge_validity
]);
302 fprintf(stderr
, "proximity: ");
303 isl_union_map_dump(sc
->constraint
[isl_edge_proximity
]);
304 fprintf(stderr
, "coincidence: ");
305 isl_union_map_dump(sc
->constraint
[isl_edge_coincidence
]);
306 fprintf(stderr
, "condition: ");
307 isl_union_map_dump(sc
->constraint
[isl_edge_condition
]);
308 fprintf(stderr
, "conditional_validity: ");
309 isl_union_map_dump(sc
->constraint
[isl_edge_conditional_validity
]);
312 /* Align the parameters of the fields of "sc".
314 static __isl_give isl_schedule_constraints
*
315 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints
*sc
)
318 enum isl_edge_type i
;
323 space
= isl_union_set_get_space(sc
->domain
);
324 space
= isl_space_align_params(space
, isl_set_get_space(sc
->context
));
325 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
326 space
= isl_space_align_params(space
,
327 isl_union_map_get_space(sc
->constraint
[i
]));
329 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
330 sc
->constraint
[i
] = isl_union_map_align_params(
331 sc
->constraint
[i
], isl_space_copy(space
));
332 if (!sc
->constraint
[i
])
333 space
= isl_space_free(space
);
335 sc
->context
= isl_set_align_params(sc
->context
, isl_space_copy(space
));
336 sc
->domain
= isl_union_set_align_params(sc
->domain
, space
);
337 if (!sc
->context
|| !sc
->domain
)
338 return isl_schedule_constraints_free(sc
);
343 /* Return the total number of isl_maps in the constraints of "sc".
345 static __isl_give
int isl_schedule_constraints_n_map(
346 __isl_keep isl_schedule_constraints
*sc
)
348 enum isl_edge_type i
;
351 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
352 n
+= isl_union_map_n_map(sc
->constraint
[i
]);
357 /* Internal information about a node that is used during the construction
359 * space represents the space in which the domain lives
360 * sched is a matrix representation of the schedule being constructed
361 * for this node; if compressed is set, then this schedule is
362 * defined over the compressed domain space
363 * sched_map is an isl_map representation of the same (partial) schedule
364 * sched_map may be NULL; if compressed is set, then this map
365 * is defined over the uncompressed domain space
366 * rank is the number of linearly independent rows in the linear part
368 * the columns of cmap represent a change of basis for the schedule
369 * coefficients; the first rank columns span the linear part of
371 * cinv is the inverse of cmap.
372 * start is the first variable in the LP problem in the sequences that
373 * represents the schedule coefficients of this node
374 * nvar is the dimension of the domain
375 * nparam is the number of parameters or 0 if we are not constructing
376 * a parametric schedule
378 * If compressed is set, then hull represents the constraints
379 * that were used to derive the compression, while compress and
380 * decompress map the original space to the compressed space and
383 * scc is the index of SCC (or WCC) this node belongs to
385 * coincident contains a boolean for each of the rows of the schedule,
386 * indicating whether the corresponding scheduling dimension satisfies
387 * the coincidence constraints in the sense that the corresponding
388 * dependence distances are zero.
390 struct isl_sched_node
{
394 isl_multi_aff
*compress
;
395 isl_multi_aff
*decompress
;
410 static int node_has_space(const void *entry
, const void *val
)
412 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
413 isl_space
*dim
= (isl_space
*)val
;
415 return isl_space_is_equal(node
->space
, dim
);
418 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
420 return node
->scc
== scc
;
423 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
425 return node
->scc
<= scc
;
428 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
430 return node
->scc
>= scc
;
433 /* An edge in the dependence graph. An edge may be used to
434 * ensure validity of the generated schedule, to minimize the dependence
437 * map is the dependence relation, with i -> j in the map if j depends on i
438 * tagged_condition and tagged_validity contain the union of all tagged
439 * condition or conditional validity dependence relations that
440 * specialize the dependence relation "map"; that is,
441 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
442 * or "tagged_validity", then i -> j is an element of "map".
443 * If these fields are NULL, then they represent the empty relation.
444 * src is the source node
445 * dst is the sink node
446 * validity is set if the edge is used to ensure correctness
447 * coincidence is used to enforce zero dependence distances
448 * proximity is set if the edge is used to minimize dependence distances
449 * condition is set if the edge represents a condition
450 * for a conditional validity schedule constraint
451 * local can only be set for condition edges and indicates that
452 * the dependence distance over the edge should be zero
453 * conditional_validity is set if the edge is used to conditionally
456 * For validity edges, start and end mark the sequence of inequality
457 * constraints in the LP problem that encode the validity constraint
458 * corresponding to this edge.
460 struct isl_sched_edge
{
462 isl_union_map
*tagged_condition
;
463 isl_union_map
*tagged_validity
;
465 struct isl_sched_node
*src
;
466 struct isl_sched_node
*dst
;
468 unsigned validity
: 1;
469 unsigned coincidence
: 1;
470 unsigned proximity
: 1;
472 unsigned condition
: 1;
473 unsigned conditional_validity
: 1;
479 /* Internal information about the dependence graph used during
480 * the construction of the schedule.
482 * intra_hmap is a cache, mapping dependence relations to their dual,
483 * for dependences from a node to itself
484 * inter_hmap is a cache, mapping dependence relations to their dual,
485 * for dependences between distinct nodes
486 * if compression is involved then the key for these maps
487 * it the original, uncompressed dependence relation, while
488 * the value is the dual of the compressed dependence relation.
490 * n is the number of nodes
491 * node is the list of nodes
492 * maxvar is the maximal number of variables over all nodes
493 * max_row is the allocated number of rows in the schedule
494 * n_row is the current (maximal) number of linearly independent
495 * rows in the node schedules
496 * n_total_row is the current number of rows in the node schedules
497 * band_start is the starting row in the node schedules of the current band
498 * root is set if this graph is the original dependence graph,
499 * without any splitting
501 * sorted contains a list of node indices sorted according to the
502 * SCC to which a node belongs
504 * n_edge is the number of edges
505 * edge is the list of edges
506 * max_edge contains the maximal number of edges of each type;
507 * in particular, it contains the number of edges in the inital graph.
508 * edge_table contains pointers into the edge array, hashed on the source
509 * and sink spaces; there is one such table for each type;
510 * a given edge may be referenced from more than one table
511 * if the corresponding relation appears in more than of the
512 * sets of dependences
514 * node_table contains pointers into the node array, hashed on the space
516 * region contains a list of variable sequences that should be non-trivial
518 * lp contains the (I)LP problem used to obtain new schedule rows
520 * src_scc and dst_scc are the source and sink SCCs of an edge with
521 * conflicting constraints
523 * scc represents the number of components
524 * weak is set if the components are weakly connected
526 struct isl_sched_graph
{
527 isl_map_to_basic_set
*intra_hmap
;
528 isl_map_to_basic_set
*inter_hmap
;
530 struct isl_sched_node
*node
;
543 struct isl_sched_edge
*edge
;
545 int max_edge
[isl_edge_last
+ 1];
546 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
548 struct isl_hash_table
*node_table
;
549 struct isl_region
*region
;
560 /* Initialize node_table based on the list of nodes.
562 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
566 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
567 if (!graph
->node_table
)
570 for (i
= 0; i
< graph
->n
; ++i
) {
571 struct isl_hash_table_entry
*entry
;
574 hash
= isl_space_get_hash(graph
->node
[i
].space
);
575 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
577 graph
->node
[i
].space
, 1);
580 entry
->data
= &graph
->node
[i
];
586 /* Return a pointer to the node that lives within the given space,
587 * or NULL if there is no such node.
589 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
590 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
592 struct isl_hash_table_entry
*entry
;
595 hash
= isl_space_get_hash(dim
);
596 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
597 &node_has_space
, dim
, 0);
599 return entry
? entry
->data
: NULL
;
602 static int edge_has_src_and_dst(const void *entry
, const void *val
)
604 const struct isl_sched_edge
*edge
= entry
;
605 const struct isl_sched_edge
*temp
= val
;
607 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
610 /* Add the given edge to graph->edge_table[type].
612 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
613 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
615 struct isl_hash_table_entry
*entry
;
618 hash
= isl_hash_init();
619 hash
= isl_hash_builtin(hash
, edge
->src
);
620 hash
= isl_hash_builtin(hash
, edge
->dst
);
621 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
622 &edge_has_src_and_dst
, edge
, 1);
630 /* Allocate the edge_tables based on the maximal number of edges of
633 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
637 for (i
= 0; i
<= isl_edge_last
; ++i
) {
638 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
640 if (!graph
->edge_table
[i
])
647 /* If graph->edge_table[type] contains an edge from the given source
648 * to the given destination, then return the hash table entry of this edge.
649 * Otherwise, return NULL.
651 static struct isl_hash_table_entry
*graph_find_edge_entry(
652 struct isl_sched_graph
*graph
,
653 enum isl_edge_type type
,
654 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
656 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
658 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
660 hash
= isl_hash_init();
661 hash
= isl_hash_builtin(hash
, temp
.src
);
662 hash
= isl_hash_builtin(hash
, temp
.dst
);
663 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
664 &edge_has_src_and_dst
, &temp
, 0);
668 /* If graph->edge_table[type] contains an edge from the given source
669 * to the given destination, then return this edge.
670 * Otherwise, return NULL.
672 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
673 enum isl_edge_type type
,
674 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
676 struct isl_hash_table_entry
*entry
;
678 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
685 /* Check whether the dependence graph has an edge of the given type
686 * between the given two nodes.
688 static int graph_has_edge(struct isl_sched_graph
*graph
,
689 enum isl_edge_type type
,
690 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
692 struct isl_sched_edge
*edge
;
695 edge
= graph_find_edge(graph
, type
, src
, dst
);
699 empty
= isl_map_plain_is_empty(edge
->map
);
706 /* Look for any edge with the same src, dst and map fields as "model".
708 * Return the matching edge if one can be found.
709 * Return "model" if no matching edge is found.
710 * Return NULL on error.
712 static struct isl_sched_edge
*graph_find_matching_edge(
713 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
715 enum isl_edge_type i
;
716 struct isl_sched_edge
*edge
;
718 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
721 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
);
724 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
734 /* Remove the given edge from all the edge_tables that refer to it.
736 static void graph_remove_edge(struct isl_sched_graph
*graph
,
737 struct isl_sched_edge
*edge
)
739 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
740 enum isl_edge_type i
;
742 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
743 struct isl_hash_table_entry
*entry
;
745 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
748 if (entry
->data
!= edge
)
750 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
754 /* Check whether the dependence graph has any edge
755 * between the given two nodes.
757 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
758 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
760 enum isl_edge_type i
;
763 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
764 r
= graph_has_edge(graph
, i
, src
, dst
);
772 /* Check whether the dependence graph has a validity edge
773 * between the given two nodes.
775 * Conditional validity edges are essentially validity edges that
776 * can be ignored if the corresponding condition edges are iteration private.
777 * Here, we are only checking for the presence of validity
778 * edges, so we need to consider the conditional validity edges too.
779 * In particular, this function is used during the detection
780 * of strongly connected components and we cannot ignore
781 * conditional validity edges during this detection.
783 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
784 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
788 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
792 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
795 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
796 int n_node
, int n_edge
)
801 graph
->n_edge
= n_edge
;
802 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
803 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
804 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
805 graph
->edge
= isl_calloc_array(ctx
,
806 struct isl_sched_edge
, graph
->n_edge
);
808 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
809 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
811 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
815 for(i
= 0; i
< graph
->n
; ++i
)
816 graph
->sorted
[i
] = i
;
821 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
825 isl_map_to_basic_set_free(graph
->intra_hmap
);
826 isl_map_to_basic_set_free(graph
->inter_hmap
);
829 for (i
= 0; i
< graph
->n
; ++i
) {
830 isl_space_free(graph
->node
[i
].space
);
831 isl_set_free(graph
->node
[i
].hull
);
832 isl_multi_aff_free(graph
->node
[i
].compress
);
833 isl_multi_aff_free(graph
->node
[i
].decompress
);
834 isl_mat_free(graph
->node
[i
].sched
);
835 isl_map_free(graph
->node
[i
].sched_map
);
836 isl_mat_free(graph
->node
[i
].cmap
);
837 isl_mat_free(graph
->node
[i
].cinv
);
839 free(graph
->node
[i
].coincident
);
844 for (i
= 0; i
< graph
->n_edge
; ++i
) {
845 isl_map_free(graph
->edge
[i
].map
);
846 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
847 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
851 for (i
= 0; i
<= isl_edge_last
; ++i
)
852 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
853 isl_hash_table_free(ctx
, graph
->node_table
);
854 isl_basic_set_free(graph
->lp
);
857 /* For each "set" on which this function is called, increment
858 * graph->n by one and update graph->maxvar.
860 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
862 struct isl_sched_graph
*graph
= user
;
863 int nvar
= isl_set_dim(set
, isl_dim_set
);
866 if (nvar
> graph
->maxvar
)
867 graph
->maxvar
= nvar
;
874 /* Add the number of basic maps in "map" to *n.
876 static int add_n_basic_map(__isl_take isl_map
*map
, void *user
)
880 *n
+= isl_map_n_basic_map(map
);
886 /* Compute the number of rows that should be allocated for the schedule.
887 * In particular, we need one row for each variable or one row
888 * for each basic map in the dependences.
889 * Note that it is practically impossible to exhaust both
890 * the number of dependences and the number of variables.
892 static int compute_max_row(struct isl_sched_graph
*graph
,
893 __isl_keep isl_schedule_constraints
*sc
)
895 enum isl_edge_type i
;
900 if (isl_union_set_foreach_set(sc
->domain
, &init_n_maxvar
, graph
) < 0)
903 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
904 if (isl_union_map_foreach_map(sc
->constraint
[i
],
905 &add_n_basic_map
, &n_edge
) < 0)
907 graph
->max_row
= n_edge
+ graph
->maxvar
;
912 /* Does "bset" have any defining equalities for its set variables?
914 static int has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
921 n
= isl_basic_set_dim(bset
, isl_dim_set
);
922 for (i
= 0; i
< n
; ++i
) {
925 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
934 /* Add a new node to the graph representing the given space.
935 * "nvar" is the (possibly compressed) number of variables and
936 * may be smaller than then number of set variables in "space"
937 * if "compressed" is set.
938 * If "compressed" is set, then "hull" represents the constraints
939 * that were used to derive the compression, while "compress" and
940 * "decompress" map the original space to the compressed space and
942 * If "compressed" is not set, then "hull", "compress" and "decompress"
945 static int add_node(struct isl_sched_graph
*graph
, __isl_take isl_space
*space
,
946 int nvar
, int compressed
, __isl_take isl_set
*hull
,
947 __isl_take isl_multi_aff
*compress
,
948 __isl_take isl_multi_aff
*decompress
)
958 ctx
= isl_space_get_ctx(space
);
959 nparam
= isl_space_dim(space
, isl_dim_param
);
960 if (!ctx
->opt
->schedule_parametric
)
962 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
963 graph
->node
[graph
->n
].space
= space
;
964 graph
->node
[graph
->n
].nvar
= nvar
;
965 graph
->node
[graph
->n
].nparam
= nparam
;
966 graph
->node
[graph
->n
].sched
= sched
;
967 graph
->node
[graph
->n
].sched_map
= NULL
;
968 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
969 graph
->node
[graph
->n
].coincident
= coincident
;
970 graph
->node
[graph
->n
].compressed
= compressed
;
971 graph
->node
[graph
->n
].hull
= hull
;
972 graph
->node
[graph
->n
].compress
= compress
;
973 graph
->node
[graph
->n
].decompress
= decompress
;
976 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
978 if (compressed
&& (!hull
|| !compress
|| !decompress
))
984 /* Add a new node to the graph representing the given set.
986 * If any of the set variables is defined by an equality, then
987 * we perform variable compression such that we can perform
988 * the scheduling on the compressed domain.
990 static int extract_node(__isl_take isl_set
*set
, void *user
)
998 isl_multi_aff
*compress
, *decompress
;
999 struct isl_sched_graph
*graph
= user
;
1001 space
= isl_set_get_space(set
);
1002 hull
= isl_set_affine_hull(set
);
1003 hull
= isl_basic_set_remove_divs(hull
);
1004 nvar
= isl_space_dim(space
, isl_dim_set
);
1005 has_equality
= has_any_defining_equality(hull
);
1007 if (has_equality
< 0)
1009 if (!has_equality
) {
1010 isl_basic_set_free(hull
);
1011 return add_node(graph
, space
, nvar
, 0, NULL
, NULL
, NULL
);
1014 morph
= isl_basic_set_variable_compression(hull
, isl_dim_set
);
1015 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1016 compress
= isl_morph_get_var_multi_aff(morph
);
1017 morph
= isl_morph_inverse(morph
);
1018 decompress
= isl_morph_get_var_multi_aff(morph
);
1019 isl_morph_free(morph
);
1021 hull_set
= isl_set_from_basic_set(hull
);
1022 return add_node(graph
, space
, nvar
, 1, hull_set
, compress
, decompress
);
1024 isl_basic_set_free(hull
);
1025 isl_space_free(space
);
1029 struct isl_extract_edge_data
{
1030 enum isl_edge_type type
;
1031 struct isl_sched_graph
*graph
;
1034 /* Merge edge2 into edge1, freeing the contents of edge2.
1035 * "type" is the type of the schedule constraint from which edge2 was
1037 * Return 0 on success and -1 on failure.
1039 * edge1 and edge2 are assumed to have the same value for the map field.
1041 static int merge_edge(enum isl_edge_type type
, struct isl_sched_edge
*edge1
,
1042 struct isl_sched_edge
*edge2
)
1044 edge1
->validity
|= edge2
->validity
;
1045 edge1
->coincidence
|= edge2
->coincidence
;
1046 edge1
->proximity
|= edge2
->proximity
;
1047 edge1
->condition
|= edge2
->condition
;
1048 edge1
->conditional_validity
|= edge2
->conditional_validity
;
1049 isl_map_free(edge2
->map
);
1051 if (type
== isl_edge_condition
) {
1052 if (!edge1
->tagged_condition
)
1053 edge1
->tagged_condition
= edge2
->tagged_condition
;
1055 edge1
->tagged_condition
=
1056 isl_union_map_union(edge1
->tagged_condition
,
1057 edge2
->tagged_condition
);
1060 if (type
== isl_edge_conditional_validity
) {
1061 if (!edge1
->tagged_validity
)
1062 edge1
->tagged_validity
= edge2
->tagged_validity
;
1064 edge1
->tagged_validity
=
1065 isl_union_map_union(edge1
->tagged_validity
,
1066 edge2
->tagged_validity
);
1069 if (type
== isl_edge_condition
&& !edge1
->tagged_condition
)
1071 if (type
== isl_edge_conditional_validity
&& !edge1
->tagged_validity
)
1077 /* Insert dummy tags in domain and range of "map".
1079 * In particular, if "map" is of the form
1085 * [A -> dummy_tag] -> [B -> dummy_tag]
1087 * where the dummy_tags are identical and equal to any dummy tags
1088 * introduced by any other call to this function.
1090 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1096 isl_set
*domain
, *range
;
1098 ctx
= isl_map_get_ctx(map
);
1100 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1101 space
= isl_space_params(isl_map_get_space(map
));
1102 space
= isl_space_set_from_params(space
);
1103 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1104 space
= isl_space_map_from_set(space
);
1106 domain
= isl_map_wrap(map
);
1107 range
= isl_map_wrap(isl_map_universe(space
));
1108 map
= isl_map_from_domain_and_range(domain
, range
);
1109 map
= isl_map_zip(map
);
1114 /* Given that at least one of "src" or "dst" is compressed, return
1115 * a map between the spaces of these nodes restricted to the affine
1116 * hull that was used in the compression.
1118 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1119 struct isl_sched_node
*dst
)
1123 if (src
->compressed
)
1124 dom
= isl_set_copy(src
->hull
);
1126 dom
= isl_set_universe(isl_space_copy(src
->space
));
1127 if (dst
->compressed
)
1128 ran
= isl_set_copy(dst
->hull
);
1130 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1132 return isl_map_from_domain_and_range(dom
, ran
);
1135 /* Intersect the domains of the nested relations in domain and range
1136 * of "tagged" with "map".
1138 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1139 __isl_keep isl_map
*map
)
1143 tagged
= isl_map_zip(tagged
);
1144 set
= isl_map_wrap(isl_map_copy(map
));
1145 tagged
= isl_map_intersect_domain(tagged
, set
);
1146 tagged
= isl_map_zip(tagged
);
1150 /* Add a new edge to the graph based on the given map
1151 * and add it to data->graph->edge_table[data->type].
1152 * If a dependence relation of a given type happens to be identical
1153 * to one of the dependence relations of a type that was added before,
1154 * then we don't create a new edge, but instead mark the original edge
1155 * as also representing a dependence of the current type.
1157 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1158 * may be specified as "tagged" dependence relations. That is, "map"
1159 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1160 * the dependence on iterations and a and b are tags.
1161 * edge->map is set to the relation containing the elements i -> j,
1162 * while edge->tagged_condition and edge->tagged_validity contain
1163 * the union of all the "map" relations
1164 * for which extract_edge is called that result in the same edge->map.
1166 * If the source or the destination node is compressed, then
1167 * intersect both "map" and "tagged" with the constraints that
1168 * were used to construct the compression.
1169 * This ensures that there are no schedule constraints defined
1170 * outside of these domains, while the scheduler no longer has
1171 * any control over those outside parts.
1173 static int extract_edge(__isl_take isl_map
*map
, void *user
)
1175 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1176 struct isl_extract_edge_data
*data
= user
;
1177 struct isl_sched_graph
*graph
= data
->graph
;
1178 struct isl_sched_node
*src
, *dst
;
1180 struct isl_sched_edge
*edge
;
1181 isl_map
*tagged
= NULL
;
1183 if (data
->type
== isl_edge_condition
||
1184 data
->type
== isl_edge_conditional_validity
) {
1185 if (isl_map_can_zip(map
)) {
1186 tagged
= isl_map_copy(map
);
1187 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1189 tagged
= insert_dummy_tags(isl_map_copy(map
));
1193 dim
= isl_space_domain(isl_map_get_space(map
));
1194 src
= graph_find_node(ctx
, graph
, dim
);
1195 isl_space_free(dim
);
1196 dim
= isl_space_range(isl_map_get_space(map
));
1197 dst
= graph_find_node(ctx
, graph
, dim
);
1198 isl_space_free(dim
);
1202 isl_map_free(tagged
);
1206 if (src
->compressed
|| dst
->compressed
) {
1208 hull
= extract_hull(src
, dst
);
1210 tagged
= map_intersect_domains(tagged
, hull
);
1211 map
= isl_map_intersect(map
, hull
);
1214 graph
->edge
[graph
->n_edge
].src
= src
;
1215 graph
->edge
[graph
->n_edge
].dst
= dst
;
1216 graph
->edge
[graph
->n_edge
].map
= map
;
1217 graph
->edge
[graph
->n_edge
].validity
= 0;
1218 graph
->edge
[graph
->n_edge
].coincidence
= 0;
1219 graph
->edge
[graph
->n_edge
].proximity
= 0;
1220 graph
->edge
[graph
->n_edge
].condition
= 0;
1221 graph
->edge
[graph
->n_edge
].local
= 0;
1222 graph
->edge
[graph
->n_edge
].conditional_validity
= 0;
1223 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1224 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1225 if (data
->type
== isl_edge_validity
)
1226 graph
->edge
[graph
->n_edge
].validity
= 1;
1227 if (data
->type
== isl_edge_coincidence
)
1228 graph
->edge
[graph
->n_edge
].coincidence
= 1;
1229 if (data
->type
== isl_edge_proximity
)
1230 graph
->edge
[graph
->n_edge
].proximity
= 1;
1231 if (data
->type
== isl_edge_condition
) {
1232 graph
->edge
[graph
->n_edge
].condition
= 1;
1233 graph
->edge
[graph
->n_edge
].tagged_condition
=
1234 isl_union_map_from_map(tagged
);
1236 if (data
->type
== isl_edge_conditional_validity
) {
1237 graph
->edge
[graph
->n_edge
].conditional_validity
= 1;
1238 graph
->edge
[graph
->n_edge
].tagged_validity
=
1239 isl_union_map_from_map(tagged
);
1242 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1247 if (edge
== &graph
->edge
[graph
->n_edge
])
1248 return graph_edge_table_add(ctx
, graph
, data
->type
,
1249 &graph
->edge
[graph
->n_edge
++]);
1251 if (merge_edge(data
->type
, edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1254 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1257 /* Check whether there is any dependence from node[j] to node[i]
1258 * or from node[i] to node[j].
1260 static int node_follows_weak(int i
, int j
, void *user
)
1263 struct isl_sched_graph
*graph
= user
;
1265 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1268 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1271 /* Check whether there is a (conditional) validity dependence from node[j]
1272 * to node[i], forcing node[i] to follow node[j].
1274 static int node_follows_strong(int i
, int j
, void *user
)
1276 struct isl_sched_graph
*graph
= user
;
1278 return graph_has_validity_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1281 /* Use Tarjan's algorithm for computing the strongly connected components
1282 * in the dependence graph (only validity edges).
1283 * If weak is set, we consider the graph to be undirected and
1284 * we effectively compute the (weakly) connected components.
1285 * Additionally, we also consider other edges when weak is set.
1287 static int detect_ccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
, int weak
)
1290 struct isl_tarjan_graph
*g
= NULL
;
1292 g
= isl_tarjan_graph_init(ctx
, graph
->n
,
1293 weak
? &node_follows_weak
: &node_follows_strong
, graph
);
1302 while (g
->order
[i
] != -1) {
1303 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1311 isl_tarjan_graph_free(g
);
1316 /* Apply Tarjan's algorithm to detect the strongly connected components
1317 * in the dependence graph.
1319 static int detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1321 return detect_ccs(ctx
, graph
, 0);
1324 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1325 * in the dependence graph.
1327 static int detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1329 return detect_ccs(ctx
, graph
, 1);
1332 static int cmp_scc(const void *a
, const void *b
, void *data
)
1334 struct isl_sched_graph
*graph
= data
;
1338 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1341 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1343 static int sort_sccs(struct isl_sched_graph
*graph
)
1345 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1348 /* Given a dependence relation R from "node" to itself,
1349 * construct the set of coefficients of valid constraints for elements
1350 * in that dependence relation.
1351 * In particular, the result contains tuples of coefficients
1352 * c_0, c_n, c_x such that
1354 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1358 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1360 * We choose here to compute the dual of delta R.
1361 * Alternatively, we could have computed the dual of R, resulting
1362 * in a set of tuples c_0, c_n, c_x, c_y, and then
1363 * plugged in (c_0, c_n, c_x, -c_x).
1365 * If "node" has been compressed, then the dependence relation
1366 * is also compressed before the set of coefficients is computed.
1368 static __isl_give isl_basic_set
*intra_coefficients(
1369 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1370 __isl_take isl_map
*map
)
1374 isl_basic_set
*coef
;
1376 if (isl_map_to_basic_set_has(graph
->intra_hmap
, map
))
1377 return isl_map_to_basic_set_get(graph
->intra_hmap
, map
);
1379 key
= isl_map_copy(map
);
1380 if (node
->compressed
) {
1381 map
= isl_map_preimage_domain_multi_aff(map
,
1382 isl_multi_aff_copy(node
->decompress
));
1383 map
= isl_map_preimage_range_multi_aff(map
,
1384 isl_multi_aff_copy(node
->decompress
));
1386 delta
= isl_set_remove_divs(isl_map_deltas(map
));
1387 coef
= isl_set_coefficients(delta
);
1388 graph
->intra_hmap
= isl_map_to_basic_set_set(graph
->intra_hmap
, key
,
1389 isl_basic_set_copy(coef
));
1394 /* Given a dependence relation R, construct the set of coefficients
1395 * of valid constraints for elements in that dependence relation.
1396 * In particular, the result contains tuples of coefficients
1397 * c_0, c_n, c_x, c_y such that
1399 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1401 * If the source or destination nodes of "edge" have been compressed,
1402 * then the dependence relation is also compressed before
1403 * the set of coefficients is computed.
1405 static __isl_give isl_basic_set
*inter_coefficients(
1406 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1407 __isl_take isl_map
*map
)
1411 isl_basic_set
*coef
;
1413 if (isl_map_to_basic_set_has(graph
->inter_hmap
, map
))
1414 return isl_map_to_basic_set_get(graph
->inter_hmap
, map
);
1416 key
= isl_map_copy(map
);
1417 if (edge
->src
->compressed
)
1418 map
= isl_map_preimage_domain_multi_aff(map
,
1419 isl_multi_aff_copy(edge
->src
->decompress
));
1420 if (edge
->dst
->compressed
)
1421 map
= isl_map_preimage_range_multi_aff(map
,
1422 isl_multi_aff_copy(edge
->dst
->decompress
));
1423 set
= isl_map_wrap(isl_map_remove_divs(map
));
1424 coef
= isl_set_coefficients(set
);
1425 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1426 isl_basic_set_copy(coef
));
1431 /* Add constraints to graph->lp that force validity for the given
1432 * dependence from a node i to itself.
1433 * That is, add constraints that enforce
1435 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1436 * = c_i_x (y - x) >= 0
1438 * for each (x,y) in R.
1439 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1440 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1441 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1442 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1444 * Actually, we do not construct constraints for the c_i_x themselves,
1445 * but for the coefficients of c_i_x written as a linear combination
1446 * of the columns in node->cmap.
1448 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1449 struct isl_sched_edge
*edge
)
1452 isl_map
*map
= isl_map_copy(edge
->map
);
1453 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1455 isl_dim_map
*dim_map
;
1456 isl_basic_set
*coef
;
1457 struct isl_sched_node
*node
= edge
->src
;
1459 coef
= intra_coefficients(graph
, node
, map
);
1461 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1463 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1464 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1468 total
= isl_basic_set_total_dim(graph
->lp
);
1469 dim_map
= isl_dim_map_alloc(ctx
, total
);
1470 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1471 isl_space_dim(dim
, isl_dim_set
), 1,
1473 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1474 isl_space_dim(dim
, isl_dim_set
), 1,
1476 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1477 coef
->n_eq
, coef
->n_ineq
);
1478 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1480 isl_space_free(dim
);
1484 isl_space_free(dim
);
1488 /* Add constraints to graph->lp that force validity for the given
1489 * dependence from node i to node j.
1490 * That is, add constraints that enforce
1492 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1494 * for each (x,y) in R.
1495 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1496 * of valid constraints for R and then plug in
1497 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1498 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1499 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1500 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1502 * Actually, we do not construct constraints for the c_*_x themselves,
1503 * but for the coefficients of c_*_x written as a linear combination
1504 * of the columns in node->cmap.
1506 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1507 struct isl_sched_edge
*edge
)
1510 isl_map
*map
= isl_map_copy(edge
->map
);
1511 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1513 isl_dim_map
*dim_map
;
1514 isl_basic_set
*coef
;
1515 struct isl_sched_node
*src
= edge
->src
;
1516 struct isl_sched_node
*dst
= edge
->dst
;
1518 coef
= inter_coefficients(graph
, edge
, map
);
1520 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1522 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1523 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1524 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1525 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1526 isl_mat_copy(dst
->cmap
));
1530 total
= isl_basic_set_total_dim(graph
->lp
);
1531 dim_map
= isl_dim_map_alloc(ctx
, total
);
1533 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
1534 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
1535 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
1536 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1537 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1539 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1540 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1543 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
1544 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
1545 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
1546 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1547 isl_space_dim(dim
, isl_dim_set
), 1,
1549 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1550 isl_space_dim(dim
, isl_dim_set
), 1,
1553 edge
->start
= graph
->lp
->n_ineq
;
1554 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1555 coef
->n_eq
, coef
->n_ineq
);
1556 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1560 isl_space_free(dim
);
1561 edge
->end
= graph
->lp
->n_ineq
;
1565 isl_space_free(dim
);
1569 /* Add constraints to graph->lp that bound the dependence distance for the given
1570 * dependence from a node i to itself.
1571 * If s = 1, we add the constraint
1573 * c_i_x (y - x) <= m_0 + m_n n
1577 * -c_i_x (y - x) + m_0 + m_n n >= 0
1579 * for each (x,y) in R.
1580 * If s = -1, we add the constraint
1582 * -c_i_x (y - x) <= m_0 + m_n n
1586 * c_i_x (y - x) + m_0 + m_n n >= 0
1588 * for each (x,y) in R.
1589 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1590 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1591 * with each coefficient (except m_0) represented as a pair of non-negative
1594 * Actually, we do not construct constraints for the c_i_x themselves,
1595 * but for the coefficients of c_i_x written as a linear combination
1596 * of the columns in node->cmap.
1599 * If "local" is set, then we add constraints
1601 * c_i_x (y - x) <= 0
1605 * -c_i_x (y - x) <= 0
1607 * instead, forcing the dependence distance to be (less than or) equal to 0.
1608 * That is, we plug in (0, 0, -s * c_i_x),
1609 * Note that dependences marked local are treated as validity constraints
1610 * by add_all_validity_constraints and therefore also have
1611 * their distances bounded by 0 from below.
1613 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
1614 struct isl_sched_edge
*edge
, int s
, int local
)
1618 isl_map
*map
= isl_map_copy(edge
->map
);
1619 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1621 isl_dim_map
*dim_map
;
1622 isl_basic_set
*coef
;
1623 struct isl_sched_node
*node
= edge
->src
;
1625 coef
= intra_coefficients(graph
, node
, map
);
1627 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1629 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1630 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
1634 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
1635 total
= isl_basic_set_total_dim(graph
->lp
);
1636 dim_map
= isl_dim_map_alloc(ctx
, total
);
1639 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1640 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1641 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1643 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
1644 isl_space_dim(dim
, isl_dim_set
), 1,
1646 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
1647 isl_space_dim(dim
, isl_dim_set
), 1,
1649 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1650 coef
->n_eq
, coef
->n_ineq
);
1651 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1653 isl_space_free(dim
);
1657 isl_space_free(dim
);
1661 /* Add constraints to graph->lp that bound the dependence distance for the given
1662 * dependence from node i to node j.
1663 * If s = 1, we add the constraint
1665 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1670 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1673 * for each (x,y) in R.
1674 * If s = -1, we add the constraint
1676 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1681 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1684 * for each (x,y) in R.
1685 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1686 * of valid constraints for R and then plug in
1687 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1689 * with each coefficient (except m_0, c_j_0 and c_i_0)
1690 * represented as a pair of non-negative coefficients.
1692 * Actually, we do not construct constraints for the c_*_x themselves,
1693 * but for the coefficients of c_*_x written as a linear combination
1694 * of the columns in node->cmap.
1697 * If "local" is set, then we add constraints
1699 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1703 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1705 * instead, forcing the dependence distance to be (less than or) equal to 0.
1706 * That is, we plug in
1707 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1708 * Note that dependences marked local are treated as validity constraints
1709 * by add_all_validity_constraints and therefore also have
1710 * their distances bounded by 0 from below.
1712 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1713 struct isl_sched_edge
*edge
, int s
, int local
)
1717 isl_map
*map
= isl_map_copy(edge
->map
);
1718 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1720 isl_dim_map
*dim_map
;
1721 isl_basic_set
*coef
;
1722 struct isl_sched_node
*src
= edge
->src
;
1723 struct isl_sched_node
*dst
= edge
->dst
;
1725 coef
= inter_coefficients(graph
, edge
, map
);
1727 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1729 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1730 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1731 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1732 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1733 isl_mat_copy(dst
->cmap
));
1737 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
1738 total
= isl_basic_set_total_dim(graph
->lp
);
1739 dim_map
= isl_dim_map_alloc(ctx
, total
);
1742 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1743 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1744 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1747 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1748 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1749 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1750 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1751 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1753 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1754 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1757 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1758 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1759 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1760 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1761 isl_space_dim(dim
, isl_dim_set
), 1,
1763 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1764 isl_space_dim(dim
, isl_dim_set
), 1,
1767 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1768 coef
->n_eq
, coef
->n_ineq
);
1769 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1771 isl_space_free(dim
);
1775 isl_space_free(dim
);
1779 /* Add all validity constraints to graph->lp.
1781 * An edge that is forced to be local needs to have its dependence
1782 * distances equal to zero. We take care of bounding them by 0 from below
1783 * here. add_all_proximity_constraints takes care of bounding them by 0
1786 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1787 * Otherwise, we ignore them.
1789 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
1790 int use_coincidence
)
1794 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1795 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1798 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1799 if (!edge
->validity
&& !local
)
1801 if (edge
->src
!= edge
->dst
)
1803 if (add_intra_validity_constraints(graph
, edge
) < 0)
1807 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1808 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1811 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1812 if (!edge
->validity
&& !local
)
1814 if (edge
->src
== edge
->dst
)
1816 if (add_inter_validity_constraints(graph
, edge
) < 0)
1823 /* Add constraints to graph->lp that bound the dependence distance
1824 * for all dependence relations.
1825 * If a given proximity dependence is identical to a validity
1826 * dependence, then the dependence distance is already bounded
1827 * from below (by zero), so we only need to bound the distance
1828 * from above. (This includes the case of "local" dependences
1829 * which are treated as validity dependence by add_all_validity_constraints.)
1830 * Otherwise, we need to bound the distance both from above and from below.
1832 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1833 * Otherwise, we ignore them.
1835 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
1836 int use_coincidence
)
1840 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1841 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1844 local
= edge
->local
|| (edge
->coincidence
&& use_coincidence
);
1845 if (!edge
->proximity
&& !local
)
1847 if (edge
->src
== edge
->dst
&&
1848 add_intra_proximity_constraints(graph
, edge
, 1, local
) < 0)
1850 if (edge
->src
!= edge
->dst
&&
1851 add_inter_proximity_constraints(graph
, edge
, 1, local
) < 0)
1853 if (edge
->validity
|| local
)
1855 if (edge
->src
== edge
->dst
&&
1856 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
1858 if (edge
->src
!= edge
->dst
&&
1859 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
1866 /* Compute a basis for the rows in the linear part of the schedule
1867 * and extend this basis to a full basis. The remaining rows
1868 * can then be used to force linear independence from the rows
1871 * In particular, given the schedule rows S, we compute
1876 * with H the Hermite normal form of S. That is, all but the
1877 * first rank columns of H are zero and so each row in S is
1878 * a linear combination of the first rank rows of Q.
1879 * The matrix Q is then transposed because we will write the
1880 * coefficients of the next schedule row as a column vector s
1881 * and express this s as a linear combination s = Q c of the
1883 * Similarly, the matrix U is transposed such that we can
1884 * compute the coefficients c = U s from a schedule row s.
1886 static int node_update_cmap(struct isl_sched_node
*node
)
1889 int n_row
= isl_mat_rows(node
->sched
);
1891 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1892 1 + node
->nparam
, node
->nvar
);
1894 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
1895 isl_mat_free(node
->cmap
);
1896 isl_mat_free(node
->cinv
);
1897 node
->cmap
= isl_mat_transpose(Q
);
1898 node
->cinv
= isl_mat_transpose(U
);
1899 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1902 if (!node
->cmap
|| !node
->cinv
|| node
->rank
< 0)
1907 /* How many times should we count the constraints in "edge"?
1909 * If carry is set, then we are counting the number of
1910 * (validity or conditional validity) constraints that will be added
1911 * in setup_carry_lp and we count each edge exactly once.
1913 * Otherwise, we count as follows
1914 * validity -> 1 (>= 0)
1915 * validity+proximity -> 2 (>= 0 and upper bound)
1916 * proximity -> 2 (lower and upper bound)
1917 * local(+any) -> 2 (>= 0 and <= 0)
1919 * If an edge is only marked conditional_validity then it counts
1920 * as zero since it is only checked afterwards.
1922 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1923 * Otherwise, we ignore them.
1925 static int edge_multiplicity(struct isl_sched_edge
*edge
, int carry
,
1926 int use_coincidence
)
1928 if (carry
&& !edge
->validity
&& !edge
->conditional_validity
)
1932 if (edge
->proximity
|| edge
->local
)
1934 if (use_coincidence
&& edge
->coincidence
)
1941 /* Count the number of equality and inequality constraints
1942 * that will be added for the given map.
1944 * "use_coincidence" is set if we should take into account coincidence edges.
1946 static int count_map_constraints(struct isl_sched_graph
*graph
,
1947 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1948 int *n_eq
, int *n_ineq
, int carry
, int use_coincidence
)
1950 isl_basic_set
*coef
;
1951 int f
= edge_multiplicity(edge
, carry
, use_coincidence
);
1958 if (edge
->src
== edge
->dst
)
1959 coef
= intra_coefficients(graph
, edge
->src
, map
);
1961 coef
= inter_coefficients(graph
, edge
, map
);
1964 *n_eq
+= f
* coef
->n_eq
;
1965 *n_ineq
+= f
* coef
->n_ineq
;
1966 isl_basic_set_free(coef
);
1971 /* Count the number of equality and inequality constraints
1972 * that will be added to the main lp problem.
1973 * We count as follows
1974 * validity -> 1 (>= 0)
1975 * validity+proximity -> 2 (>= 0 and upper bound)
1976 * proximity -> 2 (lower and upper bound)
1977 * local(+any) -> 2 (>= 0 and <= 0)
1979 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1980 * Otherwise, we ignore them.
1982 static int count_constraints(struct isl_sched_graph
*graph
,
1983 int *n_eq
, int *n_ineq
, int use_coincidence
)
1987 *n_eq
= *n_ineq
= 0;
1988 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1989 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1990 isl_map
*map
= isl_map_copy(edge
->map
);
1992 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
1993 0, use_coincidence
) < 0)
2000 /* Count the number of constraints that will be added by
2001 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2004 * In practice, add_bound_coefficient_constraints only adds inequalities.
2006 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2007 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2011 if (ctx
->opt
->schedule_max_coefficient
== -1)
2014 for (i
= 0; i
< graph
->n
; ++i
)
2015 *n_ineq
+= 2 * graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2020 /* Add constraints that bound the values of the variable and parameter
2021 * coefficients of the schedule.
2023 * The maximal value of the coefficients is defined by the option
2024 * 'schedule_max_coefficient'.
2026 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
2027 struct isl_sched_graph
*graph
)
2030 int max_coefficient
;
2033 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
2035 if (max_coefficient
== -1)
2038 total
= isl_basic_set_total_dim(graph
->lp
);
2040 for (i
= 0; i
< graph
->n
; ++i
) {
2041 struct isl_sched_node
*node
= &graph
->node
[i
];
2042 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
2044 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2047 dim
= 1 + node
->start
+ 1 + j
;
2048 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2049 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2050 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
2057 /* Construct an ILP problem for finding schedule coefficients
2058 * that result in non-negative, but small dependence distances
2059 * over all dependences.
2060 * In particular, the dependence distances over proximity edges
2061 * are bounded by m_0 + m_n n and we compute schedule coefficients
2062 * with small values (preferably zero) of m_n and m_0.
2064 * All variables of the ILP are non-negative. The actual coefficients
2065 * may be negative, so each coefficient is represented as the difference
2066 * of two non-negative variables. The negative part always appears
2067 * immediately before the positive part.
2068 * Other than that, the variables have the following order
2070 * - sum of positive and negative parts of m_n coefficients
2072 * - sum of positive and negative parts of all c_n coefficients
2073 * (unconstrained when computing non-parametric schedules)
2074 * - sum of positive and negative parts of all c_x coefficients
2075 * - positive and negative parts of m_n coefficients
2078 * - positive and negative parts of c_i_n (if parametric)
2079 * - positive and negative parts of c_i_x
2081 * The c_i_x are not represented directly, but through the columns of
2082 * node->cmap. That is, the computed values are for variable t_i_x
2083 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2085 * The constraints are those from the edges plus two or three equalities
2086 * to express the sums.
2088 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2089 * Otherwise, we ignore them.
2091 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2092 int use_coincidence
)
2102 int max_constant_term
;
2104 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
2106 parametric
= ctx
->opt
->schedule_parametric
;
2107 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2109 total
= param_pos
+ 2 * nparam
;
2110 for (i
= 0; i
< graph
->n
; ++i
) {
2111 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2112 if (node_update_cmap(node
) < 0)
2114 node
->start
= total
;
2115 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2118 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2120 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2123 dim
= isl_space_set_alloc(ctx
, 0, total
);
2124 isl_basic_set_free(graph
->lp
);
2125 n_eq
+= 2 + parametric
;
2126 if (max_constant_term
!= -1)
2129 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2131 k
= isl_basic_set_alloc_equality(graph
->lp
);
2134 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2135 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
2136 for (i
= 0; i
< 2 * nparam
; ++i
)
2137 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
2140 k
= isl_basic_set_alloc_equality(graph
->lp
);
2143 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2144 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2145 for (i
= 0; i
< graph
->n
; ++i
) {
2146 int pos
= 1 + graph
->node
[i
].start
+ 1;
2148 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2149 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2153 k
= isl_basic_set_alloc_equality(graph
->lp
);
2156 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2157 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
2158 for (i
= 0; i
< graph
->n
; ++i
) {
2159 struct isl_sched_node
*node
= &graph
->node
[i
];
2160 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2162 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2163 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2166 if (max_constant_term
!= -1)
2167 for (i
= 0; i
< graph
->n
; ++i
) {
2168 struct isl_sched_node
*node
= &graph
->node
[i
];
2169 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2172 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2173 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
2174 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
2177 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2179 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2181 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2187 /* Analyze the conflicting constraint found by
2188 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2189 * constraint of one of the edges between distinct nodes, living, moreover
2190 * in distinct SCCs, then record the source and sink SCC as this may
2191 * be a good place to cut between SCCs.
2193 static int check_conflict(int con
, void *user
)
2196 struct isl_sched_graph
*graph
= user
;
2198 if (graph
->src_scc
>= 0)
2201 con
-= graph
->lp
->n_eq
;
2203 if (con
>= graph
->lp
->n_ineq
)
2206 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2207 if (!graph
->edge
[i
].validity
)
2209 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2211 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2213 if (graph
->edge
[i
].start
> con
)
2215 if (graph
->edge
[i
].end
<= con
)
2217 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2218 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2224 /* Check whether the next schedule row of the given node needs to be
2225 * non-trivial. Lower-dimensional domains may have some trivial rows,
2226 * but as soon as the number of remaining required non-trivial rows
2227 * is as large as the number or remaining rows to be computed,
2228 * all remaining rows need to be non-trivial.
2230 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2232 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2235 /* Solve the ILP problem constructed in setup_lp.
2236 * For each node such that all the remaining rows of its schedule
2237 * need to be non-trivial, we construct a non-triviality region.
2238 * This region imposes that the next row is independent of previous rows.
2239 * In particular the coefficients c_i_x are represented by t_i_x
2240 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2241 * its first columns span the rows of the previously computed part
2242 * of the schedule. The non-triviality region enforces that at least
2243 * one of the remaining components of t_i_x is non-zero, i.e.,
2244 * that the new schedule row depends on at least one of the remaining
2247 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
2253 for (i
= 0; i
< graph
->n
; ++i
) {
2254 struct isl_sched_node
*node
= &graph
->node
[i
];
2255 int skip
= node
->rank
;
2256 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
2257 if (needs_row(graph
, node
))
2258 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
2260 graph
->region
[i
].len
= 0;
2262 lp
= isl_basic_set_copy(graph
->lp
);
2263 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2264 graph
->region
, &check_conflict
, graph
);
2268 /* Update the schedules of all nodes based on the given solution
2269 * of the LP problem.
2270 * The new row is added to the current band.
2271 * All possibly negative coefficients are encoded as a difference
2272 * of two non-negative variables, so we need to perform the subtraction
2273 * here. Moreover, if use_cmap is set, then the solution does
2274 * not refer to the actual coefficients c_i_x, but instead to variables
2275 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2276 * In this case, we then also need to perform this multiplication
2277 * to obtain the values of c_i_x.
2279 * If coincident is set, then the caller guarantees that the new
2280 * row satisfies the coincidence constraints.
2282 static int update_schedule(struct isl_sched_graph
*graph
,
2283 __isl_take isl_vec
*sol
, int use_cmap
, int coincident
)
2286 isl_vec
*csol
= NULL
;
2291 isl_die(sol
->ctx
, isl_error_internal
,
2292 "no solution found", goto error
);
2293 if (graph
->n_total_row
>= graph
->max_row
)
2294 isl_die(sol
->ctx
, isl_error_internal
,
2295 "too many schedule rows", goto error
);
2297 for (i
= 0; i
< graph
->n
; ++i
) {
2298 struct isl_sched_node
*node
= &graph
->node
[i
];
2299 int pos
= node
->start
;
2300 int row
= isl_mat_rows(node
->sched
);
2303 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
2307 isl_map_free(node
->sched_map
);
2308 node
->sched_map
= NULL
;
2309 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2312 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
2314 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
2315 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2316 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
2317 sol
->el
[1 + pos
+ 1 + 2 * j
]);
2318 for (j
= 0; j
< node
->nparam
; ++j
)
2319 node
->sched
= isl_mat_set_element(node
->sched
,
2320 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
2321 for (j
= 0; j
< node
->nvar
; ++j
)
2322 isl_int_set(csol
->el
[j
],
2323 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
2325 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
2329 for (j
= 0; j
< node
->nvar
; ++j
)
2330 node
->sched
= isl_mat_set_element(node
->sched
,
2331 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
2332 node
->coincident
[graph
->n_total_row
] = coincident
;
2338 graph
->n_total_row
++;
2347 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2348 * and return this isl_aff.
2350 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
2351 struct isl_sched_node
*node
, int row
)
2359 aff
= isl_aff_zero_on_domain(ls
);
2360 isl_mat_get_element(node
->sched
, row
, 0, &v
);
2361 aff
= isl_aff_set_constant(aff
, v
);
2362 for (j
= 0; j
< node
->nparam
; ++j
) {
2363 isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
);
2364 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
2366 for (j
= 0; j
< node
->nvar
; ++j
) {
2367 isl_mat_get_element(node
->sched
, row
, 1 + node
->nparam
+ j
, &v
);
2368 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
2376 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2377 * and return this multi_aff.
2379 * The result is defined over the uncompressed node domain.
2381 static __isl_give isl_multi_aff
*node_extract_partial_schedule_multi_aff(
2382 struct isl_sched_node
*node
, int first
, int n
)
2386 isl_local_space
*ls
;
2391 nrow
= isl_mat_rows(node
->sched
);
2392 if (node
->compressed
)
2393 space
= isl_multi_aff_get_domain_space(node
->decompress
);
2395 space
= isl_space_copy(node
->space
);
2396 ls
= isl_local_space_from_space(isl_space_copy(space
));
2397 space
= isl_space_from_domain(space
);
2398 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
2399 ma
= isl_multi_aff_zero(space
);
2401 for (i
= first
; i
< first
+ n
; ++i
) {
2402 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
2403 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
2406 isl_local_space_free(ls
);
2408 if (node
->compressed
)
2409 ma
= isl_multi_aff_pullback_multi_aff(ma
,
2410 isl_multi_aff_copy(node
->compress
));
2415 /* Convert node->sched into a multi_aff and return this multi_aff.
2417 * The result is defined over the uncompressed node domain.
2419 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
2420 struct isl_sched_node
*node
)
2424 nrow
= isl_mat_rows(node
->sched
);
2425 return node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
2428 /* Convert node->sched into a map and return this map.
2430 * The result is cached in node->sched_map, which needs to be released
2431 * whenever node->sched is updated.
2432 * It is defined over the uncompressed node domain.
2434 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
2436 if (!node
->sched_map
) {
2439 ma
= node_extract_schedule_multi_aff(node
);
2440 node
->sched_map
= isl_map_from_multi_aff(ma
);
2443 return isl_map_copy(node
->sched_map
);
2446 /* Construct a map that can be used to update a dependence relation
2447 * based on the current schedule.
2448 * That is, construct a map expressing that source and sink
2449 * are executed within the same iteration of the current schedule.
2450 * This map can then be intersected with the dependence relation.
2451 * This is not the most efficient way, but this shouldn't be a critical
2454 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
2455 struct isl_sched_node
*dst
)
2457 isl_map
*src_sched
, *dst_sched
;
2459 src_sched
= node_extract_schedule(src
);
2460 dst_sched
= node_extract_schedule(dst
);
2461 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
2464 /* Intersect the domains of the nested relations in domain and range
2465 * of "umap" with "map".
2467 static __isl_give isl_union_map
*intersect_domains(
2468 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
2470 isl_union_set
*uset
;
2472 umap
= isl_union_map_zip(umap
);
2473 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
2474 umap
= isl_union_map_intersect_domain(umap
, uset
);
2475 umap
= isl_union_map_zip(umap
);
2479 /* Update the dependence relation of the given edge based
2480 * on the current schedule.
2481 * If the dependence is carried completely by the current schedule, then
2482 * it is removed from the edge_tables. It is kept in the list of edges
2483 * as otherwise all edge_tables would have to be recomputed.
2485 static int update_edge(struct isl_sched_graph
*graph
,
2486 struct isl_sched_edge
*edge
)
2491 id
= specializer(edge
->src
, edge
->dst
);
2492 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
2496 if (edge
->tagged_condition
) {
2497 edge
->tagged_condition
=
2498 intersect_domains(edge
->tagged_condition
, id
);
2499 if (!edge
->tagged_condition
)
2502 if (edge
->tagged_validity
) {
2503 edge
->tagged_validity
=
2504 intersect_domains(edge
->tagged_validity
, id
);
2505 if (!edge
->tagged_validity
)
2509 empty
= isl_map_plain_is_empty(edge
->map
);
2513 graph_remove_edge(graph
, edge
);
2522 /* Does the domain of "umap" intersect "uset"?
2524 static int domain_intersects(__isl_keep isl_union_map
*umap
,
2525 __isl_keep isl_union_set
*uset
)
2529 umap
= isl_union_map_copy(umap
);
2530 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
2531 empty
= isl_union_map_is_empty(umap
);
2532 isl_union_map_free(umap
);
2534 return empty
< 0 ? -1 : !empty
;
2537 /* Does the range of "umap" intersect "uset"?
2539 static int range_intersects(__isl_keep isl_union_map
*umap
,
2540 __isl_keep isl_union_set
*uset
)
2544 umap
= isl_union_map_copy(umap
);
2545 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
2546 empty
= isl_union_map_is_empty(umap
);
2547 isl_union_map_free(umap
);
2549 return empty
< 0 ? -1 : !empty
;
2552 /* Are the condition dependences of "edge" local with respect to
2553 * the current schedule?
2555 * That is, are domain and range of the condition dependences mapped
2556 * to the same point?
2558 * In other words, is the condition false?
2560 static int is_condition_false(struct isl_sched_edge
*edge
)
2562 isl_union_map
*umap
;
2563 isl_map
*map
, *sched
, *test
;
2566 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
2567 if (empty
< 0 || empty
)
2570 umap
= isl_union_map_copy(edge
->tagged_condition
);
2571 umap
= isl_union_map_zip(umap
);
2572 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
2573 map
= isl_map_from_union_map(umap
);
2575 sched
= node_extract_schedule(edge
->src
);
2576 map
= isl_map_apply_domain(map
, sched
);
2577 sched
= node_extract_schedule(edge
->dst
);
2578 map
= isl_map_apply_range(map
, sched
);
2580 test
= isl_map_identity(isl_map_get_space(map
));
2581 local
= isl_map_is_subset(map
, test
);
2588 /* For each conditional validity constraint that is adjacent
2589 * to a condition with domain in condition_source or range in condition_sink,
2590 * turn it into an unconditional validity constraint.
2592 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
2593 __isl_take isl_union_set
*condition_source
,
2594 __isl_take isl_union_set
*condition_sink
)
2598 condition_source
= isl_union_set_coalesce(condition_source
);
2599 condition_sink
= isl_union_set_coalesce(condition_sink
);
2601 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2603 isl_union_map
*validity
;
2605 if (!graph
->edge
[i
].conditional_validity
)
2607 if (graph
->edge
[i
].validity
)
2610 validity
= graph
->edge
[i
].tagged_validity
;
2611 adjacent
= domain_intersects(validity
, condition_sink
);
2612 if (adjacent
>= 0 && !adjacent
)
2613 adjacent
= range_intersects(validity
, condition_source
);
2619 graph
->edge
[i
].validity
= 1;
2622 isl_union_set_free(condition_source
);
2623 isl_union_set_free(condition_sink
);
2626 isl_union_set_free(condition_source
);
2627 isl_union_set_free(condition_sink
);
2631 /* Update the dependence relations of all edges based on the current schedule
2632 * and enforce conditional validity constraints that are adjacent
2633 * to satisfied condition constraints.
2635 * First check if any of the condition constraints are satisfied
2636 * (i.e., not local to the outer schedule) and keep track of
2637 * their domain and range.
2638 * Then update all dependence relations (which removes the non-local
2640 * Finally, if any condition constraints turned out to be satisfied,
2641 * then turn all adjacent conditional validity constraints into
2642 * unconditional validity constraints.
2644 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2648 isl_union_set
*source
, *sink
;
2650 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2651 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
2652 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2654 isl_union_set
*uset
;
2655 isl_union_map
*umap
;
2657 if (!graph
->edge
[i
].condition
)
2659 if (graph
->edge
[i
].local
)
2661 local
= is_condition_false(&graph
->edge
[i
]);
2669 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2670 uset
= isl_union_map_domain(umap
);
2671 source
= isl_union_set_union(source
, uset
);
2673 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
2674 uset
= isl_union_map_range(umap
);
2675 sink
= isl_union_set_union(sink
, uset
);
2678 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
2679 if (update_edge(graph
, &graph
->edge
[i
]) < 0)
2684 return unconditionalize_adjacent_validity(graph
, source
, sink
);
2686 isl_union_set_free(source
);
2687 isl_union_set_free(sink
);
2690 isl_union_set_free(source
);
2691 isl_union_set_free(sink
);
2695 static void next_band(struct isl_sched_graph
*graph
)
2697 graph
->band_start
= graph
->n_total_row
;
2700 /* Return the union of the universe domains of the nodes in "graph"
2701 * that satisfy "pred".
2703 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
2704 struct isl_sched_graph
*graph
,
2705 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
2711 for (i
= 0; i
< graph
->n
; ++i
)
2712 if (pred(&graph
->node
[i
], data
))
2716 isl_die(ctx
, isl_error_internal
,
2717 "empty component", return NULL
);
2719 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
2720 dom
= isl_union_set_from_set(set
);
2722 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
2723 if (!pred(&graph
->node
[i
], data
))
2725 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
2726 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
2732 /* Return a list of unions of universe domains, where each element
2733 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
2735 static __isl_give isl_union_set_list
*extract_sccs(isl_ctx
*ctx
,
2736 struct isl_sched_graph
*graph
)
2739 isl_union_set_list
*filters
;
2741 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
2742 for (i
= 0; i
< graph
->scc
; ++i
) {
2745 dom
= isl_sched_graph_domain(ctx
, graph
, &node_scc_exactly
, i
);
2746 filters
= isl_union_set_list_add(filters
, dom
);
2752 /* Return a list of two unions of universe domains, one for the SCCs up
2753 * to and including graph->src_scc and another for the other SCCS.
2755 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
2756 struct isl_sched_graph
*graph
)
2759 isl_union_set_list
*filters
;
2761 filters
= isl_union_set_list_alloc(ctx
, 2);
2762 dom
= isl_sched_graph_domain(ctx
, graph
,
2763 &node_scc_at_most
, graph
->src_scc
);
2764 filters
= isl_union_set_list_add(filters
, dom
);
2765 dom
= isl_sched_graph_domain(ctx
, graph
,
2766 &node_scc_at_least
, graph
->src_scc
+ 1);
2767 filters
= isl_union_set_list_add(filters
, dom
);
2772 /* Topologically sort statements mapped to the same schedule iteration
2773 * and add insert a sequence node in front of "node"
2774 * corresponding to this order.
2776 static __isl_give isl_schedule_node
*sort_statements(
2777 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
2780 isl_union_set_list
*filters
;
2785 ctx
= isl_schedule_node_get_ctx(node
);
2787 isl_die(ctx
, isl_error_internal
,
2788 "graph should have at least one node",
2789 return isl_schedule_node_free(node
));
2794 if (update_edges(ctx
, graph
) < 0)
2795 return isl_schedule_node_free(node
);
2797 if (graph
->n_edge
== 0)
2800 if (detect_sccs(ctx
, graph
) < 0)
2801 return isl_schedule_node_free(node
);
2803 filters
= extract_sccs(ctx
, graph
);
2804 node
= isl_schedule_node_insert_sequence(node
, filters
);
2809 /* Copy nodes that satisfy node_pred from the src dependence graph
2810 * to the dst dependence graph.
2812 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
2813 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
2818 for (i
= 0; i
< src
->n
; ++i
) {
2821 if (!node_pred(&src
->node
[i
], data
))
2825 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
2826 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
2827 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
2828 dst
->node
[j
].compress
=
2829 isl_multi_aff_copy(src
->node
[i
].compress
);
2830 dst
->node
[j
].decompress
=
2831 isl_multi_aff_copy(src
->node
[i
].decompress
);
2832 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
2833 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
2834 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
2835 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
2836 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
2839 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
2841 if (dst
->node
[j
].compressed
&&
2842 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
2843 !dst
->node
[j
].decompress
))
2850 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2851 * to the dst dependence graph.
2852 * If the source or destination node of the edge is not in the destination
2853 * graph, then it must be a backward proximity edge and it should simply
2856 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
2857 struct isl_sched_graph
*src
,
2858 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
2861 enum isl_edge_type t
;
2864 for (i
= 0; i
< src
->n_edge
; ++i
) {
2865 struct isl_sched_edge
*edge
= &src
->edge
[i
];
2867 isl_union_map
*tagged_condition
;
2868 isl_union_map
*tagged_validity
;
2869 struct isl_sched_node
*dst_src
, *dst_dst
;
2871 if (!edge_pred(edge
, data
))
2874 if (isl_map_plain_is_empty(edge
->map
))
2877 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->space
);
2878 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->space
);
2879 if (!dst_src
|| !dst_dst
) {
2880 if (edge
->validity
|| edge
->conditional_validity
)
2881 isl_die(ctx
, isl_error_internal
,
2882 "backward (conditional) validity edge",
2887 map
= isl_map_copy(edge
->map
);
2888 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
2889 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
2891 dst
->edge
[dst
->n_edge
].src
= dst_src
;
2892 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
2893 dst
->edge
[dst
->n_edge
].map
= map
;
2894 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
2895 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
2896 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
2897 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
2898 dst
->edge
[dst
->n_edge
].coincidence
= edge
->coincidence
;
2899 dst
->edge
[dst
->n_edge
].condition
= edge
->condition
;
2900 dst
->edge
[dst
->n_edge
].conditional_validity
=
2901 edge
->conditional_validity
;
2904 if (edge
->tagged_condition
&& !tagged_condition
)
2906 if (edge
->tagged_validity
&& !tagged_validity
)
2909 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
2911 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
2913 if (graph_edge_table_add(ctx
, dst
, t
,
2914 &dst
->edge
[dst
->n_edge
- 1]) < 0)
2922 /* Compute the maximal number of variables over all nodes.
2923 * This is the maximal number of linearly independent schedule
2924 * rows that we need to compute.
2925 * Just in case we end up in a part of the dependence graph
2926 * with only lower-dimensional domains, we make sure we will
2927 * compute the required amount of extra linearly independent rows.
2929 static int compute_maxvar(struct isl_sched_graph
*graph
)
2934 for (i
= 0; i
< graph
->n
; ++i
) {
2935 struct isl_sched_node
*node
= &graph
->node
[i
];
2938 if (node_update_cmap(node
) < 0)
2940 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
2941 if (nvar
> graph
->maxvar
)
2942 graph
->maxvar
= nvar
;
2948 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
2949 struct isl_sched_graph
*graph
);
2950 static __isl_give isl_schedule_node
*compute_schedule_wcc(
2951 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
2953 /* Compute a schedule for a subgraph of "graph". In particular, for
2954 * the graph composed of nodes that satisfy node_pred and edges that
2955 * that satisfy edge_pred. The caller should precompute the number
2956 * of nodes and edges that satisfy these predicates and pass them along
2957 * as "n" and "n_edge".
2958 * If the subgraph is known to consist of a single component, then wcc should
2959 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2960 * Otherwise, we call compute_schedule, which will check whether the subgraph
2963 * The schedule is inserted at "node" and the updated schedule node
2966 static __isl_give isl_schedule_node
*compute_sub_schedule(
2967 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
2968 struct isl_sched_graph
*graph
, int n
, int n_edge
,
2969 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
2970 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
2973 struct isl_sched_graph split
= { 0 };
2976 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
2978 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
2980 if (graph_init_table(ctx
, &split
) < 0)
2982 for (t
= 0; t
<= isl_edge_last
; ++t
)
2983 split
.max_edge
[t
] = graph
->max_edge
[t
];
2984 if (graph_init_edge_tables(ctx
, &split
) < 0)
2986 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
2988 split
.n_row
= graph
->n_row
;
2989 split
.max_row
= graph
->max_row
;
2990 split
.n_total_row
= graph
->n_total_row
;
2991 split
.band_start
= graph
->band_start
;
2994 node
= compute_schedule_wcc(node
, &split
);
2996 node
= compute_schedule(node
, &split
);
2998 graph_free(ctx
, &split
);
3001 graph_free(ctx
, &split
);
3002 return isl_schedule_node_free(node
);
3005 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3007 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3010 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3012 return edge
->dst
->scc
<= scc
;
3015 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3017 return edge
->src
->scc
>= scc
;
3020 /* Reset the current band by dropping all its schedule rows.
3022 static int reset_band(struct isl_sched_graph
*graph
)
3027 drop
= graph
->n_total_row
- graph
->band_start
;
3028 graph
->n_total_row
-= drop
;
3029 graph
->n_row
-= drop
;
3031 for (i
= 0; i
< graph
->n
; ++i
) {
3032 struct isl_sched_node
*node
= &graph
->node
[i
];
3034 isl_map_free(node
->sched_map
);
3035 node
->sched_map
= NULL
;
3037 node
->sched
= isl_mat_drop_rows(node
->sched
,
3038 graph
->band_start
, drop
);
3047 /* Split the current graph into two parts and compute a schedule for each
3048 * part individually. In particular, one part consists of all SCCs up
3049 * to and including graph->src_scc, while the other part contains the other
3050 * SCCS. The split is enforced by a sequence node inserted at position "node"
3051 * in the schedule tree. Return the updated schedule node.
3053 * The current band is reset. It would be possible to reuse
3054 * the previously computed rows as the first rows in the next
3055 * band, but recomputing them may result in better rows as we are looking
3056 * at a smaller part of the dependence graph.
3058 static __isl_give isl_schedule_node
*compute_split_schedule(
3059 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3064 isl_union_set_list
*filters
;
3069 if (reset_band(graph
) < 0)
3070 return isl_schedule_node_free(node
);
3073 for (i
= 0; i
< graph
->n
; ++i
) {
3074 struct isl_sched_node
*node
= &graph
->node
[i
];
3075 int before
= node
->scc
<= graph
->src_scc
;
3082 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3083 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
3085 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
3091 ctx
= isl_schedule_node_get_ctx(node
);
3092 filters
= extract_split(ctx
, graph
);
3093 node
= isl_schedule_node_insert_sequence(node
, filters
);
3094 node
= isl_schedule_node_child(node
, 0);
3095 node
= isl_schedule_node_child(node
, 0);
3097 orig_total_row
= graph
->n_total_row
;
3098 node
= compute_sub_schedule(node
, ctx
, graph
, n
, e1
,
3099 &node_scc_at_most
, &edge_dst_scc_at_most
,
3101 node
= isl_schedule_node_parent(node
);
3102 node
= isl_schedule_node_next_sibling(node
);
3103 node
= isl_schedule_node_child(node
, 0);
3104 graph
->n_total_row
= orig_total_row
;
3105 node
= compute_sub_schedule(node
, ctx
, graph
, graph
->n
- n
, e2
,
3106 &node_scc_at_least
, &edge_src_scc_at_least
,
3107 graph
->src_scc
+ 1, 0);
3108 node
= isl_schedule_node_parent(node
);
3109 node
= isl_schedule_node_parent(node
);
3114 /* Insert a band node at position "node" in the schedule tree corresponding
3115 * to the current band in "graph". Mark the band node permutable
3116 * if "permutable" is set.
3117 * The partial schedules and the coincidence property are extracted
3118 * from the graph nodes.
3119 * Return the updated schedule node.
3121 static __isl_give isl_schedule_node
*insert_current_band(
3122 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3128 isl_multi_pw_aff
*mpa
;
3129 isl_multi_union_pw_aff
*mupa
;
3135 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3136 "graph should have at least one node",
3137 return isl_schedule_node_free(node
));
3139 start
= graph
->band_start
;
3140 end
= graph
->n_total_row
;
3143 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[0], start
, n
);
3144 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3145 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3147 for (i
= 1; i
< graph
->n
; ++i
) {
3148 isl_multi_union_pw_aff
*mupa_i
;
3150 ma
= node_extract_partial_schedule_multi_aff(&graph
->node
[i
],
3152 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3153 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3154 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3156 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3158 for (i
= 0; i
< n
; ++i
)
3159 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3160 graph
->node
[0].coincident
[start
+ i
]);
3161 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3166 /* Update the dependence relations based on the current schedule,
3167 * add the current band to "node" and the continue with the computation
3169 * Return the updated schedule node.
3171 static __isl_give isl_schedule_node
*compute_next_band(
3172 __isl_take isl_schedule_node
*node
,
3173 struct isl_sched_graph
*graph
, int permutable
)
3180 ctx
= isl_schedule_node_get_ctx(node
);
3181 if (update_edges(ctx
, graph
) < 0)
3182 return isl_schedule_node_free(node
);
3183 node
= insert_current_band(node
, graph
, permutable
);
3186 node
= isl_schedule_node_child(node
, 0);
3187 node
= compute_schedule(node
, graph
);
3188 node
= isl_schedule_node_parent(node
);
3193 /* Add constraints to graph->lp that force the dependence "map" (which
3194 * is part of the dependence relation of "edge")
3195 * to be respected and attempt to carry it, where the edge is one from
3196 * a node j to itself. "pos" is the sequence number of the given map.
3197 * That is, add constraints that enforce
3199 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3200 * = c_j_x (y - x) >= e_i
3202 * for each (x,y) in R.
3203 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3204 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3205 * with each coefficient in c_j_x represented as a pair of non-negative
3208 static int add_intra_constraints(struct isl_sched_graph
*graph
,
3209 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3212 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3214 isl_dim_map
*dim_map
;
3215 isl_basic_set
*coef
;
3216 struct isl_sched_node
*node
= edge
->src
;
3218 coef
= intra_coefficients(graph
, node
, map
);
3222 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3224 total
= isl_basic_set_total_dim(graph
->lp
);
3225 dim_map
= isl_dim_map_alloc(ctx
, total
);
3226 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3227 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
3228 isl_space_dim(dim
, isl_dim_set
), 1,
3230 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
3231 isl_space_dim(dim
, isl_dim_set
), 1,
3233 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3234 coef
->n_eq
, coef
->n_ineq
);
3235 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3237 isl_space_free(dim
);
3242 /* Add constraints to graph->lp that force the dependence "map" (which
3243 * is part of the dependence relation of "edge")
3244 * to be respected and attempt to carry it, where the edge is one from
3245 * node j to node k. "pos" is the sequence number of the given map.
3246 * That is, add constraints that enforce
3248 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3250 * for each (x,y) in R.
3251 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3252 * of valid constraints for R and then plug in
3253 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
3254 * with each coefficient (except e_i, c_k_0 and c_j_0)
3255 * represented as a pair of non-negative coefficients.
3257 static int add_inter_constraints(struct isl_sched_graph
*graph
,
3258 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
3261 isl_ctx
*ctx
= isl_map_get_ctx(map
);
3263 isl_dim_map
*dim_map
;
3264 isl_basic_set
*coef
;
3265 struct isl_sched_node
*src
= edge
->src
;
3266 struct isl_sched_node
*dst
= edge
->dst
;
3268 coef
= inter_coefficients(graph
, edge
, map
);
3272 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
3274 total
= isl_basic_set_total_dim(graph
->lp
);
3275 dim_map
= isl_dim_map_alloc(ctx
, total
);
3277 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3279 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
3280 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
3281 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
3282 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
3283 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3285 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
3286 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
3289 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
3290 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
3291 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
3292 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
3293 isl_space_dim(dim
, isl_dim_set
), 1,
3295 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
3296 isl_space_dim(dim
, isl_dim_set
), 1,
3299 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
3300 coef
->n_eq
, coef
->n_ineq
);
3301 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
3303 isl_space_free(dim
);
3308 /* Add constraints to graph->lp that force all (conditional) validity
3309 * dependences to be respected and attempt to carry them.
3311 static int add_all_constraints(struct isl_sched_graph
*graph
)
3317 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3318 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3320 if (!edge
->validity
&& !edge
->conditional_validity
)
3323 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3324 isl_basic_map
*bmap
;
3327 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3328 map
= isl_map_from_basic_map(bmap
);
3330 if (edge
->src
== edge
->dst
&&
3331 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
3333 if (edge
->src
!= edge
->dst
&&
3334 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
3343 /* Count the number of equality and inequality constraints
3344 * that will be added to the carry_lp problem.
3345 * We count each edge exactly once.
3347 static int count_all_constraints(struct isl_sched_graph
*graph
,
3348 int *n_eq
, int *n_ineq
)
3352 *n_eq
= *n_ineq
= 0;
3353 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3354 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
3355 for (j
= 0; j
< edge
->map
->n
; ++j
) {
3356 isl_basic_map
*bmap
;
3359 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
3360 map
= isl_map_from_basic_map(bmap
);
3362 if (count_map_constraints(graph
, edge
, map
,
3363 n_eq
, n_ineq
, 1, 0) < 0)
3371 /* Construct an LP problem for finding schedule coefficients
3372 * such that the schedule carries as many dependences as possible.
3373 * In particular, for each dependence i, we bound the dependence distance
3374 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3375 * of all e_i's. Dependence with e_i = 0 in the solution are simply
3376 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3377 * Note that if the dependence relation is a union of basic maps,
3378 * then we have to consider each basic map individually as it may only
3379 * be possible to carry the dependences expressed by some of those
3380 * basic maps and not all off them.
3381 * Below, we consider each of those basic maps as a separate "edge".
3383 * All variables of the LP are non-negative. The actual coefficients
3384 * may be negative, so each coefficient is represented as the difference
3385 * of two non-negative variables. The negative part always appears
3386 * immediately before the positive part.
3387 * Other than that, the variables have the following order
3389 * - sum of (1 - e_i) over all edges
3390 * - sum of positive and negative parts of all c_n coefficients
3391 * (unconstrained when computing non-parametric schedules)
3392 * - sum of positive and negative parts of all c_x coefficients
3397 * - positive and negative parts of c_i_n (if parametric)
3398 * - positive and negative parts of c_i_x
3400 * The constraints are those from the (validity) edges plus three equalities
3401 * to express the sums and n_edge inequalities to express e_i <= 1.
3403 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3413 for (i
= 0; i
< graph
->n_edge
; ++i
)
3414 n_edge
+= graph
->edge
[i
].map
->n
;
3417 for (i
= 0; i
< graph
->n
; ++i
) {
3418 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
3419 node
->start
= total
;
3420 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
3423 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
3425 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
3428 dim
= isl_space_set_alloc(ctx
, 0, total
);
3429 isl_basic_set_free(graph
->lp
);
3432 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
3433 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
3435 k
= isl_basic_set_alloc_equality(graph
->lp
);
3438 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3439 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
3440 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
3441 for (i
= 0; i
< n_edge
; ++i
)
3442 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
3444 k
= isl_basic_set_alloc_equality(graph
->lp
);
3447 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3448 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
3449 for (i
= 0; i
< graph
->n
; ++i
) {
3450 int pos
= 1 + graph
->node
[i
].start
+ 1;
3452 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
3453 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3456 k
= isl_basic_set_alloc_equality(graph
->lp
);
3459 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
3460 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
3461 for (i
= 0; i
< graph
->n
; ++i
) {
3462 struct isl_sched_node
*node
= &graph
->node
[i
];
3463 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3465 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
3466 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
3469 for (i
= 0; i
< n_edge
; ++i
) {
3470 k
= isl_basic_set_alloc_inequality(graph
->lp
);
3473 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
3474 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
3475 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
3478 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
3480 if (add_all_constraints(graph
) < 0)
3486 static __isl_give isl_schedule_node
*compute_component_schedule(
3487 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3490 /* Comparison function for sorting the statements based on
3491 * the corresponding value in "r".
3493 static int smaller_value(const void *a
, const void *b
, void *data
)
3499 return isl_int_cmp(r
->el
[*i1
], r
->el
[*i2
]);
3502 /* If the schedule_split_scaled option is set and if the linear
3503 * parts of the scheduling rows for all nodes in the graphs have
3504 * a non-trivial common divisor, then split off the remainder of the
3505 * constant term modulo this common divisor from the linear part.
3506 * Otherwise, insert a band node directly and continue with
3507 * the construction of the schedule.
3509 * If a non-trivial common divisor is found, then
3510 * the linear part is reduced and the remainder is enforced
3511 * by a sequence node with the children placed in the order
3512 * of this remainder.
3513 * In particular, we assign an scc index based on the remainder and
3514 * then rely on compute_component_schedule to insert the sequence and
3515 * to continue the schedule construction on each part.
3517 static __isl_give isl_schedule_node
*split_scaled(
3518 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3531 ctx
= isl_schedule_node_get_ctx(node
);
3532 if (!ctx
->opt
->schedule_split_scaled
)
3533 return compute_next_band(node
, graph
, 0);
3535 return compute_next_band(node
, graph
, 0);
3538 isl_int_init(gcd_i
);
3540 isl_int_set_si(gcd
, 0);
3542 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
3544 for (i
= 0; i
< graph
->n
; ++i
) {
3545 struct isl_sched_node
*node
= &graph
->node
[i
];
3546 int cols
= isl_mat_cols(node
->sched
);
3548 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
3549 isl_int_gcd(gcd
, gcd
, gcd_i
);
3552 isl_int_clear(gcd_i
);
3554 if (isl_int_cmp_si(gcd
, 1) <= 0) {
3556 return compute_next_band(node
, graph
, 0);
3559 r
= isl_vec_alloc(ctx
, graph
->n
);
3560 order
= isl_calloc_array(ctx
, int, graph
->n
);
3564 for (i
= 0; i
< graph
->n
; ++i
) {
3565 struct isl_sched_node
*node
= &graph
->node
[i
];
3568 isl_int_fdiv_r(r
->el
[i
], node
->sched
->row
[row
][0], gcd
);
3569 isl_int_fdiv_q(node
->sched
->row
[row
][0],
3570 node
->sched
->row
[row
][0], gcd
);
3571 isl_int_mul(node
->sched
->row
[row
][0],
3572 node
->sched
->row
[row
][0], gcd
);
3573 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
3578 if (isl_sort(order
, graph
->n
, sizeof(order
[0]), &smaller_value
, r
) < 0)
3582 for (i
= 0; i
< graph
->n
; ++i
) {
3583 if (i
> 0 && isl_int_ne(r
->el
[order
[i
- 1]], r
->el
[order
[i
]]))
3585 graph
->node
[order
[i
]].scc
= scc
;
3594 if (update_edges(ctx
, graph
) < 0)
3595 return isl_schedule_node_free(node
);
3596 node
= insert_current_band(node
, graph
, 0);
3599 node
= isl_schedule_node_child(node
, 0);
3600 node
= compute_component_schedule(node
, graph
, 0);
3601 node
= isl_schedule_node_parent(node
);
3608 return isl_schedule_node_free(node
);
3611 /* Is the schedule row "sol" trivial on node "node"?
3612 * That is, is the solution zero on the dimensions orthogonal to
3613 * the previously found solutions?
3614 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3616 * Each coefficient is represented as the difference between
3617 * two non-negative values in "sol". "sol" has been computed
3618 * in terms of the original iterators (i.e., without use of cmap).
3619 * We construct the schedule row s and write it as a linear
3620 * combination of (linear combinations of) previously computed schedule rows.
3621 * s = Q c or c = U s.
3622 * If the final entries of c are all zero, then the solution is trivial.
3624 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
3634 if (node
->nvar
== node
->rank
)
3637 ctx
= isl_vec_get_ctx(sol
);
3638 node_sol
= isl_vec_alloc(ctx
, node
->nvar
);
3642 pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
3644 for (i
= 0; i
< node
->nvar
; ++i
)
3645 isl_int_sub(node_sol
->el
[i
],
3646 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
3648 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->cinv
), node_sol
);
3653 trivial
= isl_seq_first_non_zero(node_sol
->el
+ node
->rank
,
3654 node
->nvar
- node
->rank
) == -1;
3656 isl_vec_free(node_sol
);
3661 /* Is the schedule row "sol" trivial on any node where it should
3663 * "sol" has been computed in terms of the original iterators
3664 * (i.e., without use of cmap).
3665 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3667 static int is_any_trivial(struct isl_sched_graph
*graph
,
3668 __isl_keep isl_vec
*sol
)
3672 for (i
= 0; i
< graph
->n
; ++i
) {
3673 struct isl_sched_node
*node
= &graph
->node
[i
];
3676 if (!needs_row(graph
, node
))
3678 trivial
= is_trivial(node
, sol
);
3679 if (trivial
< 0 || trivial
)
3686 /* Construct a schedule row for each node such that as many dependences
3687 * as possible are carried and then continue with the next band.
3689 * If the computed schedule row turns out to be trivial on one or
3690 * more nodes where it should not be trivial, then we throw it away
3691 * and try again on each component separately.
3693 * If there is only one component, then we accept the schedule row anyway,
3694 * but we do not consider it as a complete row and therefore do not
3695 * increment graph->n_row. Note that the ranks of the nodes that
3696 * do get a non-trivial schedule part will get updated regardless and
3697 * graph->maxvar is computed based on these ranks. The test for
3698 * whether more schedule rows are required in compute_schedule_wcc
3699 * is therefore not affected.
3701 * Insert a band corresponding to the schedule row at position "node"
3702 * of the schedule tree and continue with the construction of the schedule.
3703 * This insertion and the continued construction is performed by split_scaled
3704 * after optionally checking for non-trivial common divisors.
3706 static __isl_give isl_schedule_node
*carry_dependences(
3707 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3720 for (i
= 0; i
< graph
->n_edge
; ++i
)
3721 n_edge
+= graph
->edge
[i
].map
->n
;
3723 ctx
= isl_schedule_node_get_ctx(node
);
3724 if (setup_carry_lp(ctx
, graph
) < 0)
3725 return isl_schedule_node_free(node
);
3727 lp
= isl_basic_set_copy(graph
->lp
);
3728 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
3730 return isl_schedule_node_free(node
);
3732 if (sol
->size
== 0) {
3734 isl_die(ctx
, isl_error_internal
,
3735 "error in schedule construction",
3736 return isl_schedule_node_free(node
));
3739 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
3740 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
3742 isl_die(ctx
, isl_error_unknown
,
3743 "unable to carry dependences",
3744 return isl_schedule_node_free(node
));
3747 trivial
= is_any_trivial(graph
, sol
);
3749 sol
= isl_vec_free(sol
);
3750 } else if (trivial
&& graph
->scc
> 1) {
3752 return compute_component_schedule(node
, graph
, 1);
3755 if (update_schedule(graph
, sol
, 0, 0) < 0)
3756 return isl_schedule_node_free(node
);
3760 return split_scaled(node
, graph
);
3763 /* Are there any (non-empty) (conditional) validity edges in the graph?
3765 static int has_validity_edges(struct isl_sched_graph
*graph
)
3769 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3772 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
3777 if (graph
->edge
[i
].validity
||
3778 graph
->edge
[i
].conditional_validity
)
3785 /* Should we apply a Feautrier step?
3786 * That is, did the user request the Feautrier algorithm and are
3787 * there any validity dependences (left)?
3789 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3791 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
3794 return has_validity_edges(graph
);
3797 /* Compute a schedule for a connected dependence graph using Feautrier's
3798 * multi-dimensional scheduling algorithm and return the updated schedule node.
3800 * The original algorithm is described in [1].
3801 * The main idea is to minimize the number of scheduling dimensions, by
3802 * trying to satisfy as many dependences as possible per scheduling dimension.
3804 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3805 * Problem, Part II: Multi-Dimensional Time.
3806 * In Intl. Journal of Parallel Programming, 1992.
3808 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
3809 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3811 return carry_dependences(node
, graph
);
3814 /* Turn off the "local" bit on all (condition) edges.
3816 static void clear_local_edges(struct isl_sched_graph
*graph
)
3820 for (i
= 0; i
< graph
->n_edge
; ++i
)
3821 if (graph
->edge
[i
].condition
)
3822 graph
->edge
[i
].local
= 0;
3825 /* Does "graph" have both condition and conditional validity edges?
3827 static int need_condition_check(struct isl_sched_graph
*graph
)
3830 int any_condition
= 0;
3831 int any_conditional_validity
= 0;
3833 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3834 if (graph
->edge
[i
].condition
)
3836 if (graph
->edge
[i
].conditional_validity
)
3837 any_conditional_validity
= 1;
3840 return any_condition
&& any_conditional_validity
;
3843 /* Does "graph" contain any coincidence edge?
3845 static int has_any_coincidence(struct isl_sched_graph
*graph
)
3849 for (i
= 0; i
< graph
->n_edge
; ++i
)
3850 if (graph
->edge
[i
].coincidence
)
3856 /* Extract the final schedule row as a map with the iteration domain
3857 * of "node" as domain.
3859 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
3861 isl_local_space
*ls
;
3865 row
= isl_mat_rows(node
->sched
) - 1;
3866 ls
= isl_local_space_from_space(isl_space_copy(node
->space
));
3867 aff
= extract_schedule_row(ls
, node
, row
);
3868 return isl_map_from_aff(aff
);
3871 /* Is the conditional validity dependence in the edge with index "edge_index"
3872 * violated by the latest (i.e., final) row of the schedule?
3873 * That is, is i scheduled after j
3874 * for any conditional validity dependence i -> j?
3876 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
3878 isl_map
*src_sched
, *dst_sched
, *map
;
3879 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
3882 src_sched
= final_row(edge
->src
);
3883 dst_sched
= final_row(edge
->dst
);
3884 map
= isl_map_copy(edge
->map
);
3885 map
= isl_map_apply_domain(map
, src_sched
);
3886 map
= isl_map_apply_range(map
, dst_sched
);
3887 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
3888 empty
= isl_map_is_empty(map
);
3897 /* Does "graph" have any satisfied condition edges that
3898 * are adjacent to the conditional validity constraint with
3899 * domain "conditional_source" and range "conditional_sink"?
3901 * A satisfied condition is one that is not local.
3902 * If a condition was forced to be local already (i.e., marked as local)
3903 * then there is no need to check if it is in fact local.
3905 * Additionally, mark all adjacent condition edges found as local.
3907 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
3908 __isl_keep isl_union_set
*conditional_source
,
3909 __isl_keep isl_union_set
*conditional_sink
)
3914 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3915 int adjacent
, local
;
3916 isl_union_map
*condition
;
3918 if (!graph
->edge
[i
].condition
)
3920 if (graph
->edge
[i
].local
)
3923 condition
= graph
->edge
[i
].tagged_condition
;
3924 adjacent
= domain_intersects(condition
, conditional_sink
);
3925 if (adjacent
>= 0 && !adjacent
)
3926 adjacent
= range_intersects(condition
,
3927 conditional_source
);
3933 graph
->edge
[i
].local
= 1;
3935 local
= is_condition_false(&graph
->edge
[i
]);
3945 /* Are there any violated conditional validity dependences with
3946 * adjacent condition dependences that are not local with respect
3947 * to the current schedule?
3948 * That is, is the conditional validity constraint violated?
3950 * Additionally, mark all those adjacent condition dependences as local.
3951 * We also mark those adjacent condition dependences that were not marked
3952 * as local before, but just happened to be local already. This ensures
3953 * that they remain local if the schedule is recomputed.
3955 * We first collect domain and range of all violated conditional validity
3956 * dependences and then check if there are any adjacent non-local
3957 * condition dependences.
3959 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
3960 struct isl_sched_graph
*graph
)
3964 isl_union_set
*source
, *sink
;
3966 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3967 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3968 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3969 isl_union_set
*uset
;
3970 isl_union_map
*umap
;
3973 if (!graph
->edge
[i
].conditional_validity
)
3976 violated
= is_violated(graph
, i
);
3984 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3985 uset
= isl_union_map_domain(umap
);
3986 source
= isl_union_set_union(source
, uset
);
3987 source
= isl_union_set_coalesce(source
);
3989 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
3990 uset
= isl_union_map_range(umap
);
3991 sink
= isl_union_set_union(sink
, uset
);
3992 sink
= isl_union_set_coalesce(sink
);
3996 any
= has_adjacent_true_conditions(graph
, source
, sink
);
3998 isl_union_set_free(source
);
3999 isl_union_set_free(sink
);
4002 isl_union_set_free(source
);
4003 isl_union_set_free(sink
);
4007 /* Compute a schedule for a connected dependence graph and return
4008 * the updated schedule node.
4010 * We try to find a sequence of as many schedule rows as possible that result
4011 * in non-negative dependence distances (independent of the previous rows
4012 * in the sequence, i.e., such that the sequence is tilable), with as
4013 * many of the initial rows as possible satisfying the coincidence constraints.
4014 * If we can't find any more rows we either
4015 * - split between SCCs and start over (assuming we found an interesting
4016 * pair of SCCs between which to split)
4017 * - continue with the next band (assuming the current band has at least
4019 * - try to carry as many dependences as possible and continue with the next
4021 * In each case, we first insert a band node in the schedule tree
4022 * if any rows have been computed.
4024 * If Feautrier's algorithm is selected, we first recursively try to satisfy
4025 * as many validity dependences as possible. When all validity dependences
4026 * are satisfied we extend the schedule to a full-dimensional schedule.
4028 * If we manage to complete the schedule, we insert a band node
4029 * (if any schedule rows were computed) and we finish off by topologically
4030 * sorting the statements based on the remaining dependences.
4032 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4033 * outermost dimension to satisfy the coincidence constraints. If this
4034 * turns out to be impossible, we fall back on the general scheme above
4035 * and try to carry as many dependences as possible.
4037 * If "graph" contains both condition and conditional validity dependences,
4038 * then we need to check that that the conditional schedule constraint
4039 * is satisfied, i.e., there are no violated conditional validity dependences
4040 * that are adjacent to any non-local condition dependences.
4041 * If there are, then we mark all those adjacent condition dependences
4042 * as local and recompute the current band. Those dependences that
4043 * are marked local will then be forced to be local.
4044 * The initial computation is performed with no dependences marked as local.
4045 * If we are lucky, then there will be no violated conditional validity
4046 * dependences adjacent to any non-local condition dependences.
4047 * Otherwise, we mark some additional condition dependences as local and
4048 * recompute. We continue this process until there are no violations left or
4049 * until we are no longer able to compute a schedule.
4050 * Since there are only a finite number of dependences,
4051 * there will only be a finite number of iterations.
4053 static __isl_give isl_schedule_node
*compute_schedule_wcc(
4054 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4056 int has_coincidence
;
4057 int use_coincidence
;
4058 int force_coincidence
= 0;
4059 int check_conditional
;
4065 ctx
= isl_schedule_node_get_ctx(node
);
4066 if (detect_sccs(ctx
, graph
) < 0)
4067 return isl_schedule_node_free(node
);
4068 if (sort_sccs(graph
) < 0)
4069 return isl_schedule_node_free(node
);
4071 if (compute_maxvar(graph
) < 0)
4072 return isl_schedule_node_free(node
);
4074 if (need_feautrier_step(ctx
, graph
))
4075 return compute_schedule_wcc_feautrier(node
, graph
);
4077 clear_local_edges(graph
);
4078 check_conditional
= need_condition_check(graph
);
4079 has_coincidence
= has_any_coincidence(graph
);
4081 if (ctx
->opt
->schedule_outer_coincidence
)
4082 force_coincidence
= 1;
4084 use_coincidence
= has_coincidence
;
4085 while (graph
->n_row
< graph
->maxvar
) {
4090 graph
->src_scc
= -1;
4091 graph
->dst_scc
= -1;
4093 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
4094 return isl_schedule_node_free(node
);
4095 sol
= solve_lp(graph
);
4097 return isl_schedule_node_free(node
);
4098 if (sol
->size
== 0) {
4099 int empty
= graph
->n_total_row
== graph
->band_start
;
4102 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
4103 use_coincidence
= 0;
4106 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
4107 return compute_next_band(node
, graph
, 1);
4108 if (graph
->src_scc
>= 0)
4109 return compute_split_schedule(node
, graph
);
4111 return compute_next_band(node
, graph
, 1);
4112 return carry_dependences(node
, graph
);
4114 coincident
= !has_coincidence
|| use_coincidence
;
4115 if (update_schedule(graph
, sol
, 1, coincident
) < 0)
4116 return isl_schedule_node_free(node
);
4118 if (!check_conditional
)
4120 violated
= has_violated_conditional_constraint(ctx
, graph
);
4122 return isl_schedule_node_free(node
);
4125 if (reset_band(graph
) < 0)
4126 return isl_schedule_node_free(node
);
4127 use_coincidence
= has_coincidence
;
4130 if (graph
->n_total_row
> graph
->band_start
) {
4131 node
= insert_current_band(node
, graph
, 1);
4132 node
= isl_schedule_node_child(node
, 0);
4134 node
= sort_statements(node
, graph
);
4135 if (graph
->n_total_row
> graph
->band_start
)
4136 node
= isl_schedule_node_parent(node
);
4141 /* Compute a schedule for each group of nodes identified by node->scc
4142 * separately and then combine them in a sequence node (or as set node
4143 * if graph->weak is set) inserted at position "node" of the schedule tree.
4144 * Return the updated schedule node.
4146 * If "wcc" is set then each of the groups belongs to a single
4147 * weakly connected component in the dependence graph so that
4148 * there is no need for compute_sub_schedule to look for weakly
4149 * connected components.
4151 static __isl_give isl_schedule_node
*compute_component_schedule(
4152 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4159 isl_union_set_list
*filters
;
4163 ctx
= isl_schedule_node_get_ctx(node
);
4165 filters
= extract_sccs(ctx
, graph
);
4167 node
= isl_schedule_node_insert_set(node
, filters
);
4169 node
= isl_schedule_node_insert_sequence(node
, filters
);
4171 orig_total_row
= graph
->n_total_row
;
4172 for (component
= 0; component
< graph
->scc
; ++component
) {
4174 for (i
= 0; i
< graph
->n
; ++i
)
4175 if (graph
->node
[i
].scc
== component
)
4178 for (i
= 0; i
< graph
->n_edge
; ++i
)
4179 if (graph
->edge
[i
].src
->scc
== component
&&
4180 graph
->edge
[i
].dst
->scc
== component
)
4183 node
= isl_schedule_node_child(node
, component
);
4184 node
= isl_schedule_node_child(node
, 0);
4185 node
= compute_sub_schedule(node
, ctx
, graph
, n
, n_edge
,
4187 &edge_scc_exactly
, component
, wcc
);
4188 node
= isl_schedule_node_parent(node
);
4189 node
= isl_schedule_node_parent(node
);
4190 graph
->n_total_row
= orig_total_row
;
4196 /* Compute a schedule for the given dependence graph and insert it at "node".
4197 * Return the updated schedule node.
4199 * We first check if the graph is connected (through validity and conditional
4200 * validity dependences) and, if not, compute a schedule
4201 * for each component separately.
4202 * If schedule_fuse is set to minimal fusion, then we check for strongly
4203 * connected components instead and compute a separate schedule for
4204 * each such strongly connected component.
4206 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
4207 struct isl_sched_graph
*graph
)
4214 ctx
= isl_schedule_node_get_ctx(node
);
4215 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
4216 if (detect_sccs(ctx
, graph
) < 0)
4217 return isl_schedule_node_free(node
);
4219 if (detect_wccs(ctx
, graph
) < 0)
4220 return isl_schedule_node_free(node
);
4224 return compute_component_schedule(node
, graph
, 1);
4226 return compute_schedule_wcc(node
, graph
);
4229 /* Compute a schedule on sc->domain that respects the given schedule
4232 * In particular, the schedule respects all the validity dependences.
4233 * If the default isl scheduling algorithm is used, it tries to minimize
4234 * the dependence distances over the proximity dependences.
4235 * If Feautrier's scheduling algorithm is used, the proximity dependence
4236 * distances are only minimized during the extension to a full-dimensional
4239 * If there are any condition and conditional validity dependences,
4240 * then the conditional validity dependences may be violated inside
4241 * a tilable band, provided they have no adjacent non-local
4242 * condition dependences.
4244 * The context is included in the domain before the nodes of
4245 * the graphs are extracted in order to be able to exploit
4246 * any possible additional equalities.
4247 * However, the returned schedule contains the original domain
4248 * (before this intersection).
4250 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
4251 __isl_take isl_schedule_constraints
*sc
)
4253 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
4254 struct isl_sched_graph graph
= { 0 };
4255 isl_schedule
*sched
;
4256 isl_schedule_node
*node
;
4257 isl_union_set
*domain
;
4258 struct isl_extract_edge_data data
;
4259 enum isl_edge_type i
;
4262 sc
= isl_schedule_constraints_align_params(sc
);
4266 graph
.n
= isl_union_set_n_set(sc
->domain
);
4268 isl_union_set
*domain
= isl_union_set_copy(sc
->domain
);
4269 sched
= isl_schedule_from_domain(domain
);
4272 if (graph_alloc(ctx
, &graph
, graph
.n
,
4273 isl_schedule_constraints_n_map(sc
)) < 0)
4275 if (compute_max_row(&graph
, sc
) < 0)
4279 domain
= isl_union_set_copy(sc
->domain
);
4280 domain
= isl_union_set_intersect_params(domain
,
4281 isl_set_copy(sc
->context
));
4282 r
= isl_union_set_foreach_set(domain
, &extract_node
, &graph
);
4283 isl_union_set_free(domain
);
4286 if (graph_init_table(ctx
, &graph
) < 0)
4288 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
)
4289 graph
.max_edge
[i
] = isl_union_map_n_map(sc
->constraint
[i
]);
4290 if (graph_init_edge_tables(ctx
, &graph
) < 0)
4293 data
.graph
= &graph
;
4294 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
4296 if (isl_union_map_foreach_map(sc
->constraint
[i
],
4297 &extract_edge
, &data
) < 0)
4301 node
= isl_schedule_node_from_domain(isl_union_set_copy(sc
->domain
));
4302 node
= isl_schedule_node_child(node
, 0);
4303 node
= compute_schedule(node
, &graph
);
4304 sched
= isl_schedule_node_get_schedule(node
);
4305 isl_schedule_node_free(node
);
4308 graph_free(ctx
, &graph
);
4309 isl_schedule_constraints_free(sc
);
4313 graph_free(ctx
, &graph
);
4314 isl_schedule_constraints_free(sc
);
4318 /* Compute a schedule for the given union of domains that respects
4319 * all the validity dependences and minimizes
4320 * the dependence distances over the proximity dependences.
4322 * This function is kept for backward compatibility.
4324 __isl_give isl_schedule
*isl_union_set_compute_schedule(
4325 __isl_take isl_union_set
*domain
,
4326 __isl_take isl_union_map
*validity
,
4327 __isl_take isl_union_map
*proximity
)
4329 isl_schedule_constraints
*sc
;
4331 sc
= isl_schedule_constraints_on_domain(domain
);
4332 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4333 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4335 return isl_schedule_constraints_compute_schedule(sc
);