isl_map.c: extract out shared extract_aff
[isl.git] / isl_bernstein.c
blobeddea8346e1e05046ffed5cfacb05690f1ce631d
1 /*
2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl_seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
28 struct bernstein_data {
29 enum isl_fold type;
30 isl_qpolynomial *poly;
31 int check_tight;
33 isl_cell *cell;
35 isl_qpolynomial_fold *fold;
36 isl_qpolynomial_fold *fold_tight;
37 isl_pw_qpolynomial_fold *pwf;
38 isl_pw_qpolynomial_fold *pwf_tight;
41 static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex)
43 isl_size nvar;
44 isl_size nparam;
45 int i;
47 nvar = isl_basic_set_dim(vertex, isl_dim_set);
48 nparam = isl_basic_set_dim(vertex, isl_dim_param);
49 if (nvar < 0 || nparam < 0)
50 return isl_bool_error;
51 for (i = 0; i < nvar; ++i) {
52 int r = nvar - 1 - i;
53 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
54 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
55 return isl_bool_false;
58 return isl_bool_true;
61 static __isl_give isl_qpolynomial *vertex_coordinate(
62 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
64 isl_size nvar;
65 isl_size nparam;
66 isl_size total;
67 int r;
68 isl_int denom;
69 isl_qpolynomial *v;
71 isl_int_init(denom);
73 nvar = isl_basic_set_dim(vertex, isl_dim_set);
74 nparam = isl_basic_set_dim(vertex, isl_dim_param);
75 total = isl_basic_set_dim(vertex, isl_dim_all);
76 if (nvar < 0 || nparam < 0 || total < 0)
77 goto error;
78 r = nvar - 1 - i;
80 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
81 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
83 if (isl_int_is_pos(denom))
84 isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total);
85 else
86 isl_int_neg(denom, denom);
88 v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
89 isl_int_clear(denom);
91 return v;
92 error:
93 isl_space_free(space);
94 isl_int_clear(denom);
95 return NULL;
98 /* Check whether the bound associated to the selection "k" is tight,
99 * which is the case if we select exactly one vertex (i.e., one of the
100 * exponents in "k" is exactly "d") and if that vertex
101 * is integral for all values of the parameters.
103 * If the degree "d" is zero, then there are no exponents.
104 * Since the polynomial is a constant expression in this case,
105 * the bound is necessarily tight.
107 static isl_bool is_tight(int *k, int n, int d, isl_cell *cell)
109 int i;
111 if (d == 0)
112 return isl_bool_true;
114 for (i = 0; i < n; ++i) {
115 int v;
116 if (!k[i])
117 continue;
118 if (k[i] != d)
119 return isl_bool_false;
120 v = cell->ids[n - 1 - i];
121 return vertex_is_integral(cell->vertices->v[v].vertex);
124 return isl_bool_false;
127 static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
128 int *k, int n, int d, struct bernstein_data *data)
130 isl_qpolynomial_fold *fold;
131 isl_bool tight;
133 fold = isl_qpolynomial_fold_alloc(data->type, b);
135 tight = isl_bool_false;
136 if (data->check_tight)
137 tight = is_tight(k, n, d, data->cell);
138 if (tight < 0)
139 return isl_stat_error;
140 if (tight)
141 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
142 data->fold_tight, fold);
143 else
144 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
145 data->fold, fold);
146 return isl_stat_ok;
149 /* Extract the coefficients of the Bernstein base polynomials and store
150 * them in data->fold and data->fold_tight.
152 * In particular, the coefficient of each monomial
153 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
154 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
156 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
157 * multinom[i] contains the partial multinomial coefficient.
159 static isl_stat extract_coefficients(isl_qpolynomial *poly,
160 __isl_keep isl_set *dom, struct bernstein_data *data)
162 int i;
163 int d;
164 isl_size n;
165 isl_ctx *ctx;
166 isl_qpolynomial **c = NULL;
167 int *k = NULL;
168 int *left = NULL;
169 isl_vec *multinom = NULL;
171 n = isl_qpolynomial_dim(poly, isl_dim_in);
172 if (n < 0)
173 return isl_stat_error;
175 ctx = isl_qpolynomial_get_ctx(poly);
176 d = isl_qpolynomial_degree(poly);
177 isl_assert(ctx, n >= 2, return isl_stat_error);
179 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
180 k = isl_alloc_array(ctx, int, n);
181 left = isl_alloc_array(ctx, int, n);
182 multinom = isl_vec_alloc(ctx, n);
183 if (!c || !k || !left || !multinom)
184 goto error;
186 isl_int_set_si(multinom->el[0], 1);
187 for (k[0] = d; k[0] >= 0; --k[0]) {
188 int i = 1;
189 isl_qpolynomial_free(c[0]);
190 c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
191 left[0] = d - k[0];
192 k[1] = -1;
193 isl_int_set(multinom->el[1], multinom->el[0]);
194 while (i > 0) {
195 if (i == n - 1) {
196 int j;
197 isl_space *space;
198 isl_qpolynomial *b;
199 isl_qpolynomial *f;
200 for (j = 2; j <= left[i - 1]; ++j)
201 isl_int_divexact_ui(multinom->el[i],
202 multinom->el[i], j);
203 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
204 n - 1 - i, left[i - 1]);
205 b = isl_qpolynomial_project_domain_on_params(b);
206 space = isl_qpolynomial_get_domain_space(b);
207 f = isl_qpolynomial_rat_cst_on_domain(space,
208 ctx->one, multinom->el[i]);
209 b = isl_qpolynomial_mul(b, f);
210 k[n - 1] = left[n - 2];
211 if (add_fold(b, dom, k, n, d, data) < 0)
212 goto error;
213 --i;
214 continue;
216 if (k[i] >= left[i - 1]) {
217 --i;
218 continue;
220 ++k[i];
221 if (k[i])
222 isl_int_divexact_ui(multinom->el[i],
223 multinom->el[i], k[i]);
224 isl_qpolynomial_free(c[i]);
225 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
226 n - 1 - i, k[i]);
227 left[i] = left[i - 1] - k[i];
228 k[i + 1] = -1;
229 isl_int_set(multinom->el[i + 1], multinom->el[i]);
230 ++i;
232 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
235 for (i = 0; i < n; ++i)
236 isl_qpolynomial_free(c[i]);
238 isl_vec_free(multinom);
239 free(left);
240 free(k);
241 free(c);
242 return isl_stat_ok;
243 error:
244 isl_vec_free(multinom);
245 free(left);
246 free(k);
247 if (c)
248 for (i = 0; i < n; ++i)
249 isl_qpolynomial_free(c[i]);
250 free(c);
251 return isl_stat_error;
254 /* Perform bernstein expansion on the parametric vertices that are active
255 * on "cell".
257 * data->poly has been homogenized in the calling function.
259 * We plug in the barycentric coordinates for the set variables
261 * \vec x = \sum_i \alpha_i v_i(\vec p)
263 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
264 * Next, we extract the coefficients of the Bernstein base polynomials.
266 static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
267 void *user)
269 int i, j;
270 struct bernstein_data *data = (struct bernstein_data *)user;
271 isl_space *space_param;
272 isl_space *space_dst;
273 isl_qpolynomial *poly = data->poly;
274 isl_size n_in;
275 unsigned nvar;
276 int n_vertices;
277 isl_qpolynomial **subs;
278 isl_pw_qpolynomial_fold *pwf;
279 isl_set *dom;
280 isl_ctx *ctx;
282 n_in = isl_qpolynomial_dim(poly, isl_dim_in);
283 if (n_in < 0)
284 goto error;
286 nvar = n_in - 1;
287 n_vertices = cell->n_vertices;
289 ctx = isl_qpolynomial_get_ctx(poly);
290 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
291 return isl_cell_foreach_simplex(cell,
292 &bernstein_coefficients_cell, user);
294 subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
295 if (!subs)
296 goto error;
298 space_param = isl_basic_set_get_space(cell->dom);
299 space_dst = isl_qpolynomial_get_domain_space(poly);
300 space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
302 for (i = 0; i < 1 + nvar; ++i)
303 subs[i] =
304 isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
306 for (i = 0; i < n_vertices; ++i) {
307 isl_qpolynomial *c;
308 c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
309 isl_dim_set, 1 + nvar + i);
310 for (j = 0; j < nvar; ++j) {
311 int k = cell->ids[i];
312 isl_qpolynomial *v;
313 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
314 isl_space_copy(space_param));
315 v = isl_qpolynomial_add_dims(v, isl_dim_in,
316 1 + nvar + n_vertices);
317 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
318 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
320 subs[0] = isl_qpolynomial_add(subs[0], c);
322 isl_space_free(space_dst);
324 poly = isl_qpolynomial_copy(poly);
326 poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
327 poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
328 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
330 data->cell = cell;
331 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
332 data->fold = isl_qpolynomial_fold_empty(data->type,
333 isl_space_copy(space_param));
334 data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
335 if (extract_coefficients(poly, dom, data) < 0) {
336 data->fold = isl_qpolynomial_fold_free(data->fold);
337 data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
340 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
341 data->fold);
342 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
343 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
344 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
346 isl_qpolynomial_free(poly);
347 isl_cell_free(cell);
348 for (i = 0; i < 1 + nvar; ++i)
349 isl_qpolynomial_free(subs[i]);
350 free(subs);
351 return isl_stat_ok;
352 error:
353 isl_cell_free(cell);
354 return isl_stat_error;
357 /* Base case of applying bernstein expansion.
359 * We compute the chamber decomposition of the parametric polytope "bset"
360 * and then perform bernstein expansion on the parametric vertices
361 * that are active on each chamber.
363 * If the polynomial does not depend on the set variables
364 * (and in particular if the number of set variables is zero)
365 * then the bound is equal to the polynomial and
366 * no actual bernstein expansion needs to be performed.
368 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
369 __isl_take isl_basic_set *bset,
370 __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
371 isl_bool *tight)
373 int degree;
374 isl_size nvar;
375 isl_space *space;
376 isl_vertices *vertices;
377 isl_bool covers;
379 nvar = isl_basic_set_dim(bset, isl_dim_set);
380 if (nvar < 0)
381 bset = isl_basic_set_free(bset);
382 if (nvar == 0)
383 return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
385 degree = isl_qpolynomial_degree(poly);
386 if (degree < -1)
387 bset = isl_basic_set_free(bset);
388 if (degree <= 0)
389 return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
391 space = isl_basic_set_get_space(bset);
392 space = isl_space_params(space);
393 space = isl_space_from_domain(space);
394 space = isl_space_add_dims(space, isl_dim_set, 1);
395 data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
396 data->type);
397 data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
398 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
399 vertices = isl_basic_set_compute_vertices(bset);
400 if (isl_vertices_foreach_disjoint_cell(vertices,
401 &bernstein_coefficients_cell, data) < 0)
402 data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
403 isl_vertices_free(vertices);
404 isl_qpolynomial_free(data->poly);
406 isl_basic_set_free(bset);
407 isl_qpolynomial_free(poly);
409 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
410 if (covers < 0)
411 goto error;
413 if (tight)
414 *tight = covers;
416 if (covers) {
417 isl_pw_qpolynomial_fold_free(data->pwf);
418 return data->pwf_tight;
421 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
423 return data->pwf;
424 error:
425 isl_pw_qpolynomial_fold_free(data->pwf_tight);
426 isl_pw_qpolynomial_fold_free(data->pwf);
427 return NULL;
430 /* Apply bernstein expansion recursively by working in on len[i]
431 * set variables at a time, with i ranging from n_group - 1 to 0.
433 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
434 __isl_take isl_pw_qpolynomial *pwqp,
435 int n_group, int *len, struct bernstein_data *data, isl_bool *tight)
437 int i;
438 isl_size nparam;
439 isl_size nvar;
440 isl_pw_qpolynomial_fold *pwf;
442 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
443 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
444 if (nparam < 0 || nvar < 0)
445 goto error;
447 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
448 isl_dim_in, 0, nvar - len[n_group - 1]);
449 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
451 for (i = n_group - 2; i >= 0; --i) {
452 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
453 if (nparam < 0)
454 return isl_pw_qpolynomial_fold_free(pwf);
455 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
456 isl_dim_param, nparam - len[i], len[i]);
457 if (tight && !*tight)
458 tight = NULL;
459 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
462 return pwf;
463 error:
464 isl_pw_qpolynomial_free(pwqp);
465 return NULL;
468 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
469 __isl_take isl_basic_set *bset,
470 __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
471 isl_bool *tight)
473 isl_factorizer *f;
474 isl_set *set;
475 isl_pw_qpolynomial *pwqp;
476 isl_pw_qpolynomial_fold *pwf;
478 f = isl_basic_set_factorizer(bset);
479 if (!f)
480 goto error;
481 if (f->n_group == 0) {
482 isl_factorizer_free(f);
483 return bernstein_coefficients_base(bset, poly, data, tight);
486 set = isl_set_from_basic_set(bset);
487 pwqp = isl_pw_qpolynomial_alloc(set, poly);
488 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
490 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
491 tight);
493 isl_factorizer_free(f);
495 return pwf;
496 error:
497 isl_basic_set_free(bset);
498 isl_qpolynomial_free(poly);
499 return NULL;
502 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
503 __isl_take isl_basic_set *bset,
504 __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
505 isl_bool *tight)
507 int i;
508 int *len;
509 isl_size nvar;
510 isl_pw_qpolynomial_fold *pwf;
511 isl_set *set;
512 isl_pw_qpolynomial *pwqp;
514 nvar = isl_basic_set_dim(bset, isl_dim_set);
515 if (nvar < 0 || !poly)
516 goto error;
518 len = isl_alloc_array(bset->ctx, int, nvar);
519 if (nvar && !len)
520 goto error;
522 for (i = 0; i < nvar; ++i)
523 len[i] = 1;
525 set = isl_set_from_basic_set(bset);
526 pwqp = isl_pw_qpolynomial_alloc(set, poly);
528 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
530 free(len);
532 return pwf;
533 error:
534 isl_basic_set_free(bset);
535 isl_qpolynomial_free(poly);
536 return NULL;
539 /* Compute a bound on the polynomial defined over the parametric polytope
540 * using bernstein expansion and store the result
541 * in bound->pwf and bound->pwf_tight.
543 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
544 * the polytope can be factorized and apply bernstein expansion recursively
545 * on the factors.
546 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
547 * bernstein expansion recursively on each dimension.
548 * Otherwise, we apply bernstein expansion on the entire polytope.
550 isl_stat isl_qpolynomial_bound_on_domain_bernstein(
551 __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
552 struct isl_bound *bound)
554 struct bernstein_data data;
555 isl_pw_qpolynomial_fold *pwf;
556 isl_size nvar;
557 isl_bool tight = isl_bool_false;
558 isl_bool *tp = bound->check_tight ? &tight : NULL;
560 nvar = isl_basic_set_dim(bset, isl_dim_set);
561 if (nvar < 0 || !poly)
562 goto error;
564 data.type = bound->type;
565 data.check_tight = bound->check_tight;
567 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
568 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
569 else if (nvar > 1 &&
570 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
571 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
572 else
573 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
575 if (tight)
576 return isl_bound_add_tight(bound, pwf);
577 else
578 return isl_bound_add(bound, pwf);
579 error:
580 isl_basic_set_free(bset);
581 isl_qpolynomial_free(poly);
582 return isl_stat_error;