2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_map_private.h>
14 #include <isl_dim_private.h>
16 #include <isl/union_map.h>
17 #include <isl_mat_private.h>
19 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
24 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
25 closed
= isl_map_is_subset(map2
, map
);
31 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
36 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
37 isl_union_map_copy(umap
));
38 closed
= isl_union_map_is_subset(umap2
, umap
);
39 isl_union_map_free(umap2
);
44 /* Given a map that represents a path with the length of the path
45 * encoded as the difference between the last output coordindate
46 * and the last input coordinate, set this length to either
47 * exactly "length" (if "exactly" is set) or at least "length"
48 * (if "exactly" is not set).
50 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
51 int exactly
, int length
)
54 struct isl_basic_map
*bmap
;
63 dim
= isl_map_get_dim(map
);
64 d
= isl_dim_size(dim
, isl_dim_in
);
65 nparam
= isl_dim_size(dim
, isl_dim_param
);
66 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
68 k
= isl_basic_map_alloc_equality(bmap
);
71 k
= isl_basic_map_alloc_inequality(bmap
);
76 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
77 isl_int_set_si(c
[0], -length
);
78 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
79 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
81 bmap
= isl_basic_map_finalize(bmap
);
82 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
86 isl_basic_map_free(bmap
);
91 /* Check whether the overapproximation of the power of "map" is exactly
92 * the power of "map". Let R be "map" and A_k the overapproximation.
93 * The approximation is exact if
96 * A_k = A_{k-1} \circ R k >= 2
98 * Since A_k is known to be an overapproximation, we only need to check
101 * A_k \subset A_{k-1} \circ R k >= 2
103 * In practice, "app" has an extra input and output coordinate
104 * to encode the length of the path. So, we first need to add
105 * this coordinate to "map" and set the length of the path to
108 static int check_power_exactness(__isl_take isl_map
*map
,
109 __isl_take isl_map
*app
)
115 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
116 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
117 map
= set_path_length(map
, 1, 1);
119 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
121 exact
= isl_map_is_subset(app_1
, map
);
124 if (!exact
|| exact
< 0) {
130 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
131 app_2
= set_path_length(app
, 0, 2);
132 app_1
= isl_map_apply_range(map
, app_1
);
134 exact
= isl_map_is_subset(app_2
, app_1
);
142 /* Check whether the overapproximation of the power of "map" is exactly
143 * the power of "map", possibly after projecting out the power (if "project"
146 * If "project" is set and if "steps" can only result in acyclic paths,
149 * A = R \cup (A \circ R)
151 * where A is the overapproximation with the power projected out, i.e.,
152 * an overapproximation of the transitive closure.
153 * More specifically, since A is known to be an overapproximation, we check
155 * A \subset R \cup (A \circ R)
157 * Otherwise, we check if the power is exact.
159 * Note that "app" has an extra input and output coordinate to encode
160 * the length of the part. If we are only interested in the transitive
161 * closure, then we can simply project out these coordinates first.
163 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
171 return check_power_exactness(map
, app
);
173 d
= isl_map_dim(map
, isl_dim_in
);
174 app
= set_path_length(app
, 0, 1);
175 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
176 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
178 app
= isl_map_reset_dim(app
, isl_map_get_dim(map
));
180 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
181 test
= isl_map_union(test
, isl_map_copy(map
));
183 exact
= isl_map_is_subset(app
, test
);
194 * The transitive closure implementation is based on the paper
195 * "Computing the Transitive Closure of a Union of Affine Integer
196 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
200 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
201 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
202 * that maps an element x to any element that can be reached
203 * by taking a non-negative number of steps along any of
204 * the extended offsets v'_i = [v_i 1].
207 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
209 * For any element in this relation, the number of steps taken
210 * is equal to the difference in the final coordinates.
212 static __isl_give isl_map
*path_along_steps(__isl_take isl_dim
*dim
,
213 __isl_keep isl_mat
*steps
)
216 struct isl_basic_map
*path
= NULL
;
224 d
= isl_dim_size(dim
, isl_dim_in
);
226 nparam
= isl_dim_size(dim
, isl_dim_param
);
228 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n
, d
, n
);
230 for (i
= 0; i
< n
; ++i
) {
231 k
= isl_basic_map_alloc_div(path
);
234 isl_assert(steps
->ctx
, i
== k
, goto error
);
235 isl_int_set_si(path
->div
[k
][0], 0);
238 for (i
= 0; i
< d
; ++i
) {
239 k
= isl_basic_map_alloc_equality(path
);
242 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
243 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
244 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
246 for (j
= 0; j
< n
; ++j
)
247 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
249 for (j
= 0; j
< n
; ++j
)
250 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
254 for (i
= 0; i
< n
; ++i
) {
255 k
= isl_basic_map_alloc_inequality(path
);
258 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
259 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
264 path
= isl_basic_map_simplify(path
);
265 path
= isl_basic_map_finalize(path
);
266 return isl_map_from_basic_map(path
);
269 isl_basic_map_free(path
);
278 /* Check whether the parametric constant term of constraint c is never
279 * positive in "bset".
281 static int parametric_constant_never_positive(__isl_keep isl_basic_set
*bset
,
282 isl_int
*c
, int *div_purity
)
291 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
292 d
= isl_basic_set_dim(bset
, isl_dim_set
);
293 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
295 bset
= isl_basic_set_copy(bset
);
296 bset
= isl_basic_set_cow(bset
);
297 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
298 k
= isl_basic_set_alloc_inequality(bset
);
301 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
302 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
303 for (i
= 0; i
< n_div
; ++i
) {
304 if (div_purity
[i
] != PURE_PARAM
)
306 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
307 c
[1 + nparam
+ d
+ i
]);
309 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
310 empty
= isl_basic_set_is_empty(bset
);
311 isl_basic_set_free(bset
);
315 isl_basic_set_free(bset
);
319 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
320 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
321 * Return MIXED if only the coefficients of the parameters and the set
322 * variables are non-zero and if moreover the parametric constant
323 * can never attain positive values.
324 * Return IMPURE otherwise.
326 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
336 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
337 d
= isl_basic_set_dim(bset
, isl_dim_set
);
338 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
340 for (i
= 0; i
< n_div
; ++i
) {
341 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
343 switch (div_purity
[i
]) {
344 case PURE_PARAM
: p
= 1; break;
345 case PURE_VAR
: v
= 1; break;
346 default: return IMPURE
;
349 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
351 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
354 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
355 if (eq
&& empty
>= 0 && !empty
) {
356 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
357 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
360 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
363 /* Return an array of integers indicating the type of each div in bset.
364 * If the div is (recursively) defined in terms of only the parameters,
365 * then the type is PURE_PARAM.
366 * If the div is (recursively) defined in terms of only the set variables,
367 * then the type is PURE_VAR.
368 * Otherwise, the type is IMPURE.
370 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
381 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
382 d
= isl_basic_set_dim(bset
, isl_dim_set
);
383 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
385 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
389 for (i
= 0; i
< bset
->n_div
; ++i
) {
391 if (isl_int_is_zero(bset
->div
[i
][0])) {
392 div_purity
[i
] = IMPURE
;
395 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
397 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
399 for (j
= 0; j
< i
; ++j
) {
400 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
402 switch (div_purity
[j
]) {
403 case PURE_PARAM
: p
= 1; break;
404 case PURE_VAR
: v
= 1; break;
405 default: p
= v
= 1; break;
408 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
414 /* Given a path with the as yet unconstrained length at position "pos",
415 * check if setting the length to zero results in only the identity
418 static int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
420 isl_basic_map
*test
= NULL
;
421 isl_basic_map
*id
= NULL
;
425 test
= isl_basic_map_copy(path
);
426 test
= isl_basic_map_extend_constraints(test
, 1, 0);
427 k
= isl_basic_map_alloc_equality(test
);
430 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
431 isl_int_set_si(test
->eq
[k
][pos
], 1);
432 id
= isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path
)));
433 is_id
= isl_basic_map_is_equal(test
, id
);
434 isl_basic_map_free(test
);
435 isl_basic_map_free(id
);
438 isl_basic_map_free(test
);
442 static __isl_give isl_basic_map
*add_delta_constraints(
443 __isl_take isl_basic_map
*path
,
444 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
445 unsigned d
, int *div_purity
, int eq
)
448 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
449 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
452 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
454 for (i
= 0; i
< n
; ++i
) {
456 int p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
461 if (eq
&& p
!= MIXED
) {
462 k
= isl_basic_map_alloc_equality(path
);
463 path_c
= path
->eq
[k
];
465 k
= isl_basic_map_alloc_inequality(path
);
466 path_c
= path
->ineq
[k
];
470 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
472 isl_seq_cpy(path_c
+ off
,
473 delta_c
[i
] + 1 + nparam
, d
);
474 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
475 } else if (p
== PURE_PARAM
) {
476 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
478 isl_seq_cpy(path_c
+ off
,
479 delta_c
[i
] + 1 + nparam
, d
);
480 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
482 isl_seq_cpy(path_c
+ off
- n_div
,
483 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
488 isl_basic_map_free(path
);
492 /* Given a set of offsets "delta", construct a relation of the
493 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
494 * is an overapproximation of the relations that
495 * maps an element x to any element that can be reached
496 * by taking a non-negative number of steps along any of
497 * the elements in "delta".
498 * That is, construct an approximation of
500 * { [x] -> [y] : exists f \in \delta, k \in Z :
501 * y = x + k [f, 1] and k >= 0 }
503 * For any element in this relation, the number of steps taken
504 * is equal to the difference in the final coordinates.
506 * In particular, let delta be defined as
508 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
509 * C x + C'p + c >= 0 and
510 * D x + D'p + d >= 0 }
512 * where the constraints C x + C'p + c >= 0 are such that the parametric
513 * constant term of each constraint j, "C_j x + C'_j p + c_j",
514 * can never attain positive values, then the relation is constructed as
516 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
517 * A f + k a >= 0 and B p + b >= 0 and
518 * C f + C'p + c >= 0 and k >= 1 }
519 * union { [x] -> [x] }
521 * If the zero-length paths happen to correspond exactly to the identity
522 * mapping, then we return
524 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
525 * A f + k a >= 0 and B p + b >= 0 and
526 * C f + C'p + c >= 0 and k >= 0 }
530 * Existentially quantified variables in \delta are handled by
531 * classifying them as independent of the parameters, purely
532 * parameter dependent and others. Constraints containing
533 * any of the other existentially quantified variables are removed.
534 * This is safe, but leads to an additional overapproximation.
536 static __isl_give isl_map
*path_along_delta(__isl_take isl_dim
*dim
,
537 __isl_take isl_basic_set
*delta
)
539 isl_basic_map
*path
= NULL
;
546 int *div_purity
= NULL
;
550 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
551 d
= isl_basic_set_dim(delta
, isl_dim_set
);
552 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
553 path
= isl_basic_map_alloc_dim(isl_dim_copy(dim
), n_div
+ d
+ 1,
554 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
555 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
557 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
558 k
= isl_basic_map_alloc_div(path
);
561 isl_int_set_si(path
->div
[k
][0], 0);
564 for (i
= 0; i
< d
+ 1; ++i
) {
565 k
= isl_basic_map_alloc_equality(path
);
568 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
569 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
570 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
571 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
574 div_purity
= get_div_purity(delta
);
578 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
, div_purity
, 1);
579 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
, div_purity
, 0);
581 is_id
= empty_path_is_identity(path
, off
+ d
);
585 k
= isl_basic_map_alloc_inequality(path
);
588 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
590 isl_int_set_si(path
->ineq
[k
][0], -1);
591 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
594 isl_basic_set_free(delta
);
595 path
= isl_basic_map_finalize(path
);
598 return isl_map_from_basic_map(path
);
600 return isl_basic_map_union(path
,
601 isl_basic_map_identity(isl_dim_domain(dim
)));
605 isl_basic_set_free(delta
);
606 isl_basic_map_free(path
);
610 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
611 * construct a map that equates the parameter to the difference
612 * in the final coordinates and imposes that this difference is positive.
615 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
617 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_dim
*dim
,
620 struct isl_basic_map
*bmap
;
625 d
= isl_dim_size(dim
, isl_dim_in
);
626 nparam
= isl_dim_size(dim
, isl_dim_param
);
627 bmap
= isl_basic_map_alloc_dim(dim
, 0, 1, 1);
628 k
= isl_basic_map_alloc_equality(bmap
);
631 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
632 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
633 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
634 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
636 k
= isl_basic_map_alloc_inequality(bmap
);
639 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
640 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
641 isl_int_set_si(bmap
->ineq
[k
][0], -1);
643 bmap
= isl_basic_map_finalize(bmap
);
644 return isl_map_from_basic_map(bmap
);
646 isl_basic_map_free(bmap
);
650 /* Check whether "path" is acyclic, where the last coordinates of domain
651 * and range of path encode the number of steps taken.
652 * That is, check whether
654 * { d | d = y - x and (x,y) in path }
656 * does not contain any element with positive last coordinate (positive length)
657 * and zero remaining coordinates (cycle).
659 static int is_acyclic(__isl_take isl_map
*path
)
664 struct isl_set
*delta
;
666 delta
= isl_map_deltas(path
);
667 dim
= isl_set_dim(delta
, isl_dim_set
);
668 for (i
= 0; i
< dim
; ++i
) {
670 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
672 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
675 acyclic
= isl_set_is_empty(delta
);
681 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
682 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
683 * construct a map that is an overapproximation of the map
684 * that takes an element from the space D \times Z to another
685 * element from the same space, such that the first n coordinates of the
686 * difference between them is a sum of differences between images
687 * and pre-images in one of the R_i and such that the last coordinate
688 * is equal to the number of steps taken.
691 * \Delta_i = { y - x | (x, y) in R_i }
693 * then the constructed map is an overapproximation of
695 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
696 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
698 * The elements of the singleton \Delta_i's are collected as the
699 * rows of the steps matrix. For all these \Delta_i's together,
700 * a single path is constructed.
701 * For each of the other \Delta_i's, we compute an overapproximation
702 * of the paths along elements of \Delta_i.
703 * Since each of these paths performs an addition, composition is
704 * symmetric and we can simply compose all resulting paths in any order.
706 static __isl_give isl_map
*construct_extended_path(__isl_take isl_dim
*dim
,
707 __isl_keep isl_map
*map
, int *project
)
709 struct isl_mat
*steps
= NULL
;
710 struct isl_map
*path
= NULL
;
714 d
= isl_map_dim(map
, isl_dim_in
);
716 path
= isl_map_identity(isl_dim_domain(isl_dim_copy(dim
)));
718 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
723 for (i
= 0; i
< map
->n
; ++i
) {
724 struct isl_basic_set
*delta
;
726 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
728 for (j
= 0; j
< d
; ++j
) {
731 fixed
= isl_basic_set_fast_dim_is_fixed(delta
, j
,
734 isl_basic_set_free(delta
);
743 path
= isl_map_apply_range(path
,
744 path_along_delta(isl_dim_copy(dim
), delta
));
745 path
= isl_map_coalesce(path
);
747 isl_basic_set_free(delta
);
754 path
= isl_map_apply_range(path
,
755 path_along_steps(isl_dim_copy(dim
), steps
));
758 if (project
&& *project
) {
759 *project
= is_acyclic(isl_map_copy(path
));
774 static int isl_set_overlaps(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
779 if (!isl_dim_tuple_match(set1
->dim
, isl_dim_set
, set2
->dim
, isl_dim_set
))
782 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
783 no_overlap
= isl_set_is_empty(i
);
786 return no_overlap
< 0 ? -1 : !no_overlap
;
789 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
790 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
791 * construct a map that is an overapproximation of the map
792 * that takes an element from the dom R \times Z to an
793 * element from ran R \times Z, such that the first n coordinates of the
794 * difference between them is a sum of differences between images
795 * and pre-images in one of the R_i and such that the last coordinate
796 * is equal to the number of steps taken.
799 * \Delta_i = { y - x | (x, y) in R_i }
801 * then the constructed map is an overapproximation of
803 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
804 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
805 * x in dom R and x + d in ran R and
808 static __isl_give isl_map
*construct_component(__isl_take isl_dim
*dim
,
809 __isl_keep isl_map
*map
, int *exact
, int project
)
811 struct isl_set
*domain
= NULL
;
812 struct isl_set
*range
= NULL
;
813 struct isl_map
*app
= NULL
;
814 struct isl_map
*path
= NULL
;
816 domain
= isl_map_domain(isl_map_copy(map
));
817 domain
= isl_set_coalesce(domain
);
818 range
= isl_map_range(isl_map_copy(map
));
819 range
= isl_set_coalesce(range
);
820 if (!isl_set_overlaps(domain
, range
)) {
821 isl_set_free(domain
);
825 map
= isl_map_copy(map
);
826 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
827 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
828 map
= set_path_length(map
, 1, 1);
831 app
= isl_map_from_domain_and_range(domain
, range
);
832 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
833 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
835 path
= construct_extended_path(isl_dim_copy(dim
), map
,
836 exact
&& *exact
? &project
: NULL
);
837 app
= isl_map_intersect(app
, path
);
839 if (exact
&& *exact
&&
840 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
845 app
= set_path_length(app
, 0, 1);
853 /* Call construct_component and, if "project" is set, project out
854 * the final coordinates.
856 static __isl_give isl_map
*construct_projected_component(
857 __isl_take isl_dim
*dim
,
858 __isl_keep isl_map
*map
, int *exact
, int project
)
865 d
= isl_dim_size(dim
, isl_dim_in
);
867 app
= construct_component(dim
, map
, exact
, project
);
869 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
870 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
875 /* Compute an extended version, i.e., with path lengths, of
876 * an overapproximation of the transitive closure of "bmap"
877 * with path lengths greater than or equal to zero and with
878 * domain and range equal to "dom".
880 static __isl_give isl_map
*q_closure(__isl_take isl_dim
*dim
,
881 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
888 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
889 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
890 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
891 path
= construct_extended_path(dim
, map
, &project
);
892 app
= isl_map_intersect(app
, path
);
894 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
903 /* Check whether qc has any elements of length at least one
904 * with domain and/or range outside of dom and ran.
906 static int has_spurious_elements(__isl_keep isl_map
*qc
,
907 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
913 if (!qc
|| !dom
|| !ran
)
916 d
= isl_map_dim(qc
, isl_dim_in
);
918 qc
= isl_map_copy(qc
);
919 qc
= set_path_length(qc
, 0, 1);
920 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
921 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
923 s
= isl_map_domain(isl_map_copy(qc
));
924 subset
= isl_set_is_subset(s
, dom
);
933 s
= isl_map_range(qc
);
934 subset
= isl_set_is_subset(s
, ran
);
937 return subset
< 0 ? -1 : !subset
;
946 /* For each basic map in "map", except i, check whether it combines
947 * with the transitive closure that is reflexive on C combines
948 * to the left and to the right.
952 * dom map_j \subseteq C
954 * then right[j] is set to 1. Otherwise, if
956 * ran map_i \cap dom map_j = \emptyset
958 * then right[j] is set to 0. Otherwise, composing to the right
961 * Similar, for composing to the left, we have if
963 * ran map_j \subseteq C
965 * then left[j] is set to 1. Otherwise, if
967 * dom map_i \cap ran map_j = \emptyset
969 * then left[j] is set to 0. Otherwise, composing to the left
972 * The return value is or'd with LEFT if composing to the left
973 * is possible and with RIGHT if composing to the right is possible.
975 static int composability(__isl_keep isl_set
*C
, int i
,
976 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
977 __isl_keep isl_map
*map
)
983 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
984 int overlaps
, subset
;
990 dom
[j
] = isl_set_from_basic_set(
991 isl_basic_map_domain(
992 isl_basic_map_copy(map
->p
[j
])));
995 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1001 subset
= isl_set_is_subset(dom
[j
], C
);
1013 ran
[j
] = isl_set_from_basic_set(
1014 isl_basic_map_range(
1015 isl_basic_map_copy(map
->p
[j
])));
1018 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1024 subset
= isl_set_is_subset(ran
[j
], C
);
1038 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1040 map
= isl_map_reset(map
, isl_dim_in
);
1041 map
= isl_map_reset(map
, isl_dim_out
);
1045 /* Return a map that is a union of the basic maps in "map", except i,
1046 * composed to left and right with qc based on the entries of "left"
1049 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1050 __isl_take isl_map
*qc
, int *left
, int *right
)
1055 comp
= isl_map_empty(isl_map_get_dim(map
));
1056 for (j
= 0; j
< map
->n
; ++j
) {
1062 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1063 map_j
= anonymize(map_j
);
1064 if (left
&& left
[j
])
1065 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1066 if (right
&& right
[j
])
1067 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1068 comp
= isl_map_union(comp
, map_j
);
1071 comp
= isl_map_compute_divs(comp
);
1072 comp
= isl_map_coalesce(comp
);
1079 /* Compute the transitive closure of "map" incrementally by
1086 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1090 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1092 * depending on whether left or right are NULL.
1094 static __isl_give isl_map
*compute_incremental(
1095 __isl_take isl_dim
*dim
, __isl_keep isl_map
*map
,
1096 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1100 isl_map
*rtc
= NULL
;
1104 isl_assert(map
->ctx
, left
|| right
, goto error
);
1106 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1107 tc
= construct_projected_component(isl_dim_copy(dim
), map_i
,
1109 isl_map_free(map_i
);
1112 qc
= isl_map_transitive_closure(qc
, exact
);
1118 return isl_map_universe(isl_map_get_dim(map
));
1121 if (!left
|| !right
)
1122 rtc
= isl_map_union(isl_map_copy(tc
),
1123 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc
))));
1125 qc
= isl_map_apply_range(rtc
, qc
);
1127 qc
= isl_map_apply_range(qc
, rtc
);
1128 qc
= isl_map_union(tc
, qc
);
1139 /* Given a map "map", try to find a basic map such that
1140 * map^+ can be computed as
1142 * map^+ = map_i^+ \cup
1143 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1145 * with C the simple hull of the domain and range of the input map.
1146 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1147 * and by intersecting domain and range with C.
1148 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1149 * Also, we only use the incremental computation if all the transitive
1150 * closures are exact and if the number of basic maps in the union,
1151 * after computing the integer divisions, is smaller than the number
1152 * of basic maps in the input map.
1154 static int incemental_on_entire_domain(__isl_keep isl_dim
*dim
,
1155 __isl_keep isl_map
*map
,
1156 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1157 __isl_give isl_map
**res
)
1165 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1166 isl_map_range(isl_map_copy(map
)));
1167 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1175 d
= isl_map_dim(map
, isl_dim_in
);
1177 for (i
= 0; i
< map
->n
; ++i
) {
1179 int exact_i
, spurious
;
1181 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1182 isl_basic_map_copy(map
->p
[i
])));
1183 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1184 isl_basic_map_copy(map
->p
[i
])));
1185 qc
= q_closure(isl_dim_copy(dim
), isl_set_copy(C
),
1186 map
->p
[i
], &exact_i
);
1193 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1200 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1201 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1202 qc
= isl_map_compute_divs(qc
);
1203 for (j
= 0; j
< map
->n
; ++j
)
1204 left
[j
] = right
[j
] = 1;
1205 qc
= compose(map
, i
, qc
, left
, right
);
1208 if (qc
->n
>= map
->n
) {
1212 *res
= compute_incremental(isl_dim_copy(dim
), map
, i
, qc
,
1213 left
, right
, &exact_i
);
1224 return *res
!= NULL
;
1230 /* Try and compute the transitive closure of "map" as
1232 * map^+ = map_i^+ \cup
1233 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1235 * with C either the simple hull of the domain and range of the entire
1236 * map or the simple hull of domain and range of map_i.
1238 static __isl_give isl_map
*incremental_closure(__isl_take isl_dim
*dim
,
1239 __isl_keep isl_map
*map
, int *exact
, int project
)
1242 isl_set
**dom
= NULL
;
1243 isl_set
**ran
= NULL
;
1248 isl_map
*res
= NULL
;
1251 return construct_projected_component(dim
, map
, exact
, project
);
1256 return construct_projected_component(dim
, map
, exact
, project
);
1258 d
= isl_map_dim(map
, isl_dim_in
);
1260 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1261 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1262 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1263 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1264 if (!ran
|| !dom
|| !left
|| !right
)
1267 if (incemental_on_entire_domain(dim
, map
, dom
, ran
, left
, right
, &res
) < 0)
1270 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1272 int exact_i
, spurious
, comp
;
1274 dom
[i
] = isl_set_from_basic_set(
1275 isl_basic_map_domain(
1276 isl_basic_map_copy(map
->p
[i
])));
1280 ran
[i
] = isl_set_from_basic_set(
1281 isl_basic_map_range(
1282 isl_basic_map_copy(map
->p
[i
])));
1285 C
= isl_set_union(isl_set_copy(dom
[i
]),
1286 isl_set_copy(ran
[i
]));
1287 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1294 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1295 if (!comp
|| comp
< 0) {
1301 qc
= q_closure(isl_dim_copy(dim
), C
, map
->p
[i
], &exact_i
);
1308 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1315 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1316 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1317 qc
= isl_map_compute_divs(qc
);
1318 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1319 (comp
& RIGHT
) ? right
: NULL
);
1322 if (qc
->n
>= map
->n
) {
1326 res
= compute_incremental(isl_dim_copy(dim
), map
, i
, qc
,
1327 (comp
& LEFT
) ? left
: NULL
,
1328 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1337 for (i
= 0; i
< map
->n
; ++i
) {
1338 isl_set_free(dom
[i
]);
1339 isl_set_free(ran
[i
]);
1351 return construct_projected_component(dim
, map
, exact
, project
);
1354 for (i
= 0; i
< map
->n
; ++i
)
1355 isl_set_free(dom
[i
]);
1358 for (i
= 0; i
< map
->n
; ++i
)
1359 isl_set_free(ran
[i
]);
1367 /* Given an array of sets "set", add "dom" at position "pos"
1368 * and search for elements at earlier positions that overlap with "dom".
1369 * If any can be found, then merge all of them, together with "dom", into
1370 * a single set and assign the union to the first in the array,
1371 * which becomes the new group leader for all groups involved in the merge.
1372 * During the search, we only consider group leaders, i.e., those with
1373 * group[i] = i, as the other sets have already been combined
1374 * with one of the group leaders.
1376 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1381 set
[pos
] = isl_set_copy(dom
);
1383 for (i
= pos
- 1; i
>= 0; --i
) {
1389 o
= isl_set_overlaps(set
[i
], dom
);
1395 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1396 set
[group
[pos
]] = NULL
;
1399 group
[group
[pos
]] = i
;
1410 /* Replace each entry in the n by n grid of maps by the cross product
1411 * with the relation { [i] -> [i + 1] }.
1413 static int add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1417 isl_basic_map
*bstep
;
1424 dim
= isl_map_get_dim(map
);
1425 nparam
= isl_dim_size(dim
, isl_dim_param
);
1426 dim
= isl_dim_drop(dim
, isl_dim_in
, 0, isl_dim_size(dim
, isl_dim_in
));
1427 dim
= isl_dim_drop(dim
, isl_dim_out
, 0, isl_dim_size(dim
, isl_dim_out
));
1428 dim
= isl_dim_add(dim
, isl_dim_in
, 1);
1429 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
1430 bstep
= isl_basic_map_alloc_dim(dim
, 0, 1, 0);
1431 k
= isl_basic_map_alloc_equality(bstep
);
1433 isl_basic_map_free(bstep
);
1436 isl_seq_clr(bstep
->eq
[k
], 1 + isl_basic_map_total_dim(bstep
));
1437 isl_int_set_si(bstep
->eq
[k
][0], 1);
1438 isl_int_set_si(bstep
->eq
[k
][1 + nparam
], 1);
1439 isl_int_set_si(bstep
->eq
[k
][1 + nparam
+ 1], -1);
1440 bstep
= isl_basic_map_finalize(bstep
);
1441 step
= isl_map_from_basic_map(bstep
);
1443 for (i
= 0; i
< n
; ++i
)
1444 for (j
= 0; j
< n
; ++j
)
1445 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1446 isl_map_copy(step
));
1453 /* The core of the Floyd-Warshall algorithm.
1454 * Updates the given n x x matrix of relations in place.
1456 * The algorithm iterates over all vertices. In each step, the whole
1457 * matrix is updated to include all paths that go to the current vertex,
1458 * possibly stay there a while (including passing through earlier vertices)
1459 * and then come back. At the start of each iteration, the diagonal
1460 * element corresponding to the current vertex is replaced by its
1461 * transitive closure to account for all indirect paths that stay
1462 * in the current vertex.
1464 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1468 for (r
= 0; r
< n
; ++r
) {
1470 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1471 (exact
&& *exact
) ? &r_exact
: NULL
);
1472 if (exact
&& *exact
&& !r_exact
)
1475 for (p
= 0; p
< n
; ++p
)
1476 for (q
= 0; q
< n
; ++q
) {
1478 if (p
== r
&& q
== r
)
1480 loop
= isl_map_apply_range(
1481 isl_map_copy(grid
[p
][r
]),
1482 isl_map_copy(grid
[r
][q
]));
1483 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1484 loop
= isl_map_apply_range(
1485 isl_map_copy(grid
[p
][r
]),
1486 isl_map_apply_range(
1487 isl_map_copy(grid
[r
][r
]),
1488 isl_map_copy(grid
[r
][q
])));
1489 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1490 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1495 /* Given a partition of the domains and ranges of the basic maps in "map",
1496 * apply the Floyd-Warshall algorithm with the elements in the partition
1499 * In particular, there are "n" elements in the partition and "group" is
1500 * an array of length 2 * map->n with entries in [0,n-1].
1502 * We first construct a matrix of relations based on the partition information,
1503 * apply Floyd-Warshall on this matrix of relations and then take the
1504 * union of all entries in the matrix as the final result.
1506 * If we are actually computing the power instead of the transitive closure,
1507 * i.e., when "project" is not set, then the result should have the
1508 * path lengths encoded as the difference between an extra pair of
1509 * coordinates. We therefore apply the nested transitive closures
1510 * to relations that include these lengths. In particular, we replace
1511 * the input relation by the cross product with the unit length relation
1512 * { [i] -> [i + 1] }.
1514 static __isl_give isl_map
*floyd_warshall_with_groups(__isl_take isl_dim
*dim
,
1515 __isl_keep isl_map
*map
, int *exact
, int project
, int *group
, int n
)
1518 isl_map
***grid
= NULL
;
1526 return incremental_closure(dim
, map
, exact
, project
);
1529 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1532 for (i
= 0; i
< n
; ++i
) {
1533 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1536 for (j
= 0; j
< n
; ++j
)
1537 grid
[i
][j
] = isl_map_empty(isl_map_get_dim(map
));
1540 for (k
= 0; k
< map
->n
; ++k
) {
1542 j
= group
[2 * k
+ 1];
1543 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1544 isl_map_from_basic_map(
1545 isl_basic_map_copy(map
->p
[k
])));
1548 if (!project
&& add_length(map
, grid
, n
) < 0)
1551 floyd_warshall_iterate(grid
, n
, exact
);
1553 app
= isl_map_empty(isl_map_get_dim(map
));
1555 for (i
= 0; i
< n
; ++i
) {
1556 for (j
= 0; j
< n
; ++j
)
1557 app
= isl_map_union(app
, grid
[i
][j
]);
1568 for (i
= 0; i
< n
; ++i
) {
1571 for (j
= 0; j
< n
; ++j
)
1572 isl_map_free(grid
[i
][j
]);
1581 /* Partition the domains and ranges of the n basic relations in list
1582 * into disjoint cells.
1584 * To find the partition, we simply consider all of the domains
1585 * and ranges in turn and combine those that overlap.
1586 * "set" contains the partition elements and "group" indicates
1587 * to which partition element a given domain or range belongs.
1588 * The domain of basic map i corresponds to element 2 * i in these arrays,
1589 * while the domain corresponds to element 2 * i + 1.
1590 * During the construction group[k] is either equal to k,
1591 * in which case set[k] contains the union of all the domains and
1592 * ranges in the corresponding group, or is equal to some l < k,
1593 * with l another domain or range in the same group.
1595 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1596 isl_set
***set
, int *n_group
)
1602 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1603 group
= isl_alloc_array(ctx
, int, 2 * n
);
1605 if (!*set
|| !group
)
1608 for (i
= 0; i
< n
; ++i
) {
1610 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1611 isl_basic_map_copy(list
[i
])));
1612 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1614 dom
= isl_set_from_basic_set(isl_basic_map_range(
1615 isl_basic_map_copy(list
[i
])));
1616 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1621 for (i
= 0; i
< 2 * n
; ++i
)
1622 if (group
[i
] == i
) {
1624 (*set
)[g
] = (*set
)[i
];
1629 group
[i
] = group
[group
[i
]];
1636 for (i
= 0; i
< 2 * n
; ++i
)
1637 isl_set_free((*set
)[i
]);
1645 /* Check if the domains and ranges of the basic maps in "map" can
1646 * be partitioned, and if so, apply Floyd-Warshall on the elements
1647 * of the partition. Note that we also apply this algorithm
1648 * if we want to compute the power, i.e., when "project" is not set.
1649 * However, the results are unlikely to be exact since the recursive
1650 * calls inside the Floyd-Warshall algorithm typically result in
1651 * non-linear path lengths quite quickly.
1653 static __isl_give isl_map
*floyd_warshall(__isl_take isl_dim
*dim
,
1654 __isl_keep isl_map
*map
, int *exact
, int project
)
1657 isl_set
**set
= NULL
;
1664 return incremental_closure(dim
, map
, exact
, project
);
1666 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1670 for (i
= 0; i
< 2 * map
->n
; ++i
)
1671 isl_set_free(set
[i
]);
1675 return floyd_warshall_with_groups(dim
, map
, exact
, project
, group
, n
);
1681 /* Structure for representing the nodes in the graph being traversed
1682 * using Tarjan's algorithm.
1683 * index represents the order in which nodes are visited.
1684 * min_index is the index of the root of a (sub)component.
1685 * on_stack indicates whether the node is currently on the stack.
1687 struct basic_map_sort_node
{
1692 /* Structure for representing the graph being traversed
1693 * using Tarjan's algorithm.
1694 * len is the number of nodes
1695 * node is an array of nodes
1696 * stack contains the nodes on the path from the root to the current node
1697 * sp is the stack pointer
1698 * index is the index of the last node visited
1699 * order contains the elements of the components separated by -1
1700 * op represents the current position in order
1702 * check_closed is set if we may have used the fact that
1703 * a pair of basic maps can be interchanged
1705 struct basic_map_sort
{
1707 struct basic_map_sort_node
*node
;
1716 static void basic_map_sort_free(struct basic_map_sort
*s
)
1726 static struct basic_map_sort
*basic_map_sort_alloc(struct isl_ctx
*ctx
, int len
)
1728 struct basic_map_sort
*s
;
1731 s
= isl_calloc_type(ctx
, struct basic_map_sort
);
1735 s
->node
= isl_alloc_array(ctx
, struct basic_map_sort_node
, len
);
1738 for (i
= 0; i
< len
; ++i
)
1739 s
->node
[i
].index
= -1;
1740 s
->stack
= isl_alloc_array(ctx
, int, len
);
1743 s
->order
= isl_alloc_array(ctx
, int, 2 * len
);
1751 s
->check_closed
= 0;
1755 basic_map_sort_free(s
);
1759 /* Check whether in the computation of the transitive closure
1760 * "bmap1" (R_1) should follow (or be part of the same component as)
1763 * That is check whether
1771 * If so, then there is no reason for R_1 to immediately follow R_2
1774 * *check_closed is set if the subset relation holds while
1775 * R_1 \circ R_2 is not empty.
1777 static int basic_map_follows(__isl_keep isl_basic_map
*bmap1
,
1778 __isl_keep isl_basic_map
*bmap2
, int *check_closed
)
1780 struct isl_map
*map12
= NULL
;
1781 struct isl_map
*map21
= NULL
;
1784 if (!isl_dim_tuple_match(bmap1
->dim
, isl_dim_in
, bmap2
->dim
, isl_dim_out
))
1787 map21
= isl_map_from_basic_map(
1788 isl_basic_map_apply_range(
1789 isl_basic_map_copy(bmap2
),
1790 isl_basic_map_copy(bmap1
)));
1791 subset
= isl_map_is_empty(map21
);
1795 isl_map_free(map21
);
1799 if (!isl_dim_tuple_match(bmap1
->dim
, isl_dim_in
, bmap1
->dim
, isl_dim_out
) ||
1800 !isl_dim_tuple_match(bmap2
->dim
, isl_dim_in
, bmap2
->dim
, isl_dim_out
)) {
1801 isl_map_free(map21
);
1805 map12
= isl_map_from_basic_map(
1806 isl_basic_map_apply_range(
1807 isl_basic_map_copy(bmap1
),
1808 isl_basic_map_copy(bmap2
)));
1810 subset
= isl_map_is_subset(map21
, map12
);
1812 isl_map_free(map12
);
1813 isl_map_free(map21
);
1818 return subset
< 0 ? -1 : !subset
;
1820 isl_map_free(map21
);
1824 /* Perform Tarjan's algorithm for computing the strongly connected components
1825 * in the graph with the disjuncts of "map" as vertices and with an
1826 * edge between any pair of disjuncts such that the first has
1827 * to be applied after the second.
1829 static int power_components_tarjan(struct basic_map_sort
*s
,
1830 __isl_keep isl_basic_map
**list
, int i
)
1834 s
->node
[i
].index
= s
->index
;
1835 s
->node
[i
].min_index
= s
->index
;
1836 s
->node
[i
].on_stack
= 1;
1838 s
->stack
[s
->sp
++] = i
;
1840 for (j
= s
->len
- 1; j
>= 0; --j
) {
1845 if (s
->node
[j
].index
>= 0 &&
1846 (!s
->node
[j
].on_stack
||
1847 s
->node
[j
].index
> s
->node
[i
].min_index
))
1850 f
= basic_map_follows(list
[i
], list
[j
], &s
->check_closed
);
1856 if (s
->node
[j
].index
< 0) {
1857 power_components_tarjan(s
, list
, j
);
1858 if (s
->node
[j
].min_index
< s
->node
[i
].min_index
)
1859 s
->node
[i
].min_index
= s
->node
[j
].min_index
;
1860 } else if (s
->node
[j
].index
< s
->node
[i
].min_index
)
1861 s
->node
[i
].min_index
= s
->node
[j
].index
;
1864 if (s
->node
[i
].index
!= s
->node
[i
].min_index
)
1868 j
= s
->stack
[--s
->sp
];
1869 s
->node
[j
].on_stack
= 0;
1870 s
->order
[s
->op
++] = j
;
1872 s
->order
[s
->op
++] = -1;
1877 /* Decompose the "len" basic relations in "list" into strongly connected
1880 static struct basic_map_sort
*basic_map_sort_init(isl_ctx
*ctx
, int len
,
1881 __isl_keep isl_basic_map
**list
)
1884 struct basic_map_sort
*s
= NULL
;
1886 s
= basic_map_sort_alloc(ctx
, len
);
1889 for (i
= len
- 1; i
>= 0; --i
) {
1890 if (s
->node
[i
].index
>= 0)
1892 if (power_components_tarjan(s
, list
, i
) < 0)
1898 basic_map_sort_free(s
);
1902 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1903 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1904 * construct a map that is an overapproximation of the map
1905 * that takes an element from the dom R \times Z to an
1906 * element from ran R \times Z, such that the first n coordinates of the
1907 * difference between them is a sum of differences between images
1908 * and pre-images in one of the R_i and such that the last coordinate
1909 * is equal to the number of steps taken.
1910 * If "project" is set, then these final coordinates are not included,
1911 * i.e., a relation of type Z^n -> Z^n is returned.
1914 * \Delta_i = { y - x | (x, y) in R_i }
1916 * then the constructed map is an overapproximation of
1918 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1919 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1920 * x in dom R and x + d in ran R }
1924 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1925 * d = (\sum_i k_i \delta_i) and
1926 * x in dom R and x + d in ran R }
1928 * if "project" is set.
1930 * We first split the map into strongly connected components, perform
1931 * the above on each component and then join the results in the correct
1932 * order, at each join also taking in the union of both arguments
1933 * to allow for paths that do not go through one of the two arguments.
1935 static __isl_give isl_map
*construct_power_components(__isl_take isl_dim
*dim
,
1936 __isl_keep isl_map
*map
, int *exact
, int project
)
1939 struct isl_map
*path
= NULL
;
1940 struct basic_map_sort
*s
= NULL
;
1947 return floyd_warshall(dim
, map
, exact
, project
);
1949 s
= basic_map_sort_init(map
->ctx
, map
->n
, map
->p
);
1954 if (s
->check_closed
&& !exact
)
1955 exact
= &local_exact
;
1961 path
= isl_map_empty(isl_map_get_dim(map
));
1963 path
= isl_map_empty(isl_dim_copy(dim
));
1964 path
= anonymize(path
);
1966 struct isl_map
*comp
;
1967 isl_map
*path_comp
, *path_comb
;
1968 comp
= isl_map_alloc_dim(isl_map_get_dim(map
), n
, 0);
1969 while (s
->order
[i
] != -1) {
1970 comp
= isl_map_add_basic_map(comp
,
1971 isl_basic_map_copy(map
->p
[s
->order
[i
]]));
1975 path_comp
= floyd_warshall(isl_dim_copy(dim
),
1976 comp
, exact
, project
);
1977 path_comp
= anonymize(path_comp
);
1978 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1979 isl_map_copy(path_comp
));
1980 path
= isl_map_union(path
, path_comp
);
1981 path
= isl_map_union(path
, path_comb
);
1987 if (c
> 1 && s
->check_closed
&& !*exact
) {
1990 closed
= isl_map_is_transitively_closed(path
);
1994 basic_map_sort_free(s
);
1996 return floyd_warshall(dim
, map
, orig_exact
, project
);
2000 basic_map_sort_free(s
);
2005 basic_map_sort_free(s
);
2011 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2012 * construct a map that is an overapproximation of the map
2013 * that takes an element from the space D to another
2014 * element from the same space, such that the difference between
2015 * them is a strictly positive sum of differences between images
2016 * and pre-images in one of the R_i.
2017 * The number of differences in the sum is equated to parameter "param".
2020 * \Delta_i = { y - x | (x, y) in R_i }
2022 * then the constructed map is an overapproximation of
2024 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2025 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2028 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2029 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2031 * if "project" is set.
2033 * If "project" is not set, then
2034 * we construct an extended mapping with an extra coordinate
2035 * that indicates the number of steps taken. In particular,
2036 * the difference in the last coordinate is equal to the number
2037 * of steps taken to move from a domain element to the corresponding
2040 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
2041 int *exact
, int project
)
2043 struct isl_map
*app
= NULL
;
2044 struct isl_dim
*dim
= NULL
;
2050 dim
= isl_map_get_dim(map
);
2052 d
= isl_dim_size(dim
, isl_dim_in
);
2053 dim
= isl_dim_add(dim
, isl_dim_in
, 1);
2054 dim
= isl_dim_add(dim
, isl_dim_out
, 1);
2056 app
= construct_power_components(isl_dim_copy(dim
), map
,
2064 /* Compute the positive powers of "map", or an overapproximation.
2065 * If the result is exact, then *exact is set to 1.
2067 * If project is set, then we are actually interested in the transitive
2068 * closure, so we can use a more relaxed exactness check.
2069 * The lengths of the paths are also projected out instead of being
2070 * encoded as the difference between an extra pair of final coordinates.
2072 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
2073 int *exact
, int project
)
2075 struct isl_map
*app
= NULL
;
2083 isl_assert(map
->ctx
,
2084 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
2087 app
= construct_power(map
, exact
, project
);
2097 /* Compute the positive powers of "map", or an overapproximation.
2098 * The power is given by parameter "param". If the result is exact,
2099 * then *exact is set to 1.
2100 * map_power constructs an extended relation with the path lengths
2101 * encoded as the difference between the final coordinates.
2102 * In the final step, this difference is equated to the parameter "param"
2103 * and made positive. The extra coordinates are subsequently projected out.
2105 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, unsigned param
,
2108 isl_dim
*target_dim
;
2116 isl_assert(map
->ctx
, param
< isl_map_dim(map
, isl_dim_param
),
2119 d
= isl_map_dim(map
, isl_dim_in
);
2121 map
= isl_map_compute_divs(map
);
2122 map
= isl_map_coalesce(map
);
2124 if (isl_map_fast_is_empty(map
))
2127 target_dim
= isl_map_get_dim(map
);
2128 map
= map_power(map
, exact
, 0);
2130 dim
= isl_map_get_dim(map
);
2131 diff
= equate_parameter_to_length(dim
, param
);
2132 map
= isl_map_intersect(map
, diff
);
2133 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2134 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2136 map
= isl_map_reset_dim(map
, target_dim
);
2144 /* Compute a relation that maps each element in the range of the input
2145 * relation to the lengths of all paths composed of edges in the input
2146 * relation that end up in the given range element.
2147 * The result may be an overapproximation, in which case *exact is set to 0.
2148 * The resulting relation is very similar to the power relation.
2149 * The difference are that the domain has been projected out, the
2150 * range has become the domain and the exponent is the range instead
2153 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2164 d
= isl_map_dim(map
, isl_dim_in
);
2165 param
= isl_map_dim(map
, isl_dim_param
);
2167 map
= isl_map_compute_divs(map
);
2168 map
= isl_map_coalesce(map
);
2170 if (isl_map_fast_is_empty(map
)) {
2173 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2174 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2178 map
= map_power(map
, exact
, 0);
2180 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2181 dim
= isl_map_get_dim(map
);
2182 diff
= equate_parameter_to_length(dim
, param
);
2183 map
= isl_map_intersect(map
, diff
);
2184 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2185 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2186 map
= isl_map_reverse(map
);
2187 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2192 /* Check whether equality i of bset is a pure stride constraint
2193 * on a single dimensions, i.e., of the form
2197 * with k a constant and e an existentially quantified variable.
2199 static int is_eq_stride(__isl_keep isl_basic_set
*bset
, int i
)
2211 if (!isl_int_is_zero(bset
->eq
[i
][0]))
2214 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
2215 d
= isl_basic_set_dim(bset
, isl_dim_set
);
2216 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
2218 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1, nparam
) != -1)
2220 pos1
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
, d
);
2223 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ pos1
+ 1,
2224 d
- pos1
- 1) != -1)
2227 pos2
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
, n_div
);
2230 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
+ pos2
+ 1,
2231 n_div
- pos2
- 1) != -1)
2233 if (!isl_int_is_one(bset
->eq
[i
][1 + nparam
+ pos1
]) &&
2234 !isl_int_is_negone(bset
->eq
[i
][1 + nparam
+ pos1
]))
2240 /* Given a map, compute the smallest superset of this map that is of the form
2242 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2244 * (where p ranges over the (non-parametric) dimensions),
2245 * compute the transitive closure of this map, i.e.,
2247 * { i -> j : exists k > 0:
2248 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2250 * and intersect domain and range of this transitive closure with
2251 * the given domain and range.
2253 * If with_id is set, then try to include as much of the identity mapping
2254 * as possible, by computing
2256 * { i -> j : exists k >= 0:
2257 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2259 * instead (i.e., allow k = 0).
2261 * In practice, we compute the difference set
2263 * delta = { j - i | i -> j in map },
2265 * look for stride constraint on the individual dimensions and compute
2266 * (constant) lower and upper bounds for each individual dimension,
2267 * adding a constraint for each bound not equal to infinity.
2269 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2270 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2279 isl_map
*app
= NULL
;
2280 isl_basic_set
*aff
= NULL
;
2281 isl_basic_map
*bmap
= NULL
;
2282 isl_vec
*obj
= NULL
;
2287 delta
= isl_map_deltas(isl_map_copy(map
));
2289 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2292 dim
= isl_map_get_dim(map
);
2293 d
= isl_dim_size(dim
, isl_dim_in
);
2294 nparam
= isl_dim_size(dim
, isl_dim_param
);
2295 total
= isl_dim_total(dim
);
2296 bmap
= isl_basic_map_alloc_dim(dim
,
2297 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2298 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2299 k
= isl_basic_map_alloc_div(bmap
);
2302 isl_int_set_si(bmap
->div
[k
][0], 0);
2304 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2305 if (!is_eq_stride(aff
, i
))
2307 k
= isl_basic_map_alloc_equality(bmap
);
2310 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2311 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2312 aff
->eq
[i
] + 1 + nparam
, d
);
2313 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2314 aff
->eq
[i
] + 1 + nparam
, d
);
2315 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2316 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2317 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2319 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2322 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2323 for (i
= 0; i
< d
; ++ i
) {
2324 enum isl_lp_result res
;
2326 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2328 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2330 if (res
== isl_lp_error
)
2332 if (res
== isl_lp_ok
) {
2333 k
= isl_basic_map_alloc_inequality(bmap
);
2336 isl_seq_clr(bmap
->ineq
[k
],
2337 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2338 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2339 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2340 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2343 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2345 if (res
== isl_lp_error
)
2347 if (res
== isl_lp_ok
) {
2348 k
= isl_basic_map_alloc_inequality(bmap
);
2351 isl_seq_clr(bmap
->ineq
[k
],
2352 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2353 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2354 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2355 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2358 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2360 k
= isl_basic_map_alloc_inequality(bmap
);
2363 isl_seq_clr(bmap
->ineq
[k
],
2364 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2366 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2367 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2369 app
= isl_map_from_domain_and_range(dom
, ran
);
2372 isl_basic_set_free(aff
);
2374 bmap
= isl_basic_map_finalize(bmap
);
2375 isl_set_free(delta
);
2378 map
= isl_map_from_basic_map(bmap
);
2379 map
= isl_map_intersect(map
, app
);
2384 isl_basic_map_free(bmap
);
2385 isl_basic_set_free(aff
);
2389 isl_set_free(delta
);
2394 /* Given a map, compute the smallest superset of this map that is of the form
2396 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2398 * (where p ranges over the (non-parametric) dimensions),
2399 * compute the transitive closure of this map, i.e.,
2401 * { i -> j : exists k > 0:
2402 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2404 * and intersect domain and range of this transitive closure with
2405 * domain and range of the original map.
2407 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2412 domain
= isl_map_domain(isl_map_copy(map
));
2413 domain
= isl_set_coalesce(domain
);
2414 range
= isl_map_range(isl_map_copy(map
));
2415 range
= isl_set_coalesce(range
);
2417 return box_closure_on_domain(map
, domain
, range
, 0);
2420 /* Given a map, compute the smallest superset of this map that is of the form
2422 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2424 * (where p ranges over the (non-parametric) dimensions),
2425 * compute the transitive and partially reflexive closure of this map, i.e.,
2427 * { i -> j : exists k >= 0:
2428 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2430 * and intersect domain and range of this transitive closure with
2433 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2434 __isl_take isl_set
*dom
)
2436 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2439 /* Check whether app is the transitive closure of map.
2440 * In particular, check that app is acyclic and, if so,
2443 * app \subset (map \cup (map \circ app))
2445 static int check_exactness_omega(__isl_keep isl_map
*map
,
2446 __isl_keep isl_map
*app
)
2450 int is_empty
, is_exact
;
2454 delta
= isl_map_deltas(isl_map_copy(app
));
2455 d
= isl_set_dim(delta
, isl_dim_set
);
2456 for (i
= 0; i
< d
; ++i
)
2457 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2458 is_empty
= isl_set_is_empty(delta
);
2459 isl_set_free(delta
);
2465 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2466 test
= isl_map_union(test
, isl_map_copy(map
));
2467 is_exact
= isl_map_is_subset(app
, test
);
2473 /* Check if basic map M_i can be combined with all the other
2474 * basic maps such that
2478 * can be computed as
2480 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2482 * In particular, check if we can compute a compact representation
2485 * M_i^* \circ M_j \circ M_i^*
2488 * Let M_i^? be an extension of M_i^+ that allows paths
2489 * of length zero, i.e., the result of box_closure(., 1).
2490 * The criterion, as proposed by Kelly et al., is that
2491 * id = M_i^? - M_i^+ can be represented as a basic map
2494 * id \circ M_j \circ id = M_j
2498 * If this function returns 1, then tc and qc are set to
2499 * M_i^+ and M_i^?, respectively.
2501 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2502 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2504 isl_map
*map_i
, *id
= NULL
;
2511 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2512 isl_map_range(isl_map_copy(map
)));
2513 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2517 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2518 *tc
= box_closure(isl_map_copy(map_i
));
2519 *qc
= box_closure_with_identity(map_i
, C
);
2520 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2524 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2527 for (j
= 0; j
< map
->n
; ++j
) {
2528 isl_map
*map_j
, *test
;
2533 map_j
= isl_map_from_basic_map(
2534 isl_basic_map_copy(map
->p
[j
]));
2535 test
= isl_map_apply_range(isl_map_copy(id
),
2536 isl_map_copy(map_j
));
2537 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2538 is_ok
= isl_map_is_equal(test
, map_j
);
2539 isl_map_free(map_j
);
2567 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2572 app
= box_closure(isl_map_copy(map
));
2574 *exact
= check_exactness_omega(map
, app
);
2580 /* Compute an overapproximation of the transitive closure of "map"
2581 * using a variation of the algorithm from
2582 * "Transitive Closure of Infinite Graphs and its Applications"
2585 * We first check whether we can can split of any basic map M_i and
2592 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2594 * using a recursive call on the remaining map.
2596 * If not, we simply call box_closure on the whole map.
2598 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2608 return box_closure_with_check(map
, exact
);
2610 for (i
= 0; i
< map
->n
; ++i
) {
2613 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2619 app
= isl_map_alloc_dim(isl_map_get_dim(map
), map
->n
- 1, 0);
2621 for (j
= 0; j
< map
->n
; ++j
) {
2624 app
= isl_map_add_basic_map(app
,
2625 isl_basic_map_copy(map
->p
[j
]));
2628 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2629 app
= isl_map_apply_range(app
, qc
);
2631 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2632 exact_i
= check_exactness_omega(map
, app
);
2644 return box_closure_with_check(map
, exact
);
2650 /* Compute the transitive closure of "map", or an overapproximation.
2651 * If the result is exact, then *exact is set to 1.
2652 * Simply use map_power to compute the powers of map, but tell
2653 * it to project out the lengths of the paths instead of equating
2654 * the length to a parameter.
2656 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2659 isl_dim
*target_dim
;
2665 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2666 return transitive_closure_omega(map
, exact
);
2668 map
= isl_map_compute_divs(map
);
2669 map
= isl_map_coalesce(map
);
2670 closed
= isl_map_is_transitively_closed(map
);
2679 target_dim
= isl_map_get_dim(map
);
2680 map
= map_power(map
, exact
, 1);
2681 map
= isl_map_reset_dim(map
, target_dim
);
2689 static int inc_count(__isl_take isl_map
*map
, void *user
)
2700 static int collect_basic_map(__isl_take isl_map
*map
, void *user
)
2703 isl_basic_map
***next
= user
;
2705 for (i
= 0; i
< map
->n
; ++i
) {
2706 **next
= isl_basic_map_copy(map
->p
[i
]);
2719 /* Perform Floyd-Warshall on the given list of basic relations.
2720 * The basic relations may live in different dimensions,
2721 * but basic relations that get assigned to the diagonal of the
2722 * grid have domains and ranges of the same dimension and so
2723 * the standard algorithm can be used because the nested transitive
2724 * closures are only applied to diagonal elements and because all
2725 * compositions are peformed on relations with compatible domains and ranges.
2727 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2728 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2733 isl_set
**set
= NULL
;
2734 isl_map
***grid
= NULL
;
2737 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2741 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2744 for (i
= 0; i
< n_group
; ++i
) {
2745 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n_group
);
2748 for (j
= 0; j
< n_group
; ++j
) {
2749 isl_dim
*dim1
, *dim2
, *dim
;
2750 dim1
= isl_dim_reverse(isl_set_get_dim(set
[i
]));
2751 dim2
= isl_set_get_dim(set
[j
]);
2752 dim
= isl_dim_join(dim1
, dim2
);
2753 grid
[i
][j
] = isl_map_empty(dim
);
2757 for (k
= 0; k
< n
; ++k
) {
2759 j
= group
[2 * k
+ 1];
2760 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2761 isl_map_from_basic_map(
2762 isl_basic_map_copy(list
[k
])));
2765 floyd_warshall_iterate(grid
, n_group
, exact
);
2767 app
= isl_union_map_empty(isl_map_get_dim(grid
[0][0]));
2769 for (i
= 0; i
< n_group
; ++i
) {
2770 for (j
= 0; j
< n_group
; ++j
)
2771 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2776 for (i
= 0; i
< 2 * n
; ++i
)
2777 isl_set_free(set
[i
]);
2784 for (i
= 0; i
< n_group
; ++i
) {
2787 for (j
= 0; j
< n_group
; ++j
)
2788 isl_map_free(grid
[i
][j
]);
2793 for (i
= 0; i
< 2 * n
; ++i
)
2794 isl_set_free(set
[i
]);
2801 /* Perform Floyd-Warshall on the given union relation.
2802 * The implementation is very similar to that for non-unions.
2803 * The main difference is that it is applied unconditionally.
2804 * We first extract a list of basic maps from the union map
2805 * and then perform the algorithm on this list.
2807 static __isl_give isl_union_map
*union_floyd_warshall(
2808 __isl_take isl_union_map
*umap
, int *exact
)
2812 isl_basic_map
**list
;
2813 isl_basic_map
**next
;
2817 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2820 ctx
= isl_union_map_get_ctx(umap
);
2821 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2826 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2829 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2832 for (i
= 0; i
< n
; ++i
)
2833 isl_basic_map_free(list
[i
]);
2837 isl_union_map_free(umap
);
2841 for (i
= 0; i
< n
; ++i
)
2842 isl_basic_map_free(list
[i
]);
2845 isl_union_map_free(umap
);
2849 /* Decompose the give union relation into strongly connected components.
2850 * The implementation is essentially the same as that of
2851 * construct_power_components with the major difference that all
2852 * operations are performed on union maps.
2854 static __isl_give isl_union_map
*union_components(
2855 __isl_take isl_union_map
*umap
, int *exact
)
2860 isl_basic_map
**list
;
2861 isl_basic_map
**next
;
2862 isl_union_map
*path
= NULL
;
2863 struct basic_map_sort
*s
= NULL
;
2868 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2872 return union_floyd_warshall(umap
, exact
);
2874 ctx
= isl_union_map_get_ctx(umap
);
2875 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2880 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2883 s
= basic_map_sort_init(ctx
, n
, list
);
2890 path
= isl_union_map_empty(isl_union_map_get_dim(umap
));
2892 isl_union_map
*comp
;
2893 isl_union_map
*path_comp
, *path_comb
;
2894 comp
= isl_union_map_empty(isl_union_map_get_dim(umap
));
2895 while (s
->order
[i
] != -1) {
2896 comp
= isl_union_map_add_map(comp
,
2897 isl_map_from_basic_map(
2898 isl_basic_map_copy(list
[s
->order
[i
]])));
2902 path_comp
= union_floyd_warshall(comp
, exact
);
2903 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2904 isl_union_map_copy(path_comp
));
2905 path
= isl_union_map_union(path
, path_comp
);
2906 path
= isl_union_map_union(path
, path_comb
);
2911 if (c
> 1 && s
->check_closed
&& !*exact
) {
2914 closed
= isl_union_map_is_transitively_closed(path
);
2920 basic_map_sort_free(s
);
2922 for (i
= 0; i
< n
; ++i
)
2923 isl_basic_map_free(list
[i
]);
2927 isl_union_map_free(path
);
2928 return union_floyd_warshall(umap
, exact
);
2931 isl_union_map_free(umap
);
2935 basic_map_sort_free(s
);
2937 for (i
= 0; i
< n
; ++i
)
2938 isl_basic_map_free(list
[i
]);
2941 isl_union_map_free(umap
);
2942 isl_union_map_free(path
);
2946 /* Compute the transitive closure of "umap", or an overapproximation.
2947 * If the result is exact, then *exact is set to 1.
2949 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2950 __isl_take isl_union_map
*umap
, int *exact
)
2960 umap
= isl_union_map_compute_divs(umap
);
2961 umap
= isl_union_map_coalesce(umap
);
2962 closed
= isl_union_map_is_transitively_closed(umap
);
2967 umap
= union_components(umap
, exact
);
2970 isl_union_map_free(umap
);