2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
5 * Copyright 2014 INRIA Rocquencourt
6 * Copyright 2016 INRIA Paris
7 * Copyright 2020 Cerebras Systems
9 * Use of this software is governed by the MIT license
11 * Written by Sven Verdoolaege, K.U.Leuven, Departement
12 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
13 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
14 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
15 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
16 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
17 * B.P. 105 - 78153 Le Chesnay, France
18 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
19 * CS 42112, 75589 Paris Cedex 12, France
20 * and Cerebras Systems, 175 S San Antonio Rd, Los Altos, CA, USA
23 #include <isl_ctx_private.h>
24 #include "isl_map_private.h"
26 #include <isl/options.h>
28 #include <isl_mat_private.h>
29 #include <isl_local_space_private.h>
30 #include <isl_val_private.h>
31 #include <isl_vec_private.h>
32 #include <isl_aff_private.h>
33 #include <isl_equalities.h>
34 #include <isl_constraint_private.h>
36 #include <set_to_map.c>
37 #include <set_from_map.c>
39 #define STATUS_ERROR -1
40 #define STATUS_REDUNDANT 1
41 #define STATUS_VALID 2
42 #define STATUS_SEPARATE 3
44 #define STATUS_ADJ_EQ 5
45 #define STATUS_ADJ_INEQ 6
47 static int status_in(isl_int
*ineq
, struct isl_tab
*tab
)
49 enum isl_ineq_type type
= isl_tab_ineq_type(tab
, ineq
);
52 case isl_ineq_error
: return STATUS_ERROR
;
53 case isl_ineq_redundant
: return STATUS_VALID
;
54 case isl_ineq_separate
: return STATUS_SEPARATE
;
55 case isl_ineq_cut
: return STATUS_CUT
;
56 case isl_ineq_adj_eq
: return STATUS_ADJ_EQ
;
57 case isl_ineq_adj_ineq
: return STATUS_ADJ_INEQ
;
61 /* Compute the position of the equalities of basic map "bmap_i"
62 * with respect to the basic map represented by "tab_j".
63 * The resulting array has twice as many entries as the number
64 * of equalities corresponding to the two inequalities to which
65 * each equality corresponds.
67 static int *eq_status_in(__isl_keep isl_basic_map
*bmap_i
,
68 struct isl_tab
*tab_j
)
74 dim
= isl_basic_map_dim(bmap_i
, isl_dim_all
);
78 eq
= isl_calloc_array(bmap_i
->ctx
, int, 2 * bmap_i
->n_eq
);
82 for (k
= 0; k
< bmap_i
->n_eq
; ++k
) {
83 for (l
= 0; l
< 2; ++l
) {
84 isl_seq_neg(bmap_i
->eq
[k
], bmap_i
->eq
[k
], 1+dim
);
85 eq
[2 * k
+ l
] = status_in(bmap_i
->eq
[k
], tab_j
);
86 if (eq
[2 * k
+ l
] == STATUS_ERROR
)
97 /* Compute the position of the inequalities of basic map "bmap_i"
98 * (also represented by "tab_i", if not NULL) with respect to the basic map
99 * represented by "tab_j".
101 static int *ineq_status_in(__isl_keep isl_basic_map
*bmap_i
,
102 struct isl_tab
*tab_i
, struct isl_tab
*tab_j
)
105 unsigned n_eq
= bmap_i
->n_eq
;
106 int *ineq
= isl_calloc_array(bmap_i
->ctx
, int, bmap_i
->n_ineq
);
111 for (k
= 0; k
< bmap_i
->n_ineq
; ++k
) {
112 if (tab_i
&& isl_tab_is_redundant(tab_i
, n_eq
+ k
)) {
113 ineq
[k
] = STATUS_REDUNDANT
;
116 ineq
[k
] = status_in(bmap_i
->ineq
[k
], tab_j
);
117 if (ineq
[k
] == STATUS_ERROR
)
119 if (ineq
[k
] == STATUS_SEPARATE
)
129 static int any(int *con
, unsigned len
, int status
)
133 for (i
= 0; i
< len
; ++i
)
134 if (con
[i
] == status
)
139 /* Return the first position of "status" in the list "con" of length "len".
140 * Return -1 if there is no such entry.
142 static int find(int *con
, unsigned len
, int status
)
146 for (i
= 0; i
< len
; ++i
)
147 if (con
[i
] == status
)
152 static int count(int *con
, unsigned len
, int status
)
157 for (i
= 0; i
< len
; ++i
)
158 if (con
[i
] == status
)
163 static int all(int *con
, unsigned len
, int status
)
167 for (i
= 0; i
< len
; ++i
) {
168 if (con
[i
] == STATUS_REDUNDANT
)
170 if (con
[i
] != status
)
176 /* Internal information associated to a basic map in a map
177 * that is to be coalesced by isl_map_coalesce.
179 * "bmap" is the basic map itself (or NULL if "removed" is set)
180 * "tab" is the corresponding tableau (or NULL if "removed" is set)
181 * "hull_hash" identifies the affine space in which "bmap" lives.
182 * "modified" is set if this basic map may not be identical
183 * to any of the basic maps in the input.
184 * "removed" is set if this basic map has been removed from the map
185 * "simplify" is set if this basic map may have some unknown integer
186 * divisions that were not present in the input basic maps. The basic
187 * map should then be simplified such that we may be able to find
188 * a definition among the constraints.
190 * "eq" and "ineq" are only set if we are currently trying to coalesce
191 * this basic map with another basic map, in which case they represent
192 * the position of the inequalities of this basic map with respect to
193 * the other basic map. The number of elements in the "eq" array
194 * is twice the number of equalities in the "bmap", corresponding
195 * to the two inequalities that make up each equality.
197 struct isl_coalesce_info
{
208 /* Is there any (half of an) equality constraint in the description
209 * of the basic map represented by "info" that
210 * has position "status" with respect to the other basic map?
212 static int any_eq(struct isl_coalesce_info
*info
, int status
)
216 n_eq
= isl_basic_map_n_equality(info
->bmap
);
217 return any(info
->eq
, 2 * n_eq
, status
);
220 /* Is there any inequality constraint in the description
221 * of the basic map represented by "info" that
222 * has position "status" with respect to the other basic map?
224 static int any_ineq(struct isl_coalesce_info
*info
, int status
)
228 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
229 return any(info
->ineq
, n_ineq
, status
);
232 /* Return the position of the first half on an equality constraint
233 * in the description of the basic map represented by "info" that
234 * has position "status" with respect to the other basic map.
235 * The returned value is twice the position of the equality constraint
236 * plus zero for the negative half and plus one for the positive half.
237 * Return -1 if there is no such entry.
239 static int find_eq(struct isl_coalesce_info
*info
, int status
)
243 n_eq
= isl_basic_map_n_equality(info
->bmap
);
244 return find(info
->eq
, 2 * n_eq
, status
);
247 /* Return the position of the first inequality constraint in the description
248 * of the basic map represented by "info" that
249 * has position "status" with respect to the other basic map.
250 * Return -1 if there is no such entry.
252 static int find_ineq(struct isl_coalesce_info
*info
, int status
)
256 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
257 return find(info
->ineq
, n_ineq
, status
);
260 /* Return the number of (halves of) equality constraints in the description
261 * of the basic map represented by "info" that
262 * have position "status" with respect to the other basic map.
264 static int count_eq(struct isl_coalesce_info
*info
, int status
)
268 n_eq
= isl_basic_map_n_equality(info
->bmap
);
269 return count(info
->eq
, 2 * n_eq
, status
);
272 /* Return the number of inequality constraints in the description
273 * of the basic map represented by "info" that
274 * have position "status" with respect to the other basic map.
276 static int count_ineq(struct isl_coalesce_info
*info
, int status
)
280 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
281 return count(info
->ineq
, n_ineq
, status
);
284 /* Are all non-redundant constraints of the basic map represented by "info"
285 * either valid or cut constraints with respect to the other basic map?
287 static int all_valid_or_cut(struct isl_coalesce_info
*info
)
291 for (i
= 0; i
< 2 * info
->bmap
->n_eq
; ++i
) {
292 if (info
->eq
[i
] == STATUS_REDUNDANT
)
294 if (info
->eq
[i
] == STATUS_VALID
)
296 if (info
->eq
[i
] == STATUS_CUT
)
301 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
302 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
304 if (info
->ineq
[i
] == STATUS_VALID
)
306 if (info
->ineq
[i
] == STATUS_CUT
)
314 /* Compute the hash of the (apparent) affine hull of info->bmap (with
315 * the existentially quantified variables removed) and store it
318 static int coalesce_info_set_hull_hash(struct isl_coalesce_info
*info
)
323 hull
= isl_basic_map_copy(info
->bmap
);
324 hull
= isl_basic_map_plain_affine_hull(hull
);
325 n_div
= isl_basic_map_dim(hull
, isl_dim_div
);
327 hull
= isl_basic_map_free(hull
);
328 hull
= isl_basic_map_drop_constraints_involving_dims(hull
,
329 isl_dim_div
, 0, n_div
);
330 info
->hull_hash
= isl_basic_map_get_hash(hull
);
331 isl_basic_map_free(hull
);
333 return hull
? 0 : -1;
336 /* Free all the allocated memory in an array
337 * of "n" isl_coalesce_info elements.
339 static void clear_coalesce_info(int n
, struct isl_coalesce_info
*info
)
346 for (i
= 0; i
< n
; ++i
) {
347 isl_basic_map_free(info
[i
].bmap
);
348 isl_tab_free(info
[i
].tab
);
354 /* Clear the memory associated to "info".
356 static void clear(struct isl_coalesce_info
*info
)
358 info
->bmap
= isl_basic_map_free(info
->bmap
);
359 isl_tab_free(info
->tab
);
363 /* Drop the basic map represented by "info".
364 * That is, clear the memory associated to the entry and
365 * mark it as having been removed.
367 static void drop(struct isl_coalesce_info
*info
)
373 /* Exchange the information in "info1" with that in "info2".
375 static void exchange(struct isl_coalesce_info
*info1
,
376 struct isl_coalesce_info
*info2
)
378 struct isl_coalesce_info info
;
385 /* This type represents the kind of change that has been performed
386 * while trying to coalesce two basic maps.
388 * isl_change_none: nothing was changed
389 * isl_change_drop_first: the first basic map was removed
390 * isl_change_drop_second: the second basic map was removed
391 * isl_change_fuse: the two basic maps were replaced by a new basic map.
394 isl_change_error
= -1,
396 isl_change_drop_first
,
397 isl_change_drop_second
,
401 /* Update "change" based on an interchange of the first and the second
402 * basic map. That is, interchange isl_change_drop_first and
403 * isl_change_drop_second.
405 static enum isl_change
invert_change(enum isl_change change
)
408 case isl_change_error
:
409 return isl_change_error
;
410 case isl_change_none
:
411 return isl_change_none
;
412 case isl_change_drop_first
:
413 return isl_change_drop_second
;
414 case isl_change_drop_second
:
415 return isl_change_drop_first
;
416 case isl_change_fuse
:
417 return isl_change_fuse
;
420 return isl_change_error
;
423 /* Add the valid constraints of the basic map represented by "info"
424 * to "bmap". "len" is the size of the constraints.
425 * If only one of the pair of inequalities that make up an equality
426 * is valid, then add that inequality.
428 static __isl_give isl_basic_map
*add_valid_constraints(
429 __isl_take isl_basic_map
*bmap
, struct isl_coalesce_info
*info
,
437 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
438 if (info
->eq
[2 * k
] == STATUS_VALID
&&
439 info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
440 l
= isl_basic_map_alloc_equality(bmap
);
442 return isl_basic_map_free(bmap
);
443 isl_seq_cpy(bmap
->eq
[l
], info
->bmap
->eq
[k
], len
);
444 } else if (info
->eq
[2 * k
] == STATUS_VALID
) {
445 l
= isl_basic_map_alloc_inequality(bmap
);
447 return isl_basic_map_free(bmap
);
448 isl_seq_neg(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
449 } else if (info
->eq
[2 * k
+ 1] == STATUS_VALID
) {
450 l
= isl_basic_map_alloc_inequality(bmap
);
452 return isl_basic_map_free(bmap
);
453 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->eq
[k
], len
);
457 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
458 if (info
->ineq
[k
] != STATUS_VALID
)
460 l
= isl_basic_map_alloc_inequality(bmap
);
462 return isl_basic_map_free(bmap
);
463 isl_seq_cpy(bmap
->ineq
[l
], info
->bmap
->ineq
[k
], len
);
469 /* Is "bmap" defined by a number of (non-redundant) constraints that
470 * is greater than the number of constraints of basic maps i and j combined?
471 * Equalities are counted as two inequalities.
473 static int number_of_constraints_increases(int i
, int j
,
474 struct isl_coalesce_info
*info
,
475 __isl_keep isl_basic_map
*bmap
, struct isl_tab
*tab
)
479 n_old
= 2 * info
[i
].bmap
->n_eq
+ info
[i
].bmap
->n_ineq
;
480 n_old
+= 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
482 n_new
= 2 * bmap
->n_eq
;
483 for (k
= 0; k
< bmap
->n_ineq
; ++k
)
484 if (!isl_tab_is_redundant(tab
, bmap
->n_eq
+ k
))
487 return n_new
> n_old
;
490 /* Replace the pair of basic maps i and j by the basic map bounded
491 * by the valid constraints in both basic maps and the constraints
492 * in extra (if not NULL).
493 * Place the fused basic map in the position that is the smallest of i and j.
495 * If "detect_equalities" is set, then look for equalities encoded
496 * as pairs of inequalities.
497 * If "check_number" is set, then the original basic maps are only
498 * replaced if the total number of constraints does not increase.
499 * While the number of integer divisions in the two basic maps
500 * is assumed to be the same, the actual definitions may be different.
501 * We only copy the definition from one of the basic maps if it is
502 * the same as that of the other basic map. Otherwise, we mark
503 * the integer division as unknown and simplify the basic map
504 * in an attempt to recover the integer division definition.
505 * If any extra constraints get introduced, then these may
506 * involve integer divisions with a unit coefficient.
507 * Eliminate those that do not appear with any other coefficient
508 * in other constraints, to ensure they get eliminated completely,
509 * improving the chances of further coalescing.
511 * Factor out any (hidden) common factor from the constraint
512 * coefficients of the fused basic map
513 * to improve the detection of adjacent constraints
514 * with respect to other basic maps.
516 static enum isl_change
fuse(int i
, int j
, struct isl_coalesce_info
*info
,
517 __isl_keep isl_mat
*extra
, int detect_equalities
, int check_number
)
520 struct isl_basic_map
*fused
= NULL
;
521 struct isl_tab
*fused_tab
= NULL
;
522 isl_size total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
523 unsigned extra_rows
= extra
? extra
->n_row
: 0;
524 unsigned n_eq
, n_ineq
;
528 return isl_change_error
;
530 return fuse(j
, i
, info
, extra
, detect_equalities
, check_number
);
532 n_eq
= info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
;
533 n_ineq
= info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
;
534 fused
= isl_basic_map_alloc_space(isl_space_copy(info
[i
].bmap
->dim
),
535 info
[i
].bmap
->n_div
, n_eq
, n_eq
+ n_ineq
+ extra_rows
);
536 fused
= add_valid_constraints(fused
, &info
[i
], 1 + total
);
537 fused
= add_valid_constraints(fused
, &info
[j
], 1 + total
);
540 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) &&
541 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
542 ISL_F_SET(fused
, ISL_BASIC_MAP_RATIONAL
);
544 for (k
= 0; k
< info
[i
].bmap
->n_div
; ++k
) {
545 int l
= isl_basic_map_alloc_div(fused
);
548 if (isl_seq_eq(info
[i
].bmap
->div
[k
], info
[j
].bmap
->div
[k
],
550 isl_seq_cpy(fused
->div
[l
], info
[i
].bmap
->div
[k
],
553 isl_int_set_si(fused
->div
[l
][0], 0);
558 for (k
= 0; k
< extra_rows
; ++k
) {
559 l
= isl_basic_map_alloc_inequality(fused
);
562 isl_seq_cpy(fused
->ineq
[l
], extra
->row
[k
], 1 + total
);
565 if (detect_equalities
)
566 fused
= isl_basic_map_detect_inequality_pairs(fused
, NULL
);
567 fused
= isl_basic_map_gauss(fused
, NULL
);
568 if (simplify
|| info
[j
].simplify
) {
569 fused
= isl_basic_map_simplify(fused
);
570 info
[i
].simplify
= 0;
571 } else if (extra_rows
> 0) {
572 fused
= isl_basic_map_eliminate_pure_unit_divs(fused
);
574 fused
= isl_basic_map_finalize(fused
);
575 fused
= isl_basic_map_reduce_coefficients(fused
);
577 fused_tab
= isl_tab_from_basic_map(fused
, 0);
578 if (isl_tab_detect_redundant(fused_tab
) < 0)
582 number_of_constraints_increases(i
, j
, info
, fused
, fused_tab
)) {
583 isl_tab_free(fused_tab
);
584 isl_basic_map_free(fused
);
585 return isl_change_none
;
589 info
[i
].bmap
= fused
;
590 info
[i
].tab
= fused_tab
;
591 info
[i
].modified
= 1;
594 return isl_change_fuse
;
596 isl_tab_free(fused_tab
);
597 isl_basic_map_free(fused
);
598 return isl_change_error
;
601 /* Given a pair of basic maps i and j such that all constraints are either
602 * "valid" or "cut", check if the facets corresponding to the "cut"
603 * constraints of i lie entirely within basic map j.
604 * If so, replace the pair by the basic map consisting of the valid
605 * constraints in both basic maps.
606 * Checking whether the facet lies entirely within basic map j
607 * is performed by checking whether the constraints of basic map j
608 * are valid for the facet. These tests are performed on a rational
609 * tableau to avoid the theoretical possibility that a constraint
610 * that was considered to be a cut constraint for the entire basic map i
611 * happens to be considered to be a valid constraint for the facet,
612 * even though it cuts off the same rational points.
614 * To see that we are not introducing any extra points, call the
615 * two basic maps A and B and the resulting map U and let x
616 * be an element of U \setminus ( A \cup B ).
617 * A line connecting x with an element of A \cup B meets a facet F
618 * of either A or B. Assume it is a facet of B and let c_1 be
619 * the corresponding facet constraint. We have c_1(x) < 0 and
620 * so c_1 is a cut constraint. This implies that there is some
621 * (possibly rational) point x' satisfying the constraints of A
622 * and the opposite of c_1 as otherwise c_1 would have been marked
623 * valid for A. The line connecting x and x' meets a facet of A
624 * in a (possibly rational) point that also violates c_1, but this
625 * is impossible since all cut constraints of B are valid for all
627 * In case F is a facet of A rather than B, then we can apply the
628 * above reasoning to find a facet of B separating x from A \cup B first.
630 static enum isl_change
check_facets(int i
, int j
,
631 struct isl_coalesce_info
*info
)
634 struct isl_tab_undo
*snap
, *snap2
;
635 unsigned n_eq
= info
[i
].bmap
->n_eq
;
637 snap
= isl_tab_snap(info
[i
].tab
);
638 if (isl_tab_mark_rational(info
[i
].tab
) < 0)
639 return isl_change_error
;
640 snap2
= isl_tab_snap(info
[i
].tab
);
642 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
643 if (info
[i
].ineq
[k
] != STATUS_CUT
)
645 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ k
) < 0)
646 return isl_change_error
;
647 for (l
= 0; l
< info
[j
].bmap
->n_ineq
; ++l
) {
649 if (info
[j
].ineq
[l
] != STATUS_CUT
)
651 stat
= status_in(info
[j
].bmap
->ineq
[l
], info
[i
].tab
);
653 return isl_change_error
;
654 if (stat
!= STATUS_VALID
)
657 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
658 return isl_change_error
;
659 if (l
< info
[j
].bmap
->n_ineq
)
663 if (k
< info
[i
].bmap
->n_ineq
) {
664 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
665 return isl_change_error
;
666 return isl_change_none
;
668 return fuse(i
, j
, info
, NULL
, 0, 0);
671 /* Check if info->bmap contains the basic map represented
672 * by the tableau "tab".
673 * For each equality, we check both the constraint itself
674 * (as an inequality) and its negation. Make sure the
675 * equality is returned to its original state before returning.
677 static isl_bool
contains(struct isl_coalesce_info
*info
, struct isl_tab
*tab
)
681 isl_basic_map
*bmap
= info
->bmap
;
683 dim
= isl_basic_map_dim(bmap
, isl_dim_all
);
685 return isl_bool_error
;
686 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
688 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
689 stat
= status_in(bmap
->eq
[k
], tab
);
690 isl_seq_neg(bmap
->eq
[k
], bmap
->eq
[k
], 1 + dim
);
692 return isl_bool_error
;
693 if (stat
!= STATUS_VALID
)
694 return isl_bool_false
;
695 stat
= status_in(bmap
->eq
[k
], tab
);
697 return isl_bool_error
;
698 if (stat
!= STATUS_VALID
)
699 return isl_bool_false
;
702 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
704 if (info
->ineq
[k
] == STATUS_REDUNDANT
)
706 stat
= status_in(bmap
->ineq
[k
], tab
);
708 return isl_bool_error
;
709 if (stat
!= STATUS_VALID
)
710 return isl_bool_false
;
712 return isl_bool_true
;
715 /* Basic map "i" has an inequality "k" that is adjacent
716 * to some inequality of basic map "j". All the other inequalities
718 * If not NULL, then "extra" contains extra wrapping constraints that are valid
719 * for both "i" and "j".
720 * Check if basic map "j" forms an extension of basic map "i",
721 * taking into account the extra constraints, if any.
723 * Note that this function is only called if some of the equalities or
724 * inequalities of basic map "j" do cut basic map "i". The function is
725 * correct even if there are no such cut constraints, but in that case
726 * the additional checks performed by this function are overkill.
728 * In particular, we replace constraint k, say f >= 0, by constraint
729 * f <= -1, add the inequalities of "j" that are valid for "i",
730 * as well as the "extra" constraints, if any,
731 * and check if the result is a subset of basic map "j".
732 * To improve the chances of the subset relation being detected,
733 * any variable that only attains a single integer value
734 * in the tableau of "i" is first fixed to that value.
735 * If the result is a subset, then we know that this result is exactly equal
736 * to basic map "j" since all its constraints are valid for basic map "j".
737 * By combining the valid constraints of "i" (all equalities and all
738 * inequalities except "k"), the valid constraints of "j" and
739 * the "extra" constraints, if any, we therefore
740 * obtain a basic map that is equal to their union.
741 * In this case, there is no need to perform a rollback of the tableau
742 * since it is going to be destroyed in fuse().
748 * |_______| _ |_________\
764 * |_______| |_______/
766 static enum isl_change
is_adj_ineq_extension_with_wraps(int i
, int j
, int k
,
767 struct isl_coalesce_info
*info
, __isl_keep isl_mat
*extra
)
769 struct isl_tab_undo
*snap
;
770 isl_size n_eq_i
, n_ineq_j
, n_extra
;
771 isl_size total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
776 return isl_change_error
;
778 n_eq_i
= isl_basic_map_n_equality(info
[i
].bmap
);
779 n_ineq_j
= isl_basic_map_n_inequality(info
[j
].bmap
);
780 n_extra
= isl_mat_rows(extra
);
781 if (n_eq_i
< 0 || n_ineq_j
< 0 || n_extra
< 0)
782 return isl_change_error
;
784 if (isl_tab_extend_cons(info
[i
].tab
, 1 + n_ineq_j
+ n_extra
) < 0)
785 return isl_change_error
;
787 snap
= isl_tab_snap(info
[i
].tab
);
789 if (isl_tab_unrestrict(info
[i
].tab
, n_eq_i
+ k
) < 0)
790 return isl_change_error
;
792 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
793 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
794 r
= isl_tab_add_ineq(info
[i
].tab
, info
[i
].bmap
->ineq
[k
]);
795 isl_seq_neg(info
[i
].bmap
->ineq
[k
], info
[i
].bmap
->ineq
[k
], 1 + total
);
796 isl_int_sub_ui(info
[i
].bmap
->ineq
[k
][0], info
[i
].bmap
->ineq
[k
][0], 1);
798 return isl_change_error
;
800 for (k
= 0; k
< n_ineq_j
; ++k
) {
801 if (info
[j
].ineq
[k
] != STATUS_VALID
)
803 if (isl_tab_add_ineq(info
[i
].tab
, info
[j
].bmap
->ineq
[k
]) < 0)
804 return isl_change_error
;
806 for (k
= 0; k
< n_extra
; ++k
) {
807 if (isl_tab_add_ineq(info
[i
].tab
, extra
->row
[k
]) < 0)
808 return isl_change_error
;
810 if (isl_tab_detect_constants(info
[i
].tab
) < 0)
811 return isl_change_error
;
813 super
= contains(&info
[j
], info
[i
].tab
);
815 return isl_change_error
;
817 return fuse(i
, j
, info
, extra
, 0, 0);
819 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
820 return isl_change_error
;
822 return isl_change_none
;
825 /* Given an affine transformation matrix "T", does row "row" represent
826 * anything other than a unit vector (possibly shifted by a constant)
827 * that is not involved in any of the other rows?
829 * That is, if a constraint involves the variable corresponding to
830 * the row, then could its preimage by "T" have any coefficients
831 * that are different from those in the original constraint?
833 static int not_unique_unit_row(__isl_keep isl_mat
*T
, int row
)
836 int len
= T
->n_col
- 1;
838 i
= isl_seq_first_non_zero(T
->row
[row
] + 1, len
);
841 if (!isl_int_is_one(T
->row
[row
][1 + i
]) &&
842 !isl_int_is_negone(T
->row
[row
][1 + i
]))
845 j
= isl_seq_first_non_zero(T
->row
[row
] + 1 + i
+ 1, len
- (i
+ 1));
849 for (j
= 1; j
< T
->n_row
; ++j
) {
852 if (!isl_int_is_zero(T
->row
[j
][1 + i
]))
859 /* Does inequality constraint "ineq" of "bmap" involve any of
860 * the variables marked in "affected"?
861 * "total" is the total number of variables, i.e., the number
862 * of entries in "affected".
864 static isl_bool
is_affected(__isl_keep isl_basic_map
*bmap
, int ineq
,
865 int *affected
, int total
)
869 for (i
= 0; i
< total
; ++i
) {
872 if (!isl_int_is_zero(bmap
->ineq
[ineq
][1 + i
]))
873 return isl_bool_true
;
876 return isl_bool_false
;
879 /* Given the compressed version of inequality constraint "ineq"
880 * of info->bmap in "v", check if the constraint can be tightened,
881 * where the compression is based on an equality constraint valid
883 * If so, add the tightened version of the inequality constraint
884 * to info->tab. "v" may be modified by this function.
886 * That is, if the compressed constraint is of the form
890 * with 0 < c < m, then it is equivalent to
894 * This means that c can also be subtracted from the original,
895 * uncompressed constraint without affecting the integer points
896 * in info->tab. Add this tightened constraint as an extra row
897 * to info->tab to make this information explicitly available.
899 static __isl_give isl_vec
*try_tightening(struct isl_coalesce_info
*info
,
900 int ineq
, __isl_take isl_vec
*v
)
908 ctx
= isl_vec_get_ctx(v
);
909 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
910 if (isl_int_is_zero(ctx
->normalize_gcd
) ||
911 isl_int_is_one(ctx
->normalize_gcd
)) {
919 isl_int_fdiv_r(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
920 if (isl_int_is_zero(v
->el
[0]))
923 if (isl_tab_extend_cons(info
->tab
, 1) < 0)
924 return isl_vec_free(v
);
926 isl_int_sub(info
->bmap
->ineq
[ineq
][0],
927 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
928 r
= isl_tab_add_ineq(info
->tab
, info
->bmap
->ineq
[ineq
]);
929 isl_int_add(info
->bmap
->ineq
[ineq
][0],
930 info
->bmap
->ineq
[ineq
][0], v
->el
[0]);
933 return isl_vec_free(v
);
938 /* Tighten the (non-redundant) constraints on the facet represented
940 * In particular, on input, info->tab represents the result
941 * of relaxing the "n" inequality constraints of info->bmap in "relaxed"
942 * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
943 * replacing the one at index "l" by the corresponding equality,
944 * i.e., f_k + 1 = 0, with k = relaxed[l].
946 * Compute a variable compression from the equality constraint f_k + 1 = 0
947 * and use it to tighten the other constraints of info->bmap
948 * (that is, all constraints that have not been relaxed),
949 * updating info->tab (and leaving info->bmap untouched).
950 * The compression handles essentially two cases, one where a variable
951 * is assigned a fixed value and can therefore be eliminated, and one
952 * where one variable is a shifted multiple of some other variable and
953 * can therefore be replaced by that multiple.
954 * Gaussian elimination would also work for the first case, but for
955 * the second case, the effectiveness would depend on the order
957 * After compression, some of the constraints may have coefficients
958 * with a common divisor. If this divisor does not divide the constant
959 * term, then the constraint can be tightened.
960 * The tightening is performed on the tableau info->tab by introducing
961 * extra (temporary) constraints.
963 * Only constraints that are possibly affected by the compression are
964 * considered. In particular, if the constraint only involves variables
965 * that are directly mapped to a distinct set of other variables, then
966 * no common divisor can be introduced and no tightening can occur.
968 * It is important to only consider the non-redundant constraints
969 * since the facet constraint has been relaxed prior to the call
970 * to this function, meaning that the constraints that were redundant
971 * prior to the relaxation may no longer be redundant.
972 * These constraints will be ignored in the fused result, so
973 * the fusion detection should not exploit them.
975 static isl_stat
tighten_on_relaxed_facet(struct isl_coalesce_info
*info
,
976 int n
, int *relaxed
, int l
)
987 ctx
= isl_basic_map_get_ctx(info
->bmap
);
988 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
990 return isl_stat_error
;
991 isl_int_add_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
992 T
= isl_mat_sub_alloc6(ctx
, info
->bmap
->ineq
, k
, 1, 0, 1 + total
);
993 T
= isl_mat_variable_compression(T
, NULL
);
994 isl_int_sub_ui(info
->bmap
->ineq
[k
][0], info
->bmap
->ineq
[k
][0], 1);
996 return isl_stat_error
;
1002 affected
= isl_alloc_array(ctx
, int, total
);
1006 for (i
= 0; i
< total
; ++i
)
1007 affected
[i
] = not_unique_unit_row(T
, 1 + i
);
1009 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
1011 if (any(relaxed
, n
, i
))
1013 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
1015 handle
= is_affected(info
->bmap
, i
, affected
, total
);
1020 v
= isl_vec_alloc(ctx
, 1 + total
);
1023 isl_seq_cpy(v
->el
, info
->bmap
->ineq
[i
], 1 + total
);
1024 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
1025 v
= try_tightening(info
, i
, v
);
1037 return isl_stat_error
;
1040 /* Replace the basic maps "i" and "j" by an extension of "i"
1041 * along the "n" inequality constraints in "relax" by one.
1042 * The tableau info[i].tab has already been extended.
1043 * Extend info[i].bmap accordingly by relaxing all constraints in "relax"
1045 * Each integer division that does not have exactly the same
1046 * definition in "i" and "j" is marked unknown and the basic map
1047 * is scheduled to be simplified in an attempt to recover
1048 * the integer division definition.
1049 * Place the extension in the position that is the smallest of i and j.
1051 static enum isl_change
extend(int i
, int j
, int n
, int *relax
,
1052 struct isl_coalesce_info
*info
)
1057 info
[i
].bmap
= isl_basic_map_cow(info
[i
].bmap
);
1058 total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
1060 return isl_change_error
;
1061 for (l
= 0; l
< info
[i
].bmap
->n_div
; ++l
)
1062 if (!isl_seq_eq(info
[i
].bmap
->div
[l
],
1063 info
[j
].bmap
->div
[l
], 1 + 1 + total
)) {
1064 isl_int_set_si(info
[i
].bmap
->div
[l
][0], 0);
1065 info
[i
].simplify
= 1;
1067 for (l
= 0; l
< n
; ++l
)
1068 isl_int_add_ui(info
[i
].bmap
->ineq
[relax
[l
]][0],
1069 info
[i
].bmap
->ineq
[relax
[l
]][0], 1);
1070 ISL_F_CLR(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
1071 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_FINAL
);
1073 info
[i
].modified
= 1;
1075 exchange(&info
[i
], &info
[j
]);
1076 return isl_change_fuse
;
1079 /* Basic map "i" has "n" inequality constraints (collected in "relax")
1080 * that are such that they include basic map "j" if they are relaxed
1081 * by one. All the other inequalities are valid for "j".
1082 * Check if basic map "j" forms an extension of basic map "i".
1084 * In particular, relax the constraints in "relax", compute the corresponding
1085 * facets one by one and check whether each of these is included
1086 * in the other basic map.
1087 * Before testing for inclusion, the constraints on each facet
1088 * are tightened to increase the chance of an inclusion being detected.
1089 * (Adding the valid constraints of "j" to the tableau of "i", as is done
1090 * in is_adj_ineq_extension, may further increase those chances, but this
1091 * is not currently done.)
1092 * If each facet is included, we know that relaxing the constraints extends
1093 * the basic map with exactly the other basic map (we already know that this
1094 * other basic map is included in the extension, because all other
1095 * inequality constraints are valid of "j") and we can replace the
1096 * two basic maps by this extension.
1098 * If any of the relaxed constraints turn out to be redundant, then bail out.
1099 * isl_tab_select_facet refuses to handle such constraints. It may be
1100 * possible to handle them anyway by making a distinction between
1101 * redundant constraints with a corresponding facet that still intersects
1102 * the set (allowing isl_tab_select_facet to handle them) and
1103 * those where the facet does not intersect the set (which can be ignored
1104 * because the empty facet is trivially included in the other disjunct).
1105 * However, relaxed constraints that turn out to be redundant should
1106 * be fairly rare and no such instance has been reported where
1107 * coalescing would be successful.
1123 static enum isl_change
is_relaxed_extension(int i
, int j
, int n
, int *relax
,
1124 struct isl_coalesce_info
*info
)
1128 struct isl_tab_undo
*snap
, *snap2
;
1129 unsigned n_eq
= info
[i
].bmap
->n_eq
;
1131 for (l
= 0; l
< n
; ++l
)
1132 if (isl_tab_is_equality(info
[i
].tab
, n_eq
+ relax
[l
]))
1133 return isl_change_none
;
1135 snap
= isl_tab_snap(info
[i
].tab
);
1136 for (l
= 0; l
< n
; ++l
)
1137 if (isl_tab_relax(info
[i
].tab
, n_eq
+ relax
[l
]) < 0)
1138 return isl_change_error
;
1139 for (l
= 0; l
< n
; ++l
) {
1140 if (!isl_tab_is_redundant(info
[i
].tab
, n_eq
+ relax
[l
]))
1142 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
1143 return isl_change_error
;
1144 return isl_change_none
;
1146 snap2
= isl_tab_snap(info
[i
].tab
);
1147 for (l
= 0; l
< n
; ++l
) {
1148 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
1149 return isl_change_error
;
1150 if (isl_tab_select_facet(info
[i
].tab
, n_eq
+ relax
[l
]) < 0)
1151 return isl_change_error
;
1152 if (tighten_on_relaxed_facet(&info
[i
], n
, relax
, l
) < 0)
1153 return isl_change_error
;
1154 super
= contains(&info
[j
], info
[i
].tab
);
1156 return isl_change_error
;
1159 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
1160 return isl_change_error
;
1161 return isl_change_none
;
1164 if (isl_tab_rollback(info
[i
].tab
, snap2
) < 0)
1165 return isl_change_error
;
1166 return extend(i
, j
, n
, relax
, info
);
1169 /* Data structure that keeps track of the wrapping constraints
1170 * and of information to bound the coefficients of those constraints.
1172 * "failed" is set if wrapping has failed.
1173 * bound is set if we want to apply a bound on the coefficients
1174 * mat contains the wrapping constraints
1175 * max is the bound on the coefficients (if bound is set)
1184 /* Update wraps->max to be greater than or equal to the coefficients
1185 * in the equalities and inequalities of info->bmap that can be removed
1186 * if we end up applying wrapping.
1188 static isl_stat
wraps_update_max(struct isl_wraps
*wraps
,
1189 struct isl_coalesce_info
*info
)
1193 isl_size total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
1196 return isl_stat_error
;
1197 isl_int_init(max_k
);
1199 for (k
= 0; k
< info
->bmap
->n_eq
; ++k
) {
1200 if (info
->eq
[2 * k
] == STATUS_VALID
&&
1201 info
->eq
[2 * k
+ 1] == STATUS_VALID
)
1203 isl_seq_abs_max(info
->bmap
->eq
[k
] + 1, total
, &max_k
);
1204 if (isl_int_abs_gt(max_k
, wraps
->max
))
1205 isl_int_set(wraps
->max
, max_k
);
1208 for (k
= 0; k
< info
->bmap
->n_ineq
; ++k
) {
1209 if (info
->ineq
[k
] == STATUS_VALID
||
1210 info
->ineq
[k
] == STATUS_REDUNDANT
)
1212 isl_seq_abs_max(info
->bmap
->ineq
[k
] + 1, total
, &max_k
);
1213 if (isl_int_abs_gt(max_k
, wraps
->max
))
1214 isl_int_set(wraps
->max
, max_k
);
1217 isl_int_clear(max_k
);
1222 /* Initialize the isl_wraps data structure.
1223 * If we want to bound the coefficients of the wrapping constraints,
1224 * we set wraps->max to the largest coefficient
1225 * in the equalities and inequalities that can be removed if we end up
1226 * applying wrapping.
1228 static isl_stat
wraps_init(struct isl_wraps
*wraps
, __isl_take isl_mat
*mat
,
1229 struct isl_coalesce_info
*info
, int i
, int j
)
1237 return isl_stat_error
;
1238 wraps
->mat
->n_row
= 0;
1239 ctx
= isl_mat_get_ctx(mat
);
1240 wraps
->bound
= isl_options_get_coalesce_bounded_wrapping(ctx
);
1243 isl_int_init(wraps
->max
);
1244 isl_int_set_si(wraps
->max
, 0);
1245 if (wraps_update_max(wraps
, &info
[i
]) < 0)
1246 return isl_stat_error
;
1247 if (wraps_update_max(wraps
, &info
[j
]) < 0)
1248 return isl_stat_error
;
1253 /* Free the contents of the isl_wraps data structure.
1255 static void wraps_free(struct isl_wraps
*wraps
)
1257 isl_mat_free(wraps
->mat
);
1259 isl_int_clear(wraps
->max
);
1262 /* Mark the wrapping as failed.
1264 static isl_stat
wraps_mark_failed(struct isl_wraps
*wraps
)
1270 /* Is the wrapping constraint in row "row" allowed?
1272 * If wraps->bound is set, we check that none of the coefficients
1273 * is greater than wraps->max.
1275 static int allow_wrap(struct isl_wraps
*wraps
, int row
)
1282 for (i
= 1; i
< wraps
->mat
->n_col
; ++i
)
1283 if (isl_int_abs_gt(wraps
->mat
->row
[row
][i
], wraps
->max
))
1289 /* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
1290 * to include "set" and add the result in position "w" of "wraps".
1291 * "len" is the total number of coefficients in "bound" and "ineq".
1292 * Return isl_bool_true on success, isl_bool_false on failure and
1293 * isl_bool_error on error.
1294 * Wrapping can fail if the result of wrapping is equal to "bound"
1295 * or if we want to bound the sizes of the coefficients and
1296 * the wrapped constraint does not satisfy this bound.
1298 static isl_bool
add_wrap(struct isl_wraps
*wraps
, int w
, isl_int
*bound
,
1299 isl_int
*ineq
, unsigned len
, __isl_keep isl_set
*set
, int negate
)
1301 isl_seq_cpy(wraps
->mat
->row
[w
], bound
, len
);
1303 isl_seq_neg(wraps
->mat
->row
[w
+ 1], ineq
, len
);
1304 ineq
= wraps
->mat
->row
[w
+ 1];
1306 if (!isl_set_wrap_facet(set
, wraps
->mat
->row
[w
], ineq
))
1307 return isl_bool_error
;
1308 if (isl_seq_eq(wraps
->mat
->row
[w
], bound
, len
))
1309 return isl_bool_false
;
1310 if (!allow_wrap(wraps
, w
))
1311 return isl_bool_false
;
1312 return isl_bool_true
;
1315 /* This function has two modes of operations.
1317 * If "add_valid" is set, then all the constraints of info->bmap
1318 * (except the opposite of "bound") are valid for the other basic map.
1319 * In this case, attempts are made to wrap some of these valid constraints
1320 * to more tightly fit around "set". Only successful wrappings are recorded
1321 * and failed wrappings are ignored.
1323 * If "add_valid" is not set, then some of the constraints of info->bmap
1324 * are not valid for the other basic map, and only those are considered
1325 * for wrapping. In this case all attempted wrappings need to succeed.
1326 * Otherwise "wraps" is marked as failed.
1327 * Note that the constraints that are valid for the other basic map
1328 * will be added to the combined basic map by default, so there is
1329 * no need to wrap them.
1330 * The caller wrap_in_facets even relies on this function not wrapping
1331 * any constraints that are already valid.
1333 * Only consider constraints that are not redundant (as determined
1334 * by info->tab) and that are valid or invalid depending on "add_valid".
1335 * Wrap each constraint around "bound" such that it includes the whole
1336 * set "set" and append the resulting constraint to "wraps".
1337 * "wraps" is assumed to have been pre-allocated to the appropriate size.
1338 * wraps->n_row is the number of actual wrapped constraints that have
1340 * If any of the wrapping problems results in a constraint that is
1341 * identical to "bound", then this means that "set" is unbounded in such
1342 * a way that no wrapping is possible.
1343 * Similarly, if we want to bound the coefficients of the wrapping
1344 * constraints and a newly added wrapping constraint does not
1345 * satisfy the bound, then the wrapping is considered to have failed.
1346 * Note though that "wraps" is only marked failed if "add_valid" is not set.
1348 static isl_stat
add_selected_wraps(struct isl_wraps
*wraps
,
1349 struct isl_coalesce_info
*info
, isl_int
*bound
, __isl_keep isl_set
*set
,
1355 isl_basic_map
*bmap
= info
->bmap
;
1356 isl_size total
= isl_basic_map_dim(bmap
, isl_dim_all
);
1357 unsigned len
= 1 + total
;
1360 return isl_stat_error
;
1362 w
= wraps
->mat
->n_row
;
1364 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
1365 int is_valid
= info
->ineq
[l
] == STATUS_VALID
;
1366 if ((!add_valid
&& is_valid
) ||
1367 info
->ineq
[l
] == STATUS_REDUNDANT
)
1369 if (isl_seq_is_neg(bound
, bmap
->ineq
[l
], len
))
1371 if (isl_seq_eq(bound
, bmap
->ineq
[l
], len
))
1373 if (isl_tab_is_redundant(info
->tab
, bmap
->n_eq
+ l
))
1376 added
= add_wrap(wraps
, w
, bound
, bmap
->ineq
[l
], len
, set
, 0);
1378 return isl_stat_error
;
1379 if (!added
&& !is_valid
)
1384 for (l
= 0; l
< bmap
->n_eq
; ++l
) {
1385 if (isl_seq_is_neg(bound
, bmap
->eq
[l
], len
))
1387 if (isl_seq_eq(bound
, bmap
->eq
[l
], len
))
1390 for (m
= 0; m
< 2; ++m
) {
1391 if (info
->eq
[2 * l
+ m
] == STATUS_VALID
)
1393 added
= add_wrap(wraps
, w
, bound
, bmap
->eq
[l
], len
,
1396 return isl_stat_error
;
1403 wraps
->mat
->n_row
= w
;
1406 return wraps_mark_failed(wraps
);
1409 /* For each constraint in info->bmap that is not redundant (as determined
1410 * by info->tab) and that is not a valid constraint for the other basic map,
1411 * wrap the constraint around "bound" such that it includes the whole
1412 * set "set" and append the resulting constraint to "wraps".
1413 * Note that the constraints that are valid for the other basic map
1414 * will be added to the combined basic map by default, so there is
1415 * no need to wrap them.
1416 * The caller wrap_in_facets even relies on this function not wrapping
1417 * any constraints that are already valid.
1418 * "wraps" is assumed to have been pre-allocated to the appropriate size.
1419 * wraps->n_row is the number of actual wrapped constraints that have
1421 * If any of the wrapping problems results in a constraint that is
1422 * identical to "bound", then this means that "set" is unbounded in such
1423 * a way that no wrapping is possible. If this happens then "wraps"
1424 * is marked as failed.
1425 * Similarly, if we want to bound the coefficients of the wrapping
1426 * constraints and a newly added wrapping constraint does not
1427 * satisfy the bound, then "wraps" is also marked as failed.
1429 static isl_stat
add_wraps(struct isl_wraps
*wraps
,
1430 struct isl_coalesce_info
*info
, isl_int
*bound
, __isl_keep isl_set
*set
)
1432 return add_selected_wraps(wraps
, info
, bound
, set
, 0);
1435 /* Check if the constraints in "wraps" from "first" until the last
1436 * are all valid for the basic set represented by "tab",
1437 * dropping the invalid constraints if "keep" is set and
1438 * marking the wrapping as failed if "keep" is not set and
1439 * any constraint turns out to be invalid.
1441 static isl_stat
check_wraps(struct isl_wraps
*wraps
, int first
,
1442 struct isl_tab
*tab
, int keep
)
1446 for (i
= wraps
->mat
->n_row
- 1; i
>= first
; --i
) {
1447 enum isl_ineq_type type
;
1448 type
= isl_tab_ineq_type(tab
, wraps
->mat
->row
[i
]);
1449 if (type
== isl_ineq_error
)
1450 return isl_stat_error
;
1451 if (type
== isl_ineq_redundant
)
1454 return wraps_mark_failed(wraps
);
1455 wraps
->mat
= isl_mat_drop_rows(wraps
->mat
, i
, 1);
1457 return isl_stat_error
;
1463 /* Return a set that corresponds to the non-redundant constraints
1464 * (as recorded in info->tab) of info->bmap.
1466 * It's important to remove the redundant constraints as some
1467 * of the other constraints may have been modified after the
1468 * constraints were marked redundant.
1469 * In particular, a constraint may have been relaxed.
1470 * Redundant constraints are ignored when a constraint is relaxed
1471 * and should therefore continue to be ignored ever after.
1472 * Otherwise, the relaxation might be thwarted by some of
1473 * these constraints.
1475 * Update the underlying set to ensure that the dimension doesn't change.
1476 * Otherwise the integer divisions could get dropped if the tab
1477 * turns out to be empty.
1479 static __isl_give isl_set
*set_from_updated_bmap(struct isl_coalesce_info
*info
)
1481 isl_basic_map
*bmap
;
1482 isl_basic_set
*bset
;
1484 bmap
= isl_basic_map_copy(info
->bmap
);
1485 bset
= isl_basic_map_underlying_set(bmap
);
1486 bset
= isl_basic_set_cow(bset
);
1487 bset
= isl_basic_set_update_from_tab(bset
, info
->tab
);
1488 return isl_set_from_basic_set(bset
);
1491 /* Does "info" have any cut constraints that are redundant?
1493 static isl_bool
has_redundant_cuts(struct isl_coalesce_info
*info
)
1496 isl_size n_eq
, n_ineq
;
1498 n_eq
= isl_basic_map_n_equality(info
->bmap
);
1499 n_ineq
= isl_basic_map_n_inequality(info
->bmap
);
1500 if (n_eq
< 0 || n_ineq
< 0)
1501 return isl_bool_error
;
1502 for (l
= 0; l
< n_ineq
; ++l
) {
1505 if (info
->ineq
[l
] != STATUS_CUT
)
1507 red
= isl_tab_is_redundant(info
->tab
, n_eq
+ l
);
1509 return isl_bool_error
;
1511 return isl_bool_true
;
1514 return isl_bool_false
;
1517 /* Wrap some constraints of info->bmap that bound the facet defined
1518 * by inequality "k" around (the opposite of) this inequality to
1519 * include "set". "bound" may be used to store the negated inequality.
1521 * If "add_valid" is set, then all ridges are already valid and
1522 * the purpose is to wrap "set" more tightly. In this case,
1523 * wrapping doesn't fail, although it is possible that no constraint
1526 * If "add_valid" is not set, then some of the ridges are cut constraints
1527 * and only those are wrapped around "set".
1529 * Since the wrapped constraints are not guaranteed to contain the whole
1530 * of info->bmap, we check them in check_wraps.
1531 * If any of the wrapped constraints turn out to be invalid, then
1532 * check_wraps will mark "wraps" as failed if "add_valid" is not set.
1533 * If "add_valid" is set, then the offending constraints are
1536 * If the facet turns out to be empty, then no wrapping can be performed.
1537 * This is considered a failure, unless "add_valid" is set.
1539 * If any of the cut constraints of info->bmap turn out
1540 * to be redundant with respect to other constraints
1541 * then these will neither be wrapped nor added directly to the result.
1542 * The result may therefore not be correct.
1543 * Skip wrapping and mark "wraps" as failed in this case.
1545 static isl_stat
add_selected_wraps_around_facet(struct isl_wraps
*wraps
,
1546 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1547 __isl_keep isl_set
*set
, int add_valid
)
1550 struct isl_tab_undo
*snap
;
1552 isl_size total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
1555 return isl_stat_error
;
1557 snap
= isl_tab_snap(info
->tab
);
1559 if (isl_tab_select_facet(info
->tab
, info
->bmap
->n_eq
+ k
) < 0)
1560 return isl_stat_error
;
1561 if (isl_tab_detect_redundant(info
->tab
) < 0)
1562 return isl_stat_error
;
1563 if (info
->tab
->empty
) {
1564 if (isl_tab_rollback(info
->tab
, snap
) < 0)
1565 return isl_stat_error
;
1567 return wraps_mark_failed(wraps
);
1570 nowrap
= has_redundant_cuts(info
);
1572 return isl_stat_error
;
1574 n
= wraps
->mat
->n_row
;
1576 isl_seq_neg(bound
, info
->bmap
->ineq
[k
], 1 + total
);
1578 if (add_selected_wraps(wraps
, info
, bound
, set
, add_valid
) < 0)
1579 return isl_stat_error
;
1582 if (isl_tab_rollback(info
->tab
, snap
) < 0)
1583 return isl_stat_error
;
1585 return wraps_mark_failed(wraps
);
1586 if (check_wraps(wraps
, n
, info
->tab
, add_valid
) < 0)
1587 return isl_stat_error
;
1592 /* Wrap the constraints of info->bmap that bound the facet defined
1593 * by inequality "k" around (the opposite of) this inequality to
1594 * include "set". "bound" may be used to store the negated inequality.
1595 * If any of the wrapped constraints turn out to be invalid for info->bmap
1596 * itself, then mark "wraps" as failed.
1598 static isl_stat
add_wraps_around_facet(struct isl_wraps
*wraps
,
1599 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1600 __isl_keep isl_set
*set
)
1602 return add_selected_wraps_around_facet(wraps
, info
, k
, bound
, set
, 0);
1605 /* Wrap the (valid) constraints of info->bmap that bound the facet defined
1606 * by inequality "k" around (the opposite of) this inequality to
1607 * include "set" more tightly.
1608 * "bound" may be used to store the negated inequality.
1609 * Remove any wrapping constraints that turn out to be invalid
1610 * for info->bmap itself.
1612 static isl_stat
add_valid_wraps_around_facet(struct isl_wraps
*wraps
,
1613 struct isl_coalesce_info
*info
, int k
, isl_int
*bound
,
1614 __isl_keep isl_set
*set
)
1616 return add_selected_wraps_around_facet(wraps
, info
, k
, bound
, set
, 1);
1619 /* Basic map "i" has an inequality (say "k") that is adjacent
1620 * to some inequality of basic map "j". All the other inequalities
1621 * are valid for "j".
1622 * Check if basic map "j" forms an extension of basic map "i".
1624 * Note that this function is only called if some of the equalities or
1625 * inequalities of basic map "j" do cut basic map "i". The function is
1626 * correct even if there are no such cut constraints, but in that case
1627 * the additional checks performed by this function are overkill.
1629 * First try and wrap the ridges of "k" around "j".
1630 * Note that those ridges are already valid for "j",
1631 * but the wrapped versions may wrap "j" more tightly,
1632 * increasing the chances of "j" being detected as an extension of "i"
1634 static enum isl_change
is_adj_ineq_extension(int i
, int j
,
1635 struct isl_coalesce_info
*info
)
1638 enum isl_change change
;
1640 isl_size n_eq_i
, n_ineq_i
;
1641 struct isl_wraps wraps
;
1648 k
= find_ineq(&info
[i
], STATUS_ADJ_INEQ
);
1650 isl_die(isl_basic_map_get_ctx(info
[i
].bmap
), isl_error_internal
,
1651 "info[i].ineq should have exactly one STATUS_ADJ_INEQ",
1652 return isl_change_error
);
1654 total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
1655 n_eq_i
= isl_basic_map_n_equality(info
[i
].bmap
);
1656 n_ineq_i
= isl_basic_map_n_inequality(info
[i
].bmap
);
1657 if (total
< 0 || n_eq_i
< 0 || n_ineq_i
< 0)
1658 return isl_change_error
;
1660 set_j
= set_from_updated_bmap(&info
[j
]);
1661 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1662 bound
= isl_vec_alloc(ctx
, 1 + total
);
1663 mat
= isl_mat_alloc(ctx
, 2 * n_eq_i
+ n_ineq_i
, 1 + total
);
1664 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
1666 if (!bound
|| !set_j
)
1668 r
= add_valid_wraps_around_facet(&wraps
, &info
[i
], k
, bound
->el
, set_j
);
1672 change
= is_adj_ineq_extension_with_wraps(i
, j
, k
, info
, wraps
.mat
);
1675 isl_vec_free(bound
);
1676 isl_set_free(set_j
);
1681 isl_vec_free(bound
);
1682 isl_set_free(set_j
);
1683 return isl_change_error
;
1686 /* Both basic maps have at least one inequality with and adjacent
1687 * (but opposite) inequality in the other basic map.
1688 * Check that there are no cut constraints and that there is only
1689 * a single pair of adjacent inequalities.
1690 * If so, we can replace the pair by a single basic map described
1691 * by all but the pair of adjacent inequalities.
1692 * Any additional points introduced lie strictly between the two
1693 * adjacent hyperplanes and can therefore be integral.
1702 * The test for a single pair of adjacent inequalities is important
1703 * for avoiding the combination of two basic maps like the following
1713 * If there are some cut constraints on one side, then we may
1714 * still be able to fuse the two basic maps, but we need to perform
1715 * some additional checks in is_adj_ineq_extension.
1717 static enum isl_change
check_adj_ineq(int i
, int j
,
1718 struct isl_coalesce_info
*info
)
1720 int count_i
, count_j
;
1723 count_i
= count_ineq(&info
[i
], STATUS_ADJ_INEQ
);
1724 count_j
= count_ineq(&info
[j
], STATUS_ADJ_INEQ
);
1726 if (count_i
!= 1 && count_j
!= 1)
1727 return isl_change_none
;
1729 cut_i
= any_eq(&info
[i
], STATUS_CUT
) || any_ineq(&info
[i
], STATUS_CUT
);
1730 cut_j
= any_eq(&info
[j
], STATUS_CUT
) || any_ineq(&info
[j
], STATUS_CUT
);
1732 if (!cut_i
&& !cut_j
&& count_i
== 1 && count_j
== 1)
1733 return fuse(i
, j
, info
, NULL
, 0, 0);
1735 if (count_i
== 1 && !cut_i
)
1736 return is_adj_ineq_extension(i
, j
, info
);
1738 if (count_j
== 1 && !cut_j
)
1739 return is_adj_ineq_extension(j
, i
, info
);
1741 return isl_change_none
;
1744 /* Given a basic set i with a constraint k that is adjacent to
1745 * basic set j, check if we can wrap
1746 * both the facet corresponding to k (if "wrap_facet" is set) and basic map j
1747 * (always) around their ridges to include the other set.
1748 * If so, replace the pair of basic sets by their union.
1750 * All constraints of i (except k) are assumed to be valid or
1751 * cut constraints for j.
1752 * Wrapping the cut constraints to include basic map j may result
1753 * in constraints that are no longer valid of basic map i
1754 * we have to check that the resulting wrapping constraints are valid for i.
1755 * If "wrap_facet" is not set, then all constraints of i (except k)
1756 * are assumed to be valid for j.
1765 static enum isl_change
can_wrap_in_facet(int i
, int j
, int k
,
1766 struct isl_coalesce_info
*info
, int wrap_facet
)
1768 enum isl_change change
= isl_change_none
;
1769 struct isl_wraps wraps
;
1772 struct isl_set
*set_i
= NULL
;
1773 struct isl_set
*set_j
= NULL
;
1774 struct isl_vec
*bound
= NULL
;
1775 isl_size total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
1778 return isl_change_error
;
1779 set_i
= set_from_updated_bmap(&info
[i
]);
1780 set_j
= set_from_updated_bmap(&info
[j
]);
1781 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1782 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
1783 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
1785 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
1787 bound
= isl_vec_alloc(ctx
, 1 + total
);
1788 if (!set_i
|| !set_j
|| !bound
)
1791 isl_seq_cpy(bound
->el
, info
[i
].bmap
->ineq
[k
], 1 + total
);
1792 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
1793 isl_seq_normalize(ctx
, bound
->el
, 1 + total
);
1795 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
1796 wraps
.mat
->n_row
= 1;
1798 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
1804 if (add_wraps_around_facet(&wraps
, &info
[i
], k
,
1805 bound
->el
, set_j
) < 0)
1811 change
= fuse(i
, j
, info
, wraps
.mat
, 0, 0);
1816 isl_set_free(set_i
);
1817 isl_set_free(set_j
);
1819 isl_vec_free(bound
);
1824 isl_vec_free(bound
);
1825 isl_set_free(set_i
);
1826 isl_set_free(set_j
);
1827 return isl_change_error
;
1830 /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
1831 * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
1832 * add wrapping constraints to wrap.mat for all constraints
1833 * of basic map j that bound the part of basic map j that sticks out
1834 * of the cut constraint.
1835 * "set_i" is the underlying set of basic map i.
1836 * If any wrapping fails, then wraps->mat.n_row is reset to zero.
1838 * In particular, we first intersect basic map j with t(x) + 1 = 0.
1839 * If the result is empty, then t(x) >= 0 was actually a valid constraint
1840 * (with respect to the integer points), so we add t(x) >= 0 instead.
1841 * Otherwise, we wrap the constraints of basic map j that are not
1842 * redundant in this intersection and that are not already valid
1843 * for basic map i over basic map i.
1844 * Note that it is sufficient to wrap the constraints to include
1845 * basic map i, because we will only wrap the constraints that do
1846 * not include basic map i already. The wrapped constraint will
1847 * therefore be more relaxed compared to the original constraint.
1848 * Since the original constraint is valid for basic map j, so is
1849 * the wrapped constraint.
1851 static isl_stat
wrap_in_facet(struct isl_wraps
*wraps
, int w
,
1852 struct isl_coalesce_info
*info_j
, __isl_keep isl_set
*set_i
,
1853 struct isl_tab_undo
*snap
)
1855 isl_int_add_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1856 if (isl_tab_add_eq(info_j
->tab
, wraps
->mat
->row
[w
]) < 0)
1857 return isl_stat_error
;
1858 if (isl_tab_detect_redundant(info_j
->tab
) < 0)
1859 return isl_stat_error
;
1861 if (info_j
->tab
->empty
)
1862 isl_int_sub_ui(wraps
->mat
->row
[w
][0], wraps
->mat
->row
[w
][0], 1);
1863 else if (add_wraps(wraps
, info_j
, wraps
->mat
->row
[w
], set_i
) < 0)
1864 return isl_stat_error
;
1866 if (isl_tab_rollback(info_j
->tab
, snap
) < 0)
1867 return isl_stat_error
;
1872 /* Given a pair of basic maps i and j such that j sticks out
1873 * of i at n cut constraints, each time by at most one,
1874 * try to compute wrapping constraints and replace the two
1875 * basic maps by a single basic map.
1876 * The other constraints of i are assumed to be valid for j.
1877 * "set_i" is the underlying set of basic map i.
1878 * "wraps" has been initialized to be of the right size.
1880 * For each cut constraint t(x) >= 0 of i, we add the relaxed version
1881 * t(x) + 1 >= 0, along with wrapping constraints for all constraints
1882 * of basic map j that bound the part of basic map j that sticks out
1883 * of the cut constraint.
1885 * If any wrapping fails, i.e., if we cannot wrap to touch
1886 * the union, then we give up.
1887 * Otherwise, the pair of basic maps is replaced by their union.
1889 static enum isl_change
try_wrap_in_facets(int i
, int j
,
1890 struct isl_coalesce_info
*info
, struct isl_wraps
*wraps
,
1891 __isl_keep isl_set
*set_i
)
1895 struct isl_tab_undo
*snap
;
1897 total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
1899 return isl_change_error
;
1901 snap
= isl_tab_snap(info
[j
].tab
);
1903 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
1904 for (l
= 0; l
< 2; ++l
) {
1905 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
1907 w
= wraps
->mat
->n_row
++;
1909 isl_seq_neg(wraps
->mat
->row
[w
],
1910 info
[i
].bmap
->eq
[k
], 1 + total
);
1912 isl_seq_cpy(wraps
->mat
->row
[w
],
1913 info
[i
].bmap
->eq
[k
], 1 + total
);
1914 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1915 return isl_change_error
;
1918 return isl_change_none
;
1922 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
1923 if (info
[i
].ineq
[k
] != STATUS_CUT
)
1925 w
= wraps
->mat
->n_row
++;
1926 isl_seq_cpy(wraps
->mat
->row
[w
],
1927 info
[i
].bmap
->ineq
[k
], 1 + total
);
1928 if (wrap_in_facet(wraps
, w
, &info
[j
], set_i
, snap
) < 0)
1929 return isl_change_error
;
1932 return isl_change_none
;
1935 return fuse(i
, j
, info
, wraps
->mat
, 0, 1);
1938 /* Given a pair of basic maps i and j such that j sticks out
1939 * of i at n cut constraints, each time by at most one,
1940 * try to compute wrapping constraints and replace the two
1941 * basic maps by a single basic map.
1942 * The other constraints of i are assumed to be valid for j.
1944 * The core computation is performed by try_wrap_in_facets.
1945 * This function simply extracts an underlying set representation
1946 * of basic map i and initializes the data structure for keeping
1947 * track of wrapping constraints.
1949 static enum isl_change
wrap_in_facets(int i
, int j
, int n
,
1950 struct isl_coalesce_info
*info
)
1952 enum isl_change change
= isl_change_none
;
1953 struct isl_wraps wraps
;
1956 isl_set
*set_i
= NULL
;
1957 isl_size total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
1961 return isl_change_error
;
1962 if (isl_tab_extend_cons(info
[j
].tab
, 1) < 0)
1963 return isl_change_error
;
1965 max_wrap
= 1 + 2 * info
[j
].bmap
->n_eq
+ info
[j
].bmap
->n_ineq
;
1968 set_i
= set_from_updated_bmap(&info
[i
]);
1969 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
1970 mat
= isl_mat_alloc(ctx
, max_wrap
, 1 + total
);
1971 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
1976 change
= try_wrap_in_facets(i
, j
, info
, &wraps
, set_i
);
1979 isl_set_free(set_i
);
1984 isl_set_free(set_i
);
1985 return isl_change_error
;
1988 /* Return the effect of inequality "ineq" on the tableau "tab",
1989 * after relaxing the constant term of "ineq" by one.
1991 static enum isl_ineq_type
type_of_relaxed(struct isl_tab
*tab
, isl_int
*ineq
)
1993 enum isl_ineq_type type
;
1995 isl_int_add_ui(ineq
[0], ineq
[0], 1);
1996 type
= isl_tab_ineq_type(tab
, ineq
);
1997 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
2002 /* Given two basic sets i and j,
2003 * check if relaxing all the cut constraints of i by one turns
2004 * them into valid constraint for j and check if we can wrap in
2005 * the bits that are sticking out.
2006 * If so, replace the pair by their union.
2008 * We first check if all relaxed cut inequalities of i are valid for j
2009 * and then try to wrap in the intersections of the relaxed cut inequalities
2012 * During this wrapping, we consider the points of j that lie at a distance
2013 * of exactly 1 from i. In particular, we ignore the points that lie in
2014 * between this lower-dimensional space and the basic map i.
2015 * We can therefore only apply this to integer maps.
2041 * Wrapping can fail if the result of wrapping one of the facets
2042 * around its edges does not produce any new facet constraint.
2043 * In particular, this happens when we try to wrap in unbounded sets.
2045 * _______________________________________________________________________
2049 * |_| |_________________________________________________________________
2052 * The following is not an acceptable result of coalescing the above two
2053 * sets as it includes extra integer points.
2054 * _______________________________________________________________________
2059 * \______________________________________________________________________
2061 static enum isl_change
can_wrap_in_set(int i
, int j
,
2062 struct isl_coalesce_info
*info
)
2068 if (ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_RATIONAL
) ||
2069 ISL_F_ISSET(info
[j
].bmap
, ISL_BASIC_MAP_RATIONAL
))
2070 return isl_change_none
;
2072 n
= count_eq(&info
[i
], STATUS_CUT
) + count_ineq(&info
[i
], STATUS_CUT
);
2074 return isl_change_none
;
2076 total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
2078 return isl_change_error
;
2079 for (k
= 0; k
< info
[i
].bmap
->n_eq
; ++k
) {
2080 for (l
= 0; l
< 2; ++l
) {
2081 enum isl_ineq_type type
;
2083 if (info
[i
].eq
[2 * k
+ l
] != STATUS_CUT
)
2087 isl_seq_neg(info
[i
].bmap
->eq
[k
],
2088 info
[i
].bmap
->eq
[k
], 1 + total
);
2089 type
= type_of_relaxed(info
[j
].tab
,
2090 info
[i
].bmap
->eq
[k
]);
2092 isl_seq_neg(info
[i
].bmap
->eq
[k
],
2093 info
[i
].bmap
->eq
[k
], 1 + total
);
2094 if (type
== isl_ineq_error
)
2095 return isl_change_error
;
2096 if (type
!= isl_ineq_redundant
)
2097 return isl_change_none
;
2101 for (k
= 0; k
< info
[i
].bmap
->n_ineq
; ++k
) {
2102 enum isl_ineq_type type
;
2104 if (info
[i
].ineq
[k
] != STATUS_CUT
)
2107 type
= type_of_relaxed(info
[j
].tab
, info
[i
].bmap
->ineq
[k
]);
2108 if (type
== isl_ineq_error
)
2109 return isl_change_error
;
2110 if (type
!= isl_ineq_redundant
)
2111 return isl_change_none
;
2114 return wrap_in_facets(i
, j
, n
, info
);
2117 /* Check if either i or j has only cut constraints that can
2118 * be used to wrap in (a facet of) the other basic set.
2119 * if so, replace the pair by their union.
2121 static enum isl_change
check_wrap(int i
, int j
, struct isl_coalesce_info
*info
)
2123 enum isl_change change
= isl_change_none
;
2125 change
= can_wrap_in_set(i
, j
, info
);
2126 if (change
!= isl_change_none
)
2129 change
= can_wrap_in_set(j
, i
, info
);
2133 /* Check if all inequality constraints of "i" that cut "j" cease
2134 * to be cut constraints if they are relaxed by one.
2135 * If so, collect the cut constraints in "list".
2136 * The caller is responsible for allocating "list".
2138 static isl_bool
all_cut_by_one(int i
, int j
, struct isl_coalesce_info
*info
,
2144 for (l
= 0; l
< info
[i
].bmap
->n_ineq
; ++l
) {
2145 enum isl_ineq_type type
;
2147 if (info
[i
].ineq
[l
] != STATUS_CUT
)
2149 type
= type_of_relaxed(info
[j
].tab
, info
[i
].bmap
->ineq
[l
]);
2150 if (type
== isl_ineq_error
)
2151 return isl_bool_error
;
2152 if (type
!= isl_ineq_redundant
)
2153 return isl_bool_false
;
2157 return isl_bool_true
;
2160 /* Given two basic maps such that "j" has at least one equality constraint
2161 * that is adjacent to an inequality constraint of "i" and such that "i" has
2162 * exactly one inequality constraint that is adjacent to an equality
2163 * constraint of "j", check whether "i" can be extended to include "j" or
2164 * whether "j" can be wrapped into "i".
2165 * All remaining constraints of "i" and "j" are assumed to be valid
2166 * or cut constraints of the other basic map.
2167 * However, none of the equality constraints of "i" are cut constraints.
2169 * If "i" has any "cut" inequality constraints, then check if relaxing
2170 * each of them by one is sufficient for them to become valid.
2171 * If so, check if the inequality constraint adjacent to an equality
2172 * constraint of "j" along with all these cut constraints
2173 * can be relaxed by one to contain exactly "j".
2174 * Otherwise, or if this fails, check if "j" can be wrapped into "i".
2176 static enum isl_change
check_single_adj_eq(int i
, int j
,
2177 struct isl_coalesce_info
*info
)
2179 enum isl_change change
= isl_change_none
;
2186 n_cut
= count_ineq(&info
[i
], STATUS_CUT
);
2188 k
= find_ineq(&info
[i
], STATUS_ADJ_EQ
);
2191 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
2192 relax
= isl_calloc_array(ctx
, int, 1 + n_cut
);
2194 return isl_change_error
;
2196 try_relax
= all_cut_by_one(i
, j
, info
, relax
+ 1);
2198 change
= isl_change_error
;
2200 try_relax
= isl_bool_true
;
2203 if (try_relax
&& change
== isl_change_none
)
2204 change
= is_relaxed_extension(i
, j
, 1 + n_cut
, relax
, info
);
2207 if (change
!= isl_change_none
)
2210 change
= can_wrap_in_facet(i
, j
, k
, info
, n_cut
> 0);
2215 /* At least one of the basic maps has an equality that is adjacent
2216 * to an inequality. Make sure that only one of the basic maps has
2217 * such an equality and that the other basic map has exactly one
2218 * inequality adjacent to an equality.
2219 * If the other basic map does not have such an inequality, then
2220 * check if all its constraints are either valid or cut constraints
2221 * and, if so, try wrapping in the first map into the second.
2222 * Otherwise, try to extend one basic map with the other or
2223 * wrap one basic map in the other.
2225 static enum isl_change
check_adj_eq(int i
, int j
,
2226 struct isl_coalesce_info
*info
)
2228 if (any_eq(&info
[i
], STATUS_ADJ_INEQ
) &&
2229 any_eq(&info
[j
], STATUS_ADJ_INEQ
))
2230 /* ADJ EQ TOO MANY */
2231 return isl_change_none
;
2233 if (any_eq(&info
[i
], STATUS_ADJ_INEQ
))
2234 return check_adj_eq(j
, i
, info
);
2236 /* j has an equality adjacent to an inequality in i */
2238 if (count_ineq(&info
[i
], STATUS_ADJ_EQ
) != 1) {
2239 if (all_valid_or_cut(&info
[i
]))
2240 return can_wrap_in_set(i
, j
, info
);
2241 return isl_change_none
;
2243 if (any_eq(&info
[i
], STATUS_CUT
))
2244 return isl_change_none
;
2245 if (any_ineq(&info
[j
], STATUS_ADJ_EQ
) ||
2246 any_ineq(&info
[i
], STATUS_ADJ_INEQ
) ||
2247 any_ineq(&info
[j
], STATUS_ADJ_INEQ
))
2248 /* ADJ EQ TOO MANY */
2249 return isl_change_none
;
2251 return check_single_adj_eq(i
, j
, info
);
2254 /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
2255 * In particular, disjunct "i" has an inequality constraint that is adjacent
2256 * to a (combination of) equality constraint(s) of disjunct "j",
2257 * but disjunct "j" has no explicit equality constraint adjacent
2258 * to an inequality constraint of disjunct "i".
2260 * Disjunct "i" is already known not to have any equality constraints
2261 * that are adjacent to an equality or inequality constraint.
2262 * Check that, other than the inequality constraint mentioned above,
2263 * all other constraints of disjunct "i" are valid for disjunct "j".
2264 * If so, try and wrap in disjunct "j".
2266 static enum isl_change
check_ineq_adj_eq(int i
, int j
,
2267 struct isl_coalesce_info
*info
)
2271 if (any_eq(&info
[i
], STATUS_CUT
))
2272 return isl_change_none
;
2273 if (any_ineq(&info
[i
], STATUS_CUT
))
2274 return isl_change_none
;
2275 if (any_ineq(&info
[i
], STATUS_ADJ_INEQ
))
2276 return isl_change_none
;
2277 if (count_ineq(&info
[i
], STATUS_ADJ_EQ
) != 1)
2278 return isl_change_none
;
2280 k
= find_ineq(&info
[i
], STATUS_ADJ_EQ
);
2282 return can_wrap_in_facet(i
, j
, k
, info
, 0);
2285 /* The two basic maps lie on adjacent hyperplanes. In particular,
2286 * basic map "i" has an equality that lies parallel to basic map "j".
2287 * Check if we can wrap the facets around the parallel hyperplanes
2288 * to include the other set.
2290 * We perform basically the same operations as can_wrap_in_facet,
2291 * except that we don't need to select a facet of one of the sets.
2297 * If there is more than one equality of "i" adjacent to an equality of "j",
2298 * then the result will satisfy one or more equalities that are a linear
2299 * combination of these equalities. These will be encoded as pairs
2300 * of inequalities in the wrapping constraints and need to be made
2303 static enum isl_change
check_eq_adj_eq(int i
, int j
,
2304 struct isl_coalesce_info
*info
)
2307 enum isl_change change
= isl_change_none
;
2308 int detect_equalities
= 0;
2309 struct isl_wraps wraps
;
2312 struct isl_set
*set_i
= NULL
;
2313 struct isl_set
*set_j
= NULL
;
2314 struct isl_vec
*bound
= NULL
;
2315 isl_size total
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_all
);
2318 return isl_change_error
;
2319 if (count_eq(&info
[i
], STATUS_ADJ_EQ
) != 1)
2320 detect_equalities
= 1;
2322 k
= find_eq(&info
[i
], STATUS_ADJ_EQ
);
2324 set_i
= set_from_updated_bmap(&info
[i
]);
2325 set_j
= set_from_updated_bmap(&info
[j
]);
2326 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
2327 mat
= isl_mat_alloc(ctx
, 2 * (info
[i
].bmap
->n_eq
+ info
[j
].bmap
->n_eq
) +
2328 info
[i
].bmap
->n_ineq
+ info
[j
].bmap
->n_ineq
,
2330 if (wraps_init(&wraps
, mat
, info
, i
, j
) < 0)
2332 bound
= isl_vec_alloc(ctx
, 1 + total
);
2333 if (!set_i
|| !set_j
|| !bound
)
2337 isl_seq_neg(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
2339 isl_seq_cpy(bound
->el
, info
[i
].bmap
->eq
[k
/ 2], 1 + total
);
2340 isl_int_add_ui(bound
->el
[0], bound
->el
[0], 1);
2342 isl_seq_cpy(wraps
.mat
->row
[0], bound
->el
, 1 + total
);
2343 wraps
.mat
->n_row
= 1;
2345 if (add_wraps(&wraps
, &info
[j
], bound
->el
, set_i
) < 0)
2350 isl_int_sub_ui(bound
->el
[0], bound
->el
[0], 1);
2351 isl_seq_neg(bound
->el
, bound
->el
, 1 + total
);
2353 isl_seq_cpy(wraps
.mat
->row
[wraps
.mat
->n_row
], bound
->el
, 1 + total
);
2356 if (add_wraps(&wraps
, &info
[i
], bound
->el
, set_j
) < 0)
2361 change
= fuse(i
, j
, info
, wraps
.mat
, detect_equalities
, 0);
2364 error
: change
= isl_change_error
;
2369 isl_set_free(set_i
);
2370 isl_set_free(set_j
);
2371 isl_vec_free(bound
);
2376 /* Initialize the "eq" and "ineq" fields of "info".
2378 static void init_status(struct isl_coalesce_info
*info
)
2380 info
->eq
= info
->ineq
= NULL
;
2383 /* Set info->eq to the positions of the equalities of info->bmap
2384 * with respect to the basic map represented by "tab".
2385 * If info->eq has already been computed, then do not compute it again.
2387 static void set_eq_status_in(struct isl_coalesce_info
*info
,
2388 struct isl_tab
*tab
)
2392 info
->eq
= eq_status_in(info
->bmap
, tab
);
2395 /* Set info->ineq to the positions of the inequalities of info->bmap
2396 * with respect to the basic map represented by "tab".
2397 * If info->ineq has already been computed, then do not compute it again.
2399 static void set_ineq_status_in(struct isl_coalesce_info
*info
,
2400 struct isl_tab
*tab
)
2404 info
->ineq
= ineq_status_in(info
->bmap
, info
->tab
, tab
);
2407 /* Free the memory allocated by the "eq" and "ineq" fields of "info".
2408 * This function assumes that init_status has been called on "info" first,
2409 * after which the "eq" and "ineq" fields may or may not have been
2410 * assigned a newly allocated array.
2412 static void clear_status(struct isl_coalesce_info
*info
)
2418 /* Are all inequality constraints of the basic map represented by "info"
2419 * valid for the other basic map, except for a single constraint
2420 * that is adjacent to an inequality constraint of the other basic map?
2422 static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info
*info
)
2427 for (i
= 0; i
< info
->bmap
->n_ineq
; ++i
) {
2428 if (info
->ineq
[i
] == STATUS_REDUNDANT
)
2430 if (info
->ineq
[i
] == STATUS_VALID
)
2432 if (info
->ineq
[i
] != STATUS_ADJ_INEQ
)
2442 /* Basic map "i" has one or more equality constraints that separate it
2443 * from basic map "j". Check if it happens to be an extension
2445 * In particular, check that all constraints of "j" are valid for "i",
2446 * except for one inequality constraint that is adjacent
2447 * to an inequality constraints of "i".
2448 * If so, check for "i" being an extension of "j" by calling
2449 * is_adj_ineq_extension.
2451 * Clean up the memory allocated for keeping track of the status
2452 * of the constraints before returning.
2454 static enum isl_change
separating_equality(int i
, int j
,
2455 struct isl_coalesce_info
*info
)
2457 enum isl_change change
= isl_change_none
;
2459 if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
2460 all_ineq_valid_or_single_adj_ineq(&info
[j
]))
2461 change
= is_adj_ineq_extension(j
, i
, info
);
2463 clear_status(&info
[i
]);
2464 clear_status(&info
[j
]);
2468 /* Check if the union of the given pair of basic maps
2469 * can be represented by a single basic map.
2470 * If so, replace the pair by the single basic map and return
2471 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2472 * Otherwise, return isl_change_none.
2473 * The two basic maps are assumed to live in the same local space.
2474 * The "eq" and "ineq" fields of info[i] and info[j] are assumed
2475 * to have been initialized by the caller, either to NULL or
2476 * to valid information.
2478 * We first check the effect of each constraint of one basic map
2479 * on the other basic map.
2480 * The constraint may be
2481 * redundant the constraint is redundant in its own
2482 * basic map and should be ignore and removed
2484 * valid all (integer) points of the other basic map
2485 * satisfy the constraint
2486 * separate no (integer) point of the other basic map
2487 * satisfies the constraint
2488 * cut some but not all points of the other basic map
2489 * satisfy the constraint
2490 * adj_eq the given constraint is adjacent (on the outside)
2491 * to an equality of the other basic map
2492 * adj_ineq the given constraint is adjacent (on the outside)
2493 * to an inequality of the other basic map
2495 * We consider seven cases in which we can replace the pair by a single
2496 * basic map. We ignore all "redundant" constraints.
2498 * 1. all constraints of one basic map are valid
2499 * => the other basic map is a subset and can be removed
2501 * 2. all constraints of both basic maps are either "valid" or "cut"
2502 * and the facets corresponding to the "cut" constraints
2503 * of one of the basic maps lies entirely inside the other basic map
2504 * => the pair can be replaced by a basic map consisting
2505 * of the valid constraints in both basic maps
2507 * 3. there is a single pair of adjacent inequalities
2508 * (all other constraints are "valid")
2509 * => the pair can be replaced by a basic map consisting
2510 * of the valid constraints in both basic maps
2512 * 4. one basic map has a single adjacent inequality, while the other
2513 * constraints are "valid". The other basic map has some
2514 * "cut" constraints, but replacing the adjacent inequality by
2515 * its opposite and adding the valid constraints of the other
2516 * basic map results in a subset of the other basic map
2517 * => the pair can be replaced by a basic map consisting
2518 * of the valid constraints in both basic maps
2520 * 5. there is a single adjacent pair of an inequality and an equality,
2521 * the other constraints of the basic map containing the inequality are
2522 * "valid". Moreover, if the inequality the basic map is relaxed
2523 * and then turned into an equality, then resulting facet lies
2524 * entirely inside the other basic map
2525 * => the pair can be replaced by the basic map containing
2526 * the inequality, with the inequality relaxed.
2528 * 6. there is a single inequality adjacent to an equality,
2529 * the other constraints of the basic map containing the inequality are
2530 * "valid". Moreover, the facets corresponding to both
2531 * the inequality and the equality can be wrapped around their
2532 * ridges to include the other basic map
2533 * => the pair can be replaced by a basic map consisting
2534 * of the valid constraints in both basic maps together
2535 * with all wrapping constraints
2537 * 7. one of the basic maps extends beyond the other by at most one.
2538 * Moreover, the facets corresponding to the cut constraints and
2539 * the pieces of the other basic map at offset one from these cut
2540 * constraints can be wrapped around their ridges to include
2541 * the union of the two basic maps
2542 * => the pair can be replaced by a basic map consisting
2543 * of the valid constraints in both basic maps together
2544 * with all wrapping constraints
2546 * 8. the two basic maps live in adjacent hyperplanes. In principle
2547 * such sets can always be combined through wrapping, but we impose
2548 * that there is only one such pair, to avoid overeager coalescing.
2550 * Throughout the computation, we maintain a collection of tableaus
2551 * corresponding to the basic maps. When the basic maps are dropped
2552 * or combined, the tableaus are modified accordingly.
2554 static enum isl_change
coalesce_local_pair_reuse(int i
, int j
,
2555 struct isl_coalesce_info
*info
)
2557 enum isl_change change
= isl_change_none
;
2559 set_ineq_status_in(&info
[i
], info
[j
].tab
);
2560 if (info
[i
].bmap
->n_ineq
&& !info
[i
].ineq
)
2562 if (any_ineq(&info
[i
], STATUS_ERROR
))
2564 if (any_ineq(&info
[i
], STATUS_SEPARATE
))
2567 set_ineq_status_in(&info
[j
], info
[i
].tab
);
2568 if (info
[j
].bmap
->n_ineq
&& !info
[j
].ineq
)
2570 if (any_ineq(&info
[j
], STATUS_ERROR
))
2572 if (any_ineq(&info
[j
], STATUS_SEPARATE
))
2575 set_eq_status_in(&info
[i
], info
[j
].tab
);
2576 if (info
[i
].bmap
->n_eq
&& !info
[i
].eq
)
2578 if (any_eq(&info
[i
], STATUS_ERROR
))
2581 set_eq_status_in(&info
[j
], info
[i
].tab
);
2582 if (info
[j
].bmap
->n_eq
&& !info
[j
].eq
)
2584 if (any_eq(&info
[j
], STATUS_ERROR
))
2587 if (any_eq(&info
[i
], STATUS_SEPARATE
))
2588 return separating_equality(i
, j
, info
);
2589 if (any_eq(&info
[j
], STATUS_SEPARATE
))
2590 return separating_equality(j
, i
, info
);
2592 if (all(info
[i
].eq
, 2 * info
[i
].bmap
->n_eq
, STATUS_VALID
) &&
2593 all(info
[i
].ineq
, info
[i
].bmap
->n_ineq
, STATUS_VALID
)) {
2595 change
= isl_change_drop_second
;
2596 } else if (all(info
[j
].eq
, 2 * info
[j
].bmap
->n_eq
, STATUS_VALID
) &&
2597 all(info
[j
].ineq
, info
[j
].bmap
->n_ineq
, STATUS_VALID
)) {
2599 change
= isl_change_drop_first
;
2600 } else if (any_eq(&info
[i
], STATUS_ADJ_EQ
)) {
2601 change
= check_eq_adj_eq(i
, j
, info
);
2602 } else if (any_eq(&info
[j
], STATUS_ADJ_EQ
)) {
2603 change
= check_eq_adj_eq(j
, i
, info
);
2604 } else if (any_eq(&info
[i
], STATUS_ADJ_INEQ
) ||
2605 any_eq(&info
[j
], STATUS_ADJ_INEQ
)) {
2606 change
= check_adj_eq(i
, j
, info
);
2607 } else if (any_ineq(&info
[i
], STATUS_ADJ_EQ
)) {
2608 change
= check_ineq_adj_eq(i
, j
, info
);
2609 } else if (any_ineq(&info
[j
], STATUS_ADJ_EQ
)) {
2610 change
= check_ineq_adj_eq(j
, i
, info
);
2611 } else if (any_ineq(&info
[i
], STATUS_ADJ_INEQ
) ||
2612 any_ineq(&info
[j
], STATUS_ADJ_INEQ
)) {
2613 change
= check_adj_ineq(i
, j
, info
);
2615 if (!any_eq(&info
[i
], STATUS_CUT
) &&
2616 !any_eq(&info
[j
], STATUS_CUT
))
2617 change
= check_facets(i
, j
, info
);
2618 if (change
== isl_change_none
)
2619 change
= check_wrap(i
, j
, info
);
2623 clear_status(&info
[i
]);
2624 clear_status(&info
[j
]);
2627 clear_status(&info
[i
]);
2628 clear_status(&info
[j
]);
2629 return isl_change_error
;
2632 /* Check if the union of the given pair of basic maps
2633 * can be represented by a single basic map.
2634 * If so, replace the pair by the single basic map and return
2635 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
2636 * Otherwise, return isl_change_none.
2637 * The two basic maps are assumed to live in the same local space.
2639 static enum isl_change
coalesce_local_pair(int i
, int j
,
2640 struct isl_coalesce_info
*info
)
2642 init_status(&info
[i
]);
2643 init_status(&info
[j
]);
2644 return coalesce_local_pair_reuse(i
, j
, info
);
2647 /* Shift the integer division at position "div" of the basic map
2648 * represented by "info" by "shift".
2650 * That is, if the integer division has the form
2654 * then replace it by
2656 * floor((f(x) + shift * d)/d) - shift
2658 static isl_stat
shift_div(struct isl_coalesce_info
*info
, int div
,
2661 isl_size total
, n_div
;
2663 info
->bmap
= isl_basic_map_shift_div(info
->bmap
, div
, 0, shift
);
2665 return isl_stat_error
;
2667 total
= isl_basic_map_dim(info
->bmap
, isl_dim_all
);
2668 n_div
= isl_basic_map_dim(info
->bmap
, isl_dim_div
);
2669 if (total
< 0 || n_div
< 0)
2670 return isl_stat_error
;
2672 if (isl_tab_shift_var(info
->tab
, total
+ div
, shift
) < 0)
2673 return isl_stat_error
;
2678 /* If the integer division at position "div" is defined by an equality,
2679 * i.e., a stride constraint, then change the integer division expression
2680 * to have a constant term equal to zero.
2682 * Let the equality constraint be
2686 * The integer division expression is then typically of the form
2688 * a = floor((-f - c')/m)
2690 * The integer division is first shifted by t = floor(c/m),
2691 * turning the equality constraint into
2693 * c - m floor(c/m) + f + m a' = 0
2697 * (c mod m) + f + m a' = 0
2701 * a' = (-f - (c mod m))/m = floor((-f)/m)
2703 * because a' is an integer and 0 <= (c mod m) < m.
2704 * The constant term of a' can therefore be zeroed out,
2705 * but only if the integer division expression is of the expected form.
2707 static isl_stat
normalize_stride_div(struct isl_coalesce_info
*info
, int div
)
2709 isl_bool defined
, valid
;
2712 isl_int shift
, stride
;
2714 defined
= isl_basic_map_has_defining_equality(info
->bmap
, isl_dim_div
,
2717 return isl_stat_error
;
2721 return isl_stat_error
;
2722 valid
= isl_constraint_is_div_equality(c
, div
);
2723 isl_int_init(shift
);
2724 isl_int_init(stride
);
2725 isl_constraint_get_constant(c
, &shift
);
2726 isl_constraint_get_coefficient(c
, isl_dim_div
, div
, &stride
);
2727 isl_int_fdiv_q(shift
, shift
, stride
);
2728 r
= shift_div(info
, div
, shift
);
2729 isl_int_clear(stride
);
2730 isl_int_clear(shift
);
2731 isl_constraint_free(c
);
2732 if (r
< 0 || valid
< 0)
2733 return isl_stat_error
;
2736 info
->bmap
= isl_basic_map_set_div_expr_constant_num_si_inplace(
2737 info
->bmap
, div
, 0);
2739 return isl_stat_error
;
2743 /* The basic maps represented by "info1" and "info2" are known
2744 * to have the same number of integer divisions.
2745 * Check if pairs of integer divisions are equal to each other
2746 * despite the fact that they differ by a rational constant.
2748 * In particular, look for any pair of integer divisions that
2749 * only differ in their constant terms.
2750 * If either of these integer divisions is defined
2751 * by stride constraints, then modify it to have a zero constant term.
2752 * If both are defined by stride constraints then in the end they will have
2753 * the same (zero) constant term.
2755 static isl_stat
harmonize_stride_divs(struct isl_coalesce_info
*info1
,
2756 struct isl_coalesce_info
*info2
)
2761 n
= isl_basic_map_dim(info1
->bmap
, isl_dim_div
);
2763 return isl_stat_error
;
2764 for (i
= 0; i
< n
; ++i
) {
2765 isl_bool known
, harmonize
;
2767 known
= isl_basic_map_div_is_known(info1
->bmap
, i
);
2768 if (known
>= 0 && known
)
2769 known
= isl_basic_map_div_is_known(info2
->bmap
, i
);
2771 return isl_stat_error
;
2774 harmonize
= isl_basic_map_equal_div_expr_except_constant(
2775 info1
->bmap
, i
, info2
->bmap
, i
);
2777 return isl_stat_error
;
2780 if (normalize_stride_div(info1
, i
) < 0)
2781 return isl_stat_error
;
2782 if (normalize_stride_div(info2
, i
) < 0)
2783 return isl_stat_error
;
2789 /* If "shift" is an integer constant, then shift the integer division
2790 * at position "div" of the basic map represented by "info" by "shift".
2791 * If "shift" is not an integer constant, then do nothing.
2792 * If "shift" is equal to zero, then no shift needs to be performed either.
2794 * That is, if the integer division has the form
2798 * then replace it by
2800 * floor((f(x) + shift * d)/d) - shift
2802 static isl_stat
shift_if_cst_int(struct isl_coalesce_info
*info
, int div
,
2803 __isl_keep isl_aff
*shift
)
2810 cst
= isl_aff_is_cst(shift
);
2811 if (cst
< 0 || !cst
)
2812 return cst
< 0 ? isl_stat_error
: isl_stat_ok
;
2814 c
= isl_aff_get_constant_val(shift
);
2815 cst
= isl_val_is_int(c
);
2816 if (cst
>= 0 && cst
)
2817 cst
= isl_bool_not(isl_val_is_zero(c
));
2818 if (cst
< 0 || !cst
) {
2820 return cst
< 0 ? isl_stat_error
: isl_stat_ok
;
2824 r
= isl_val_get_num_isl_int(c
, &d
);
2826 r
= shift_div(info
, div
, d
);
2834 /* Check if some of the divs in the basic map represented by "info1"
2835 * are shifts of the corresponding divs in the basic map represented
2836 * by "info2", taking into account the equality constraints "eq1" of "info1"
2837 * and "eq2" of "info2". If so, align them with those of "info2".
2838 * "info1" and "info2" are assumed to have the same number
2839 * of integer divisions.
2841 * An integer division is considered to be a shift of another integer
2842 * division if, after simplification with respect to the equality
2843 * constraints of the other basic map, one is equal to the other
2846 * In particular, for each pair of integer divisions, if both are known,
2847 * have the same denominator and are not already equal to each other,
2848 * simplify each with respect to the equality constraints
2849 * of the other basic map. If the difference is an integer constant,
2850 * then move this difference outside.
2851 * That is, if, after simplification, one integer division is of the form
2853 * floor((f(x) + c_1)/d)
2855 * while the other is of the form
2857 * floor((f(x) + c_2)/d)
2859 * and n = (c_2 - c_1)/d is an integer, then replace the first
2860 * integer division by
2862 * floor((f_1(x) + c_1 + n * d)/d) - n,
2864 * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
2865 * after simplification with respect to the equality constraints.
2867 static isl_stat
harmonize_divs_with_hulls(struct isl_coalesce_info
*info1
,
2868 struct isl_coalesce_info
*info2
, __isl_keep isl_basic_set
*eq1
,
2869 __isl_keep isl_basic_set
*eq2
)
2873 isl_local_space
*ls1
, *ls2
;
2875 total
= isl_basic_map_dim(info1
->bmap
, isl_dim_all
);
2877 return isl_stat_error
;
2878 ls1
= isl_local_space_wrap(isl_basic_map_get_local_space(info1
->bmap
));
2879 ls2
= isl_local_space_wrap(isl_basic_map_get_local_space(info2
->bmap
));
2880 for (i
= 0; i
< info1
->bmap
->n_div
; ++i
) {
2882 isl_aff
*div1
, *div2
;
2884 if (!isl_local_space_div_is_known(ls1
, i
) ||
2885 !isl_local_space_div_is_known(ls2
, i
))
2887 if (isl_int_ne(info1
->bmap
->div
[i
][0], info2
->bmap
->div
[i
][0]))
2889 if (isl_seq_eq(info1
->bmap
->div
[i
] + 1,
2890 info2
->bmap
->div
[i
] + 1, 1 + total
))
2892 div1
= isl_local_space_get_div(ls1
, i
);
2893 div2
= isl_local_space_get_div(ls2
, i
);
2894 div1
= isl_aff_substitute_equalities(div1
,
2895 isl_basic_set_copy(eq2
));
2896 div2
= isl_aff_substitute_equalities(div2
,
2897 isl_basic_set_copy(eq1
));
2898 div2
= isl_aff_sub(div2
, div1
);
2899 r
= shift_if_cst_int(info1
, i
, div2
);
2904 isl_local_space_free(ls1
);
2905 isl_local_space_free(ls2
);
2907 if (i
< info1
->bmap
->n_div
)
2908 return isl_stat_error
;
2912 /* Check if some of the divs in the basic map represented by "info1"
2913 * are shifts of the corresponding divs in the basic map represented
2914 * by "info2". If so, align them with those of "info2".
2915 * Only do this if "info1" and "info2" have the same number
2916 * of integer divisions.
2918 * An integer division is considered to be a shift of another integer
2919 * division if, after simplification with respect to the equality
2920 * constraints of the other basic map, one is equal to the other
2923 * First check if pairs of integer divisions are equal to each other
2924 * despite the fact that they differ by a rational constant.
2925 * If so, try and arrange for them to have the same constant term.
2927 * Then, extract the equality constraints and continue with
2928 * harmonize_divs_with_hulls.
2930 * If the equality constraints of both basic maps are the same,
2931 * then there is no need to perform any shifting since
2932 * the coefficients of the integer divisions should have been
2933 * reduced in the same way.
2935 static isl_stat
harmonize_divs(struct isl_coalesce_info
*info1
,
2936 struct isl_coalesce_info
*info2
)
2939 isl_basic_map
*bmap1
, *bmap2
;
2940 isl_basic_set
*eq1
, *eq2
;
2943 if (!info1
->bmap
|| !info2
->bmap
)
2944 return isl_stat_error
;
2946 if (info1
->bmap
->n_div
!= info2
->bmap
->n_div
)
2948 if (info1
->bmap
->n_div
== 0)
2951 if (harmonize_stride_divs(info1
, info2
) < 0)
2952 return isl_stat_error
;
2954 bmap1
= isl_basic_map_copy(info1
->bmap
);
2955 bmap2
= isl_basic_map_copy(info2
->bmap
);
2956 eq1
= isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1
));
2957 eq2
= isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2
));
2958 equal
= isl_basic_set_plain_is_equal(eq1
, eq2
);
2964 r
= harmonize_divs_with_hulls(info1
, info2
, eq1
, eq2
);
2965 isl_basic_set_free(eq1
);
2966 isl_basic_set_free(eq2
);
2971 /* Do the two basic maps live in the same local space, i.e.,
2972 * do they have the same (known) divs?
2973 * If either basic map has any unknown divs, then we can only assume
2974 * that they do not live in the same local space.
2976 static isl_bool
same_divs(__isl_keep isl_basic_map
*bmap1
,
2977 __isl_keep isl_basic_map
*bmap2
)
2983 if (!bmap1
|| !bmap2
)
2984 return isl_bool_error
;
2985 if (bmap1
->n_div
!= bmap2
->n_div
)
2986 return isl_bool_false
;
2988 if (bmap1
->n_div
== 0)
2989 return isl_bool_true
;
2991 known
= isl_basic_map_divs_known(bmap1
);
2992 if (known
< 0 || !known
)
2994 known
= isl_basic_map_divs_known(bmap2
);
2995 if (known
< 0 || !known
)
2998 total
= isl_basic_map_dim(bmap1
, isl_dim_all
);
3000 return isl_bool_error
;
3001 for (i
= 0; i
< bmap1
->n_div
; ++i
)
3002 if (!isl_seq_eq(bmap1
->div
[i
], bmap2
->div
[i
], 2 + total
))
3003 return isl_bool_false
;
3005 return isl_bool_true
;
3008 /* Assuming that "tab" contains the equality constraints and
3009 * the initial inequality constraints of "bmap", copy the remaining
3010 * inequality constraints of "bmap" to "Tab".
3012 static isl_stat
copy_ineq(struct isl_tab
*tab
, __isl_keep isl_basic_map
*bmap
)
3017 return isl_stat_error
;
3019 n_ineq
= tab
->n_con
- tab
->n_eq
;
3020 for (i
= n_ineq
; i
< bmap
->n_ineq
; ++i
)
3021 if (isl_tab_add_ineq(tab
, bmap
->ineq
[i
]) < 0)
3022 return isl_stat_error
;
3027 /* Description of an integer division that is added
3028 * during an expansion.
3029 * "pos" is the position of the corresponding variable.
3030 * "cst" indicates whether this integer division has a fixed value.
3031 * "val" contains the fixed value, if the value is fixed.
3033 struct isl_expanded
{
3039 /* For each of the "n" integer division variables "expanded",
3040 * if the variable has a fixed value, then add two inequality
3041 * constraints expressing the fixed value.
3042 * Otherwise, add the corresponding div constraints.
3043 * The caller is responsible for removing the div constraints
3044 * that it added for all these "n" integer divisions.
3046 * The div constraints and the pair of inequality constraints
3047 * forcing the fixed value cannot both be added for a given variable
3048 * as the combination may render some of the original constraints redundant.
3049 * These would then be ignored during the coalescing detection,
3050 * while they could remain in the fused result.
3052 * The two added inequality constraints are
3057 * with "a" the variable and "v" its fixed value.
3058 * The facet corresponding to one of these two constraints is selected
3059 * in the tableau to ensure that the pair of inequality constraints
3060 * is treated as an equality constraint.
3061 * Such implicit equality constraints need to be turned
3062 * into explicit equality constraints to ensure both sides
3063 * of the equality constraints are taken into account.
3065 * The information in info->ineq is thrown away because it was
3066 * computed in terms of div constraints, while some of those
3067 * have now been replaced by these pairs of inequality constraints.
3069 static isl_stat
fix_constant_divs(struct isl_coalesce_info
*info
,
3070 int n
, struct isl_expanded
*expanded
)
3076 o_div
= isl_basic_map_offset(info
->bmap
, isl_dim_div
) - 1;
3077 ineq
= isl_vec_alloc(isl_tab_get_ctx(info
->tab
), 1 + info
->tab
->n_var
);
3079 return isl_stat_error
;
3080 isl_seq_clr(ineq
->el
+ 1, info
->tab
->n_var
);
3082 for (i
= 0; i
< n
; ++i
) {
3083 if (!expanded
[i
].cst
) {
3084 info
->bmap
= isl_basic_map_extend_constraints(
3086 info
->bmap
= isl_basic_map_add_div_constraints(
3087 info
->bmap
, expanded
[i
].pos
- o_div
);
3089 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], -1);
3090 isl_int_set(ineq
->el
[0], expanded
[i
].val
);
3091 info
->bmap
= isl_basic_map_add_ineq(info
->bmap
,
3093 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], 1);
3094 isl_int_neg(ineq
->el
[0], expanded
[i
].val
);
3095 info
->bmap
= isl_basic_map_add_ineq(info
->bmap
,
3097 isl_int_set_si(ineq
->el
[1 + expanded
[i
].pos
], 0);
3099 if (copy_ineq(info
->tab
, info
->bmap
) < 0)
3101 if (expanded
[i
].cst
&&
3102 isl_tab_select_facet(info
->tab
, info
->tab
->n_con
- 1) < 0)
3111 info
->bmap
= isl_tab_make_equalities_explicit(info
->tab
, info
->bmap
);
3113 return i
< n
? isl_stat_error
: isl_stat_ok
;
3116 /* Insert the "n" integer division variables "expanded"
3117 * into info->tab and info->bmap and
3118 * update info->ineq with respect to the redundant constraints
3119 * in the resulting tableau.
3120 * "bmap" contains the result of this insertion in info->bmap,
3121 * while info->bmap is the original version
3122 * of "bmap", i.e., the one that corresponds to the current
3123 * state of info->tab. The number of constraints in info->bmap
3124 * is assumed to be the same as the number of constraints
3125 * in info->tab. This is required to be able to detect
3126 * the extra constraints in "bmap".
3128 * In particular, introduce extra variables corresponding
3129 * to the extra integer divisions and add the div constraints
3130 * that were added to "bmap" after info->tab was created
3132 * Furthermore, check if these extra integer divisions happen
3133 * to attain a fixed integer value in info->tab.
3134 * If so, replace the corresponding div constraints by pairs
3135 * of inequality constraints that fix these
3136 * integer divisions to their single integer values.
3137 * Replace info->bmap by "bmap" to match the changes to info->tab.
3138 * info->ineq was computed without a tableau and therefore
3139 * does not take into account the redundant constraints
3140 * in the tableau. Mark them here.
3141 * There is no need to check the newly added div constraints
3142 * since they cannot be redundant.
3143 * The redundancy check is not performed when constants have been discovered
3144 * since info->ineq is completely thrown away in this case.
3146 static isl_stat
tab_insert_divs(struct isl_coalesce_info
*info
,
3147 int n
, struct isl_expanded
*expanded
, __isl_take isl_basic_map
*bmap
)
3151 struct isl_tab_undo
*snap
;
3155 return isl_stat_error
;
3156 if (info
->bmap
->n_eq
+ info
->bmap
->n_ineq
!= info
->tab
->n_con
)
3157 isl_die(isl_basic_map_get_ctx(bmap
), isl_error_internal
,
3158 "original tableau does not correspond "
3159 "to original basic map", goto error
);
3161 if (isl_tab_extend_vars(info
->tab
, n
) < 0)
3163 if (isl_tab_extend_cons(info
->tab
, 2 * n
) < 0)
3166 for (i
= 0; i
< n
; ++i
) {
3167 if (isl_tab_insert_var(info
->tab
, expanded
[i
].pos
) < 0)
3171 snap
= isl_tab_snap(info
->tab
);
3173 n_ineq
= info
->tab
->n_con
- info
->tab
->n_eq
;
3174 if (copy_ineq(info
->tab
, bmap
) < 0)
3177 isl_basic_map_free(info
->bmap
);
3181 for (i
= 0; i
< n
; ++i
) {
3182 expanded
[i
].cst
= isl_tab_is_constant(info
->tab
,
3183 expanded
[i
].pos
, &expanded
[i
].val
);
3184 if (expanded
[i
].cst
< 0)
3185 return isl_stat_error
;
3186 if (expanded
[i
].cst
)
3191 if (isl_tab_rollback(info
->tab
, snap
) < 0)
3192 return isl_stat_error
;
3193 info
->bmap
= isl_basic_map_cow(info
->bmap
);
3194 info
->bmap
= isl_basic_map_free_inequality(info
->bmap
, 2 * n
);
3196 return isl_stat_error
;
3198 return fix_constant_divs(info
, n
, expanded
);
3201 n_eq
= info
->bmap
->n_eq
;
3202 for (i
= 0; i
< n_ineq
; ++i
) {
3203 if (isl_tab_is_redundant(info
->tab
, n_eq
+ i
))
3204 info
->ineq
[i
] = STATUS_REDUNDANT
;
3209 isl_basic_map_free(bmap
);
3210 return isl_stat_error
;
3213 /* Expand info->tab and info->bmap in the same way "bmap" was expanded
3214 * in isl_basic_map_expand_divs using the expansion "exp" and
3215 * update info->ineq with respect to the redundant constraints
3216 * in the resulting tableau. info->bmap is the original version
3217 * of "bmap", i.e., the one that corresponds to the current
3218 * state of info->tab. The number of constraints in info->bmap
3219 * is assumed to be the same as the number of constraints
3220 * in info->tab. This is required to be able to detect
3221 * the extra constraints in "bmap".
3223 * Extract the positions where extra local variables are introduced
3224 * from "exp" and call tab_insert_divs.
3226 static isl_stat
expand_tab(struct isl_coalesce_info
*info
, int *exp
,
3227 __isl_take isl_basic_map
*bmap
)
3230 struct isl_expanded
*expanded
;
3233 isl_size total
, n_div
;
3237 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3238 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3239 if (total
< 0 || n_div
< 0)
3240 return isl_stat_error
;
3241 pos
= total
- n_div
;
3242 extra_var
= total
- info
->tab
->n_var
;
3243 n
= n_div
- extra_var
;
3245 ctx
= isl_basic_map_get_ctx(bmap
);
3246 expanded
= isl_calloc_array(ctx
, struct isl_expanded
, extra_var
);
3247 if (extra_var
&& !expanded
)
3252 for (j
= 0; j
< n_div
; ++j
) {
3253 if (i
< n
&& exp
[i
] == j
) {
3257 expanded
[k
++].pos
= pos
+ j
;
3260 for (k
= 0; k
< extra_var
; ++k
)
3261 isl_int_init(expanded
[k
].val
);
3263 r
= tab_insert_divs(info
, extra_var
, expanded
, bmap
);
3265 for (k
= 0; k
< extra_var
; ++k
)
3266 isl_int_clear(expanded
[k
].val
);
3271 isl_basic_map_free(bmap
);
3272 return isl_stat_error
;
3275 /* Check if the union of the basic maps represented by info[i] and info[j]
3276 * can be represented by a single basic map,
3277 * after expanding the divs of info[i] to match those of info[j].
3278 * If so, replace the pair by the single basic map and return
3279 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3280 * Otherwise, return isl_change_none.
3282 * The caller has already checked for info[j] being a subset of info[i].
3283 * If some of the divs of info[j] are unknown, then the expanded info[i]
3284 * will not have the corresponding div constraints. The other patterns
3285 * therefore cannot apply. Skip the computation in this case.
3287 * The expansion is performed using the divs "div" and expansion "exp"
3288 * computed by the caller.
3289 * info[i].bmap has already been expanded and the result is passed in
3291 * The "eq" and "ineq" fields of info[i] reflect the status of
3292 * the constraints of the expanded "bmap" with respect to info[j].tab.
3293 * However, inequality constraints that are redundant in info[i].tab
3294 * have not yet been marked as such because no tableau was available.
3296 * Replace info[i].bmap by "bmap" and expand info[i].tab as well,
3297 * updating info[i].ineq with respect to the redundant constraints.
3298 * Then try and coalesce the expanded info[i] with info[j],
3299 * reusing the information in info[i].eq and info[i].ineq.
3300 * If this does not result in any coalescing or if it results in info[j]
3301 * getting dropped (which should not happen in practice, since the case
3302 * of info[j] being a subset of info[i] has already been checked by
3303 * the caller), then revert info[i] to its original state.
3305 static enum isl_change
coalesce_expand_tab_divs(__isl_take isl_basic_map
*bmap
,
3306 int i
, int j
, struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
,
3310 isl_basic_map
*bmap_i
;
3311 struct isl_tab_undo
*snap
;
3312 enum isl_change change
= isl_change_none
;
3314 known
= isl_basic_map_divs_known(info
[j
].bmap
);
3315 if (known
< 0 || !known
) {
3316 clear_status(&info
[i
]);
3317 isl_basic_map_free(bmap
);
3318 return known
< 0 ? isl_change_error
: isl_change_none
;
3321 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
3322 snap
= isl_tab_snap(info
[i
].tab
);
3323 if (expand_tab(&info
[i
], exp
, bmap
) < 0)
3324 change
= isl_change_error
;
3326 init_status(&info
[j
]);
3327 if (change
== isl_change_none
)
3328 change
= coalesce_local_pair_reuse(i
, j
, info
);
3330 clear_status(&info
[i
]);
3331 if (change
!= isl_change_none
&& change
!= isl_change_drop_second
) {
3332 isl_basic_map_free(bmap_i
);
3334 isl_basic_map_free(info
[i
].bmap
);
3335 info
[i
].bmap
= bmap_i
;
3337 if (isl_tab_rollback(info
[i
].tab
, snap
) < 0)
3338 change
= isl_change_error
;
3344 /* Check if the union of "bmap" and the basic map represented by info[j]
3345 * can be represented by a single basic map,
3346 * after expanding the divs of "bmap" to match those of info[j].
3347 * If so, replace the pair by the single basic map and return
3348 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3349 * Otherwise, return isl_change_none.
3351 * In particular, check if the expanded "bmap" contains the basic map
3352 * represented by the tableau info[j].tab.
3353 * The expansion is performed using the divs "div" and expansion "exp"
3354 * computed by the caller.
3355 * Then we check if all constraints of the expanded "bmap" are valid for
3358 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3359 * In this case, the positions of the constraints of info[i].bmap
3360 * with respect to the basic map represented by info[j] are stored
3363 * If the expanded "bmap" does not contain the basic map
3364 * represented by the tableau info[j].tab and if "i" is not -1,
3365 * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
3366 * as well and check if that results in coalescing.
3368 static enum isl_change
coalesce_with_expanded_divs(
3369 __isl_keep isl_basic_map
*bmap
, int i
, int j
,
3370 struct isl_coalesce_info
*info
, __isl_keep isl_mat
*div
, int *exp
)
3372 enum isl_change change
= isl_change_none
;
3373 struct isl_coalesce_info info_local
, *info_i
;
3375 info_i
= i
>= 0 ? &info
[i
] : &info_local
;
3376 init_status(info_i
);
3377 bmap
= isl_basic_map_copy(bmap
);
3378 bmap
= isl_basic_map_expand_divs(bmap
, isl_mat_copy(div
), exp
);
3379 bmap
= isl_basic_map_mark_final(bmap
);
3384 info_local
.bmap
= bmap
;
3385 info_i
->eq
= eq_status_in(bmap
, info
[j
].tab
);
3386 if (bmap
->n_eq
&& !info_i
->eq
)
3388 if (any_eq(info_i
, STATUS_ERROR
))
3390 if (any_eq(info_i
, STATUS_SEPARATE
))
3393 info_i
->ineq
= ineq_status_in(bmap
, NULL
, info
[j
].tab
);
3394 if (bmap
->n_ineq
&& !info_i
->ineq
)
3396 if (any_ineq(info_i
, STATUS_ERROR
))
3398 if (any_ineq(info_i
, STATUS_SEPARATE
))
3401 if (all(info_i
->eq
, 2 * bmap
->n_eq
, STATUS_VALID
) &&
3402 all(info_i
->ineq
, bmap
->n_ineq
, STATUS_VALID
)) {
3404 change
= isl_change_drop_second
;
3407 if (change
== isl_change_none
&& i
!= -1)
3408 return coalesce_expand_tab_divs(bmap
, i
, j
, info
, div
, exp
);
3411 isl_basic_map_free(bmap
);
3412 clear_status(info_i
);
3415 isl_basic_map_free(bmap
);
3416 clear_status(info_i
);
3417 return isl_change_error
;
3420 /* Check if the union of "bmap_i" and the basic map represented by info[j]
3421 * can be represented by a single basic map,
3422 * after aligning the divs of "bmap_i" to match those of info[j].
3423 * If so, replace the pair by the single basic map and return
3424 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3425 * Otherwise, return isl_change_none.
3427 * In particular, check if "bmap_i" contains the basic map represented by
3428 * info[j] after aligning the divs of "bmap_i" to those of info[j].
3429 * Note that this can only succeed if the number of divs of "bmap_i"
3430 * is smaller than (or equal to) the number of divs of info[j].
3432 * We first check if the divs of "bmap_i" are all known and form a subset
3433 * of those of info[j].bmap. If so, we pass control over to
3434 * coalesce_with_expanded_divs.
3436 * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
3438 static enum isl_change
coalesce_after_aligning_divs(
3439 __isl_keep isl_basic_map
*bmap_i
, int i
, int j
,
3440 struct isl_coalesce_info
*info
)
3443 isl_mat
*div_i
, *div_j
, *div
;
3447 enum isl_change change
;
3449 known
= isl_basic_map_divs_known(bmap_i
);
3451 return isl_change_error
;
3453 return isl_change_none
;
3455 ctx
= isl_basic_map_get_ctx(bmap_i
);
3457 div_i
= isl_basic_map_get_divs(bmap_i
);
3458 div_j
= isl_basic_map_get_divs(info
[j
].bmap
);
3460 if (!div_i
|| !div_j
)
3463 exp1
= isl_alloc_array(ctx
, int, div_i
->n_row
);
3464 exp2
= isl_alloc_array(ctx
, int, div_j
->n_row
);
3465 if ((div_i
->n_row
&& !exp1
) || (div_j
->n_row
&& !exp2
))
3468 div
= isl_merge_divs(div_i
, div_j
, exp1
, exp2
);
3472 if (div
->n_row
== div_j
->n_row
)
3473 change
= coalesce_with_expanded_divs(bmap_i
,
3474 i
, j
, info
, div
, exp1
);
3476 change
= isl_change_none
;
3480 isl_mat_free(div_i
);
3481 isl_mat_free(div_j
);
3488 isl_mat_free(div_i
);
3489 isl_mat_free(div_j
);
3492 return isl_change_error
;
3495 /* Check if basic map "j" is a subset of basic map "i" after
3496 * exploiting the extra equalities of "j" to simplify the divs of "i".
3497 * If so, remove basic map "j" and return isl_change_drop_second.
3499 * If "j" does not have any equalities or if they are the same
3500 * as those of "i", then we cannot exploit them to simplify the divs.
3501 * Similarly, if there are no divs in "i", then they cannot be simplified.
3502 * If, on the other hand, the affine hulls of "i" and "j" do not intersect,
3503 * then "j" cannot be a subset of "i".
3505 * Otherwise, we intersect "i" with the affine hull of "j" and then
3506 * check if "j" is a subset of the result after aligning the divs.
3507 * If so, then "j" is definitely a subset of "i" and can be removed.
3508 * Note that if after intersection with the affine hull of "j".
3509 * "i" still has more divs than "j", then there is no way we can
3510 * align the divs of "i" to those of "j".
3512 static enum isl_change
coalesce_subset_with_equalities(int i
, int j
,
3513 struct isl_coalesce_info
*info
)
3515 isl_basic_map
*hull_i
, *hull_j
, *bmap_i
;
3517 enum isl_change change
;
3519 if (info
[j
].bmap
->n_eq
== 0)
3520 return isl_change_none
;
3521 if (info
[i
].bmap
->n_div
== 0)
3522 return isl_change_none
;
3524 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
3525 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
3526 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
3527 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
3529 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
3530 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
3531 empty
= isl_basic_map_plain_is_empty(hull_j
);
3532 isl_basic_map_free(hull_i
);
3534 if (equal
< 0 || equal
|| empty
< 0 || empty
) {
3535 isl_basic_map_free(hull_j
);
3536 if (equal
< 0 || empty
< 0)
3537 return isl_change_error
;
3538 return isl_change_none
;
3541 bmap_i
= isl_basic_map_copy(info
[i
].bmap
);
3542 bmap_i
= isl_basic_map_intersect(bmap_i
, hull_j
);
3544 return isl_change_error
;
3546 if (bmap_i
->n_div
> info
[j
].bmap
->n_div
) {
3547 isl_basic_map_free(bmap_i
);
3548 return isl_change_none
;
3551 change
= coalesce_after_aligning_divs(bmap_i
, -1, j
, info
);
3553 isl_basic_map_free(bmap_i
);
3558 /* Check if the union of the basic maps represented by info[i] and info[j]
3559 * can be represented by a single basic map, by aligning or equating
3560 * their integer divisions.
3561 * If so, replace the pair by the single basic map and return
3562 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3563 * Otherwise, return isl_change_none.
3565 * Note that we only perform any test if the number of divs is different
3566 * in the two basic maps. In case the number of divs is the same,
3567 * we have already established that the divs are different
3568 * in the two basic maps.
3569 * In particular, if the number of divs of basic map i is smaller than
3570 * the number of divs of basic map j, then we check if j is a subset of i
3573 static enum isl_change
coalesce_divs(int i
, int j
,
3574 struct isl_coalesce_info
*info
)
3576 enum isl_change change
= isl_change_none
;
3578 if (info
[i
].bmap
->n_div
< info
[j
].bmap
->n_div
)
3579 change
= coalesce_after_aligning_divs(info
[i
].bmap
, i
, j
, info
);
3580 if (change
!= isl_change_none
)
3583 if (info
[j
].bmap
->n_div
< info
[i
].bmap
->n_div
)
3584 change
= coalesce_after_aligning_divs(info
[j
].bmap
, j
, i
, info
);
3585 if (change
!= isl_change_none
)
3586 return invert_change(change
);
3588 change
= coalesce_subset_with_equalities(i
, j
, info
);
3589 if (change
!= isl_change_none
)
3592 change
= coalesce_subset_with_equalities(j
, i
, info
);
3593 if (change
!= isl_change_none
)
3594 return invert_change(change
);
3596 return isl_change_none
;
3599 /* Does "bmap" involve any divs that themselves refer to divs?
3601 static isl_bool
has_nested_div(__isl_keep isl_basic_map
*bmap
)
3607 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3608 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
3609 if (total
< 0 || n_div
< 0)
3610 return isl_bool_error
;
3613 for (i
= 0; i
< n_div
; ++i
)
3614 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + total
,
3616 return isl_bool_true
;
3618 return isl_bool_false
;
3621 /* Return a list of affine expressions, one for each integer division
3622 * in "bmap_i". For each integer division that also appears in "bmap_j",
3623 * the affine expression is set to NaN. The number of NaNs in the list
3624 * is equal to the number of integer divisions in "bmap_j".
3625 * For the other integer divisions of "bmap_i", the corresponding
3626 * element in the list is a purely affine expression equal to the integer
3627 * division in "hull".
3628 * If no such list can be constructed, then the number of elements
3629 * in the returned list is smaller than the number of integer divisions
3631 * The integer division of "bmap_i" and "bmap_j" are assumed to be known and
3632 * not contain any nested divs.
3634 static __isl_give isl_aff_list
*set_up_substitutions(
3635 __isl_keep isl_basic_map
*bmap_i
, __isl_keep isl_basic_map
*bmap_j
,
3636 __isl_take isl_basic_map
*hull
)
3638 isl_size n_div_i
, n_div_j
, total
;
3640 isl_local_space
*ls
;
3641 isl_basic_set
*wrap_hull
;
3646 n_div_i
= isl_basic_map_dim(bmap_i
, isl_dim_div
);
3647 n_div_j
= isl_basic_map_dim(bmap_j
, isl_dim_div
);
3648 total
= isl_basic_map_dim(bmap_i
, isl_dim_all
);
3649 if (!hull
|| n_div_i
< 0 || n_div_j
< 0 || total
< 0)
3652 ctx
= isl_basic_map_get_ctx(hull
);
3655 ls
= isl_basic_map_get_local_space(bmap_i
);
3656 ls
= isl_local_space_wrap(ls
);
3657 wrap_hull
= isl_basic_map_wrap(hull
);
3659 aff_nan
= isl_aff_nan_on_domain(isl_local_space_copy(ls
));
3660 list
= isl_aff_list_alloc(ctx
, n_div_i
);
3663 for (i
= 0; i
< n_div_i
; ++i
) {
3668 isl_basic_map_equal_div_expr_part(bmap_i
, i
, bmap_j
, j
,
3671 list
= isl_aff_list_add(list
, isl_aff_copy(aff_nan
));
3674 if (n_div_i
- i
<= n_div_j
- j
)
3677 aff
= isl_local_space_get_div(ls
, i
);
3678 aff
= isl_aff_substitute_equalities(aff
,
3679 isl_basic_set_copy(wrap_hull
));
3680 aff
= isl_aff_floor(aff
);
3681 n_div
= isl_aff_dim(aff
, isl_dim_div
);
3689 list
= isl_aff_list_add(list
, aff
);
3692 isl_aff_free(aff_nan
);
3693 isl_local_space_free(ls
);
3694 isl_basic_set_free(wrap_hull
);
3698 isl_aff_free(aff_nan
);
3699 isl_local_space_free(ls
);
3700 isl_basic_set_free(wrap_hull
);
3701 isl_aff_list_free(list
);
3705 /* Add variables to info->bmap and info->tab corresponding to the elements
3706 * in "list" that are not set to NaN.
3707 * "extra_var" is the number of these elements.
3708 * "dim" is the offset in the variables of "tab" where we should
3709 * start considering the elements in "list".
3710 * When this function returns, the total number of variables in "tab"
3711 * is equal to "dim" plus the number of elements in "list".
3713 * The newly added existentially quantified variables are not given
3714 * an explicit representation because the corresponding div constraints
3715 * do not appear in info->bmap. These constraints are not added
3716 * to info->bmap because for internal consistency, they would need to
3717 * be added to info->tab as well, where they could combine with the equality
3718 * that is added later to result in constraints that do not hold
3719 * in the original input.
3721 static isl_stat
add_sub_vars(struct isl_coalesce_info
*info
,
3722 __isl_keep isl_aff_list
*list
, int dim
, int extra_var
)
3727 info
->bmap
= isl_basic_map_cow(info
->bmap
);
3728 info
->bmap
= isl_basic_map_extend(info
->bmap
, extra_var
, 0, 0);
3729 n
= isl_aff_list_n_aff(list
);
3730 if (!info
->bmap
|| n
< 0)
3731 return isl_stat_error
;
3732 for (i
= 0; i
< n
; ++i
) {
3736 aff
= isl_aff_list_get_aff(list
, i
);
3737 is_nan
= isl_aff_is_nan(aff
);
3740 return isl_stat_error
;
3744 if (isl_tab_insert_var(info
->tab
, dim
+ i
) < 0)
3745 return isl_stat_error
;
3746 d
= isl_basic_map_alloc_div(info
->bmap
);
3748 return isl_stat_error
;
3749 info
->bmap
= isl_basic_map_mark_div_unknown(info
->bmap
, d
);
3750 for (j
= d
; j
> i
; --j
)
3751 info
->bmap
= isl_basic_map_swap_div(info
->bmap
,
3754 return isl_stat_error
;
3760 /* For each element in "list" that is not set to NaN, fix the corresponding
3761 * variable in "tab" to the purely affine expression defined by the element.
3762 * "dim" is the offset in the variables of "tab" where we should
3763 * start considering the elements in "list".
3765 * This function assumes that a sufficient number of rows and
3766 * elements in the constraint array are available in the tableau.
3768 static isl_stat
add_sub_equalities(struct isl_tab
*tab
,
3769 __isl_keep isl_aff_list
*list
, int dim
)
3777 n
= isl_aff_list_n_aff(list
);
3779 return isl_stat_error
;
3781 ctx
= isl_tab_get_ctx(tab
);
3782 sub
= isl_vec_alloc(ctx
, 1 + dim
+ n
);
3784 return isl_stat_error
;
3785 isl_seq_clr(sub
->el
+ 1 + dim
, n
);
3787 for (i
= 0; i
< n
; ++i
) {
3788 aff
= isl_aff_list_get_aff(list
, i
);
3791 if (isl_aff_is_nan(aff
)) {
3795 isl_seq_cpy(sub
->el
, aff
->v
->el
+ 1, 1 + dim
);
3796 isl_int_neg(sub
->el
[1 + dim
+ i
], aff
->v
->el
[0]);
3797 if (isl_tab_add_eq(tab
, sub
->el
) < 0)
3799 isl_int_set_si(sub
->el
[1 + dim
+ i
], 0);
3808 return isl_stat_error
;
3811 /* Add variables to info->tab and info->bmap corresponding to the elements
3812 * in "list" that are not set to NaN. The value of the added variable
3813 * in info->tab is fixed to the purely affine expression defined by the element.
3814 * "dim" is the offset in the variables of info->tab where we should
3815 * start considering the elements in "list".
3816 * When this function returns, the total number of variables in info->tab
3817 * is equal to "dim" plus the number of elements in "list".
3819 static isl_stat
add_subs(struct isl_coalesce_info
*info
,
3820 __isl_keep isl_aff_list
*list
, int dim
)
3825 n
= isl_aff_list_n_aff(list
);
3827 return isl_stat_error
;
3829 extra_var
= n
- (info
->tab
->n_var
- dim
);
3831 if (isl_tab_extend_vars(info
->tab
, extra_var
) < 0)
3832 return isl_stat_error
;
3833 if (isl_tab_extend_cons(info
->tab
, 2 * extra_var
) < 0)
3834 return isl_stat_error
;
3835 if (add_sub_vars(info
, list
, dim
, extra_var
) < 0)
3836 return isl_stat_error
;
3838 return add_sub_equalities(info
->tab
, list
, dim
);
3841 /* Coalesce basic map "j" into basic map "i" after adding the extra integer
3842 * divisions in "i" but not in "j" to basic map "j", with values
3843 * specified by "list". The total number of elements in "list"
3844 * is equal to the number of integer divisions in "i", while the number
3845 * of NaN elements in the list is equal to the number of integer divisions
3848 * If no coalescing can be performed, then we need to revert basic map "j"
3849 * to its original state. We do the same if basic map "i" gets dropped
3850 * during the coalescing, even though this should not happen in practice
3851 * since we have already checked for "j" being a subset of "i"
3852 * before we reach this stage.
3854 static enum isl_change
coalesce_with_subs(int i
, int j
,
3855 struct isl_coalesce_info
*info
, __isl_keep isl_aff_list
*list
)
3857 isl_basic_map
*bmap_j
;
3858 struct isl_tab_undo
*snap
;
3859 isl_size dim
, n_div
;
3860 enum isl_change change
;
3862 bmap_j
= isl_basic_map_copy(info
[j
].bmap
);
3863 snap
= isl_tab_snap(info
[j
].tab
);
3865 dim
= isl_basic_map_dim(bmap_j
, isl_dim_all
);
3866 n_div
= isl_basic_map_dim(bmap_j
, isl_dim_div
);
3867 if (dim
< 0 || n_div
< 0)
3870 if (add_subs(&info
[j
], list
, dim
) < 0)
3873 change
= coalesce_local_pair(i
, j
, info
);
3874 if (change
!= isl_change_none
&& change
!= isl_change_drop_first
) {
3875 isl_basic_map_free(bmap_j
);
3877 isl_basic_map_free(info
[j
].bmap
);
3878 info
[j
].bmap
= bmap_j
;
3880 if (isl_tab_rollback(info
[j
].tab
, snap
) < 0)
3881 return isl_change_error
;
3886 isl_basic_map_free(bmap_j
);
3887 return isl_change_error
;
3890 /* Check if we can coalesce basic map "j" into basic map "i" after copying
3891 * those extra integer divisions in "i" that can be simplified away
3892 * using the extra equalities in "j".
3893 * All divs are assumed to be known and not contain any nested divs.
3895 * We first check if there are any extra equalities in "j" that we
3896 * can exploit. Then we check if every integer division in "i"
3897 * either already appears in "j" or can be simplified using the
3898 * extra equalities to a purely affine expression.
3899 * If these tests succeed, then we try to coalesce the two basic maps
3900 * by introducing extra dimensions in "j" corresponding to
3901 * the extra integer divisions "i" fixed to the corresponding
3902 * purely affine expression.
3904 static enum isl_change
check_coalesce_into_eq(int i
, int j
,
3905 struct isl_coalesce_info
*info
)
3907 isl_size n_div_i
, n_div_j
, n
;
3908 isl_basic_map
*hull_i
, *hull_j
;
3909 isl_bool equal
, empty
;
3911 enum isl_change change
;
3913 n_div_i
= isl_basic_map_dim(info
[i
].bmap
, isl_dim_div
);
3914 n_div_j
= isl_basic_map_dim(info
[j
].bmap
, isl_dim_div
);
3915 if (n_div_i
< 0 || n_div_j
< 0)
3916 return isl_change_error
;
3917 if (n_div_i
<= n_div_j
)
3918 return isl_change_none
;
3919 if (info
[j
].bmap
->n_eq
== 0)
3920 return isl_change_none
;
3922 hull_i
= isl_basic_map_copy(info
[i
].bmap
);
3923 hull_i
= isl_basic_map_plain_affine_hull(hull_i
);
3924 hull_j
= isl_basic_map_copy(info
[j
].bmap
);
3925 hull_j
= isl_basic_map_plain_affine_hull(hull_j
);
3927 hull_j
= isl_basic_map_intersect(hull_j
, isl_basic_map_copy(hull_i
));
3928 equal
= isl_basic_map_plain_is_equal(hull_i
, hull_j
);
3929 empty
= isl_basic_map_plain_is_empty(hull_j
);
3930 isl_basic_map_free(hull_i
);
3932 if (equal
< 0 || empty
< 0)
3934 if (equal
|| empty
) {
3935 isl_basic_map_free(hull_j
);
3936 return isl_change_none
;
3939 list
= set_up_substitutions(info
[i
].bmap
, info
[j
].bmap
, hull_j
);
3941 return isl_change_error
;
3942 n
= isl_aff_list_n_aff(list
);
3944 change
= isl_change_error
;
3945 else if (n
< n_div_i
)
3946 change
= isl_change_none
;
3948 change
= coalesce_with_subs(i
, j
, info
, list
);
3950 isl_aff_list_free(list
);
3954 isl_basic_map_free(hull_j
);
3955 return isl_change_error
;
3958 /* Check if we can coalesce basic maps "i" and "j" after copying
3959 * those extra integer divisions in one of the basic maps that can
3960 * be simplified away using the extra equalities in the other basic map.
3961 * We require all divs to be known in both basic maps.
3962 * Furthermore, to simplify the comparison of div expressions,
3963 * we do not allow any nested integer divisions.
3965 static enum isl_change
check_coalesce_eq(int i
, int j
,
3966 struct isl_coalesce_info
*info
)
3968 isl_bool known
, nested
;
3969 enum isl_change change
;
3971 known
= isl_basic_map_divs_known(info
[i
].bmap
);
3972 if (known
< 0 || !known
)
3973 return known
< 0 ? isl_change_error
: isl_change_none
;
3974 known
= isl_basic_map_divs_known(info
[j
].bmap
);
3975 if (known
< 0 || !known
)
3976 return known
< 0 ? isl_change_error
: isl_change_none
;
3977 nested
= has_nested_div(info
[i
].bmap
);
3978 if (nested
< 0 || nested
)
3979 return nested
< 0 ? isl_change_error
: isl_change_none
;
3980 nested
= has_nested_div(info
[j
].bmap
);
3981 if (nested
< 0 || nested
)
3982 return nested
< 0 ? isl_change_error
: isl_change_none
;
3984 change
= check_coalesce_into_eq(i
, j
, info
);
3985 if (change
!= isl_change_none
)
3987 change
= check_coalesce_into_eq(j
, i
, info
);
3988 if (change
!= isl_change_none
)
3989 return invert_change(change
);
3991 return isl_change_none
;
3994 /* Check if the union of the given pair of basic maps
3995 * can be represented by a single basic map.
3996 * If so, replace the pair by the single basic map and return
3997 * isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
3998 * Otherwise, return isl_change_none.
4000 * We first check if the two basic maps live in the same local space,
4001 * after aligning the divs that differ by only an integer constant.
4002 * If so, we do the complete check. Otherwise, we check if they have
4003 * the same number of integer divisions and can be coalesced, if one is
4004 * an obvious subset of the other or if the extra integer divisions
4005 * of one basic map can be simplified away using the extra equalities
4006 * of the other basic map.
4008 * Note that trying to coalesce pairs of disjuncts with the same
4009 * number, but different local variables may drop the explicit
4010 * representation of some of these local variables.
4011 * This operation is therefore not performed when
4012 * the "coalesce_preserve_locals" option is set.
4014 static enum isl_change
coalesce_pair(int i
, int j
,
4015 struct isl_coalesce_info
*info
)
4019 enum isl_change change
;
4022 if (harmonize_divs(&info
[i
], &info
[j
]) < 0)
4023 return isl_change_error
;
4024 same
= same_divs(info
[i
].bmap
, info
[j
].bmap
);
4026 return isl_change_error
;
4028 return coalesce_local_pair(i
, j
, info
);
4030 ctx
= isl_basic_map_get_ctx(info
[i
].bmap
);
4031 preserve
= isl_options_get_coalesce_preserve_locals(ctx
);
4032 if (!preserve
&& info
[i
].bmap
->n_div
== info
[j
].bmap
->n_div
) {
4033 change
= coalesce_local_pair(i
, j
, info
);
4034 if (change
!= isl_change_none
)
4038 change
= coalesce_divs(i
, j
, info
);
4039 if (change
!= isl_change_none
)
4042 return check_coalesce_eq(i
, j
, info
);
4045 /* Return the maximum of "a" and "b".
4047 static int isl_max(int a
, int b
)
4049 return a
> b
? a
: b
;
4052 /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
4053 * with those in the range [start2, end2[, skipping basic maps
4054 * that have been removed (either before or within this function).
4056 * For each basic map i in the first range, we check if it can be coalesced
4057 * with respect to any previously considered basic map j in the second range.
4058 * If i gets dropped (because it was a subset of some j), then
4059 * we can move on to the next basic map.
4060 * If j gets dropped, we need to continue checking against the other
4061 * previously considered basic maps.
4062 * If the two basic maps got fused, then we recheck the fused basic map
4063 * against the previously considered basic maps, starting at i + 1
4064 * (even if start2 is greater than i + 1).
4066 static int coalesce_range(isl_ctx
*ctx
, struct isl_coalesce_info
*info
,
4067 int start1
, int end1
, int start2
, int end2
)
4071 for (i
= end1
- 1; i
>= start1
; --i
) {
4072 if (info
[i
].removed
)
4074 for (j
= isl_max(i
+ 1, start2
); j
< end2
; ++j
) {
4075 enum isl_change changed
;
4077 if (info
[j
].removed
)
4079 if (info
[i
].removed
)
4080 isl_die(ctx
, isl_error_internal
,
4081 "basic map unexpectedly removed",
4083 changed
= coalesce_pair(i
, j
, info
);
4085 case isl_change_error
:
4087 case isl_change_none
:
4088 case isl_change_drop_second
:
4090 case isl_change_drop_first
:
4093 case isl_change_fuse
:
4103 /* Pairwise coalesce the basic maps described by the "n" elements of "info".
4105 * We consider groups of basic maps that live in the same apparent
4106 * affine hull and we first coalesce within such a group before we
4107 * coalesce the elements in the group with elements of previously
4108 * considered groups. If a fuse happens during the second phase,
4109 * then we also reconsider the elements within the group.
4111 static int coalesce(isl_ctx
*ctx
, int n
, struct isl_coalesce_info
*info
)
4115 for (end
= n
; end
> 0; end
= start
) {
4117 while (start
>= 1 &&
4118 info
[start
- 1].hull_hash
== info
[start
].hull_hash
)
4120 if (coalesce_range(ctx
, info
, start
, end
, start
, end
) < 0)
4122 if (coalesce_range(ctx
, info
, start
, end
, end
, n
) < 0)
4129 /* Update the basic maps in "map" based on the information in "info".
4130 * In particular, remove the basic maps that have been marked removed and
4131 * update the others based on the information in the corresponding tableau.
4132 * Since we detected implicit equalities without calling
4133 * isl_basic_map_gauss, we need to do it now.
4134 * Also call isl_basic_map_simplify if we may have lost the definition
4135 * of one or more integer divisions.
4136 * If a basic map is still equal to the one from which the corresponding "info"
4137 * entry was created, then redundant constraint and
4138 * implicit equality constraint detection have been performed
4139 * on the corresponding tableau and the basic map can be marked as such.
4141 static __isl_give isl_map
*update_basic_maps(__isl_take isl_map
*map
,
4142 int n
, struct isl_coalesce_info
*info
)
4149 for (i
= n
- 1; i
>= 0; --i
) {
4150 if (info
[i
].removed
) {
4151 isl_basic_map_free(map
->p
[i
]);
4152 if (i
!= map
->n
- 1)
4153 map
->p
[i
] = map
->p
[map
->n
- 1];
4158 info
[i
].bmap
= isl_basic_map_update_from_tab(info
[i
].bmap
,
4160 info
[i
].bmap
= isl_basic_map_gauss(info
[i
].bmap
, NULL
);
4161 if (info
[i
].simplify
)
4162 info
[i
].bmap
= isl_basic_map_simplify(info
[i
].bmap
);
4163 info
[i
].bmap
= isl_basic_map_finalize(info
[i
].bmap
);
4165 return isl_map_free(map
);
4166 if (!info
[i
].modified
) {
4167 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
4168 ISL_F_SET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
);
4170 isl_basic_map_free(map
->p
[i
]);
4171 map
->p
[i
] = info
[i
].bmap
;
4172 info
[i
].bmap
= NULL
;
4178 /* For each pair of basic maps in the map, check if the union of the two
4179 * can be represented by a single basic map.
4180 * If so, replace the pair by the single basic map and start over.
4182 * We factor out any (hidden) common factor from the constraint
4183 * coefficients to improve the detection of adjacent constraints.
4184 * Note that this function does not call isl_basic_map_gauss,
4185 * but it does make sure that only a single copy of the basic map
4186 * is affected. This means that isl_basic_map_gauss may have
4187 * to be called at the end of the computation (in update_basic_maps)
4188 * on this single copy to ensure that
4189 * the basic maps are not left in an unexpected state.
4191 * Since we are constructing the tableaus of the basic maps anyway,
4192 * we exploit them to detect implicit equalities and redundant constraints.
4193 * This also helps the coalescing as it can ignore the redundant constraints.
4194 * In order to avoid confusion, we make all implicit equalities explicit
4195 * in the basic maps. If the basic map only has a single reference
4196 * (this happens in particular if it was modified by
4197 * isl_basic_map_reduce_coefficients), then isl_basic_map_gauss
4198 * does not get called on the result. The call to
4199 * isl_basic_map_gauss in update_basic_maps resolves this as well.
4200 * For each basic map, we also compute the hash of the apparent affine hull
4201 * for use in coalesce.
4203 __isl_give isl_map
*isl_map_coalesce(__isl_take isl_map
*map
)
4208 struct isl_coalesce_info
*info
= NULL
;
4210 map
= isl_map_remove_empty_parts(map
);
4217 ctx
= isl_map_get_ctx(map
);
4218 map
= isl_map_sort_divs(map
);
4219 map
= isl_map_cow(map
);
4226 info
= isl_calloc_array(map
->ctx
, struct isl_coalesce_info
, n
);
4230 for (i
= 0; i
< map
->n
; ++i
) {
4231 map
->p
[i
] = isl_basic_map_reduce_coefficients(map
->p
[i
]);
4234 info
[i
].bmap
= isl_basic_map_copy(map
->p
[i
]);
4235 info
[i
].tab
= isl_tab_from_basic_map(info
[i
].bmap
, 0);
4238 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
4239 if (isl_tab_detect_implicit_equalities(info
[i
].tab
) < 0)
4241 info
[i
].bmap
= isl_tab_make_equalities_explicit(info
[i
].tab
,
4245 if (!ISL_F_ISSET(info
[i
].bmap
, ISL_BASIC_MAP_NO_REDUNDANT
))
4246 if (isl_tab_detect_redundant(info
[i
].tab
) < 0)
4248 if (coalesce_info_set_hull_hash(&info
[i
]) < 0)
4251 for (i
= map
->n
- 1; i
>= 0; --i
)
4252 if (info
[i
].tab
->empty
)
4255 if (coalesce(ctx
, n
, info
) < 0)
4258 map
= update_basic_maps(map
, n
, info
);
4260 clear_coalesce_info(n
, info
);
4264 clear_coalesce_info(n
, info
);
4269 /* For each pair of basic sets in the set, check if the union of the two
4270 * can be represented by a single basic set.
4271 * If so, replace the pair by the single basic set and start over.
4273 __isl_give isl_set
*isl_set_coalesce(__isl_take isl_set
*set
)
4275 return set_from_map(isl_map_coalesce(set_to_map(set
)));