2 * Copyright 2012-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
16 #include <isl/space.h>
18 #include <isl/constraint.h>
21 #include <isl/union_set.h>
22 #include <isl/union_map.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
26 #include <isl_tarjan.h>
27 #include <isl_ast_private.h>
28 #include <isl_ast_build_expr.h>
29 #include <isl_ast_build_private.h>
30 #include <isl_ast_graft_private.h>
32 /* Try and reduce the number of disjuncts in the representation of "set",
33 * without dropping explicit representations of local variables.
35 static __isl_give isl_set
*isl_set_coalesce_preserve(__isl_take isl_set
*set
)
43 ctx
= isl_set_get_ctx(set
);
44 save_preserve
= isl_options_get_coalesce_preserve_locals(ctx
);
45 isl_options_set_coalesce_preserve_locals(ctx
, 1);
46 set
= isl_set_coalesce(set
);
47 isl_options_set_coalesce_preserve_locals(ctx
, save_preserve
);
51 /* Data used in generate_domain.
53 * "build" is the input build.
54 * "list" collects the results.
56 struct isl_generate_domain_data
{
59 isl_ast_graft_list
*list
;
62 static __isl_give isl_ast_graft_list
*generate_next_level(
63 __isl_take isl_union_map
*executed
,
64 __isl_take isl_ast_build
*build
);
65 static __isl_give isl_ast_graft_list
*generate_code(
66 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
69 /* Generate an AST for a single domain based on
70 * the (non single valued) inverse schedule "executed".
72 * We extend the schedule with the iteration domain
73 * and continue generating through a call to generate_code.
75 * In particular, if executed has the form
79 * then we continue generating code on
83 * The extended inverse schedule is clearly single valued
84 * ensuring that the nested generate_code will not reach this function,
85 * but will instead create calls to all elements of D that need
86 * to be executed from the current schedule domain.
88 static isl_stat
generate_non_single_valued(__isl_take isl_map
*executed
,
89 struct isl_generate_domain_data
*data
)
93 isl_ast_graft_list
*list
;
95 build
= isl_ast_build_copy(data
->build
);
97 identity
= isl_set_identity(isl_map_range(isl_map_copy(executed
)));
98 executed
= isl_map_domain_product(executed
, identity
);
100 list
= generate_code(isl_union_map_from_map(executed
), build
, 1);
102 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
107 /* Call the at_each_domain callback, if requested by the user,
108 * after recording the current inverse schedule in the build.
110 static __isl_give isl_ast_graft
*at_each_domain(__isl_take isl_ast_graft
*graft
,
111 __isl_keep isl_map
*executed
, __isl_keep isl_ast_build
*build
)
113 if (!graft
|| !build
)
114 return isl_ast_graft_free(graft
);
115 if (!build
->at_each_domain
)
118 build
= isl_ast_build_copy(build
);
119 build
= isl_ast_build_set_executed(build
,
120 isl_union_map_from_map(isl_map_copy(executed
)));
122 return isl_ast_graft_free(graft
);
124 graft
->node
= build
->at_each_domain(graft
->node
,
125 build
, build
->at_each_domain_user
);
126 isl_ast_build_free(build
);
129 graft
= isl_ast_graft_free(graft
);
134 /* Generate a call expression for the single executed
135 * domain element "executed" and put a guard around it based on its (simplified)
138 * At this stage, any pending constraints in the build can no longer
139 * be simplified with respect to any enforced constraints since
140 * the call node does not have any enforced constraints.
141 * Since all pending constraints not covered by any enforced constraints
142 * will be added as a guard to the graft in create_node_scaled,
143 * even in the eliminated case, the pending constraints
144 * can be considered to have been generated by outer constructs.
146 * If the user has set an at_each_domain callback, it is called
147 * on the constructed call expression node.
149 static isl_stat
add_domain(__isl_take isl_map
*executed
,
150 struct isl_generate_domain_data
*data
)
152 isl_ast_build
*build
;
153 isl_ast_graft
*graft
;
154 isl_ast_graft_list
*list
;
155 isl_set
*guard
, *pending
;
157 build
= isl_ast_build_copy(data
->build
);
158 pending
= isl_ast_build_get_pending(build
);
159 build
= isl_ast_build_replace_pending_by_guard(build
, pending
);
161 guard
= isl_map_domain(isl_map_copy(executed
));
162 guard
= isl_set_compute_divs(guard
);
163 guard
= isl_set_coalesce_preserve(guard
);
164 guard
= isl_set_gist(guard
, isl_ast_build_get_generated(build
));
165 guard
= isl_ast_build_specialize(build
, guard
);
167 graft
= isl_ast_graft_alloc_domain(isl_map_copy(executed
), build
);
168 graft
= at_each_domain(graft
, executed
, build
);
169 isl_ast_build_free(build
);
170 isl_map_free(executed
);
171 graft
= isl_ast_graft_add_guard(graft
, guard
, data
->build
);
173 list
= isl_ast_graft_list_from_ast_graft(graft
);
174 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
179 /* Generate an AST for a single domain based on
180 * the inverse schedule "executed" and add it to data->list.
182 * If there is more than one domain element associated to the current
183 * schedule "time", then we need to continue the generation process
184 * in generate_non_single_valued.
185 * Note that the inverse schedule being single-valued may depend
186 * on constraints that are only available in the original context
187 * domain specified by the user. We therefore first introduce
188 * some of the constraints of data->build->domain. In particular,
189 * we intersect with a single-disjunct approximation of this set.
190 * We perform this approximation to avoid further splitting up
191 * the executed relation, possibly introducing a disjunctive guard
194 * Otherwise, call add_domain to generate a call expression (with guard) and
195 * to call the at_each_domain callback, if any.
197 * Coalesce the inverse schedule before checking for single-valuedness.
198 * Skip this if the inverse schedule is obviously single-valued.
200 static isl_stat
generate_domain(__isl_take isl_map
*executed
, void *user
)
202 struct isl_generate_domain_data
*data
= user
;
206 domain
= isl_ast_build_get_domain(data
->build
);
207 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
208 executed
= isl_map_intersect_domain(executed
, domain
);
209 empty
= isl_map_is_empty(executed
);
213 isl_map_free(executed
);
217 sv
= isl_map_plain_is_single_valued(executed
);
221 return add_domain(executed
, data
);
223 executed
= isl_map_coalesce(executed
);
224 sv
= isl_map_is_single_valued(executed
);
228 return generate_non_single_valued(executed
, data
);
230 return add_domain(executed
, data
);
232 isl_map_free(executed
);
233 return isl_stat_error
;
236 /* Call build->create_leaf to a create "leaf" node in the AST,
237 * encapsulate the result in an isl_ast_graft and return the result
238 * as a 1-element list.
240 * Note that the node returned by the user may be an entire tree.
242 * Since the node itself cannot enforce any constraints, we turn
243 * all pending constraints into guards and add them to the resulting
244 * graft to ensure that they will be generated.
246 * Before we pass control to the user, we first clear some information
247 * from the build that is (presumbably) only meaningful
248 * for the current code generation.
249 * This includes the create_leaf callback itself, so we make a copy
250 * of the build first.
252 static __isl_give isl_ast_graft_list
*call_create_leaf(
253 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
257 isl_ast_graft
*graft
;
258 isl_ast_build
*user_build
;
260 guard
= isl_ast_build_get_pending(build
);
261 user_build
= isl_ast_build_copy(build
);
262 user_build
= isl_ast_build_replace_pending_by_guard(user_build
,
263 isl_set_copy(guard
));
264 user_build
= isl_ast_build_set_executed(user_build
, executed
);
265 user_build
= isl_ast_build_clear_local_info(user_build
);
269 node
= build
->create_leaf(user_build
, build
->create_leaf_user
);
270 graft
= isl_ast_graft_alloc(node
, build
);
271 graft
= isl_ast_graft_add_guard(graft
, guard
, build
);
272 isl_ast_build_free(build
);
273 return isl_ast_graft_list_from_ast_graft(graft
);
276 static __isl_give isl_ast_graft_list
*build_ast_from_child(
277 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
278 __isl_take isl_union_map
*executed
);
280 /* Generate an AST after having handled the complete schedule
281 * of this call to the code generator or the complete band
282 * if we are generating an AST from a schedule tree.
284 * If we are inside a band node, then move on to the child of the band.
286 * If the user has specified a create_leaf callback, control
287 * is passed to the user in call_create_leaf.
289 * Otherwise, we generate one or more calls for each individual
290 * domain in generate_domain.
292 static __isl_give isl_ast_graft_list
*generate_inner_level(
293 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
296 struct isl_generate_domain_data data
= { build
};
298 if (!build
|| !executed
)
301 if (isl_ast_build_has_schedule_node(build
)) {
302 isl_schedule_node
*node
;
303 node
= isl_ast_build_get_schedule_node(build
);
304 build
= isl_ast_build_reset_schedule_node(build
);
305 return build_ast_from_child(build
, node
, executed
);
308 if (build
->create_leaf
)
309 return call_create_leaf(executed
, build
);
311 ctx
= isl_union_map_get_ctx(executed
);
312 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
313 if (isl_union_map_foreach_map(executed
, &generate_domain
, &data
) < 0)
314 data
.list
= isl_ast_graft_list_free(data
.list
);
317 error
: data
.list
= NULL
;
318 isl_ast_build_free(build
);
319 isl_union_map_free(executed
);
323 /* Call the before_each_for callback, if requested by the user.
325 static __isl_give isl_ast_node
*before_each_for(__isl_take isl_ast_node
*node
,
326 __isl_keep isl_ast_build
*build
)
331 return isl_ast_node_free(node
);
332 if (!build
->before_each_for
)
334 id
= build
->before_each_for(build
, build
->before_each_for_user
);
335 node
= isl_ast_node_set_annotation(node
, id
);
339 /* Call the after_each_for callback, if requested by the user.
341 static __isl_give isl_ast_graft
*after_each_for(__isl_take isl_ast_graft
*graft
,
342 __isl_keep isl_ast_build
*build
)
344 if (!graft
|| !build
)
345 return isl_ast_graft_free(graft
);
346 if (!build
->after_each_for
)
348 graft
->node
= build
->after_each_for(graft
->node
, build
,
349 build
->after_each_for_user
);
351 return isl_ast_graft_free(graft
);
355 /* Plug in all the know values of the current and outer dimensions
356 * in the domain of "executed". In principle, we only need to plug
357 * in the known value of the current dimension since the values of
358 * outer dimensions have been plugged in already.
359 * However, it turns out to be easier to just plug in all known values.
361 static __isl_give isl_union_map
*plug_in_values(
362 __isl_take isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
364 return isl_ast_build_substitute_values_union_map_domain(build
,
368 /* Check if the constraint "c" is a lower bound on dimension "pos",
369 * an upper bound, or independent of dimension "pos".
371 static int constraint_type(isl_constraint
*c
, int pos
)
373 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, pos
))
375 if (isl_constraint_is_upper_bound(c
, isl_dim_set
, pos
))
380 /* Compare the types of the constraints "a" and "b",
381 * resulting in constraints that are independent of "depth"
382 * to be sorted before the lower bounds on "depth", which in
383 * turn are sorted before the upper bounds on "depth".
385 static int cmp_constraint(__isl_keep isl_constraint
*a
,
386 __isl_keep isl_constraint
*b
, void *user
)
389 int t1
= constraint_type(a
, *depth
);
390 int t2
= constraint_type(b
, *depth
);
395 /* Extract a lower bound on dimension "pos" from constraint "c".
397 * If the constraint is of the form
401 * then we essentially return
403 * l = ceil(-f(...)/a)
405 * However, if the current dimension is strided, then we need to make
406 * sure that the lower bound we construct is of the form
410 * with f the offset and s the stride.
411 * We therefore compute
413 * f + s * ceil((l - f)/s)
415 static __isl_give isl_aff
*lower_bound(__isl_keep isl_constraint
*c
,
416 int pos
, __isl_keep isl_ast_build
*build
)
420 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
421 aff
= isl_aff_ceil(aff
);
423 if (isl_ast_build_has_stride(build
, pos
)) {
427 offset
= isl_ast_build_get_offset(build
, pos
);
428 stride
= isl_ast_build_get_stride(build
, pos
);
430 aff
= isl_aff_sub(aff
, isl_aff_copy(offset
));
431 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(stride
));
432 aff
= isl_aff_ceil(aff
);
433 aff
= isl_aff_scale_val(aff
, stride
);
434 aff
= isl_aff_add(aff
, offset
);
437 aff
= isl_ast_build_compute_gist_aff(build
, aff
);
442 /* Return the exact lower bound (or upper bound if "upper" is set)
443 * of "domain" as a piecewise affine expression.
445 * If we are computing a lower bound (of a strided dimension), then
446 * we need to make sure it is of the form
450 * where f is the offset and s is the stride.
451 * We therefore need to include the stride constraint before computing
454 static __isl_give isl_pw_aff
*exact_bound(__isl_keep isl_set
*domain
,
455 __isl_keep isl_ast_build
*build
, int upper
)
460 isl_pw_multi_aff
*pma
;
462 domain
= isl_set_copy(domain
);
464 stride
= isl_ast_build_get_stride_constraint(build
);
465 domain
= isl_set_intersect(domain
, stride
);
467 it_map
= isl_ast_build_map_to_iterator(build
, domain
);
469 pma
= isl_map_lexmax_pw_multi_aff(it_map
);
471 pma
= isl_map_lexmin_pw_multi_aff(it_map
);
472 pa
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
473 isl_pw_multi_aff_free(pma
);
474 pa
= isl_ast_build_compute_gist_pw_aff(build
, pa
);
475 pa
= isl_pw_aff_coalesce(pa
);
480 /* Callback for sorting the isl_pw_aff_list passed to reduce_list and
481 * remove_redundant_lower_bounds.
483 static int reduce_list_cmp(__isl_keep isl_pw_aff
*a
, __isl_keep isl_pw_aff
*b
,
486 return isl_pw_aff_plain_cmp(a
, b
);
489 /* Given a list of lower bounds "list", remove those that are redundant
490 * with respect to the other bounds in "list" and the domain of "build".
492 * We first sort the bounds in the same way as they would be sorted
493 * by set_for_node_expressions so that we can try and remove the last
496 * For a lower bound to be effective, there needs to be at least
497 * one domain element for which it is larger than all other lower bounds.
498 * For each lower bound we therefore intersect the domain with
499 * the conditions that it is larger than all other bounds and
500 * check whether the result is empty. If so, the bound can be removed.
502 static __isl_give isl_pw_aff_list
*remove_redundant_lower_bounds(
503 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
509 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
511 n
= isl_pw_aff_list_n_pw_aff(list
);
513 return isl_pw_aff_list_free(list
);
517 domain
= isl_ast_build_get_domain(build
);
519 for (i
= n
- 1; i
>= 0; --i
) {
524 domain_i
= isl_set_copy(domain
);
525 pa_i
= isl_pw_aff_list_get_pw_aff(list
, i
);
527 for (j
= 0; j
< n
; ++j
) {
534 pa_j
= isl_pw_aff_list_get_pw_aff(list
, j
);
535 better
= isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i
), pa_j
);
536 domain_i
= isl_set_intersect(domain_i
, better
);
539 empty
= isl_set_is_empty(domain_i
);
541 isl_set_free(domain_i
);
542 isl_pw_aff_free(pa_i
);
548 list
= isl_pw_aff_list_drop(list
, i
, 1);
552 isl_set_free(domain
);
556 isl_set_free(domain
);
557 return isl_pw_aff_list_free(list
);
560 /* Extract a lower bound on dimension "pos" from each constraint
561 * in "constraints" and return the list of lower bounds.
562 * If "constraints" has zero elements, then we extract a lower bound
563 * from "domain" instead.
565 * If the current dimension is strided, then the lower bound
566 * is adjusted by lower_bound to match the stride information.
567 * This modification may make one or more lower bounds redundant
568 * with respect to the other lower bounds. We therefore check
569 * for this condition and remove the redundant lower bounds.
571 static __isl_give isl_pw_aff_list
*lower_bounds(
572 __isl_keep isl_constraint_list
*constraints
, int pos
,
573 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
576 isl_pw_aff_list
*list
;
583 n
= isl_constraint_list_n_constraint(constraints
);
588 pa
= exact_bound(domain
, build
, 0);
589 return isl_pw_aff_list_from_pw_aff(pa
);
592 ctx
= isl_ast_build_get_ctx(build
);
593 list
= isl_pw_aff_list_alloc(ctx
,n
);
595 for (i
= 0; i
< n
; ++i
) {
599 c
= isl_constraint_list_get_constraint(constraints
, i
);
600 aff
= lower_bound(c
, pos
, build
);
601 isl_constraint_free(c
);
602 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
605 if (isl_ast_build_has_stride(build
, pos
))
606 list
= remove_redundant_lower_bounds(list
, build
);
611 /* Extract an upper bound on dimension "pos" from each constraint
612 * in "constraints" and return the list of upper bounds.
613 * If "constraints" has zero elements, then we extract an upper bound
614 * from "domain" instead.
616 static __isl_give isl_pw_aff_list
*upper_bounds(
617 __isl_keep isl_constraint_list
*constraints
, int pos
,
618 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
621 isl_pw_aff_list
*list
;
625 n
= isl_constraint_list_n_constraint(constraints
);
630 pa
= exact_bound(domain
, build
, 1);
631 return isl_pw_aff_list_from_pw_aff(pa
);
634 ctx
= isl_ast_build_get_ctx(build
);
635 list
= isl_pw_aff_list_alloc(ctx
,n
);
637 for (i
= 0; i
< n
; ++i
) {
641 c
= isl_constraint_list_get_constraint(constraints
, i
);
642 aff
= isl_constraint_get_bound(c
, isl_dim_set
, pos
);
643 isl_constraint_free(c
);
644 aff
= isl_aff_floor(aff
);
645 list
= isl_pw_aff_list_add(list
, isl_pw_aff_from_aff(aff
));
651 /* Return an isl_ast_expr that performs the reduction of type "type"
652 * on AST expressions corresponding to the elements in "list".
654 * The list is assumed to contain at least one element.
655 * If the list contains exactly one element, then the returned isl_ast_expr
656 * simply computes that affine expression.
657 * If the list contains more than one element, then we sort it
658 * using a fairly arbitrary but hopefully reasonably stable order.
660 static __isl_give isl_ast_expr
*reduce_list(enum isl_ast_expr_op_type type
,
661 __isl_keep isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
668 n
= isl_pw_aff_list_n_pw_aff(list
);
673 return isl_ast_build_expr_from_pw_aff_internal(build
,
674 isl_pw_aff_list_get_pw_aff(list
, 0));
676 ctx
= isl_pw_aff_list_get_ctx(list
);
677 expr
= isl_ast_expr_alloc_op(ctx
, type
, n
);
679 list
= isl_pw_aff_list_copy(list
);
680 list
= isl_pw_aff_list_sort(list
, &reduce_list_cmp
, NULL
);
682 return isl_ast_expr_free(expr
);
684 for (i
= 0; i
< n
; ++i
) {
685 isl_ast_expr
*expr_i
;
687 expr_i
= isl_ast_build_expr_from_pw_aff_internal(build
,
688 isl_pw_aff_list_get_pw_aff(list
, i
));
689 expr
= isl_ast_expr_op_add_arg(expr
, expr_i
);
692 isl_pw_aff_list_free(list
);
696 /* Add guards implied by the "generated constraints",
697 * but not (necessarily) enforced by the generated AST to "guard".
698 * In particular, if there is any stride constraints,
699 * then add the guard implied by those constraints.
700 * If we have generated a degenerate loop, then add the guard
701 * implied by "bounds" on the outer dimensions, i.e., the guard
702 * that ensures that the single value actually exists.
703 * Since there may also be guards implied by a combination
704 * of these constraints, we first combine them before
705 * deriving the implied constraints.
707 static __isl_give isl_set
*add_implied_guards(__isl_take isl_set
*guard
,
708 int degenerate
, __isl_keep isl_basic_set
*bounds
,
709 __isl_keep isl_ast_build
*build
)
716 depth
= isl_ast_build_get_depth(build
);
717 has_stride
= isl_ast_build_has_stride(build
, depth
);
718 if (depth
< 0 || has_stride
< 0)
719 return isl_set_free(guard
);
720 if (!has_stride
&& !degenerate
)
723 space
= isl_basic_set_get_space(bounds
);
724 dom
= isl_set_universe(space
);
727 bounds
= isl_basic_set_copy(bounds
);
728 bounds
= isl_basic_set_drop_constraints_not_involving_dims(
729 bounds
, isl_dim_set
, depth
, 1);
730 set
= isl_set_from_basic_set(bounds
);
731 dom
= isl_set_intersect(dom
, set
);
735 set
= isl_ast_build_get_stride_constraint(build
);
736 dom
= isl_set_intersect(dom
, set
);
739 dom
= isl_set_eliminate(dom
, isl_dim_set
, depth
, 1);
740 dom
= isl_ast_build_compute_gist(build
, dom
);
741 guard
= isl_set_intersect(guard
, dom
);
746 /* Update "graft" based on "sub_build" for the degenerate case.
748 * "build" is the build in which graft->node was created
749 * "sub_build" contains information about the current level itself,
750 * including the single value attained.
752 * We set the initialization part of the for loop to the single
753 * value attained by the current dimension.
754 * The increment and condition are not strictly needed as they are known
755 * to be "1" and "iterator <= value" respectively.
757 static __isl_give isl_ast_graft
*refine_degenerate(
758 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
,
759 __isl_keep isl_ast_build
*sub_build
)
764 if (!graft
|| !sub_build
)
765 return isl_ast_graft_free(graft
);
767 value
= isl_pw_aff_copy(sub_build
->value
);
769 init
= isl_ast_build_expr_from_pw_aff_internal(build
, value
);
770 graft
->node
= isl_ast_node_for_set_init(graft
->node
, init
);
772 return isl_ast_graft_free(graft
);
777 /* Return the intersection of constraints in "list" as a set.
779 static __isl_give isl_set
*intersect_constraints(
780 __isl_keep isl_constraint_list
*list
)
786 n
= isl_constraint_list_n_constraint(list
);
790 isl_die(isl_constraint_list_get_ctx(list
), isl_error_internal
,
791 "expecting at least one constraint", return NULL
);
793 bset
= isl_basic_set_from_constraint(
794 isl_constraint_list_get_constraint(list
, 0));
795 for (i
= 1; i
< n
; ++i
) {
796 isl_basic_set
*bset_i
;
798 bset_i
= isl_basic_set_from_constraint(
799 isl_constraint_list_get_constraint(list
, i
));
800 bset
= isl_basic_set_intersect(bset
, bset_i
);
803 return isl_set_from_basic_set(bset
);
806 /* Compute the constraints on the outer dimensions enforced by
807 * graft->node and add those constraints to graft->enforced,
808 * in case the upper bound is expressed as a set "upper".
810 * In particular, if l(...) is a lower bound in "lower", and
812 * -a i + f(...) >= 0 or a i <= f(...)
814 * is an upper bound ocnstraint on the current dimension i,
815 * then the for loop enforces the constraint
817 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
819 * We therefore simply take each lower bound in turn, plug it into
820 * the upper bounds and compute the intersection over all lower bounds.
822 * If a lower bound is a rational expression, then
823 * isl_basic_set_preimage_multi_aff will force this rational
824 * expression to have only integer values. However, the loop
825 * itself does not enforce this integrality constraint. We therefore
826 * use the ceil of the lower bounds instead of the lower bounds themselves.
827 * Other constraints will make sure that the for loop is only executed
828 * when each of the lower bounds attains an integral value.
829 * In particular, potentially rational values only occur in
830 * lower_bound if the offset is a (seemingly) rational expression,
831 * but then outer conditions will make sure that this rational expression
832 * only attains integer values.
834 static __isl_give isl_ast_graft
*set_enforced_from_set(
835 __isl_take isl_ast_graft
*graft
,
836 __isl_keep isl_pw_aff_list
*lower
, int pos
, __isl_keep isl_set
*upper
)
839 isl_basic_set
*enforced
;
840 isl_pw_multi_aff
*pma
;
844 n
= isl_pw_aff_list_n_pw_aff(lower
);
846 return isl_ast_graft_free(graft
);
848 space
= isl_set_get_space(upper
);
849 enforced
= isl_basic_set_universe(isl_space_copy(space
));
851 space
= isl_space_map_from_set(space
);
852 pma
= isl_pw_multi_aff_identity(space
);
854 for (i
= 0; i
< n
; ++i
) {
858 isl_pw_multi_aff
*pma_i
;
860 pa
= isl_pw_aff_list_get_pw_aff(lower
, i
);
861 pa
= isl_pw_aff_ceil(pa
);
862 pma_i
= isl_pw_multi_aff_copy(pma
);
863 pma_i
= isl_pw_multi_aff_set_pw_aff(pma_i
, pos
, pa
);
864 enforced_i
= isl_set_copy(upper
);
865 enforced_i
= isl_set_preimage_pw_multi_aff(enforced_i
, pma_i
);
866 hull
= isl_set_simple_hull(enforced_i
);
867 enforced
= isl_basic_set_intersect(enforced
, hull
);
870 isl_pw_multi_aff_free(pma
);
872 graft
= isl_ast_graft_enforce(graft
, enforced
);
877 /* Compute the constraints on the outer dimensions enforced by
878 * graft->node and add those constraints to graft->enforced,
879 * in case the upper bound is expressed as
880 * a list of affine expressions "upper".
882 * The enforced condition is that each lower bound expression is less
883 * than or equal to each upper bound expression.
885 static __isl_give isl_ast_graft
*set_enforced_from_list(
886 __isl_take isl_ast_graft
*graft
,
887 __isl_keep isl_pw_aff_list
*lower
, __isl_keep isl_pw_aff_list
*upper
)
890 isl_basic_set
*enforced
;
892 lower
= isl_pw_aff_list_copy(lower
);
893 upper
= isl_pw_aff_list_copy(upper
);
894 cond
= isl_pw_aff_list_le_set(lower
, upper
);
895 enforced
= isl_set_simple_hull(cond
);
896 graft
= isl_ast_graft_enforce(graft
, enforced
);
901 /* Does "aff" have a negative constant term?
903 static isl_bool
aff_constant_is_negative(__isl_keep isl_set
*set
,
904 __isl_keep isl_aff
*aff
, void *user
)
909 v
= isl_aff_get_constant_val(aff
);
910 is_neg
= isl_val_is_neg(v
);
916 /* Does "pa" have a negative constant term over its entire domain?
918 static isl_bool
pw_aff_constant_is_negative(__isl_keep isl_pw_aff
*pa
,
921 return isl_pw_aff_every_piece(pa
, &aff_constant_is_negative
, NULL
);
924 /* Does each element in "list" have a negative constant term?
926 static int list_constant_is_negative(__isl_keep isl_pw_aff_list
*list
)
928 return isl_pw_aff_list_every(list
, &pw_aff_constant_is_negative
, NULL
);
931 /* Add 1 to each of the elements in "list", where each of these elements
932 * is defined over the internal schedule space of "build".
934 static __isl_give isl_pw_aff_list
*list_add_one(
935 __isl_take isl_pw_aff_list
*list
, __isl_keep isl_ast_build
*build
)
943 n
= isl_pw_aff_list_n_pw_aff(list
);
945 return isl_pw_aff_list_free(list
);
947 space
= isl_ast_build_get_space(build
, 1);
948 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
949 aff
= isl_aff_add_constant_si(aff
, 1);
950 one
= isl_pw_aff_from_aff(aff
);
952 for (i
= 0; i
< n
; ++i
) {
954 pa
= isl_pw_aff_list_get_pw_aff(list
, i
);
955 pa
= isl_pw_aff_add(pa
, isl_pw_aff_copy(one
));
956 list
= isl_pw_aff_list_set_pw_aff(list
, i
, pa
);
959 isl_pw_aff_free(one
);
964 /* Set the condition part of the for node graft->node in case
965 * the upper bound is represented as a list of piecewise affine expressions.
967 * In particular, set the condition to
969 * iterator <= min(list of upper bounds)
971 * If each of the upper bounds has a negative constant term, then
972 * set the condition to
974 * iterator < min(list of (upper bound + 1)s)
977 static __isl_give isl_ast_graft
*set_for_cond_from_list(
978 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*list
,
979 __isl_keep isl_ast_build
*build
)
982 isl_ast_expr
*bound
, *iterator
, *cond
;
983 enum isl_ast_expr_op_type type
= isl_ast_expr_op_le
;
986 return isl_ast_graft_free(graft
);
988 neg
= list_constant_is_negative(list
);
990 return isl_ast_graft_free(graft
);
991 list
= isl_pw_aff_list_copy(list
);
993 list
= list_add_one(list
, build
);
994 type
= isl_ast_expr_op_lt
;
997 bound
= reduce_list(isl_ast_expr_op_min
, list
, build
);
998 iterator
= isl_ast_expr_copy(graft
->node
->u
.f
.iterator
);
999 cond
= isl_ast_expr_alloc_binary(type
, iterator
, bound
);
1000 graft
->node
= isl_ast_node_for_set_cond(graft
->node
, cond
);
1002 isl_pw_aff_list_free(list
);
1004 return isl_ast_graft_free(graft
);
1008 /* Set the condition part of the for node graft->node in case
1009 * the upper bound is represented as a set.
1011 static __isl_give isl_ast_graft
*set_for_cond_from_set(
1012 __isl_take isl_ast_graft
*graft
, __isl_keep isl_set
*set
,
1013 __isl_keep isl_ast_build
*build
)
1020 cond
= isl_ast_build_expr_from_set_internal(build
, isl_set_copy(set
));
1021 graft
->node
= isl_ast_node_for_set_cond(graft
->node
, cond
);
1023 return isl_ast_graft_free(graft
);
1027 /* Construct an isl_ast_expr for the increment (i.e., stride) of
1028 * the current dimension.
1030 static __isl_give isl_ast_expr
*for_inc(__isl_keep isl_ast_build
*build
)
1036 depth
= isl_ast_build_get_depth(build
);
1039 ctx
= isl_ast_build_get_ctx(build
);
1041 if (!isl_ast_build_has_stride(build
, depth
))
1042 return isl_ast_expr_alloc_int_si(ctx
, 1);
1044 v
= isl_ast_build_get_stride(build
, depth
);
1045 return isl_ast_expr_from_val(v
);
1048 /* Should we express the loop condition as
1050 * iterator <= min(list of upper bounds)
1052 * or as a conjunction of constraints?
1054 * The first is constructed from a list of upper bounds.
1055 * The second is constructed from a set.
1057 * If there are no upper bounds in "constraints", then this could mean
1058 * that "domain" simply doesn't have an upper bound or that we didn't
1059 * pick any upper bound. In the first case, we want to generate the
1060 * loop condition as a(n empty) conjunction of constraints
1061 * In the second case, we will compute
1062 * a single upper bound from "domain" and so we use the list form.
1064 * If there are upper bounds in "constraints",
1065 * then we use the list form iff the atomic_upper_bound option is set.
1067 static int use_upper_bound_list(isl_ctx
*ctx
, int n_upper
,
1068 __isl_keep isl_set
*domain
, int depth
)
1071 return isl_options_get_ast_build_atomic_upper_bound(ctx
);
1073 return isl_set_dim_has_upper_bound(domain
, isl_dim_set
, depth
);
1076 /* Fill in the expressions of the for node in graft->node.
1079 * - set the initialization part of the loop to the maximum of the lower bounds
1080 * - extract the increment from the stride of the current dimension
1081 * - construct the for condition either based on a list of upper bounds
1082 * or on a set of upper bound constraints.
1084 static __isl_give isl_ast_graft
*set_for_node_expressions(
1085 __isl_take isl_ast_graft
*graft
, __isl_keep isl_pw_aff_list
*lower
,
1086 int use_list
, __isl_keep isl_pw_aff_list
*upper_list
,
1087 __isl_keep isl_set
*upper_set
, __isl_keep isl_ast_build
*build
)
1094 init
= reduce_list(isl_ast_expr_op_max
, lower
, build
);
1095 graft
->node
= isl_ast_node_for_set_init(graft
->node
, init
);
1096 graft
->node
= isl_ast_node_for_set_inc(graft
->node
, for_inc(build
));
1099 graft
= isl_ast_graft_free(graft
);
1102 graft
= set_for_cond_from_list(graft
, upper_list
, build
);
1104 graft
= set_for_cond_from_set(graft
, upper_set
, build
);
1109 /* Update "graft" based on "bounds" and "domain" for the generic,
1110 * non-degenerate, case.
1112 * "c_lower" and "c_upper" contain the lower and upper bounds
1113 * that the loop node should express.
1114 * "domain" is the subset of the intersection of the constraints
1115 * for which some code is executed.
1117 * There may be zero lower bounds or zero upper bounds in "constraints"
1118 * in case the list of constraints was created
1119 * based on the atomic option or based on separation with explicit bounds.
1120 * In that case, we use "domain" to derive lower and/or upper bounds.
1122 * We first compute a list of one or more lower bounds.
1124 * Then we decide if we want to express the condition as
1126 * iterator <= min(list of upper bounds)
1128 * or as a conjunction of constraints.
1130 * The set of enforced constraints is then computed either based on
1131 * a list of upper bounds or on a set of upper bound constraints.
1132 * We do not compute any enforced constraints if we were forced
1133 * to compute a lower or upper bound using exact_bound. The domains
1134 * of the resulting expressions may imply some bounds on outer dimensions
1135 * that we do not want to appear in the enforced constraints since
1136 * they are not actually enforced by the corresponding code.
1138 * Finally, we fill in the expressions of the for node.
1140 static __isl_give isl_ast_graft
*refine_generic_bounds(
1141 __isl_take isl_ast_graft
*graft
,
1142 __isl_take isl_constraint_list
*c_lower
,
1143 __isl_take isl_constraint_list
*c_upper
,
1144 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1148 isl_pw_aff_list
*lower
;
1150 isl_set
*upper_set
= NULL
;
1151 isl_pw_aff_list
*upper_list
= NULL
;
1152 isl_size n_lower
, n_upper
;
1154 depth
= isl_ast_build_get_depth(build
);
1155 if (!graft
|| !c_lower
|| !c_upper
|| depth
< 0)
1158 ctx
= isl_ast_graft_get_ctx(graft
);
1160 n_lower
= isl_constraint_list_n_constraint(c_lower
);
1161 n_upper
= isl_constraint_list_n_constraint(c_upper
);
1162 if (n_lower
< 0 || n_upper
< 0)
1165 use_list
= use_upper_bound_list(ctx
, n_upper
, domain
, depth
);
1167 lower
= lower_bounds(c_lower
, depth
, domain
, build
);
1170 upper_list
= upper_bounds(c_upper
, depth
, domain
, build
);
1171 else if (n_upper
> 0)
1172 upper_set
= intersect_constraints(c_upper
);
1174 upper_set
= isl_set_universe(isl_set_get_space(domain
));
1176 if (n_lower
== 0 || n_upper
== 0)
1179 graft
= set_enforced_from_list(graft
, lower
, upper_list
);
1181 graft
= set_enforced_from_set(graft
, lower
, depth
, upper_set
);
1183 graft
= set_for_node_expressions(graft
, lower
, use_list
, upper_list
,
1186 isl_pw_aff_list_free(lower
);
1187 isl_pw_aff_list_free(upper_list
);
1188 isl_set_free(upper_set
);
1189 isl_constraint_list_free(c_lower
);
1190 isl_constraint_list_free(c_upper
);
1194 isl_constraint_list_free(c_lower
);
1195 isl_constraint_list_free(c_upper
);
1196 return isl_ast_graft_free(graft
);
1199 /* Internal data structure used inside count_constraints to keep
1200 * track of the number of constraints that are independent of dimension "pos",
1201 * the lower bounds in "pos" and the upper bounds in "pos".
1203 struct isl_ast_count_constraints_data
{
1211 /* Increment data->n_indep, data->lower or data->upper depending
1212 * on whether "c" is independent of dimensions data->pos,
1213 * a lower bound or an upper bound.
1215 static isl_stat
count_constraints(__isl_take isl_constraint
*c
, void *user
)
1217 struct isl_ast_count_constraints_data
*data
= user
;
1219 if (isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->pos
))
1221 else if (isl_constraint_is_upper_bound(c
, isl_dim_set
, data
->pos
))
1226 isl_constraint_free(c
);
1231 /* Update "graft" based on "bounds" and "domain" for the generic,
1232 * non-degenerate, case.
1234 * "list" respresent the list of bounds that need to be encoded by
1235 * the for loop. Only the constraints that involve the iterator
1236 * are relevant here. The other constraints are taken care of by
1237 * the caller and are included in the generated constraints of "build".
1238 * "domain" is the subset of the intersection of the constraints
1239 * for which some code is executed.
1240 * "build" is the build in which graft->node was created.
1242 * We separate lower bounds, upper bounds and constraints that
1243 * are independent of the loop iterator.
1245 * The actual for loop bounds are generated in refine_generic_bounds.
1247 static __isl_give isl_ast_graft
*refine_generic_split(
1248 __isl_take isl_ast_graft
*graft
, __isl_take isl_constraint_list
*list
,
1249 __isl_keep isl_set
*domain
, __isl_keep isl_ast_build
*build
)
1251 struct isl_ast_count_constraints_data data
;
1253 isl_constraint_list
*lower
;
1254 isl_constraint_list
*upper
;
1256 depth
= isl_ast_build_get_depth(build
);
1258 list
= isl_constraint_list_free(list
);
1260 return isl_ast_graft_free(graft
);
1264 list
= isl_constraint_list_sort(list
, &cmp_constraint
, &data
.pos
);
1266 return isl_ast_graft_free(graft
);
1268 data
.n_indep
= data
.n_lower
= data
.n_upper
= 0;
1269 if (isl_constraint_list_foreach(list
, &count_constraints
, &data
) < 0) {
1270 isl_constraint_list_free(list
);
1271 return isl_ast_graft_free(graft
);
1274 lower
= isl_constraint_list_drop(list
, 0, data
.n_indep
);
1275 upper
= isl_constraint_list_copy(lower
);
1276 lower
= isl_constraint_list_drop(lower
, data
.n_lower
, data
.n_upper
);
1277 upper
= isl_constraint_list_drop(upper
, 0, data
.n_lower
);
1279 return refine_generic_bounds(graft
, lower
, upper
, domain
, build
);
1282 /* Update "graft" based on "bounds" and "domain" for the generic,
1283 * non-degenerate, case.
1285 * "bounds" respresent the bounds that need to be encoded by
1286 * the for loop (or a guard around the for loop).
1287 * "domain" is the subset of "bounds" for which some code is executed.
1288 * "build" is the build in which graft->node was created.
1290 * We break up "bounds" into a list of constraints and continue with
1291 * refine_generic_split.
1293 static __isl_give isl_ast_graft
*refine_generic(
1294 __isl_take isl_ast_graft
*graft
,
1295 __isl_keep isl_basic_set
*bounds
, __isl_keep isl_set
*domain
,
1296 __isl_keep isl_ast_build
*build
)
1298 isl_constraint_list
*list
;
1300 if (!build
|| !graft
)
1301 return isl_ast_graft_free(graft
);
1303 list
= isl_basic_set_get_constraint_list(bounds
);
1305 graft
= refine_generic_split(graft
, list
, domain
, build
);
1310 /* Create a for node for the current level.
1312 * Mark the for node degenerate if "degenerate" is set.
1314 static __isl_give isl_ast_node
*create_for(__isl_keep isl_ast_build
*build
,
1321 depth
= isl_ast_build_get_depth(build
);
1325 id
= isl_ast_build_get_iterator_id(build
, depth
);
1326 node
= isl_ast_node_alloc_for(id
);
1328 node
= isl_ast_node_for_mark_degenerate(node
);
1333 /* If the ast_build_exploit_nested_bounds option is set, then return
1334 * the constraints enforced by all elements in "list".
1335 * Otherwise, return the universe.
1337 static __isl_give isl_basic_set
*extract_shared_enforced(
1338 __isl_keep isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
)
1346 ctx
= isl_ast_graft_list_get_ctx(list
);
1347 if (isl_options_get_ast_build_exploit_nested_bounds(ctx
))
1348 return isl_ast_graft_list_extract_shared_enforced(list
, build
);
1350 space
= isl_ast_build_get_space(build
, 1);
1351 return isl_basic_set_universe(space
);
1354 /* Return the pending constraints of "build" that are not already taken
1355 * care of (by a combination of "enforced" and the generated constraints
1358 static __isl_give isl_set
*extract_pending(__isl_keep isl_ast_build
*build
,
1359 __isl_keep isl_basic_set
*enforced
)
1361 isl_set
*guard
, *context
;
1363 guard
= isl_ast_build_get_pending(build
);
1364 context
= isl_set_from_basic_set(isl_basic_set_copy(enforced
));
1365 context
= isl_set_intersect(context
,
1366 isl_ast_build_get_generated(build
));
1367 return isl_set_gist(guard
, context
);
1370 /* Create an AST node for the current dimension based on
1371 * the schedule domain "bounds" and return the node encapsulated
1372 * in an isl_ast_graft.
1374 * "executed" is the current inverse schedule, taking into account
1375 * the bounds in "bounds"
1376 * "domain" is the domain of "executed", with inner dimensions projected out.
1377 * It may be a strict subset of "bounds" in case "bounds" was created
1378 * based on the atomic option or based on separation with explicit bounds.
1380 * "domain" may satisfy additional equalities that result
1381 * from intersecting "executed" with "bounds" in add_node.
1382 * It may also satisfy some global constraints that were dropped out because
1383 * we performed separation with explicit bounds.
1384 * The very first step is then to copy these constraints to "bounds".
1386 * Since we may be calling before_each_for and after_each_for
1387 * callbacks, we record the current inverse schedule in the build.
1389 * We consider three builds,
1390 * "build" is the one in which the current level is created,
1391 * "body_build" is the build in which the next level is created,
1392 * "sub_build" is essentially the same as "body_build", except that
1393 * the depth has not been increased yet.
1395 * "build" already contains information (in strides and offsets)
1396 * about the strides at the current level, but this information is not
1397 * reflected in the build->domain.
1398 * We first add this information and the "bounds" to the sub_build->domain.
1399 * isl_ast_build_set_loop_bounds adds the stride information and
1400 * checks whether the current dimension attains
1401 * only a single value and whether this single value can be represented using
1402 * a single affine expression.
1403 * In the first case, the current level is considered "degenerate".
1404 * In the second, sub-case, the current level is considered "eliminated".
1405 * Eliminated levels don't need to be reflected in the AST since we can
1406 * simply plug in the affine expression. For degenerate, but non-eliminated,
1407 * levels, we do introduce a for node, but mark is as degenerate so that
1408 * it can be printed as an assignment of the single value to the loop
1411 * If the current level is eliminated, we explicitly plug in the value
1412 * for the current level found by isl_ast_build_set_loop_bounds in the
1413 * inverse schedule. This ensures that if we are working on a slice
1414 * of the domain based on information available in the inverse schedule
1415 * and the build domain, that then this information is also reflected
1416 * in the inverse schedule. This operation also eliminates the current
1417 * dimension from the inverse schedule making sure no inner dimensions depend
1418 * on the current dimension. Otherwise, we create a for node, marking
1419 * it degenerate if appropriate. The initial for node is still incomplete
1420 * and will be completed in either refine_degenerate or refine_generic.
1422 * We then generate a sequence of grafts for the next level,
1423 * create a surrounding graft for the current level and insert
1424 * the for node we created (if the current level is not eliminated).
1425 * Before creating a graft for the current level, we first extract
1426 * hoistable constraints from the child guards and combine them
1427 * with the pending constraints in the build. These constraints
1428 * are used to simplify the child guards and then added to the guard
1429 * of the current graft to ensure that they will be generated.
1430 * If the hoisted guard is a disjunction, then we use it directly
1431 * to gist the guards on the children before intersect it with the
1432 * pending constraints. We do so because this disjunction is typically
1433 * identical to the guards on the children such that these guards
1434 * can be effectively removed completely. After the intersection,
1435 * the gist operation would have a harder time figuring this out.
1437 * Finally, we set the bounds of the for loop in either
1438 * refine_degenerate or refine_generic.
1439 * We do so in a context where the pending constraints of the build
1440 * have been replaced by the guard of the current graft.
1442 static __isl_give isl_ast_graft
*create_node_scaled(
1443 __isl_take isl_union_map
*executed
,
1444 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1445 __isl_take isl_ast_build
*build
)
1449 isl_bool eliminated
;
1451 isl_basic_set
*hull
;
1452 isl_basic_set
*enforced
;
1453 isl_set
*guard
, *hoisted
;
1454 isl_ast_node
*node
= NULL
;
1455 isl_ast_graft
*graft
;
1456 isl_ast_graft_list
*children
;
1457 isl_ast_build
*sub_build
;
1458 isl_ast_build
*body_build
;
1460 domain
= isl_ast_build_eliminate_divs(build
, domain
);
1461 domain
= isl_set_detect_equalities(domain
);
1462 hull
= isl_set_unshifted_simple_hull(isl_set_copy(domain
));
1463 bounds
= isl_basic_set_intersect(bounds
, hull
);
1464 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
1466 depth
= isl_ast_build_get_depth(build
);
1468 build
= isl_ast_build_free(build
);
1469 sub_build
= isl_ast_build_copy(build
);
1470 bounds
= isl_basic_set_remove_redundancies(bounds
);
1471 bounds
= isl_ast_build_specialize_basic_set(sub_build
, bounds
);
1472 sub_build
= isl_ast_build_set_loop_bounds(sub_build
,
1473 isl_basic_set_copy(bounds
));
1474 degenerate
= isl_ast_build_has_value(sub_build
);
1475 eliminated
= isl_ast_build_has_affine_value(sub_build
, depth
);
1476 if (degenerate
< 0 || eliminated
< 0)
1477 executed
= isl_union_map_free(executed
);
1479 bounds
= isl_ast_build_compute_gist_basic_set(build
, bounds
);
1480 sub_build
= isl_ast_build_set_pending_generated(sub_build
,
1481 isl_basic_set_copy(bounds
));
1483 executed
= plug_in_values(executed
, sub_build
);
1485 node
= create_for(build
, degenerate
);
1487 body_build
= isl_ast_build_copy(sub_build
);
1488 body_build
= isl_ast_build_increase_depth(body_build
);
1490 node
= before_each_for(node
, body_build
);
1491 children
= generate_next_level(executed
,
1492 isl_ast_build_copy(body_build
));
1494 enforced
= extract_shared_enforced(children
, build
);
1495 guard
= extract_pending(sub_build
, enforced
);
1496 hoisted
= isl_ast_graft_list_extract_hoistable_guard(children
, build
);
1497 n
= isl_set_n_basic_set(hoisted
);
1499 children
= isl_ast_graft_list_free(children
);
1501 children
= isl_ast_graft_list_gist_guards(children
,
1502 isl_set_copy(hoisted
));
1503 guard
= isl_set_intersect(guard
, hoisted
);
1505 guard
= add_implied_guards(guard
, degenerate
, bounds
, build
);
1507 graft
= isl_ast_graft_alloc_from_children(children
,
1508 isl_set_copy(guard
), enforced
, build
, sub_build
);
1511 isl_ast_build
*for_build
;
1513 graft
= isl_ast_graft_insert_for(graft
, node
);
1514 for_build
= isl_ast_build_copy(build
);
1515 for_build
= isl_ast_build_replace_pending_by_guard(for_build
,
1516 isl_set_copy(guard
));
1518 graft
= refine_degenerate(graft
, for_build
, sub_build
);
1520 graft
= refine_generic(graft
, bounds
,
1522 isl_ast_build_free(for_build
);
1524 isl_set_free(guard
);
1526 graft
= after_each_for(graft
, body_build
);
1528 isl_ast_build_free(body_build
);
1529 isl_ast_build_free(sub_build
);
1530 isl_ast_build_free(build
);
1531 isl_basic_set_free(bounds
);
1532 isl_set_free(domain
);
1537 /* Internal data structure for checking if all constraints involving
1538 * the input dimension "depth" are such that the other coefficients
1539 * are multiples of "m", reducing "m" if they are not.
1540 * If "m" is reduced all the way down to "1", then the check has failed
1541 * and we break out of the iteration.
1543 struct isl_check_scaled_data
{
1548 /* If constraint "c" involves the input dimension data->depth,
1549 * then make sure that all the other coefficients are multiples of data->m,
1550 * reducing data->m if needed.
1551 * Break out of the iteration if data->m has become equal to "1".
1553 static isl_stat
constraint_check_scaled(__isl_take isl_constraint
*c
,
1556 struct isl_check_scaled_data
*data
= user
;
1559 enum isl_dim_type t
[] = { isl_dim_param
, isl_dim_in
, isl_dim_out
,
1562 if (!isl_constraint_involves_dims(c
, isl_dim_in
, data
->depth
, 1)) {
1563 isl_constraint_free(c
);
1567 for (i
= 0; i
< 4; ++i
) {
1568 n
= isl_constraint_dim(c
, t
[i
]);
1571 for (j
= 0; j
< n
; ++j
) {
1574 if (t
[i
] == isl_dim_in
&& j
== data
->depth
)
1576 if (!isl_constraint_involves_dims(c
, t
[i
], j
, 1))
1578 d
= isl_constraint_get_coefficient_val(c
, t
[i
], j
);
1579 data
->m
= isl_val_gcd(data
->m
, d
);
1580 if (isl_val_is_one(data
->m
))
1587 isl_constraint_free(c
);
1589 return i
< 4 ? isl_stat_error
: isl_stat_ok
;
1592 /* For each constraint of "bmap" that involves the input dimension data->depth,
1593 * make sure that all the other coefficients are multiples of data->m,
1594 * reducing data->m if needed.
1595 * Break out of the iteration if data->m has become equal to "1".
1597 static isl_stat
basic_map_check_scaled(__isl_take isl_basic_map
*bmap
,
1602 r
= isl_basic_map_foreach_constraint(bmap
,
1603 &constraint_check_scaled
, user
);
1604 isl_basic_map_free(bmap
);
1609 /* For each constraint of "map" that involves the input dimension data->depth,
1610 * make sure that all the other coefficients are multiples of data->m,
1611 * reducing data->m if needed.
1612 * Break out of the iteration if data->m has become equal to "1".
1614 static isl_stat
map_check_scaled(__isl_take isl_map
*map
, void *user
)
1618 r
= isl_map_foreach_basic_map(map
, &basic_map_check_scaled
, user
);
1624 /* Create an AST node for the current dimension based on
1625 * the schedule domain "bounds" and return the node encapsulated
1626 * in an isl_ast_graft.
1628 * "executed" is the current inverse schedule, taking into account
1629 * the bounds in "bounds"
1630 * "domain" is the domain of "executed", with inner dimensions projected out.
1633 * Before moving on to the actual AST node construction in create_node_scaled,
1634 * we first check if the current dimension is strided and if we can scale
1635 * down this stride. Note that we only do this if the ast_build_scale_strides
1638 * In particular, let the current dimension take on values
1642 * with a an integer. We check if we can find an integer m that (obviously)
1643 * divides both f and s.
1645 * If so, we check if the current dimension only appears in constraints
1646 * where the coefficients of the other variables are multiples of m.
1647 * We perform this extra check to avoid the risk of introducing
1648 * divisions by scaling down the current dimension.
1650 * If so, we scale the current dimension down by a factor of m.
1651 * That is, we plug in
1655 * Note that in principle we could always scale down strided loops
1660 * but this may result in i' taking on larger values than the original i,
1661 * due to the shift by "f".
1662 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1664 static __isl_give isl_ast_graft
*create_node(__isl_take isl_union_map
*executed
,
1665 __isl_take isl_basic_set
*bounds
, __isl_take isl_set
*domain
,
1666 __isl_take isl_ast_build
*build
)
1668 struct isl_check_scaled_data data
;
1674 ctx
= isl_ast_build_get_ctx(build
);
1675 if (!isl_options_get_ast_build_scale_strides(ctx
))
1676 return create_node_scaled(executed
, bounds
, domain
, build
);
1678 depth
= isl_ast_build_get_depth(build
);
1680 build
= isl_ast_build_free(build
);
1682 if (!isl_ast_build_has_stride(build
, data
.depth
))
1683 return create_node_scaled(executed
, bounds
, domain
, build
);
1685 offset
= isl_ast_build_get_offset(build
, data
.depth
);
1686 data
.m
= isl_ast_build_get_stride(build
, data
.depth
);
1688 offset
= isl_aff_free(offset
);
1689 offset
= isl_aff_scale_down_val(offset
, isl_val_copy(data
.m
));
1690 d
= isl_aff_get_denominator_val(offset
);
1692 executed
= isl_union_map_free(executed
);
1694 if (executed
&& isl_val_is_divisible_by(data
.m
, d
))
1695 data
.m
= isl_val_div(data
.m
, d
);
1697 data
.m
= isl_val_set_si(data
.m
, 1);
1701 if (!isl_val_is_one(data
.m
)) {
1702 if (isl_union_map_foreach_map(executed
, &map_check_scaled
,
1704 !isl_val_is_one(data
.m
))
1705 executed
= isl_union_map_free(executed
);
1708 if (!isl_val_is_one(data
.m
)) {
1713 isl_union_map
*umap
;
1715 space
= isl_ast_build_get_space(build
, 1);
1716 space
= isl_space_map_from_set(space
);
1717 ma
= isl_multi_aff_identity(space
);
1718 aff
= isl_multi_aff_get_aff(ma
, data
.depth
);
1719 aff
= isl_aff_scale_val(aff
, isl_val_copy(data
.m
));
1720 ma
= isl_multi_aff_set_aff(ma
, data
.depth
, aff
);
1722 bounds
= isl_basic_set_preimage_multi_aff(bounds
,
1723 isl_multi_aff_copy(ma
));
1724 domain
= isl_set_preimage_multi_aff(domain
,
1725 isl_multi_aff_copy(ma
));
1726 map
= isl_map_reverse(isl_map_from_multi_aff(ma
));
1727 umap
= isl_union_map_from_map(map
);
1728 executed
= isl_union_map_apply_domain(executed
,
1729 isl_union_map_copy(umap
));
1730 build
= isl_ast_build_scale_down(build
, isl_val_copy(data
.m
),
1733 isl_aff_free(offset
);
1734 isl_val_free(data
.m
);
1736 return create_node_scaled(executed
, bounds
, domain
, build
);
1739 /* Add the basic set to the list that "user" points to.
1741 static isl_stat
collect_basic_set(__isl_take isl_basic_set
*bset
, void *user
)
1743 isl_basic_set_list
**list
= user
;
1745 *list
= isl_basic_set_list_add(*list
, bset
);
1750 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1752 static __isl_give isl_basic_set_list
*isl_basic_set_list_from_set(
1753 __isl_take isl_set
*set
)
1757 isl_basic_set_list
*list
;
1759 n
= isl_set_n_basic_set(set
);
1761 set
= isl_set_free(set
);
1765 ctx
= isl_set_get_ctx(set
);
1767 list
= isl_basic_set_list_alloc(ctx
, n
);
1768 if (isl_set_foreach_basic_set(set
, &collect_basic_set
, &list
) < 0)
1769 list
= isl_basic_set_list_free(list
);
1775 /* Generate code for the schedule domain "bounds"
1776 * and add the result to "list".
1778 * We mainly detect strides here and check if the bounds do not
1779 * conflict with the current build domain
1780 * and then pass over control to create_node.
1782 * "bounds" reflects the bounds on the current dimension and possibly
1783 * some extra conditions on outer dimensions.
1784 * It does not, however, include any divs involving the current dimension,
1785 * so it does not capture any stride constraints.
1786 * We therefore need to compute that part of the schedule domain that
1787 * intersects with "bounds" and derive the strides from the result.
1789 static __isl_give isl_ast_graft_list
*add_node(
1790 __isl_take isl_ast_graft_list
*list
, __isl_take isl_union_map
*executed
,
1791 __isl_take isl_basic_set
*bounds
, __isl_take isl_ast_build
*build
)
1793 isl_ast_graft
*graft
;
1794 isl_set
*domain
= NULL
;
1795 isl_union_set
*uset
;
1796 int empty
, disjoint
;
1798 uset
= isl_union_set_from_basic_set(isl_basic_set_copy(bounds
));
1799 executed
= isl_union_map_intersect_domain(executed
, uset
);
1800 empty
= isl_union_map_is_empty(executed
);
1806 uset
= isl_union_map_domain(isl_union_map_copy(executed
));
1807 domain
= isl_set_from_union_set(uset
);
1808 domain
= isl_ast_build_specialize(build
, domain
);
1810 domain
= isl_set_compute_divs(domain
);
1811 domain
= isl_ast_build_eliminate_inner(build
, domain
);
1812 disjoint
= isl_set_is_disjoint(domain
, build
->domain
);
1818 build
= isl_ast_build_detect_strides(build
, isl_set_copy(domain
));
1820 graft
= create_node(executed
, bounds
, domain
,
1821 isl_ast_build_copy(build
));
1822 list
= isl_ast_graft_list_add(list
, graft
);
1823 isl_ast_build_free(build
);
1826 list
= isl_ast_graft_list_free(list
);
1828 isl_set_free(domain
);
1829 isl_basic_set_free(bounds
);
1830 isl_union_map_free(executed
);
1831 isl_ast_build_free(build
);
1835 /* Does any element of i follow or coincide with any element of j
1836 * at the current depth for equal values of the outer dimensions?
1838 static isl_bool
domain_follows_at_depth(__isl_keep isl_basic_set
*i
,
1839 __isl_keep isl_basic_set
*j
, void *user
)
1841 int depth
= *(int *) user
;
1842 isl_basic_map
*test
;
1846 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
1847 isl_basic_set_copy(j
));
1848 for (l
= 0; l
< depth
; ++l
)
1849 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
1851 test
= isl_basic_map_order_ge(test
, isl_dim_in
, depth
,
1852 isl_dim_out
, depth
);
1853 empty
= isl_basic_map_is_empty(test
);
1854 isl_basic_map_free(test
);
1856 return isl_bool_not(empty
);
1859 /* Split up each element of "list" into a part that is related to "bset"
1860 * according to "gt" and a part that is not.
1861 * Return a list that consist of "bset" and all the pieces.
1863 static __isl_give isl_basic_set_list
*add_split_on(
1864 __isl_take isl_basic_set_list
*list
, __isl_take isl_basic_set
*bset
,
1865 __isl_keep isl_basic_map
*gt
)
1869 isl_basic_set_list
*res
;
1871 n
= isl_basic_set_list_n_basic_set(list
);
1873 bset
= isl_basic_set_free(bset
);
1875 gt
= isl_basic_map_copy(gt
);
1876 gt
= isl_basic_map_intersect_domain(gt
, isl_basic_set_copy(bset
));
1877 res
= isl_basic_set_list_from_basic_set(bset
);
1878 for (i
= 0; res
&& i
< n
; ++i
) {
1879 isl_basic_set
*bset
;
1880 isl_set
*set1
, *set2
;
1881 isl_basic_map
*bmap
;
1884 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1885 bmap
= isl_basic_map_copy(gt
);
1886 bmap
= isl_basic_map_intersect_range(bmap
, bset
);
1887 bset
= isl_basic_map_range(bmap
);
1888 empty
= isl_basic_set_is_empty(bset
);
1890 res
= isl_basic_set_list_free(res
);
1892 isl_basic_set_free(bset
);
1893 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1894 res
= isl_basic_set_list_add(res
, bset
);
1898 res
= isl_basic_set_list_add(res
, isl_basic_set_copy(bset
));
1899 set1
= isl_set_from_basic_set(bset
);
1900 bset
= isl_basic_set_list_get_basic_set(list
, i
);
1901 set2
= isl_set_from_basic_set(bset
);
1902 set1
= isl_set_subtract(set2
, set1
);
1903 set1
= isl_set_make_disjoint(set1
);
1905 res
= isl_basic_set_list_concat(res
,
1906 isl_basic_set_list_from_set(set1
));
1908 isl_basic_map_free(gt
);
1909 isl_basic_set_list_free(list
);
1913 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
1914 __isl_keep isl_basic_set_list
*domain_list
,
1915 __isl_keep isl_union_map
*executed
,
1916 __isl_keep isl_ast_build
*build
);
1918 /* Internal data structure for add_nodes.
1920 * "executed" and "build" are extra arguments to be passed to add_node.
1921 * "list" collects the results.
1923 struct isl_add_nodes_data
{
1924 isl_union_map
*executed
;
1925 isl_ast_build
*build
;
1927 isl_ast_graft_list
*list
;
1930 /* Generate code for the schedule domains in "scc"
1931 * and add the results to "list".
1933 * The domains in "scc" form a strongly connected component in the ordering.
1934 * If the number of domains in "scc" is larger than 1, then this means
1935 * that we cannot determine a valid ordering for the domains in the component.
1936 * This should be fairly rare because the individual domains
1937 * have been made disjoint first.
1938 * The problem is that the domains may be integrally disjoint but not
1939 * rationally disjoint. For example, we may have domains
1941 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1943 * These two domains have an empty intersection, but their rational
1944 * relaxations do intersect. It is impossible to order these domains
1945 * in the second dimension because the first should be ordered before
1946 * the second for outer dimension equal to 0, while it should be ordered
1947 * after for outer dimension equal to 1.
1949 * This may happen in particular in case of unrolling since the domain
1950 * of each slice is replaced by its simple hull.
1952 * For each basic set i in "scc" and for each of the following basic sets j,
1953 * we split off that part of the basic set i that shares the outer dimensions
1954 * with j and lies before j in the current dimension.
1955 * We collect all the pieces in a new list that replaces "scc".
1957 * While the elements in "scc" should be disjoint, we double-check
1958 * this property to avoid running into an infinite recursion in case
1959 * they intersect due to some internal error.
1961 static isl_stat
add_nodes(__isl_take isl_basic_set_list
*scc
, void *user
)
1963 struct isl_add_nodes_data
*data
= user
;
1967 isl_basic_set
*bset
, *first
;
1968 isl_basic_set_list
*list
;
1972 n
= isl_basic_set_list_n_basic_set(scc
);
1975 bset
= isl_basic_set_list_get_basic_set(scc
, 0);
1977 isl_basic_set_list_free(scc
);
1978 data
->list
= add_node(data
->list
,
1979 isl_union_map_copy(data
->executed
), bset
,
1980 isl_ast_build_copy(data
->build
));
1981 return data
->list
? isl_stat_ok
: isl_stat_error
;
1984 depth
= isl_ast_build_get_depth(data
->build
);
1986 bset
= isl_basic_set_free(bset
);
1987 space
= isl_basic_set_get_space(bset
);
1988 space
= isl_space_map_from_set(space
);
1989 gt
= isl_basic_map_universe(space
);
1990 for (i
= 0; i
< depth
; ++i
)
1991 gt
= isl_basic_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
1992 gt
= isl_basic_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
1994 first
= isl_basic_set_copy(bset
);
1995 list
= isl_basic_set_list_from_basic_set(bset
);
1996 for (i
= 1; i
< n
; ++i
) {
1999 bset
= isl_basic_set_list_get_basic_set(scc
, i
);
2001 disjoint
= isl_basic_set_is_disjoint(bset
, first
);
2003 list
= isl_basic_set_list_free(list
);
2005 isl_die(isl_basic_set_list_get_ctx(scc
),
2007 "basic sets in scc are assumed to be disjoint",
2008 list
= isl_basic_set_list_free(list
));
2010 list
= add_split_on(list
, bset
, gt
);
2012 isl_basic_set_free(first
);
2013 isl_basic_map_free(gt
);
2014 isl_basic_set_list_free(scc
);
2016 data
->list
= isl_ast_graft_list_concat(data
->list
,
2017 generate_sorted_domains(scc
, data
->executed
, data
->build
));
2018 isl_basic_set_list_free(scc
);
2020 return data
->list
? isl_stat_ok
: isl_stat_error
;
2022 isl_basic_set_list_free(scc
);
2023 return isl_stat_error
;
2026 /* Sort the domains in "domain_list" according to the execution order
2027 * at the current depth (for equal values of the outer dimensions),
2028 * generate code for each of them, collecting the results in a list.
2029 * If no code is generated (because the intersection of the inverse schedule
2030 * with the domains turns out to be empty), then an empty list is returned.
2032 * The caller is responsible for ensuring that the basic sets in "domain_list"
2033 * are pair-wise disjoint. It can, however, in principle happen that
2034 * two basic sets should be ordered one way for one value of the outer
2035 * dimensions and the other way for some other value of the outer dimensions.
2036 * We therefore play safe and look for strongly connected components.
2037 * The function add_nodes takes care of handling non-trivial components.
2039 static __isl_give isl_ast_graft_list
*generate_sorted_domains(
2040 __isl_keep isl_basic_set_list
*domain_list
,
2041 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2044 struct isl_add_nodes_data data
;
2048 n
= isl_basic_set_list_n_basic_set(domain_list
);
2052 ctx
= isl_basic_set_list_get_ctx(domain_list
);
2053 data
.list
= isl_ast_graft_list_alloc(ctx
, n
);
2057 return add_node(data
.list
, isl_union_map_copy(executed
),
2058 isl_basic_set_list_get_basic_set(domain_list
, 0),
2059 isl_ast_build_copy(build
));
2061 depth
= isl_ast_build_get_depth(build
);
2062 data
.executed
= executed
;
2064 if (depth
< 0 || isl_basic_set_list_foreach_scc(domain_list
,
2065 &domain_follows_at_depth
, &depth
,
2066 &add_nodes
, &data
) < 0)
2067 data
.list
= isl_ast_graft_list_free(data
.list
);
2072 /* Do i and j share any values for the outer dimensions?
2074 static isl_bool
shared_outer(__isl_keep isl_basic_set
*i
,
2075 __isl_keep isl_basic_set
*j
, void *user
)
2077 int depth
= *(int *) user
;
2078 isl_basic_map
*test
;
2082 test
= isl_basic_map_from_domain_and_range(isl_basic_set_copy(i
),
2083 isl_basic_set_copy(j
));
2084 for (l
= 0; l
< depth
; ++l
)
2085 test
= isl_basic_map_equate(test
, isl_dim_in
, l
,
2087 empty
= isl_basic_map_is_empty(test
);
2088 isl_basic_map_free(test
);
2090 return isl_bool_not(empty
);
2093 /* Internal data structure for generate_sorted_domains_wrap.
2095 * "n" is the total number of basic sets
2096 * "executed" and "build" are extra arguments to be passed
2097 * to generate_sorted_domains.
2099 * "single" is set to 1 by generate_sorted_domains_wrap if there
2100 * is only a single component.
2101 * "list" collects the results.
2103 struct isl_ast_generate_parallel_domains_data
{
2105 isl_union_map
*executed
;
2106 isl_ast_build
*build
;
2109 isl_ast_graft_list
*list
;
2112 /* Call generate_sorted_domains on "scc", fuse the result into a list
2113 * with either zero or one graft and collect the these single element
2114 * lists into data->list.
2116 * If there is only one component, i.e., if the number of basic sets
2117 * in the current component is equal to the total number of basic sets,
2118 * then data->single is set to 1 and the result of generate_sorted_domains
2121 static isl_stat
generate_sorted_domains_wrap(__isl_take isl_basic_set_list
*scc
,
2124 struct isl_ast_generate_parallel_domains_data
*data
= user
;
2125 isl_ast_graft_list
*list
;
2128 n
= isl_basic_set_list_n_basic_set(scc
);
2130 scc
= isl_basic_set_list_free(scc
);
2131 list
= generate_sorted_domains(scc
, data
->executed
, data
->build
);
2132 data
->single
= n
== data
->n
;
2134 list
= isl_ast_graft_list_fuse(list
, data
->build
);
2138 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
2140 isl_basic_set_list_free(scc
);
2142 return isl_stat_error
;
2147 /* Look for any (weakly connected) components in the "domain_list"
2148 * of domains that share some values of the outer dimensions.
2149 * That is, domains in different components do not share any values
2150 * of the outer dimensions. This means that these components
2151 * can be freely reordered.
2152 * Within each of the components, we sort the domains according
2153 * to the execution order at the current depth.
2155 * If there is more than one component, then generate_sorted_domains_wrap
2156 * fuses the result of each call to generate_sorted_domains
2157 * into a list with either zero or one graft and collects these (at most)
2158 * single element lists into a bigger list. This means that the elements of the
2159 * final list can be freely reordered. In particular, we sort them
2160 * according to an arbitrary but fixed ordering to ease merging of
2161 * graft lists from different components.
2163 static __isl_give isl_ast_graft_list
*generate_parallel_domains(
2164 __isl_keep isl_basic_set_list
*domain_list
,
2165 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
2168 struct isl_ast_generate_parallel_domains_data data
;
2170 data
.n
= isl_basic_set_list_n_basic_set(domain_list
);
2175 return generate_sorted_domains(domain_list
, executed
, build
);
2177 depth
= isl_ast_build_get_depth(build
);
2181 data
.executed
= executed
;
2184 if (isl_basic_set_list_foreach_scc(domain_list
, &shared_outer
, &depth
,
2185 &generate_sorted_domains_wrap
,
2187 data
.list
= isl_ast_graft_list_free(data
.list
);
2190 data
.list
= isl_ast_graft_list_sort_guard(data
.list
);
2195 /* Internal data for separate_domain.
2197 * "explicit" is set if we only want to use explicit bounds.
2199 * "domain" collects the separated domains.
2201 struct isl_separate_domain_data
{
2202 isl_ast_build
*build
;
2207 /* Extract implicit bounds on the current dimension for the executed "map".
2209 * The domain of "map" may involve inner dimensions, so we
2210 * need to eliminate them.
2212 static __isl_give isl_set
*implicit_bounds(__isl_take isl_map
*map
,
2213 __isl_keep isl_ast_build
*build
)
2217 domain
= isl_map_domain(map
);
2218 domain
= isl_ast_build_eliminate(build
, domain
);
2223 /* Extract explicit bounds on the current dimension for the executed "map".
2225 * Rather than eliminating the inner dimensions as in implicit_bounds,
2226 * we simply drop any constraints involving those inner dimensions.
2227 * The idea is that most bounds that are implied by constraints on the
2228 * inner dimensions will be enforced by for loops and not by explicit guards.
2229 * There is then no need to separate along those bounds.
2231 static __isl_give isl_set
*explicit_bounds(__isl_take isl_map
*map
,
2232 __isl_keep isl_ast_build
*build
)
2238 depth
= isl_ast_build_get_depth(build
);
2239 dim
= isl_map_dim(map
, isl_dim_out
);
2240 if (depth
< 0 || dim
< 0)
2241 return isl_map_domain(isl_map_free(map
));
2242 map
= isl_map_drop_constraints_involving_dims(map
, isl_dim_out
, 0, dim
);
2244 domain
= isl_map_domain(map
);
2245 dim
= isl_set_dim(domain
, isl_dim_set
);
2246 domain
= isl_set_detect_equalities(domain
);
2247 domain
= isl_set_drop_constraints_involving_dims(domain
,
2248 isl_dim_set
, depth
+ 1, dim
- (depth
+ 1));
2249 domain
= isl_set_remove_divs_involving_dims(domain
,
2250 isl_dim_set
, depth
, 1);
2251 domain
= isl_set_remove_unknown_divs(domain
);
2256 /* Split data->domain into pieces that intersect with the range of "map"
2257 * and pieces that do not intersect with the range of "map"
2258 * and then add that part of the range of "map" that does not intersect
2259 * with data->domain.
2261 static isl_stat
separate_domain(__isl_take isl_map
*map
, void *user
)
2263 struct isl_separate_domain_data
*data
= user
;
2268 domain
= explicit_bounds(map
, data
->build
);
2270 domain
= implicit_bounds(map
, data
->build
);
2272 domain
= isl_set_coalesce(domain
);
2273 domain
= isl_set_make_disjoint(domain
);
2274 d1
= isl_set_subtract(isl_set_copy(domain
), isl_set_copy(data
->domain
));
2275 d2
= isl_set_subtract(isl_set_copy(data
->domain
), isl_set_copy(domain
));
2276 data
->domain
= isl_set_intersect(data
->domain
, domain
);
2277 data
->domain
= isl_set_union(data
->domain
, d1
);
2278 data
->domain
= isl_set_union(data
->domain
, d2
);
2283 /* Separate the schedule domains of "executed".
2285 * That is, break up the domain of "executed" into basic sets,
2286 * such that for each basic set S, every element in S is associated with
2287 * the same domain spaces.
2289 * "space" is the (single) domain space of "executed".
2291 static __isl_give isl_set
*separate_schedule_domains(
2292 __isl_take isl_space
*space
, __isl_take isl_union_map
*executed
,
2293 __isl_keep isl_ast_build
*build
)
2295 struct isl_separate_domain_data data
= { build
};
2298 ctx
= isl_ast_build_get_ctx(build
);
2299 data
.explicit = isl_options_get_ast_build_separation_bounds(ctx
) ==
2300 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT
;
2301 data
.domain
= isl_set_empty(space
);
2302 if (isl_union_map_foreach_map(executed
, &separate_domain
, &data
) < 0)
2303 data
.domain
= isl_set_free(data
.domain
);
2305 isl_union_map_free(executed
);
2309 /* Temporary data used during the search for a lower bound for unrolling.
2311 * "build" is the build in which the unrolling will be performed
2312 * "domain" is the original set for which to find a lower bound
2313 * "depth" is the dimension for which to find a lower boudn
2314 * "expansion" is the expansion that needs to be applied to "domain"
2315 * in the unrolling that will be performed
2317 * "lower" is the best lower bound found so far. It is NULL if we have not
2319 * "n" is the corresponding size. If lower is NULL, then the value of n
2321 * "n_div" is the maximal number of integer divisions in the first
2322 * unrolled iteration (after expansion). It is set to -1 if it hasn't
2323 * been computed yet.
2325 struct isl_find_unroll_data
{
2326 isl_ast_build
*build
;
2329 isl_basic_map
*expansion
;
2336 /* Return the constraint
2338 * i_"depth" = aff + offset
2340 static __isl_give isl_constraint
*at_offset(int depth
, __isl_keep isl_aff
*aff
,
2343 aff
= isl_aff_copy(aff
);
2344 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, depth
, -1);
2345 aff
= isl_aff_add_constant_si(aff
, offset
);
2346 return isl_equality_from_aff(aff
);
2349 /* Update *user to the number of integer divisions in the first element
2350 * of "ma", if it is larger than the current value.
2352 static isl_stat
update_n_div(__isl_take isl_set
*set
,
2353 __isl_take isl_multi_aff
*ma
, void *user
)
2359 aff
= isl_multi_aff_get_aff(ma
, 0);
2360 n_div
= isl_aff_dim(aff
, isl_dim_div
);
2362 isl_multi_aff_free(ma
);
2368 return n_div
>= 0 ? isl_stat_ok
: isl_stat_error
;
2371 /* Get the number of integer divisions in the expression for the iterator
2372 * value at the first slice in the unrolling based on lower bound "lower",
2373 * taking into account the expansion that needs to be performed on this slice.
2375 static int get_expanded_n_div(struct isl_find_unroll_data
*data
,
2376 __isl_keep isl_aff
*lower
)
2380 isl_map
*it_map
, *expansion
;
2381 isl_pw_multi_aff
*pma
;
2384 c
= at_offset(data
->depth
, lower
, 0);
2385 set
= isl_set_copy(data
->domain
);
2386 set
= isl_set_add_constraint(set
, c
);
2387 expansion
= isl_map_from_basic_map(isl_basic_map_copy(data
->expansion
));
2388 set
= isl_set_apply(set
, expansion
);
2389 it_map
= isl_ast_build_map_to_iterator(data
->build
, set
);
2390 pma
= isl_pw_multi_aff_from_map(it_map
);
2392 if (isl_pw_multi_aff_foreach_piece(pma
, &update_n_div
, &n
) < 0)
2394 isl_pw_multi_aff_free(pma
);
2399 /* Is the lower bound "lower" with corresponding iteration count "n"
2400 * better than the one stored in "data"?
2401 * If there is no upper bound on the iteration count ("n" is infinity) or
2402 * if the count is too large, then we cannot use this lower bound.
2403 * Otherwise, if there was no previous lower bound or
2404 * if the iteration count of the new lower bound is smaller than
2405 * the iteration count of the previous lower bound, then we consider
2406 * the new lower bound to be better.
2407 * If the iteration count is the same, then compare the number
2408 * of integer divisions that would be needed to express
2409 * the iterator value at the first slice in the unrolling
2410 * according to the lower bound. If we end up computing this
2411 * number, then store the lowest value in data->n_div.
2413 static int is_better_lower_bound(struct isl_find_unroll_data
*data
,
2414 __isl_keep isl_aff
*lower
, __isl_keep isl_val
*n
)
2421 if (isl_val_is_infty(n
))
2423 if (isl_val_cmp_si(n
, INT_MAX
) > 0)
2427 cmp
= isl_val_cmp_si(n
, *data
->n
);
2432 if (data
->n_div
< 0)
2433 data
->n_div
= get_expanded_n_div(data
, data
->lower
);
2434 if (data
->n_div
< 0)
2436 if (data
->n_div
== 0)
2438 n_div
= get_expanded_n_div(data
, lower
);
2441 if (n_div
>= data
->n_div
)
2443 data
->n_div
= n_div
;
2448 /* Check if we can use "c" as a lower bound and if it is better than
2449 * any previously found lower bound.
2451 * If "c" does not involve the dimension at the current depth,
2452 * then we cannot use it.
2453 * Otherwise, let "c" be of the form
2457 * We compute the maximal value of
2459 * -ceil(f(j)/a)) + i + 1
2461 * over the domain. If there is such a value "n", then we know
2463 * -ceil(f(j)/a)) + i + 1 <= n
2467 * i < ceil(f(j)/a)) + n
2469 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2470 * We just need to check if we have found any lower bound before and
2471 * if the new lower bound is better (smaller n or fewer integer divisions)
2472 * than the previously found lower bounds.
2474 static isl_stat
update_unrolling_lower_bound(struct isl_find_unroll_data
*data
,
2475 __isl_keep isl_constraint
*c
)
2477 isl_aff
*aff
, *lower
;
2481 if (!isl_constraint_is_lower_bound(c
, isl_dim_set
, data
->depth
))
2484 lower
= isl_constraint_get_bound(c
, isl_dim_set
, data
->depth
);
2485 lower
= isl_aff_ceil(lower
);
2486 aff
= isl_aff_copy(lower
);
2487 aff
= isl_aff_neg(aff
);
2488 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, data
->depth
, 1);
2489 aff
= isl_aff_add_constant_si(aff
, 1);
2490 max
= isl_set_max_val(data
->domain
, aff
);
2493 better
= is_better_lower_bound(data
, lower
, max
);
2494 if (better
< 0 || !better
) {
2496 isl_aff_free(lower
);
2497 return better
< 0 ? isl_stat_error
: isl_stat_ok
;
2500 isl_aff_free(data
->lower
);
2501 data
->lower
= lower
;
2502 *data
->n
= isl_val_get_num_si(max
);
2508 /* Check if we can use "c" as a lower bound and if it is better than
2509 * any previously found lower bound.
2511 static isl_stat
constraint_find_unroll(__isl_take isl_constraint
*c
, void *user
)
2513 struct isl_find_unroll_data
*data
;
2516 data
= (struct isl_find_unroll_data
*) user
;
2517 r
= update_unrolling_lower_bound(data
, c
);
2518 isl_constraint_free(c
);
2523 /* Look for a lower bound l(i) on the dimension at "depth"
2524 * and a size n such that "domain" is a subset of
2526 * { [i] : l(i) <= i_d < l(i) + n }
2528 * where d is "depth" and l(i) depends only on earlier dimensions.
2529 * Furthermore, try and find a lower bound such that n is as small as possible.
2530 * In particular, "n" needs to be finite.
2531 * "build" is the build in which the unrolling will be performed.
2532 * "expansion" is the expansion that needs to be applied to "domain"
2533 * in the unrolling that will be performed.
2535 * Inner dimensions have been eliminated from "domain" by the caller.
2537 * We first construct a collection of lower bounds on the input set
2538 * by computing its simple hull. We then iterate through them,
2539 * discarding those that we cannot use (either because they do not
2540 * involve the dimension at "depth" or because they have no corresponding
2541 * upper bound, meaning that "n" would be unbounded) and pick out the
2542 * best from the remaining ones.
2544 * If we cannot find a suitable lower bound, then we consider that
2547 static __isl_give isl_aff
*find_unroll_lower_bound(
2548 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*domain
,
2549 int depth
, __isl_keep isl_basic_map
*expansion
, int *n
)
2551 struct isl_find_unroll_data data
=
2552 { build
, domain
, depth
, expansion
, NULL
, n
, -1 };
2553 isl_basic_set
*hull
;
2555 hull
= isl_set_simple_hull(isl_set_copy(domain
));
2557 if (isl_basic_set_foreach_constraint(hull
,
2558 &constraint_find_unroll
, &data
) < 0)
2561 isl_basic_set_free(hull
);
2564 isl_die(isl_set_get_ctx(domain
), isl_error_invalid
,
2565 "cannot find lower bound for unrolling", return NULL
);
2569 isl_basic_set_free(hull
);
2570 return isl_aff_free(data
.lower
);
2573 /* Call "fn" on each iteration of the current dimension of "domain".
2574 * If "init" is not NULL, then it is called with the number of
2575 * iterations before any call to "fn".
2576 * Return -1 on failure.
2578 * Since we are going to be iterating over the individual values,
2579 * we first check if there are any strides on the current dimension.
2580 * If there is, we rewrite the current dimension i as
2582 * i = stride i' + offset
2584 * and then iterate over individual values of i' instead.
2586 * We then look for a lower bound on i' and a size such that the domain
2589 * { [j,i'] : l(j) <= i' < l(j) + n }
2591 * and then take slices of the domain at values of i'
2592 * between l(j) and l(j) + n - 1.
2594 * We compute the unshifted simple hull of each slice to ensure that
2595 * we have a single basic set per offset. The slicing constraint
2596 * may get simplified away before the unshifted simple hull is taken
2597 * and may therefore in some rare cases disappear from the result.
2598 * We therefore explicitly add the constraint back after computing
2599 * the unshifted simple hull to ensure that the basic sets
2600 * remain disjoint. The constraints that are dropped by taking the hull
2601 * will be taken into account at the next level, as in the case of the
2604 * Finally, we map i' back to i and call "fn".
2606 static int foreach_iteration(__isl_take isl_set
*domain
,
2607 __isl_keep isl_ast_build
*build
, int (*init
)(int n
, void *user
),
2608 int (*fn
)(__isl_take isl_basic_set
*bset
, void *user
), void *user
)
2613 isl_multi_aff
*expansion
;
2614 isl_basic_map
*bmap
;
2615 isl_aff
*lower
= NULL
;
2616 isl_ast_build
*stride_build
;
2618 depth
= isl_ast_build_get_depth(build
);
2620 domain
= isl_set_free(domain
);
2622 domain
= isl_ast_build_eliminate_inner(build
, domain
);
2623 domain
= isl_set_intersect(domain
, isl_ast_build_get_domain(build
));
2624 stride_build
= isl_ast_build_copy(build
);
2625 stride_build
= isl_ast_build_detect_strides(stride_build
,
2626 isl_set_copy(domain
));
2627 expansion
= isl_ast_build_get_stride_expansion(stride_build
);
2629 domain
= isl_set_preimage_multi_aff(domain
,
2630 isl_multi_aff_copy(expansion
));
2631 domain
= isl_ast_build_eliminate_divs(stride_build
, domain
);
2632 isl_ast_build_free(stride_build
);
2634 bmap
= isl_basic_map_from_multi_aff(expansion
);
2636 empty
= isl_set_is_empty(domain
);
2642 lower
= find_unroll_lower_bound(build
, domain
, depth
, bmap
, &n
);
2646 if (n
>= 0 && init
&& init(n
, user
) < 0)
2648 for (i
= 0; i
< n
; ++i
) {
2650 isl_basic_set
*bset
;
2651 isl_constraint
*slice
;
2653 slice
= at_offset(depth
, lower
, i
);
2654 set
= isl_set_copy(domain
);
2655 set
= isl_set_add_constraint(set
, isl_constraint_copy(slice
));
2656 bset
= isl_set_unshifted_simple_hull(set
);
2657 bset
= isl_basic_set_add_constraint(bset
, slice
);
2658 bset
= isl_basic_set_apply(bset
, isl_basic_map_copy(bmap
));
2660 if (fn(bset
, user
) < 0)
2664 isl_aff_free(lower
);
2665 isl_set_free(domain
);
2666 isl_basic_map_free(bmap
);
2668 return n
< 0 || i
< n
? -1 : 0;
2671 /* Data structure for storing the results and the intermediate objects
2672 * of compute_domains.
2674 * "list" is the main result of the function and contains a list
2675 * of disjoint basic sets for which code should be generated.
2677 * "executed" and "build" are inputs to compute_domains.
2678 * "schedule_domain" is the domain of "executed".
2680 * "option" contains the domains at the current depth that should by
2681 * atomic, separated or unrolled. These domains are as specified by
2682 * the user, except that inner dimensions have been eliminated and
2683 * that they have been made pair-wise disjoint.
2685 * "sep_class" contains the user-specified split into separation classes
2686 * specialized to the current depth.
2687 * "done" contains the union of the separation domains that have already
2690 struct isl_codegen_domains
{
2691 isl_basic_set_list
*list
;
2693 isl_union_map
*executed
;
2694 isl_ast_build
*build
;
2695 isl_set
*schedule_domain
;
2703 /* Internal data structure for do_unroll.
2705 * "domains" stores the results of compute_domains.
2706 * "class_domain" is the original class domain passed to do_unroll.
2707 * "unroll_domain" collects the unrolled iterations.
2709 struct isl_ast_unroll_data
{
2710 struct isl_codegen_domains
*domains
;
2711 isl_set
*class_domain
;
2712 isl_set
*unroll_domain
;
2715 /* Given an iteration of an unrolled domain represented by "bset",
2716 * add it to data->domains->list.
2717 * Since we may have dropped some constraints, we intersect with
2718 * the class domain again to ensure that each element in the list
2719 * is disjoint from the other class domains.
2721 static int do_unroll_iteration(__isl_take isl_basic_set
*bset
, void *user
)
2723 struct isl_ast_unroll_data
*data
= user
;
2725 isl_basic_set_list
*list
;
2727 set
= isl_set_from_basic_set(bset
);
2728 data
->unroll_domain
= isl_set_union(data
->unroll_domain
,
2730 set
= isl_set_intersect(set
, isl_set_copy(data
->class_domain
));
2731 set
= isl_set_make_disjoint(set
);
2732 list
= isl_basic_set_list_from_set(set
);
2733 data
->domains
->list
= isl_basic_set_list_concat(data
->domains
->list
,
2739 /* Extend domains->list with a list of basic sets, one for each value
2740 * of the current dimension in "domain" and remove the corresponding
2741 * sets from the class domain. Return the updated class domain.
2742 * The divs that involve the current dimension have not been projected out
2745 * We call foreach_iteration to iterate over the individual values and
2746 * in do_unroll_iteration we collect the individual basic sets in
2747 * domains->list and their union in data->unroll_domain, which is then
2748 * used to update the class domain.
2750 static __isl_give isl_set
*do_unroll(struct isl_codegen_domains
*domains
,
2751 __isl_take isl_set
*domain
, __isl_take isl_set
*class_domain
)
2753 struct isl_ast_unroll_data data
;
2756 return isl_set_free(class_domain
);
2758 return isl_set_free(domain
);
2760 data
.domains
= domains
;
2761 data
.class_domain
= class_domain
;
2762 data
.unroll_domain
= isl_set_empty(isl_set_get_space(domain
));
2764 if (foreach_iteration(domain
, domains
->build
, NULL
,
2765 &do_unroll_iteration
, &data
) < 0)
2766 data
.unroll_domain
= isl_set_free(data
.unroll_domain
);
2768 class_domain
= isl_set_subtract(class_domain
, data
.unroll_domain
);
2770 return class_domain
;
2773 /* Add domains to domains->list for each individual value of the current
2774 * dimension, for that part of the schedule domain that lies in the
2775 * intersection of the option domain and the class domain.
2776 * Remove the corresponding sets from the class domain and
2777 * return the updated class domain.
2779 * We first break up the unroll option domain into individual pieces
2780 * and then handle each of them separately. The unroll option domain
2781 * has been made disjoint in compute_domains_init_options,
2783 * Note that we actively want to combine different pieces of the
2784 * schedule domain that have the same value at the current dimension.
2785 * We therefore need to break up the unroll option domain before
2786 * intersecting with class and schedule domain, hoping that the
2787 * unroll option domain specified by the user is relatively simple.
2789 static __isl_give isl_set
*compute_unroll_domains(
2790 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2792 isl_set
*unroll_domain
;
2793 isl_basic_set_list
*unroll_list
;
2798 empty
= isl_set_is_empty(domains
->option
[isl_ast_loop_unroll
]);
2800 return isl_set_free(class_domain
);
2802 return class_domain
;
2804 unroll_domain
= isl_set_copy(domains
->option
[isl_ast_loop_unroll
]);
2805 unroll_list
= isl_basic_set_list_from_set(unroll_domain
);
2807 n
= isl_basic_set_list_n_basic_set(unroll_list
);
2809 class_domain
= isl_set_free(class_domain
);
2810 for (i
= 0; i
< n
; ++i
) {
2811 isl_basic_set
*bset
;
2813 bset
= isl_basic_set_list_get_basic_set(unroll_list
, i
);
2814 unroll_domain
= isl_set_from_basic_set(bset
);
2815 unroll_domain
= isl_set_intersect(unroll_domain
,
2816 isl_set_copy(class_domain
));
2817 unroll_domain
= isl_set_intersect(unroll_domain
,
2818 isl_set_copy(domains
->schedule_domain
));
2820 empty
= isl_set_is_empty(unroll_domain
);
2821 if (empty
>= 0 && empty
) {
2822 isl_set_free(unroll_domain
);
2826 class_domain
= do_unroll(domains
, unroll_domain
, class_domain
);
2829 isl_basic_set_list_free(unroll_list
);
2831 return class_domain
;
2834 /* Try and construct a single basic set that includes the intersection of
2835 * the schedule domain, the atomic option domain and the class domain.
2836 * Add the resulting basic set(s) to domains->list and remove them
2837 * from class_domain. Return the updated class domain.
2839 * We construct a single domain rather than trying to combine
2840 * the schedule domains of individual domains because we are working
2841 * within a single component so that non-overlapping schedule domains
2842 * should already have been separated.
2843 * We do however need to make sure that this single domains is a subset
2844 * of the class domain so that it would not intersect with any other
2845 * class domains. This means that we may end up splitting up the atomic
2846 * domain in case separation classes are being used.
2848 * "domain" is the intersection of the schedule domain and the class domain,
2849 * with inner dimensions projected out.
2851 static __isl_give isl_set
*compute_atomic_domain(
2852 struct isl_codegen_domains
*domains
, __isl_take isl_set
*class_domain
)
2854 isl_basic_set
*bset
;
2855 isl_basic_set_list
*list
;
2856 isl_set
*domain
, *atomic_domain
;
2859 domain
= isl_set_copy(domains
->option
[isl_ast_loop_atomic
]);
2860 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2861 domain
= isl_set_intersect(domain
,
2862 isl_set_copy(domains
->schedule_domain
));
2863 empty
= isl_set_is_empty(domain
);
2865 class_domain
= isl_set_free(class_domain
);
2867 isl_set_free(domain
);
2868 return class_domain
;
2871 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2872 domain
= isl_set_coalesce_preserve(domain
);
2873 bset
= isl_set_unshifted_simple_hull(domain
);
2874 domain
= isl_set_from_basic_set(bset
);
2875 atomic_domain
= isl_set_copy(domain
);
2876 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2877 class_domain
= isl_set_subtract(class_domain
, atomic_domain
);
2878 domain
= isl_set_make_disjoint(domain
);
2879 list
= isl_basic_set_list_from_set(domain
);
2880 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2882 return class_domain
;
2885 /* Split up the schedule domain into uniform basic sets,
2886 * in the sense that each element in a basic set is associated to
2887 * elements of the same domains, and add the result to domains->list.
2888 * Do this for that part of the schedule domain that lies in the
2889 * intersection of "class_domain" and the separate option domain.
2891 * "class_domain" may or may not include the constraints
2892 * of the schedule domain, but this does not make a difference
2893 * since we are going to intersect it with the domain of the inverse schedule.
2894 * If it includes schedule domain constraints, then they may involve
2895 * inner dimensions, but we will eliminate them in separation_domain.
2897 static int compute_separate_domain(struct isl_codegen_domains
*domains
,
2898 __isl_keep isl_set
*class_domain
)
2902 isl_union_map
*executed
;
2903 isl_basic_set_list
*list
;
2906 domain
= isl_set_copy(domains
->option
[isl_ast_loop_separate
]);
2907 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2908 executed
= isl_union_map_copy(domains
->executed
);
2909 executed
= isl_union_map_intersect_domain(executed
,
2910 isl_union_set_from_set(domain
));
2911 empty
= isl_union_map_is_empty(executed
);
2912 if (empty
< 0 || empty
) {
2913 isl_union_map_free(executed
);
2914 return empty
< 0 ? -1 : 0;
2917 space
= isl_set_get_space(class_domain
);
2918 domain
= separate_schedule_domains(space
, executed
, domains
->build
);
2920 list
= isl_basic_set_list_from_set(domain
);
2921 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2926 /* Split up the domain at the current depth into disjoint
2927 * basic sets for which code should be generated separately
2928 * for the given separation class domain.
2930 * If any separation classes have been defined, then "class_domain"
2931 * is the domain of the current class and does not refer to inner dimensions.
2932 * Otherwise, "class_domain" is the universe domain.
2934 * We first make sure that the class domain is disjoint from
2935 * previously considered class domains.
2937 * The separate domains can be computed directly from the "class_domain".
2939 * The unroll, atomic and remainder domains need the constraints
2940 * from the schedule domain.
2942 * For unrolling, the actual schedule domain is needed (with divs that
2943 * may refer to the current dimension) so that stride detection can be
2946 * For atomic and remainder domains, inner dimensions and divs involving
2947 * the current dimensions should be eliminated.
2948 * In case we are working within a separation class, we need to intersect
2949 * the result with the current "class_domain" to ensure that the domains
2950 * are disjoint from those generated from other class domains.
2952 * The domain that has been made atomic may be larger than specified
2953 * by the user since it needs to be representable as a single basic set.
2954 * This possibly larger domain is removed from class_domain by
2955 * compute_atomic_domain. It is computed first so that the extended domain
2956 * would not overlap with any domains computed before.
2957 * Similary, the unrolled domains may have some constraints removed and
2958 * may therefore also be larger than specified by the user.
2960 * If anything is left after handling separate, unroll and atomic,
2961 * we split it up into basic sets and append the basic sets to domains->list.
2963 static isl_stat
compute_partial_domains(struct isl_codegen_domains
*domains
,
2964 __isl_take isl_set
*class_domain
)
2966 isl_basic_set_list
*list
;
2969 class_domain
= isl_set_subtract(class_domain
,
2970 isl_set_copy(domains
->done
));
2971 domains
->done
= isl_set_union(domains
->done
,
2972 isl_set_copy(class_domain
));
2974 class_domain
= compute_atomic_domain(domains
, class_domain
);
2975 class_domain
= compute_unroll_domains(domains
, class_domain
);
2977 domain
= isl_set_copy(class_domain
);
2979 if (compute_separate_domain(domains
, domain
) < 0)
2981 domain
= isl_set_subtract(domain
,
2982 isl_set_copy(domains
->option
[isl_ast_loop_separate
]));
2984 domain
= isl_set_intersect(domain
,
2985 isl_set_copy(domains
->schedule_domain
));
2987 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
2988 domain
= isl_set_intersect(domain
, isl_set_copy(class_domain
));
2990 domain
= isl_set_coalesce_preserve(domain
);
2991 domain
= isl_set_make_disjoint(domain
);
2993 list
= isl_basic_set_list_from_set(domain
);
2994 domains
->list
= isl_basic_set_list_concat(domains
->list
, list
);
2996 isl_set_free(class_domain
);
3000 isl_set_free(domain
);
3001 isl_set_free(class_domain
);
3002 return isl_stat_error
;
3005 /* Split up the domain at the current depth into disjoint
3006 * basic sets for which code should be generated separately
3007 * for the separation class identified by "pnt".
3009 * We extract the corresponding class domain from domains->sep_class,
3010 * eliminate inner dimensions and pass control to compute_partial_domains.
3012 static isl_stat
compute_class_domains(__isl_take isl_point
*pnt
, void *user
)
3014 struct isl_codegen_domains
*domains
= user
;
3019 class_set
= isl_set_from_point(pnt
);
3020 domain
= isl_map_domain(isl_map_intersect_range(
3021 isl_map_copy(domains
->sep_class
), class_set
));
3022 domain
= isl_ast_build_compute_gist(domains
->build
, domain
);
3023 domain
= isl_ast_build_eliminate(domains
->build
, domain
);
3025 disjoint
= isl_set_plain_is_disjoint(domain
, domains
->schedule_domain
);
3027 return isl_stat_error
;
3029 isl_set_free(domain
);
3033 return compute_partial_domains(domains
, domain
);
3036 /* Extract the domains at the current depth that should be atomic,
3037 * separated or unrolled and store them in option.
3039 * The domains specified by the user might overlap, so we make
3040 * them disjoint by subtracting earlier domains from later domains.
3042 static void compute_domains_init_options(isl_set
*option
[4],
3043 __isl_keep isl_ast_build
*build
)
3045 enum isl_ast_loop_type type
, type2
;
3048 for (type
= isl_ast_loop_atomic
;
3049 type
<= isl_ast_loop_separate
; ++type
) {
3050 option
[type
] = isl_ast_build_get_option_domain(build
, type
);
3051 for (type2
= isl_ast_loop_atomic
; type2
< type
; ++type2
)
3052 option
[type
] = isl_set_subtract(option
[type
],
3053 isl_set_copy(option
[type2
]));
3056 unroll
= option
[isl_ast_loop_unroll
];
3057 unroll
= isl_set_coalesce(unroll
);
3058 unroll
= isl_set_make_disjoint(unroll
);
3059 option
[isl_ast_loop_unroll
] = unroll
;
3062 /* Split up the domain at the current depth into disjoint
3063 * basic sets for which code should be generated separately,
3064 * based on the user-specified options.
3065 * Return the list of disjoint basic sets.
3067 * There are three kinds of domains that we need to keep track of.
3068 * - the "schedule domain" is the domain of "executed"
3069 * - the "class domain" is the domain corresponding to the currrent
3071 * - the "option domain" is the domain corresponding to one of the options
3072 * atomic, unroll or separate
3074 * We first consider the individial values of the separation classes
3075 * and split up the domain for each of them separately.
3076 * Finally, we consider the remainder. If no separation classes were
3077 * specified, then we call compute_partial_domains with the universe
3078 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
3079 * with inner dimensions removed. We do this because we want to
3080 * avoid computing the complement of the class domains (i.e., the difference
3081 * between the universe and domains->done).
3083 static __isl_give isl_basic_set_list
*compute_domains(
3084 __isl_keep isl_union_map
*executed
, __isl_keep isl_ast_build
*build
)
3086 struct isl_codegen_domains domains
;
3089 isl_union_set
*schedule_domain
;
3093 enum isl_ast_loop_type type
;
3099 ctx
= isl_union_map_get_ctx(executed
);
3100 domains
.list
= isl_basic_set_list_alloc(ctx
, 0);
3102 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3103 domain
= isl_set_from_union_set(schedule_domain
);
3105 compute_domains_init_options(domains
.option
, build
);
3107 domains
.sep_class
= isl_ast_build_get_separation_class(build
);
3108 classes
= isl_map_range(isl_map_copy(domains
.sep_class
));
3109 n_param
= isl_set_dim(classes
, isl_dim_param
);
3111 classes
= isl_set_free(classes
);
3112 classes
= isl_set_project_out(classes
, isl_dim_param
, 0, n_param
);
3114 space
= isl_set_get_space(domain
);
3115 domains
.build
= build
;
3116 domains
.schedule_domain
= isl_set_copy(domain
);
3117 domains
.executed
= executed
;
3118 domains
.done
= isl_set_empty(space
);
3120 if (isl_set_foreach_point(classes
, &compute_class_domains
, &domains
) < 0)
3121 domains
.list
= isl_basic_set_list_free(domains
.list
);
3122 isl_set_free(classes
);
3124 empty
= isl_set_is_empty(domains
.done
);
3126 domains
.list
= isl_basic_set_list_free(domains
.list
);
3127 domain
= isl_set_free(domain
);
3129 isl_set_free(domain
);
3130 domain
= isl_set_universe(isl_set_get_space(domains
.done
));
3132 domain
= isl_ast_build_eliminate(build
, domain
);
3134 if (compute_partial_domains(&domains
, domain
) < 0)
3135 domains
.list
= isl_basic_set_list_free(domains
.list
);
3137 isl_set_free(domains
.schedule_domain
);
3138 isl_set_free(domains
.done
);
3139 isl_map_free(domains
.sep_class
);
3140 for (type
= isl_ast_loop_atomic
; type
<= isl_ast_loop_separate
; ++type
)
3141 isl_set_free(domains
.option
[type
]);
3143 return domains
.list
;
3146 /* Generate code for a single component, after shifting (if any)
3147 * has been applied, in case the schedule was specified as a union map.
3149 * We first split up the domain at the current depth into disjoint
3150 * basic sets based on the user-specified options.
3151 * Then we generated code for each of them and concatenate the results.
3153 static __isl_give isl_ast_graft_list
*generate_shifted_component_flat(
3154 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3156 isl_basic_set_list
*domain_list
;
3157 isl_ast_graft_list
*list
= NULL
;
3159 domain_list
= compute_domains(executed
, build
);
3160 list
= generate_parallel_domains(domain_list
, executed
, build
);
3162 isl_basic_set_list_free(domain_list
);
3163 isl_union_map_free(executed
);
3164 isl_ast_build_free(build
);
3169 /* Generate code for a single component, after shifting (if any)
3170 * has been applied, in case the schedule was specified as a schedule tree
3171 * and the separate option was specified.
3173 * We perform separation on the domain of "executed" and then generate
3174 * an AST for each of the resulting disjoint basic sets.
3176 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_separate(
3177 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3181 isl_basic_set_list
*domain_list
;
3182 isl_ast_graft_list
*list
;
3184 space
= isl_ast_build_get_space(build
, 1);
3185 domain
= separate_schedule_domains(space
,
3186 isl_union_map_copy(executed
), build
);
3187 domain_list
= isl_basic_set_list_from_set(domain
);
3189 list
= generate_parallel_domains(domain_list
, executed
, build
);
3191 isl_basic_set_list_free(domain_list
);
3192 isl_union_map_free(executed
);
3193 isl_ast_build_free(build
);
3198 /* Internal data structure for generate_shifted_component_tree_unroll.
3200 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
3201 * "list" collects the constructs grafts.
3203 struct isl_ast_unroll_tree_data
{
3204 isl_union_map
*executed
;
3205 isl_ast_build
*build
;
3206 isl_ast_graft_list
*list
;
3209 /* Initialize data->list to a list of "n" elements.
3211 static int init_unroll_tree(int n
, void *user
)
3213 struct isl_ast_unroll_tree_data
*data
= user
;
3216 ctx
= isl_ast_build_get_ctx(data
->build
);
3217 data
->list
= isl_ast_graft_list_alloc(ctx
, n
);
3222 /* Given an iteration of an unrolled domain represented by "bset",
3223 * generate the corresponding AST and add the result to data->list.
3225 static int do_unroll_tree_iteration(__isl_take isl_basic_set
*bset
, void *user
)
3227 struct isl_ast_unroll_tree_data
*data
= user
;
3229 data
->list
= add_node(data
->list
, isl_union_map_copy(data
->executed
),
3230 bset
, isl_ast_build_copy(data
->build
));
3235 /* Generate code for a single component, after shifting (if any)
3236 * has been applied, in case the schedule was specified as a schedule tree
3237 * and the unroll option was specified.
3239 * We call foreach_iteration to iterate over the individual values and
3240 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
3242 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_unroll(
3243 __isl_take isl_union_map
*executed
, __isl_take isl_set
*domain
,
3244 __isl_take isl_ast_build
*build
)
3246 struct isl_ast_unroll_tree_data data
= { executed
, build
, NULL
};
3248 if (foreach_iteration(domain
, build
, &init_unroll_tree
,
3249 &do_unroll_tree_iteration
, &data
) < 0)
3250 data
.list
= isl_ast_graft_list_free(data
.list
);
3252 isl_union_map_free(executed
);
3253 isl_ast_build_free(build
);
3258 /* Does "domain" involve a disjunction that is purely based on
3259 * constraints involving only outer dimension?
3261 * In particular, is there a disjunction such that the constraints
3262 * involving the current and later dimensions are the same over
3263 * all the disjuncts?
3265 static isl_bool
has_pure_outer_disjunction(__isl_keep isl_set
*domain
,
3266 __isl_keep isl_ast_build
*build
)
3268 isl_basic_set
*hull
;
3269 isl_set
*shared
, *inner
;
3275 n
= isl_set_n_basic_set(domain
);
3277 return isl_bool_error
;
3279 return isl_bool_false
;
3280 dim
= isl_set_dim(domain
, isl_dim_set
);
3281 depth
= isl_ast_build_get_depth(build
);
3282 if (dim
< 0 || depth
< 0)
3283 return isl_bool_error
;
3285 inner
= isl_set_copy(domain
);
3286 inner
= isl_set_drop_constraints_not_involving_dims(inner
,
3287 isl_dim_set
, depth
, dim
- depth
);
3288 hull
= isl_set_plain_unshifted_simple_hull(isl_set_copy(inner
));
3289 shared
= isl_set_from_basic_set(hull
);
3290 equal
= isl_set_plain_is_equal(inner
, shared
);
3291 isl_set_free(inner
);
3292 isl_set_free(shared
);
3297 /* Generate code for a single component, after shifting (if any)
3298 * has been applied, in case the schedule was specified as a schedule tree.
3299 * In particular, handle the base case where there is either no isolated
3300 * set or we are within the isolated set (in which case "isolated" is set)
3301 * or the iterations that precede or follow the isolated set.
3303 * The schedule domain is broken up or combined into basic sets
3304 * according to the AST generation option specified in the current
3305 * schedule node, which may be either atomic, separate, unroll or
3306 * unspecified. If the option is unspecified, then we currently simply
3307 * split the schedule domain into disjoint basic sets.
3309 * In case the separate option is specified, the AST generation is
3310 * handled by generate_shifted_component_tree_separate.
3311 * In the other cases, we need the global schedule domain.
3312 * In the unroll case, the AST generation is then handled by
3313 * generate_shifted_component_tree_unroll which needs the actual
3314 * schedule domain (with divs that may refer to the current dimension)
3315 * so that stride detection can be performed.
3316 * In the atomic or unspecified case, inner dimensions and divs involving
3317 * the current dimensions should be eliminated.
3318 * The result is then either combined into a single basic set or
3319 * split up into disjoint basic sets.
3320 * Finally an AST is generated for each basic set and the results are
3323 * If the schedule domain involves a disjunction that is purely based on
3324 * constraints involving only outer dimension, then it is treated as
3325 * if atomic was specified. This ensures that only a single loop
3326 * is generated instead of a sequence of identical loops with
3329 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_base(
3330 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
3333 isl_bool outer_disjunction
;
3334 isl_union_set
*schedule_domain
;
3336 isl_basic_set_list
*domain_list
;
3337 isl_ast_graft_list
*list
;
3338 enum isl_ast_loop_type type
;
3340 type
= isl_ast_build_get_loop_type(build
, isolated
);
3344 if (type
== isl_ast_loop_separate
)
3345 return generate_shifted_component_tree_separate(executed
,
3348 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3349 domain
= isl_set_from_union_set(schedule_domain
);
3351 if (type
== isl_ast_loop_unroll
)
3352 return generate_shifted_component_tree_unroll(executed
, domain
,
3355 domain
= isl_ast_build_eliminate(build
, domain
);
3356 domain
= isl_set_coalesce_preserve(domain
);
3358 outer_disjunction
= has_pure_outer_disjunction(domain
, build
);
3359 if (outer_disjunction
< 0)
3360 domain
= isl_set_free(domain
);
3362 if (outer_disjunction
|| type
== isl_ast_loop_atomic
) {
3363 isl_basic_set
*hull
;
3364 hull
= isl_set_unshifted_simple_hull(domain
);
3365 domain_list
= isl_basic_set_list_from_basic_set(hull
);
3367 domain
= isl_set_make_disjoint(domain
);
3368 domain_list
= isl_basic_set_list_from_set(domain
);
3371 list
= generate_parallel_domains(domain_list
, executed
, build
);
3373 isl_basic_set_list_free(domain_list
);
3374 isl_union_map_free(executed
);
3375 isl_ast_build_free(build
);
3379 isl_union_map_free(executed
);
3380 isl_ast_build_free(build
);
3384 /* Extract out the disjunction imposed by "domain" on the outer
3385 * schedule dimensions.
3387 * In particular, remove all inner dimensions from "domain" (including
3388 * the current dimension) and then remove the constraints that are shared
3389 * by all disjuncts in the result.
3391 static __isl_give isl_set
*extract_disjunction(__isl_take isl_set
*domain
,
3392 __isl_keep isl_ast_build
*build
)
3398 domain
= isl_ast_build_specialize(build
, domain
);
3399 depth
= isl_ast_build_get_depth(build
);
3400 dim
= isl_set_dim(domain
, isl_dim_set
);
3401 if (depth
< 0 || dim
< 0)
3402 return isl_set_free(domain
);
3403 domain
= isl_set_eliminate(domain
, isl_dim_set
, depth
, dim
- depth
);
3404 domain
= isl_set_remove_unknown_divs(domain
);
3405 hull
= isl_set_copy(domain
);
3406 hull
= isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull
));
3407 domain
= isl_set_gist(domain
, hull
);
3412 /* Add "guard" to the grafts in "list".
3413 * "build" is the outer AST build, while "sub_build" includes "guard"
3414 * in its generated domain.
3416 * First combine the grafts into a single graft and then add the guard.
3417 * If the list is empty, or if some error occurred, then simply return
3420 static __isl_give isl_ast_graft_list
*list_add_guard(
3421 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_set
*guard
,
3422 __isl_keep isl_ast_build
*build
, __isl_keep isl_ast_build
*sub_build
)
3424 isl_ast_graft
*graft
;
3427 list
= isl_ast_graft_list_fuse(list
, sub_build
);
3429 n
= isl_ast_graft_list_n_ast_graft(list
);
3431 return isl_ast_graft_list_free(list
);
3435 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
3436 graft
= isl_ast_graft_add_guard(graft
, isl_set_copy(guard
), build
);
3437 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
3442 /* Generate code for a single component, after shifting (if any)
3443 * has been applied, in case the schedule was specified as a schedule tree.
3444 * In particular, do so for the specified subset of the schedule domain.
3446 * If we are outside of the isolated part, then "domain" may include
3447 * a disjunction. Explicitly generate this disjunction at this point
3448 * instead of relying on the disjunction getting hoisted back up
3451 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree_part(
3452 __isl_keep isl_union_map
*executed
, __isl_take isl_set
*domain
,
3453 __isl_keep isl_ast_build
*build
, int isolated
)
3455 isl_union_set
*uset
;
3456 isl_ast_graft_list
*list
;
3457 isl_ast_build
*sub_build
;
3460 uset
= isl_union_set_from_set(isl_set_copy(domain
));
3461 executed
= isl_union_map_copy(executed
);
3462 executed
= isl_union_map_intersect_domain(executed
, uset
);
3463 empty
= isl_union_map_is_empty(executed
);
3468 isl_union_map_free(executed
);
3469 isl_set_free(domain
);
3470 ctx
= isl_ast_build_get_ctx(build
);
3471 return isl_ast_graft_list_alloc(ctx
, 0);
3474 sub_build
= isl_ast_build_copy(build
);
3476 domain
= extract_disjunction(domain
, build
);
3477 sub_build
= isl_ast_build_restrict_generated(sub_build
,
3478 isl_set_copy(domain
));
3480 list
= generate_shifted_component_tree_base(executed
,
3481 isl_ast_build_copy(sub_build
), isolated
);
3483 list
= list_add_guard(list
, domain
, build
, sub_build
);
3484 isl_ast_build_free(sub_build
);
3485 isl_set_free(domain
);
3488 isl_union_map_free(executed
);
3489 isl_set_free(domain
);
3493 /* Generate code for a single component, after shifting (if any)
3494 * has been applied, in case the schedule was specified as a schedule tree.
3495 * In particular, do so for the specified sequence of subsets
3496 * of the schedule domain, "before", "isolated", "after" and "other",
3497 * where only the "isolated" part is considered to be isolated.
3499 static __isl_give isl_ast_graft_list
*generate_shifted_component_parts(
3500 __isl_take isl_union_map
*executed
, __isl_take isl_set
*before
,
3501 __isl_take isl_set
*isolated
, __isl_take isl_set
*after
,
3502 __isl_take isl_set
*other
, __isl_take isl_ast_build
*build
)
3504 isl_ast_graft_list
*list
, *res
;
3506 res
= generate_shifted_component_tree_part(executed
, before
, build
, 0);
3507 list
= generate_shifted_component_tree_part(executed
, isolated
,
3509 res
= isl_ast_graft_list_concat(res
, list
);
3510 list
= generate_shifted_component_tree_part(executed
, after
, build
, 0);
3511 res
= isl_ast_graft_list_concat(res
, list
);
3512 list
= generate_shifted_component_tree_part(executed
, other
, build
, 0);
3513 res
= isl_ast_graft_list_concat(res
, list
);
3515 isl_union_map_free(executed
);
3516 isl_ast_build_free(build
);
3521 /* Does "set" intersect "first", but not "second"?
3523 static isl_bool
only_intersects_first(__isl_keep isl_set
*set
,
3524 __isl_keep isl_set
*first
, __isl_keep isl_set
*second
)
3528 disjoint
= isl_set_is_disjoint(set
, first
);
3530 return isl_bool_error
;
3532 return isl_bool_false
;
3534 return isl_set_is_disjoint(set
, second
);
3537 /* Generate code for a single component, after shifting (if any)
3538 * has been applied, in case the schedule was specified as a schedule tree.
3539 * In particular, do so in case of isolation where there is
3540 * only an "isolated" part and an "after" part.
3541 * "dead1" and "dead2" are freed by this function in order to simplify
3544 * The "before" and "other" parts are set to empty sets.
3546 static __isl_give isl_ast_graft_list
*generate_shifted_component_only_after(
3547 __isl_take isl_union_map
*executed
, __isl_take isl_set
*isolated
,
3548 __isl_take isl_set
*after
, __isl_take isl_ast_build
*build
,
3549 __isl_take isl_set
*dead1
, __isl_take isl_set
*dead2
)
3553 empty
= isl_set_empty(isl_set_get_space(after
));
3554 isl_set_free(dead1
);
3555 isl_set_free(dead2
);
3556 return generate_shifted_component_parts(executed
, isl_set_copy(empty
),
3557 isolated
, after
, empty
, build
);
3560 /* Generate code for a single component, after shifting (if any)
3561 * has been applied, in case the schedule was specified as a schedule tree.
3563 * We first check if the user has specified an isolated schedule domain
3564 * and that we are not already outside of this isolated schedule domain.
3565 * If so, we break up the schedule domain into iterations that
3566 * precede the isolated domain, the isolated domain itself,
3567 * the iterations that follow the isolated domain and
3568 * the remaining iterations (those that are incomparable
3569 * to the isolated domain).
3570 * We generate an AST for each piece and concatenate the results.
3572 * If the isolated domain is not convex, then it is replaced
3573 * by a convex superset to ensure that the sets of preceding and
3574 * following iterations are properly defined and, in particular,
3575 * that there are no intermediate iterations that do not belong
3576 * to the isolated domain.
3578 * In the special case where at least one element of the schedule
3579 * domain that does not belong to the isolated domain needs
3580 * to be scheduled after this isolated domain, but none of those
3581 * elements need to be scheduled before, break up the schedule domain
3582 * in only two parts, the isolated domain, and a part that will be
3583 * scheduled after the isolated domain.
3585 * If no isolated set has been specified, then we generate an
3586 * AST for the entire inverse schedule.
3588 static __isl_give isl_ast_graft_list
*generate_shifted_component_tree(
3589 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3593 int empty
, has_isolate
;
3595 isl_union_set
*schedule_domain
;
3597 isl_basic_set
*hull
;
3598 isl_set
*isolated
, *before
, *after
, *test
;
3602 build
= isl_ast_build_extract_isolated(build
);
3603 has_isolate
= isl_ast_build_has_isolated(build
);
3604 if (has_isolate
< 0)
3605 executed
= isl_union_map_free(executed
);
3606 else if (!has_isolate
)
3607 return generate_shifted_component_tree_base(executed
, build
, 0);
3609 schedule_domain
= isl_union_map_domain(isl_union_map_copy(executed
));
3610 domain
= isl_set_from_union_set(schedule_domain
);
3612 isolated
= isl_ast_build_get_isolated(build
);
3613 isolated
= isl_set_intersect(isolated
, isl_set_copy(domain
));
3614 test
= isl_ast_build_specialize(build
, isl_set_copy(isolated
));
3615 empty
= isl_set_is_empty(test
);
3620 isl_set_free(isolated
);
3621 isl_set_free(domain
);
3622 return generate_shifted_component_tree_base(executed
, build
, 0);
3624 depth
= isl_ast_build_get_depth(build
);
3628 isolated
= isl_ast_build_eliminate(build
, isolated
);
3629 hull
= isl_set_unshifted_simple_hull(isolated
);
3630 isolated
= isl_set_from_basic_set(hull
);
3632 space
= isl_space_map_from_set(isl_set_get_space(isolated
));
3633 gt
= isl_map_universe(space
);
3634 for (i
= 0; i
< depth
; ++i
)
3635 gt
= isl_map_equate(gt
, isl_dim_in
, i
, isl_dim_out
, i
);
3636 gt
= isl_map_order_gt(gt
, isl_dim_in
, depth
, isl_dim_out
, depth
);
3637 lt
= isl_map_reverse(isl_map_copy(gt
));
3638 before
= isl_set_apply(isl_set_copy(isolated
), gt
);
3639 after
= isl_set_apply(isl_set_copy(isolated
), lt
);
3641 domain
= isl_set_subtract(domain
, isl_set_copy(isolated
));
3642 pure
= only_intersects_first(domain
, after
, before
);
3644 executed
= isl_union_map_free(executed
);
3646 return generate_shifted_component_only_after(executed
, isolated
,
3647 domain
, build
, before
, after
);
3648 domain
= isl_set_subtract(domain
, isl_set_copy(before
));
3649 domain
= isl_set_subtract(domain
, isl_set_copy(after
));
3650 after
= isl_set_subtract(after
, isl_set_copy(isolated
));
3651 after
= isl_set_subtract(after
, isl_set_copy(before
));
3652 before
= isl_set_subtract(before
, isl_set_copy(isolated
));
3654 return generate_shifted_component_parts(executed
, before
, isolated
,
3655 after
, domain
, build
);
3657 isl_set_free(domain
);
3658 isl_set_free(isolated
);
3659 isl_union_map_free(executed
);
3660 isl_ast_build_free(build
);
3664 /* Generate code for a single component, after shifting (if any)
3667 * Call generate_shifted_component_tree or generate_shifted_component_flat
3668 * depending on whether the schedule was specified as a schedule tree.
3670 static __isl_give isl_ast_graft_list
*generate_shifted_component(
3671 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
3673 if (isl_ast_build_has_schedule_node(build
))
3674 return generate_shifted_component_tree(executed
, build
);
3676 return generate_shifted_component_flat(executed
, build
);
3679 struct isl_set_map_pair
{
3684 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3685 * of indices into the "domain" array,
3686 * return the union of the "map" fields of the elements
3687 * indexed by the first "n" elements of "order".
3689 static __isl_give isl_union_map
*construct_component_executed(
3690 struct isl_set_map_pair
*domain
, int *order
, int n
)
3694 isl_union_map
*executed
;
3696 map
= isl_map_copy(domain
[order
[0]].map
);
3697 executed
= isl_union_map_from_map(map
);
3698 for (i
= 1; i
< n
; ++i
) {
3699 map
= isl_map_copy(domain
[order
[i
]].map
);
3700 executed
= isl_union_map_add_map(executed
, map
);
3706 /* Generate code for a single component, after shifting (if any)
3709 * The component inverse schedule is specified as the "map" fields
3710 * of the elements of "domain" indexed by the first "n" elements of "order".
3712 static __isl_give isl_ast_graft_list
*generate_shifted_component_from_list(
3713 struct isl_set_map_pair
*domain
, int *order
, int n
,
3714 __isl_take isl_ast_build
*build
)
3716 isl_union_map
*executed
;
3718 executed
= construct_component_executed(domain
, order
, n
);
3719 return generate_shifted_component(executed
, build
);
3722 /* Does set dimension "pos" of "set" have an obviously fixed value?
3724 static int dim_is_fixed(__isl_keep isl_set
*set
, int pos
)
3729 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, pos
);
3732 fixed
= !isl_val_is_nan(v
);
3738 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3739 * of indices into the "domain" array,
3740 * do all (except for at most one) of the "set" field of the elements
3741 * indexed by the first "n" elements of "order" have a fixed value
3742 * at position "depth"?
3744 static int at_most_one_non_fixed(struct isl_set_map_pair
*domain
,
3745 int *order
, int n
, int depth
)
3750 for (i
= 0; i
< n
; ++i
) {
3753 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3766 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3767 * of indices into the "domain" array,
3768 * eliminate the inner dimensions from the "set" field of the elements
3769 * indexed by the first "n" elements of "order", provided the current
3770 * dimension does not have a fixed value.
3772 * Return the index of the first element in "order" with a corresponding
3773 * "set" field that does not have an (obviously) fixed value.
3775 static int eliminate_non_fixed(struct isl_set_map_pair
*domain
,
3776 int *order
, int n
, int depth
, __isl_keep isl_ast_build
*build
)
3781 for (i
= n
- 1; i
>= 0; --i
) {
3783 f
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
3788 domain
[order
[i
]].set
= isl_ast_build_eliminate_inner(build
,
3789 domain
[order
[i
]].set
);
3796 /* Given an array "domain" of isl_set_map_pairs and an array "order"
3797 * of indices into the "domain" array,
3798 * find the element of "domain" (amongst those indexed by the first "n"
3799 * elements of "order") with the "set" field that has the smallest
3800 * value for the current iterator.
3802 * Note that the domain with the smallest value may depend on the parameters
3803 * and/or outer loop dimension. Since the result of this function is only
3804 * used as heuristic, we only make a reasonable attempt at finding the best
3805 * domain, one that should work in case a single domain provides the smallest
3806 * value for the current dimension over all values of the parameters
3807 * and outer dimensions.
3809 * In particular, we compute the smallest value of the first domain
3810 * and replace it by that of any later domain if that later domain
3811 * has a smallest value that is smaller for at least some value
3812 * of the parameters and outer dimensions.
3814 static int first_offset(struct isl_set_map_pair
*domain
, int *order
, int n
,
3815 __isl_keep isl_ast_build
*build
)
3821 min_first
= isl_ast_build_map_to_iterator(build
,
3822 isl_set_copy(domain
[order
[0]].set
));
3823 min_first
= isl_map_lexmin(min_first
);
3825 for (i
= 1; i
< n
; ++i
) {
3826 isl_map
*min
, *test
;
3829 min
= isl_ast_build_map_to_iterator(build
,
3830 isl_set_copy(domain
[order
[i
]].set
));
3831 min
= isl_map_lexmin(min
);
3832 test
= isl_map_copy(min
);
3833 test
= isl_map_apply_domain(isl_map_copy(min_first
), test
);
3834 test
= isl_map_order_lt(test
, isl_dim_in
, 0, isl_dim_out
, 0);
3835 empty
= isl_map_is_empty(test
);
3837 if (empty
>= 0 && !empty
) {
3838 isl_map_free(min_first
);
3848 isl_map_free(min_first
);
3850 return i
< n
? -1 : first
;
3853 /* Construct a shifted inverse schedule based on the original inverse schedule,
3854 * the stride and the offset.
3856 * The original inverse schedule is specified as the "map" fields
3857 * of the elements of "domain" indexed by the first "n" elements of "order".
3859 * "stride" and "offset" are such that the difference
3860 * between the values of the current dimension of domain "i"
3861 * and the values of the current dimension for some reference domain are
3864 * stride * integer + offset[i]
3866 * Moreover, 0 <= offset[i] < stride.
3868 * For each domain, we create a map
3870 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
3872 * where j refers to the current dimension and the other dimensions are
3873 * unchanged, and apply this map to the original schedule domain.
3875 * For example, for the original schedule
3877 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3879 * and assuming the offset is 0 for the A domain and 1 for the B domain,
3880 * we apply the mapping
3884 * to the schedule of the "A" domain and the mapping
3886 * { [j - 1] -> [j, 1] }
3888 * to the schedule of the "B" domain.
3891 * Note that after the transformation, the differences between pairs
3892 * of values of the current dimension over all domains are multiples
3893 * of stride and that we have therefore exposed the stride.
3896 * To see that the mapping preserves the lexicographic order,
3897 * first note that each of the individual maps above preserves the order.
3898 * If the value of the current iterator is j1 in one domain and j2 in another,
3899 * then if j1 = j2, we know that the same map is applied to both domains
3900 * and the order is preserved.
3901 * Otherwise, let us assume, without loss of generality, that j1 < j2.
3902 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
3906 * and the order is preserved.
3907 * If c1 < c2, then we know
3913 * j2 - j1 = n * s + r
3915 * with n >= 0 and 0 <= r < s.
3916 * In other words, r = c2 - c1.
3927 * (j1 - c1, c1) << (j2 - c2, c2)
3929 * with "<<" the lexicographic order, proving that the order is preserved
3932 static __isl_give isl_union_map
*construct_shifted_executed(
3933 struct isl_set_map_pair
*domain
, int *order
, int n
,
3934 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
3935 __isl_keep isl_ast_build
*build
)
3938 isl_union_map
*executed
;
3944 depth
= isl_ast_build_get_depth(build
);
3947 space
= isl_ast_build_get_space(build
, 1);
3948 executed
= isl_union_map_empty(isl_space_copy(space
));
3949 space
= isl_space_map_from_set(space
);
3950 map
= isl_map_identity(isl_space_copy(space
));
3951 map
= isl_map_eliminate(map
, isl_dim_out
, depth
, 1);
3952 map
= isl_map_insert_dims(map
, isl_dim_out
, depth
+ 1, 1);
3953 space
= isl_space_insert_dims(space
, isl_dim_out
, depth
+ 1, 1);
3955 c
= isl_constraint_alloc_equality(isl_local_space_from_space(space
));
3956 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, depth
, 1);
3957 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, depth
, -1);
3959 for (i
= 0; i
< n
; ++i
) {
3963 v
= isl_multi_val_get_val(offset
, i
);
3966 map_i
= isl_map_copy(map
);
3967 map_i
= isl_map_fix_val(map_i
, isl_dim_out
, depth
+ 1,
3970 c
= isl_constraint_set_constant_val(c
, v
);
3971 map_i
= isl_map_add_constraint(map_i
, isl_constraint_copy(c
));
3973 map_i
= isl_map_apply_domain(isl_map_copy(domain
[order
[i
]].map
),
3975 executed
= isl_union_map_add_map(executed
, map_i
);
3978 isl_constraint_free(c
);
3982 executed
= isl_union_map_free(executed
);
3987 /* Generate code for a single component, after exposing the stride,
3988 * given that the schedule domain is "shifted strided".
3990 * The component inverse schedule is specified as the "map" fields
3991 * of the elements of "domain" indexed by the first "n" elements of "order".
3993 * The schedule domain being "shifted strided" means that the differences
3994 * between the values of the current dimension of domain "i"
3995 * and the values of the current dimension for some reference domain are
3998 * stride * integer + offset[i]
4000 * We first look for the domain with the "smallest" value for the current
4001 * dimension and adjust the offsets such that the offset of the "smallest"
4002 * domain is equal to zero. The other offsets are reduced modulo stride.
4004 * Based on this information, we construct a new inverse schedule in
4005 * construct_shifted_executed that exposes the stride.
4006 * Since this involves the introduction of a new schedule dimension,
4007 * the build needs to be changed accordingly.
4008 * After computing the AST, the newly introduced dimension needs
4009 * to be removed again from the list of grafts. We do this by plugging
4010 * in a mapping that represents the new schedule domain in terms of the
4011 * old schedule domain.
4013 static __isl_give isl_ast_graft_list
*generate_shift_component(
4014 struct isl_set_map_pair
*domain
, int *order
, int n
,
4015 __isl_keep isl_val
*stride
, __isl_keep isl_multi_val
*offset
,
4016 __isl_take isl_ast_build
*build
)
4018 isl_ast_graft_list
*list
;
4024 isl_multi_aff
*ma
, *zero
;
4025 isl_union_map
*executed
;
4027 depth
= isl_ast_build_get_depth(build
);
4029 first
= first_offset(domain
, order
, n
, build
);
4030 if (depth
< 0 || first
< 0)
4033 mv
= isl_multi_val_copy(offset
);
4034 val
= isl_multi_val_get_val(offset
, first
);
4035 val
= isl_val_neg(val
);
4036 mv
= isl_multi_val_add_val(mv
, val
);
4037 mv
= isl_multi_val_mod_val(mv
, isl_val_copy(stride
));
4039 executed
= construct_shifted_executed(domain
, order
, n
, stride
, mv
,
4041 space
= isl_ast_build_get_space(build
, 1);
4042 space
= isl_space_map_from_set(space
);
4043 ma
= isl_multi_aff_identity(isl_space_copy(space
));
4044 space
= isl_space_from_domain(isl_space_domain(space
));
4045 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
4046 zero
= isl_multi_aff_zero(space
);
4047 ma
= isl_multi_aff_range_splice(ma
, depth
+ 1, zero
);
4048 build
= isl_ast_build_insert_dim(build
, depth
+ 1);
4049 list
= generate_shifted_component(executed
, build
);
4051 list
= isl_ast_graft_list_preimage_multi_aff(list
, ma
);
4053 isl_multi_val_free(mv
);
4057 isl_ast_build_free(build
);
4061 /* Does any node in the schedule tree rooted at the current schedule node
4062 * of "build" depend on outer schedule nodes?
4064 static int has_anchored_subtree(__isl_keep isl_ast_build
*build
)
4066 isl_schedule_node
*node
;
4069 node
= isl_ast_build_get_schedule_node(build
);
4070 dependent
= isl_schedule_node_is_subtree_anchored(node
);
4071 isl_schedule_node_free(node
);
4076 /* Generate code for a single component.
4078 * The component inverse schedule is specified as the "map" fields
4079 * of the elements of "domain" indexed by the first "n" elements of "order".
4081 * This function may modify the "set" fields of "domain".
4083 * Before proceeding with the actual code generation for the component,
4084 * we first check if there are any "shifted" strides, meaning that
4085 * the schedule domains of the individual domains are all strided,
4086 * but that they have different offsets, resulting in the union
4087 * of schedule domains not being strided anymore.
4089 * The simplest example is the schedule
4091 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
4093 * Both schedule domains are strided, but their union is not.
4094 * This function detects such cases and then rewrites the schedule to
4096 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
4098 * In the new schedule, the schedule domains have the same offset (modulo
4099 * the stride), ensuring that the union of schedule domains is also strided.
4102 * If there is only a single domain in the component, then there is
4103 * nothing to do. Similarly, if the current schedule dimension has
4104 * a fixed value for almost all domains then there is nothing to be done.
4105 * In particular, we need at least two domains where the current schedule
4106 * dimension does not have a fixed value.
4107 * Finally, in case of a schedule map input,
4108 * if any of the options refer to the current schedule dimension,
4109 * then we bail out as well. It would be possible to reformulate the options
4110 * in terms of the new schedule domain, but that would introduce constraints
4111 * that separate the domains in the options and that is something we would
4113 * In the case of a schedule tree input, we bail out if any of
4114 * the descendants of the current schedule node refer to outer
4115 * schedule nodes in any way.
4118 * To see if there is any shifted stride, we look at the differences
4119 * between the values of the current dimension in pairs of domains
4120 * for equal values of outer dimensions. These differences should be
4125 * with "m" the stride and "r" a constant. Note that we cannot perform
4126 * this analysis on individual domains as the lower bound in each domain
4127 * may depend on parameters or outer dimensions and so the current dimension
4128 * itself may not have a fixed remainder on division by the stride.
4130 * In particular, we compare the first domain that does not have an
4131 * obviously fixed value for the current dimension to itself and all
4132 * other domains and collect the offsets and the gcd of the strides.
4133 * If the gcd becomes one, then we failed to find shifted strides.
4134 * If the gcd is zero, then the differences were all fixed, meaning
4135 * that some domains had non-obviously fixed values for the current dimension.
4136 * If all the offsets are the same (for those domains that do not have
4137 * an obviously fixed value for the current dimension), then we do not
4138 * apply the transformation.
4139 * If none of the domains were skipped, then there is nothing to do.
4140 * If some of them were skipped, then if we apply separation, the schedule
4141 * domain should get split in pieces with a (non-shifted) stride.
4143 * Otherwise, we apply a shift to expose the stride in
4144 * generate_shift_component.
4146 static __isl_give isl_ast_graft_list
*generate_component(
4147 struct isl_set_map_pair
*domain
, int *order
, int n
,
4148 __isl_take isl_ast_build
*build
)
4155 isl_val
*gcd
= NULL
;
4159 isl_ast_graft_list
*list
;
4162 depth
= isl_ast_build_get_depth(build
);
4167 if (skip
>= 0 && !skip
)
4168 skip
= at_most_one_non_fixed(domain
, order
, n
, depth
);
4169 if (skip
>= 0 && !skip
) {
4170 if (isl_ast_build_has_schedule_node(build
))
4171 skip
= has_anchored_subtree(build
);
4173 skip
= isl_ast_build_options_involve_depth(build
);
4178 return generate_shifted_component_from_list(domain
,
4181 base
= eliminate_non_fixed(domain
, order
, n
, depth
, build
);
4185 ctx
= isl_ast_build_get_ctx(build
);
4187 mv
= isl_multi_val_zero(isl_space_set_alloc(ctx
, 0, n
));
4190 for (i
= 0; i
< n
; ++i
) {
4193 map
= isl_map_from_domain_and_range(
4194 isl_set_copy(domain
[order
[base
]].set
),
4195 isl_set_copy(domain
[order
[i
]].set
));
4196 for (d
= 0; d
< depth
; ++d
)
4197 map
= isl_map_equate(map
, isl_dim_in
, d
,
4199 deltas
= isl_map_deltas(map
);
4200 res
= isl_set_dim_residue_class_val(deltas
, depth
, &m
, &r
);
4201 isl_set_free(deltas
);
4208 gcd
= isl_val_gcd(gcd
, m
);
4209 if (isl_val_is_one(gcd
)) {
4213 mv
= isl_multi_val_set_val(mv
, i
, r
);
4215 res
= dim_is_fixed(domain
[order
[i
]].set
, depth
);
4221 if (fixed
&& i
> base
) {
4223 a
= isl_multi_val_get_val(mv
, i
);
4224 b
= isl_multi_val_get_val(mv
, base
);
4225 if (isl_val_ne(a
, b
))
4232 if (res
< 0 || !gcd
) {
4233 isl_ast_build_free(build
);
4235 } else if (i
< n
|| fixed
|| isl_val_is_zero(gcd
)) {
4236 list
= generate_shifted_component_from_list(domain
,
4239 list
= generate_shift_component(domain
, order
, n
, gcd
, mv
,
4244 isl_multi_val_free(mv
);
4248 isl_ast_build_free(build
);
4252 /* Store both "map" itself and its domain in the
4253 * structure pointed to by *next and advance to the next array element.
4255 static isl_stat
extract_domain(__isl_take isl_map
*map
, void *user
)
4257 struct isl_set_map_pair
**next
= user
;
4259 (*next
)->map
= isl_map_copy(map
);
4260 (*next
)->set
= isl_map_domain(map
);
4266 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4267 __isl_keep isl_schedule_node
*node
);
4269 /* Is any domain element of "umap" scheduled after any of
4270 * the corresponding image elements by the tree rooted at
4271 * the child of "node"?
4273 static isl_bool
after_in_child(__isl_keep isl_union_map
*umap
,
4274 __isl_keep isl_schedule_node
*node
)
4276 isl_schedule_node
*child
;
4279 child
= isl_schedule_node_get_child(node
, 0);
4280 after
= after_in_tree(umap
, child
);
4281 isl_schedule_node_free(child
);
4286 /* Is any domain element of "umap" scheduled after any of
4287 * the corresponding image elements by the tree rooted at
4288 * the band node "node"?
4290 * We first check if any domain element is scheduled after any
4291 * of the corresponding image elements by the band node itself.
4292 * If not, we restrict "map" to those pairs of element that
4293 * are scheduled together by the band node and continue with
4294 * the child of the band node.
4295 * If there are no such pairs then the map passed to after_in_child
4296 * will be empty causing it to return 0.
4298 static isl_bool
after_in_band(__isl_keep isl_union_map
*umap
,
4299 __isl_keep isl_schedule_node
*node
)
4301 isl_multi_union_pw_aff
*mupa
;
4302 isl_union_map
*partial
, *test
, *gt
, *universe
, *umap1
, *umap2
;
4303 isl_union_set
*domain
, *range
;
4309 n
= isl_schedule_node_band_n_member(node
);
4311 return isl_bool_error
;
4313 return after_in_child(umap
, node
);
4315 mupa
= isl_schedule_node_band_get_partial_schedule(node
);
4316 space
= isl_multi_union_pw_aff_get_space(mupa
);
4317 partial
= isl_union_map_from_multi_union_pw_aff(mupa
);
4318 test
= isl_union_map_copy(umap
);
4319 test
= isl_union_map_apply_domain(test
, isl_union_map_copy(partial
));
4320 test
= isl_union_map_apply_range(test
, isl_union_map_copy(partial
));
4321 gt
= isl_union_map_from_map(isl_map_lex_gt(space
));
4322 test
= isl_union_map_intersect(test
, gt
);
4323 empty
= isl_union_map_is_empty(test
);
4324 isl_union_map_free(test
);
4326 if (empty
< 0 || !empty
) {
4327 isl_union_map_free(partial
);
4328 return isl_bool_not(empty
);
4331 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4332 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4333 range
= isl_union_map_range(universe
);
4334 umap1
= isl_union_map_copy(partial
);
4335 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4336 umap2
= isl_union_map_intersect_domain(partial
, range
);
4337 test
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4338 test
= isl_union_map_intersect(test
, isl_union_map_copy(umap
));
4339 after
= after_in_child(test
, node
);
4340 isl_union_map_free(test
);
4344 /* Is any domain element of "umap" scheduled after any of
4345 * the corresponding image elements by the tree rooted at
4346 * the context node "node"?
4348 * The context constraints apply to the schedule domain,
4349 * so we cannot apply them directly to "umap", which contains
4350 * pairs of statement instances. Instead, we add them
4351 * to the range of the prefix schedule for both domain and
4354 static isl_bool
after_in_context(__isl_keep isl_union_map
*umap
,
4355 __isl_keep isl_schedule_node
*node
)
4357 isl_union_map
*prefix
, *universe
, *umap1
, *umap2
;
4358 isl_union_set
*domain
, *range
;
4362 umap
= isl_union_map_copy(umap
);
4363 context
= isl_schedule_node_context_get_context(node
);
4364 prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4365 universe
= isl_union_map_universe(isl_union_map_copy(umap
));
4366 domain
= isl_union_map_domain(isl_union_map_copy(universe
));
4367 range
= isl_union_map_range(universe
);
4368 umap1
= isl_union_map_copy(prefix
);
4369 umap1
= isl_union_map_intersect_domain(umap1
, domain
);
4370 umap2
= isl_union_map_intersect_domain(prefix
, range
);
4371 umap1
= isl_union_map_intersect_range(umap1
,
4372 isl_union_set_from_set(context
));
4373 umap1
= isl_union_map_apply_range(umap1
, isl_union_map_reverse(umap2
));
4374 umap
= isl_union_map_intersect(umap
, umap1
);
4376 after
= after_in_child(umap
, node
);
4378 isl_union_map_free(umap
);
4383 /* Is any domain element of "umap" scheduled after any of
4384 * the corresponding image elements by the tree rooted at
4385 * the expansion node "node"?
4387 * We apply the expansion to domain and range of "umap" and
4388 * continue with its child.
4390 static isl_bool
after_in_expansion(__isl_keep isl_union_map
*umap
,
4391 __isl_keep isl_schedule_node
*node
)
4393 isl_union_map
*expansion
;
4396 expansion
= isl_schedule_node_expansion_get_expansion(node
);
4397 umap
= isl_union_map_copy(umap
);
4398 umap
= isl_union_map_apply_domain(umap
, isl_union_map_copy(expansion
));
4399 umap
= isl_union_map_apply_range(umap
, expansion
);
4401 after
= after_in_child(umap
, node
);
4403 isl_union_map_free(umap
);
4408 /* Is any domain element of "umap" scheduled after any of
4409 * the corresponding image elements by the tree rooted at
4410 * the extension node "node"?
4412 * Since the extension node may add statement instances before or
4413 * after the pairs of statement instances in "umap", we return isl_bool_true
4414 * to ensure that these pairs are not broken up.
4416 static isl_bool
after_in_extension(__isl_keep isl_union_map
*umap
,
4417 __isl_keep isl_schedule_node
*node
)
4419 return isl_bool_true
;
4422 /* Is any domain element of "umap" scheduled after any of
4423 * the corresponding image elements by the tree rooted at
4424 * the filter node "node"?
4426 * We intersect domain and range of "umap" with the filter and
4427 * continue with its child.
4429 static isl_bool
after_in_filter(__isl_keep isl_union_map
*umap
,
4430 __isl_keep isl_schedule_node
*node
)
4432 isl_union_set
*filter
;
4435 umap
= isl_union_map_copy(umap
);
4436 filter
= isl_schedule_node_filter_get_filter(node
);
4437 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(filter
));
4438 umap
= isl_union_map_intersect_range(umap
, filter
);
4440 after
= after_in_child(umap
, node
);
4442 isl_union_map_free(umap
);
4447 /* Is any domain element of "umap" scheduled after any of
4448 * the corresponding image elements by the tree rooted at
4449 * the set node "node"?
4451 * This is only the case if this condition holds in any
4452 * of the (filter) children of the set node.
4453 * In particular, if the domain and the range of "umap"
4454 * are contained in different children, then the condition
4457 static isl_bool
after_in_set(__isl_keep isl_union_map
*umap
,
4458 __isl_keep isl_schedule_node
*node
)
4463 n
= isl_schedule_node_n_children(node
);
4465 return isl_bool_error
;
4466 for (i
= 0; i
< n
; ++i
) {
4467 isl_schedule_node
*child
;
4470 child
= isl_schedule_node_get_child(node
, i
);
4471 after
= after_in_tree(umap
, child
);
4472 isl_schedule_node_free(child
);
4474 if (after
< 0 || after
)
4478 return isl_bool_false
;
4481 /* Return the filter of child "i" of "node".
4483 static __isl_give isl_union_set
*child_filter(
4484 __isl_keep isl_schedule_node
*node
, int i
)
4486 isl_schedule_node
*child
;
4487 isl_union_set
*filter
;
4489 child
= isl_schedule_node_get_child(node
, i
);
4490 filter
= isl_schedule_node_filter_get_filter(child
);
4491 isl_schedule_node_free(child
);
4496 /* Is any domain element of "umap" scheduled after any of
4497 * the corresponding image elements by the tree rooted at
4498 * the sequence node "node"?
4500 * This happens in particular if any domain element is
4501 * contained in a later child than one containing a range element or
4502 * if the condition holds within a given child in the sequence.
4503 * The later part of the condition is checked by after_in_set.
4505 static isl_bool
after_in_sequence(__isl_keep isl_union_map
*umap
,
4506 __isl_keep isl_schedule_node
*node
)
4510 isl_union_map
*umap_i
;
4512 isl_bool after
= isl_bool_false
;
4514 n
= isl_schedule_node_n_children(node
);
4516 return isl_bool_error
;
4517 for (i
= 1; i
< n
; ++i
) {
4518 isl_union_set
*filter_i
;
4520 umap_i
= isl_union_map_copy(umap
);
4521 filter_i
= child_filter(node
, i
);
4522 umap_i
= isl_union_map_intersect_domain(umap_i
, filter_i
);
4523 empty
= isl_union_map_is_empty(umap_i
);
4527 isl_union_map_free(umap_i
);
4531 for (j
= 0; j
< i
; ++j
) {
4532 isl_union_set
*filter_j
;
4533 isl_union_map
*umap_ij
;
4535 umap_ij
= isl_union_map_copy(umap_i
);
4536 filter_j
= child_filter(node
, j
);
4537 umap_ij
= isl_union_map_intersect_range(umap_ij
,
4539 empty
= isl_union_map_is_empty(umap_ij
);
4540 isl_union_map_free(umap_ij
);
4545 after
= isl_bool_true
;
4550 isl_union_map_free(umap_i
);
4555 if (after
< 0 || after
)
4558 return after_in_set(umap
, node
);
4560 isl_union_map_free(umap_i
);
4561 return isl_bool_error
;
4564 /* Is any domain element of "umap" scheduled after any of
4565 * the corresponding image elements by the tree rooted at "node"?
4567 * If "umap" is empty, then clearly there is no such element.
4568 * Otherwise, consider the different types of nodes separately.
4570 static isl_bool
after_in_tree(__isl_keep isl_union_map
*umap
,
4571 __isl_keep isl_schedule_node
*node
)
4574 enum isl_schedule_node_type type
;
4576 empty
= isl_union_map_is_empty(umap
);
4578 return isl_bool_error
;
4580 return isl_bool_false
;
4582 return isl_bool_error
;
4584 type
= isl_schedule_node_get_type(node
);
4586 case isl_schedule_node_error
:
4587 return isl_bool_error
;
4588 case isl_schedule_node_leaf
:
4589 return isl_bool_false
;
4590 case isl_schedule_node_band
:
4591 return after_in_band(umap
, node
);
4592 case isl_schedule_node_domain
:
4593 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
4594 "unexpected internal domain node",
4595 return isl_bool_error
);
4596 case isl_schedule_node_context
:
4597 return after_in_context(umap
, node
);
4598 case isl_schedule_node_expansion
:
4599 return after_in_expansion(umap
, node
);
4600 case isl_schedule_node_extension
:
4601 return after_in_extension(umap
, node
);
4602 case isl_schedule_node_filter
:
4603 return after_in_filter(umap
, node
);
4604 case isl_schedule_node_guard
:
4605 case isl_schedule_node_mark
:
4606 return after_in_child(umap
, node
);
4607 case isl_schedule_node_set
:
4608 return after_in_set(umap
, node
);
4609 case isl_schedule_node_sequence
:
4610 return after_in_sequence(umap
, node
);
4613 return isl_bool_true
;
4616 /* Is any domain element of "map1" scheduled after any domain
4617 * element of "map2" by the subtree underneath the current band node,
4618 * while at the same time being scheduled together by the current
4619 * band node, i.e., by "map1" and "map2?
4621 * If the child of the current band node is a leaf, then
4622 * no element can be scheduled after any other element.
4624 * Otherwise, we construct a relation between domain elements
4625 * of "map1" and domain elements of "map2" that are scheduled
4626 * together and then check if the subtree underneath the current
4627 * band node determines their relative order.
4629 static isl_bool
after_in_subtree(__isl_keep isl_ast_build
*build
,
4630 __isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
4632 isl_schedule_node
*node
;
4634 isl_union_map
*umap
;
4637 node
= isl_ast_build_get_schedule_node(build
);
4639 return isl_bool_error
;
4640 node
= isl_schedule_node_child(node
, 0);
4641 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
) {
4642 isl_schedule_node_free(node
);
4643 return isl_bool_false
;
4645 map
= isl_map_copy(map2
);
4646 map
= isl_map_apply_domain(map
, isl_map_copy(map1
));
4647 umap
= isl_union_map_from_map(map
);
4648 after
= after_in_tree(umap
, node
);
4649 isl_union_map_free(umap
);
4650 isl_schedule_node_free(node
);
4654 /* Internal data for any_scheduled_after.
4656 * "build" is the build in which the AST is constructed.
4657 * "depth" is the number of loops that have already been generated
4658 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
4659 * "domain" is an array of set-map pairs corresponding to the different
4660 * iteration domains. The set is the schedule domain, i.e., the domain
4661 * of the inverse schedule, while the map is the inverse schedule itself.
4663 struct isl_any_scheduled_after_data
{
4664 isl_ast_build
*build
;
4666 int group_coscheduled
;
4667 struct isl_set_map_pair
*domain
;
4670 /* Is any element of domain "i" scheduled after any element of domain "j"
4671 * (for a common iteration of the first data->depth loops)?
4673 * data->domain[i].set contains the domain of the inverse schedule
4674 * for domain "i", i.e., elements in the schedule domain.
4676 * If we are inside a band of a schedule tree and there is a pair
4677 * of elements in the two domains that is schedule together by
4678 * the current band, then we check if any element of "i" may be schedule
4679 * after element of "j" by the descendants of the band node.
4681 * If data->group_coscheduled is set, then we also return 1 if there
4682 * is any pair of elements in the two domains that are scheduled together.
4684 static isl_bool
any_scheduled_after(int i
, int j
, void *user
)
4686 struct isl_any_scheduled_after_data
*data
= user
;
4687 isl_size dim
= isl_set_dim(data
->domain
[i
].set
, isl_dim_set
);
4691 return isl_bool_error
;
4693 for (pos
= data
->depth
; pos
< dim
; ++pos
) {
4696 follows
= isl_set_follows_at(data
->domain
[i
].set
,
4697 data
->domain
[j
].set
, pos
);
4700 return isl_bool_error
;
4702 return isl_bool_true
;
4704 return isl_bool_false
;
4707 if (isl_ast_build_has_schedule_node(data
->build
)) {
4710 after
= after_in_subtree(data
->build
, data
->domain
[i
].map
,
4711 data
->domain
[j
].map
);
4712 if (after
< 0 || after
)
4716 return isl_bool_ok(data
->group_coscheduled
);
4719 /* Look for independent components at the current depth and generate code
4720 * for each component separately. The resulting lists of grafts are
4721 * merged in an attempt to combine grafts with identical guards.
4723 * Code for two domains can be generated separately if all the elements
4724 * of one domain are scheduled before (or together with) all the elements
4725 * of the other domain. We therefore consider the graph with as nodes
4726 * the domains and an edge between two nodes if any element of the first
4727 * node is scheduled after any element of the second node.
4728 * If the ast_build_group_coscheduled is set, then we also add an edge if
4729 * there is any pair of elements in the two domains that are scheduled
4731 * Code is then generated (by generate_component)
4732 * for each of the strongly connected components in this graph
4733 * in their topological order.
4735 * Since the test is performed on the domain of the inverse schedules of
4736 * the different domains, we precompute these domains and store
4737 * them in data.domain.
4739 static __isl_give isl_ast_graft_list
*generate_components(
4740 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4743 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4744 isl_size n
= isl_union_map_n_map(executed
);
4746 struct isl_any_scheduled_after_data data
;
4747 struct isl_set_map_pair
*next
;
4748 struct isl_tarjan_graph
*g
= NULL
;
4749 isl_ast_graft_list
*list
= NULL
;
4755 data
.domain
= isl_calloc_array(ctx
, struct isl_set_map_pair
, n
);
4761 if (isl_union_map_foreach_map(executed
, &extract_domain
, &next
) < 0)
4764 depth
= isl_ast_build_get_depth(build
);
4769 data
.group_coscheduled
= isl_options_get_ast_build_group_coscheduled(ctx
);
4770 g
= isl_tarjan_graph_init(ctx
, n
, &any_scheduled_after
, &data
);
4774 list
= isl_ast_graft_list_alloc(ctx
, 0);
4778 isl_ast_graft_list
*list_c
;
4781 if (g
->order
[i
] == -1)
4782 isl_die(ctx
, isl_error_internal
, "cannot happen",
4785 while (g
->order
[i
] != -1) {
4789 list_c
= generate_component(data
.domain
,
4790 g
->order
+ first
, i
- first
,
4791 isl_ast_build_copy(build
));
4792 list
= isl_ast_graft_list_merge(list
, list_c
, build
);
4798 error
: list
= isl_ast_graft_list_free(list
);
4799 isl_tarjan_graph_free(g
);
4800 for (i
= 0; i
< n_domain
; ++i
) {
4801 isl_map_free(data
.domain
[i
].map
);
4802 isl_set_free(data
.domain
[i
].set
);
4805 isl_union_map_free(executed
);
4806 isl_ast_build_free(build
);
4811 /* Generate code for the next level (and all inner levels).
4813 * If "executed" is empty, i.e., no code needs to be generated,
4814 * then we return an empty list.
4816 * If we have already generated code for all loop levels, then we pass
4817 * control to generate_inner_level.
4819 * If "executed" lives in a single space, i.e., if code needs to be
4820 * generated for a single domain, then there can only be a single
4821 * component and we go directly to generate_shifted_component.
4822 * Otherwise, we call generate_components to detect the components
4823 * and to call generate_component on each of them separately.
4825 static __isl_give isl_ast_graft_list
*generate_next_level(
4826 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
)
4832 if (!build
|| !executed
)
4835 if (isl_union_map_is_empty(executed
)) {
4836 isl_ctx
*ctx
= isl_ast_build_get_ctx(build
);
4837 isl_union_map_free(executed
);
4838 isl_ast_build_free(build
);
4839 return isl_ast_graft_list_alloc(ctx
, 0);
4842 depth
= isl_ast_build_get_depth(build
);
4843 dim
= isl_ast_build_dim(build
, isl_dim_set
);
4844 if (depth
< 0 || dim
< 0)
4847 return generate_inner_level(executed
, build
);
4849 n
= isl_union_map_n_map(executed
);
4853 return generate_shifted_component(executed
, build
);
4855 return generate_components(executed
, build
);
4857 isl_union_map_free(executed
);
4858 isl_ast_build_free(build
);
4862 /* Internal data structure used by isl_ast_build_node_from_schedule_map.
4863 * internal, executed and build are the inputs to generate_code.
4864 * list collects the output.
4866 struct isl_generate_code_data
{
4868 isl_union_map
*executed
;
4869 isl_ast_build
*build
;
4871 isl_ast_graft_list
*list
;
4874 /* Given an inverse schedule in terms of the external build schedule, i.e.,
4878 * with E the external build schedule and S the additional schedule "space",
4879 * reformulate the inverse schedule in terms of the internal schedule domain,
4884 * We first obtain a mapping
4888 * take the inverse and the product with S -> S, resulting in
4890 * [I -> S] -> [E -> S]
4892 * Applying the map to the input produces the desired result.
4894 static __isl_give isl_union_map
*internal_executed(
4895 __isl_take isl_union_map
*executed
, __isl_keep isl_space
*space
,
4896 __isl_keep isl_ast_build
*build
)
4900 proj
= isl_ast_build_get_schedule_map(build
);
4901 proj
= isl_map_reverse(proj
);
4902 space
= isl_space_map_from_set(isl_space_copy(space
));
4903 id
= isl_map_identity(space
);
4904 proj
= isl_map_product(proj
, id
);
4905 executed
= isl_union_map_apply_domain(executed
,
4906 isl_union_map_from_map(proj
));
4910 /* Generate an AST that visits the elements in the range of data->executed
4911 * in the relative order specified by the corresponding domain element(s)
4912 * for those domain elements that belong to "set".
4913 * Add the result to data->list.
4915 * The caller ensures that "set" is a universe domain.
4916 * "space" is the space of the additional part of the schedule.
4917 * It is equal to the space of "set" if build->domain is parametric.
4918 * Otherwise, it is equal to the range of the wrapped space of "set".
4920 * If the build space is not parametric and
4921 * if isl_ast_build_node_from_schedule_map
4922 * was called from an outside user (data->internal not set), then
4923 * the (inverse) schedule refers to the external build domain and needs to
4924 * be transformed to refer to the internal build domain.
4926 * If the build space is parametric, then we add some of the parameter
4927 * constraints to the executed relation. Adding these constraints
4928 * allows for an earlier detection of conflicts in some cases.
4929 * However, we do not want to divide the executed relation into
4930 * more disjuncts than necessary. We therefore approximate
4931 * the constraints on the parameters by a single disjunct set.
4933 * The build is extended to include the additional part of the schedule.
4934 * If the original build space was not parametric, then the options
4935 * in data->build refer only to the additional part of the schedule
4936 * and they need to be adjusted to refer to the complete AST build
4939 * After having adjusted inverse schedule and build, we start generating
4940 * code with the outer loop of the current code generation
4941 * in generate_next_level.
4943 * If the original build space was not parametric, we undo the embedding
4944 * on the resulting isl_ast_node_list so that it can be used within
4945 * the outer AST build.
4947 static isl_stat
generate_code_in_space(struct isl_generate_code_data
*data
,
4948 __isl_take isl_set
*set
, __isl_take isl_space
*space
)
4950 isl_union_map
*executed
;
4951 isl_ast_build
*build
;
4952 isl_ast_graft_list
*list
;
4955 executed
= isl_union_map_copy(data
->executed
);
4956 executed
= isl_union_map_intersect_domain(executed
,
4957 isl_union_set_from_set(set
));
4959 embed
= !isl_set_is_params(data
->build
->domain
);
4960 if (embed
&& !data
->internal
)
4961 executed
= internal_executed(executed
, space
, data
->build
);
4964 domain
= isl_ast_build_get_domain(data
->build
);
4965 domain
= isl_set_from_basic_set(isl_set_simple_hull(domain
));
4966 executed
= isl_union_map_intersect_params(executed
, domain
);
4969 build
= isl_ast_build_copy(data
->build
);
4970 build
= isl_ast_build_product(build
, space
);
4972 list
= generate_next_level(executed
, build
);
4974 list
= isl_ast_graft_list_unembed(list
, embed
);
4976 data
->list
= isl_ast_graft_list_concat(data
->list
, list
);
4981 /* Generate an AST that visits the elements in the range of data->executed
4982 * in the relative order specified by the corresponding domain element(s)
4983 * for those domain elements that belong to "set".
4984 * Add the result to data->list.
4986 * The caller ensures that "set" is a universe domain.
4988 * If the build space S is not parametric, then the space of "set"
4989 * need to be a wrapped relation with S as domain. That is, it needs
4994 * Check this property and pass control to generate_code_in_space
4996 * If the build space is not parametric, then T is the space of "set".
4998 static isl_stat
generate_code_set(__isl_take isl_set
*set
, void *user
)
5000 struct isl_generate_code_data
*data
= user
;
5001 isl_space
*space
, *build_space
;
5004 space
= isl_set_get_space(set
);
5006 if (isl_set_is_params(data
->build
->domain
))
5007 return generate_code_in_space(data
, set
, space
);
5009 build_space
= isl_ast_build_get_space(data
->build
, data
->internal
);
5010 space
= isl_space_unwrap(space
);
5011 is_domain
= isl_space_is_domain(build_space
, space
);
5012 isl_space_free(build_space
);
5013 space
= isl_space_range(space
);
5018 isl_die(isl_set_get_ctx(set
), isl_error_invalid
,
5019 "invalid nested schedule space", goto error
);
5021 return generate_code_in_space(data
, set
, space
);
5024 isl_space_free(space
);
5025 return isl_stat_error
;
5028 /* Generate an AST that visits the elements in the range of "executed"
5029 * in the relative order specified by the corresponding domain element(s).
5031 * "build" is an isl_ast_build that has either been constructed by
5032 * isl_ast_build_from_context or passed to a callback set by
5033 * isl_ast_build_set_create_leaf.
5034 * In the first case, the space of the isl_ast_build is typically
5035 * a parametric space, although this is currently not enforced.
5036 * In the second case, the space is never a parametric space.
5037 * If the space S is not parametric, then the domain space(s) of "executed"
5038 * need to be wrapped relations with S as domain.
5040 * If the domain of "executed" consists of several spaces, then an AST
5041 * is generated for each of them (in arbitrary order) and the results
5044 * If "internal" is set, then the domain "S" above refers to the internal
5045 * schedule domain representation. Otherwise, it refers to the external
5046 * representation, as returned by isl_ast_build_get_schedule_space.
5048 * We essentially run over all the spaces in the domain of "executed"
5049 * and call generate_code_set on each of them.
5051 static __isl_give isl_ast_graft_list
*generate_code(
5052 __isl_take isl_union_map
*executed
, __isl_take isl_ast_build
*build
,
5056 struct isl_generate_code_data data
= { 0 };
5058 isl_union_set
*schedule_domain
;
5059 isl_union_map
*universe
;
5063 space
= isl_ast_build_get_space(build
, 1);
5064 space
= isl_space_align_params(space
,
5065 isl_union_map_get_space(executed
));
5066 space
= isl_space_align_params(space
,
5067 isl_union_map_get_space(build
->options
));
5068 build
= isl_ast_build_align_params(build
, isl_space_copy(space
));
5069 executed
= isl_union_map_align_params(executed
, space
);
5070 if (!executed
|| !build
)
5073 ctx
= isl_ast_build_get_ctx(build
);
5075 data
.internal
= internal
;
5076 data
.executed
= executed
;
5078 data
.list
= isl_ast_graft_list_alloc(ctx
, 0);
5080 universe
= isl_union_map_universe(isl_union_map_copy(executed
));
5081 schedule_domain
= isl_union_map_domain(universe
);
5082 if (isl_union_set_foreach_set(schedule_domain
, &generate_code_set
,
5084 data
.list
= isl_ast_graft_list_free(data
.list
);
5086 isl_union_set_free(schedule_domain
);
5087 isl_union_map_free(executed
);
5089 isl_ast_build_free(build
);
5092 isl_union_map_free(executed
);
5093 isl_ast_build_free(build
);
5097 /* Generate an AST that visits the elements in the domain of "schedule"
5098 * in the relative order specified by the corresponding image element(s).
5100 * "build" is an isl_ast_build that has either been constructed by
5101 * isl_ast_build_from_context or passed to a callback set by
5102 * isl_ast_build_set_create_leaf.
5103 * In the first case, the space of the isl_ast_build is typically
5104 * a parametric space, although this is currently not enforced.
5105 * In the second case, the space is never a parametric space.
5106 * If the space S is not parametric, then the range space(s) of "schedule"
5107 * need to be wrapped relations with S as domain.
5109 * If the range of "schedule" consists of several spaces, then an AST
5110 * is generated for each of them (in arbitrary order) and the results
5113 * We first initialize the local copies of the relevant options.
5114 * We do this here rather than when the isl_ast_build is created
5115 * because the options may have changed between the construction
5116 * of the isl_ast_build and the call to isl_generate_code.
5118 * The main computation is performed on an inverse schedule (with
5119 * the schedule domain in the domain and the elements to be executed
5120 * in the range) called "executed".
5122 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule_map(
5123 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5125 isl_ast_graft_list
*list
;
5127 isl_union_map
*executed
;
5129 schedule
= isl_union_map_coalesce(schedule
);
5130 schedule
= isl_union_map_remove_redundancies(schedule
);
5131 executed
= isl_union_map_reverse(schedule
);
5132 list
= generate_code(executed
, isl_ast_build_copy(build
), 0);
5133 node
= isl_ast_node_from_graft_list(list
, build
);
5138 /* The old name for isl_ast_build_node_from_schedule_map.
5139 * It is being kept for backward compatibility, but
5140 * it will be removed in the future.
5142 __isl_give isl_ast_node
*isl_ast_build_ast_from_schedule(
5143 __isl_keep isl_ast_build
*build
, __isl_take isl_union_map
*schedule
)
5145 return isl_ast_build_node_from_schedule_map(build
, schedule
);
5148 /* Generate an AST that visits the elements in the domain of "executed"
5149 * in the relative order specified by the leaf node "node".
5151 * The relation "executed" maps the outer generated loop iterators
5152 * to the domain elements executed by those iterations.
5154 * Simply pass control to generate_inner_level.
5155 * Note that the current build does not refer to any band node, so
5156 * that generate_inner_level will not try to visit the child of
5159 * If multiple statement instances reach a leaf,
5160 * then they can be executed in any order.
5161 * Group the list of grafts based on shared guards
5162 * such that identical guards are only generated once
5163 * when the list is eventually passed on to isl_ast_graft_list_fuse.
5165 static __isl_give isl_ast_graft_list
*build_ast_from_leaf(
5166 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5167 __isl_take isl_union_map
*executed
)
5169 isl_ast_graft_list
*list
;
5171 isl_schedule_node_free(node
);
5172 list
= generate_inner_level(executed
, isl_ast_build_copy(build
));
5173 list
= isl_ast_graft_list_group_on_guard(list
, build
);
5174 isl_ast_build_free(build
);
5179 /* Check that the band partial schedule "partial" does not filter out
5180 * any statement instances, as specified by the range of "executed".
5182 static isl_stat
check_band_schedule_total_on_instances(
5183 __isl_keep isl_multi_union_pw_aff
*partial
,
5184 __isl_keep isl_union_map
*executed
)
5187 isl_union_set
*domain
, *instances
;
5189 instances
= isl_union_map_range(isl_union_map_copy(executed
));
5190 partial
= isl_multi_union_pw_aff_copy(partial
);
5191 domain
= isl_multi_union_pw_aff_domain(partial
);
5192 subset
= isl_union_set_is_subset(instances
, domain
);
5193 isl_union_set_free(domain
);
5194 isl_union_set_free(instances
);
5197 return isl_stat_error
;
5199 isl_die(isl_union_map_get_ctx(executed
), isl_error_invalid
,
5200 "band node is not allowed to drop statement instances",
5201 return isl_stat_error
);
5205 /* Generate an AST that visits the elements in the domain of "executed"
5206 * in the relative order specified by the band node "node" and its descendants.
5208 * The relation "executed" maps the outer generated loop iterators
5209 * to the domain elements executed by those iterations.
5211 * If the band is empty, we continue with its descendants.
5212 * Otherwise, we extend the build and the inverse schedule with
5213 * the additional space/partial schedule and continue generating
5214 * an AST in generate_next_level.
5215 * As soon as we have extended the inverse schedule with the additional
5216 * partial schedule, we look for equalities that may exists between
5217 * the old and the new part.
5219 static __isl_give isl_ast_graft_list
*build_ast_from_band(
5220 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5221 __isl_take isl_union_map
*executed
)
5224 isl_multi_union_pw_aff
*extra
;
5225 isl_union_map
*extra_umap
;
5226 isl_ast_graft_list
*list
;
5230 n
= isl_schedule_node_band_n_member(node
);
5231 if (!build
|| n
< 0 || !executed
)
5235 return build_ast_from_child(build
, node
, executed
);
5237 extra
= isl_schedule_node_band_get_partial_schedule(node
);
5238 extra
= isl_multi_union_pw_aff_align_params(extra
,
5239 isl_ast_build_get_space(build
, 1));
5240 space
= isl_multi_union_pw_aff_get_space(extra
);
5242 if (check_band_schedule_total_on_instances(extra
, executed
) < 0)
5243 executed
= isl_union_map_free(executed
);
5245 extra_umap
= isl_union_map_from_multi_union_pw_aff(extra
);
5246 extra_umap
= isl_union_map_reverse(extra_umap
);
5248 executed
= isl_union_map_domain_product(executed
, extra_umap
);
5249 executed
= isl_union_map_detect_equalities(executed
);
5251 n1
= isl_ast_build_dim(build
, isl_dim_param
);
5252 build
= isl_ast_build_product(build
, space
);
5253 n2
= isl_ast_build_dim(build
, isl_dim_param
);
5254 if (n1
< 0 || n2
< 0)
5255 build
= isl_ast_build_free(build
);
5257 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5258 "band node is not allowed to introduce new parameters",
5259 build
= isl_ast_build_free(build
));
5260 build
= isl_ast_build_set_schedule_node(build
, node
);
5262 list
= generate_next_level(executed
, build
);
5264 list
= isl_ast_graft_list_unembed(list
, 1);
5268 isl_schedule_node_free(node
);
5269 isl_union_map_free(executed
);
5270 isl_ast_build_free(build
);
5274 /* Hoist a list of grafts (in practice containing a single graft)
5275 * from "sub_build" (which includes extra context information)
5278 * In particular, project out all additional parameters introduced
5279 * by the context node from the enforced constraints and the guard
5280 * of the single graft.
5282 static __isl_give isl_ast_graft_list
*hoist_out_of_context(
5283 __isl_take isl_ast_graft_list
*list
, __isl_keep isl_ast_build
*build
,
5284 __isl_keep isl_ast_build
*sub_build
)
5286 isl_ast_graft
*graft
;
5287 isl_basic_set
*enforced
;
5289 isl_size n_param
, extra_param
;
5291 n_param
= isl_ast_build_dim(build
, isl_dim_param
);
5292 extra_param
= isl_ast_build_dim(sub_build
, isl_dim_param
);
5293 if (n_param
< 0 || extra_param
< 0)
5294 return isl_ast_graft_list_free(list
);
5296 if (extra_param
== n_param
)
5299 extra_param
-= n_param
;
5300 enforced
= isl_ast_graft_list_extract_shared_enforced(list
, sub_build
);
5301 enforced
= isl_basic_set_project_out(enforced
, isl_dim_param
,
5302 n_param
, extra_param
);
5303 enforced
= isl_basic_set_remove_unknown_divs(enforced
);
5304 guard
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5305 guard
= isl_set_remove_divs_involving_dims(guard
, isl_dim_param
,
5306 n_param
, extra_param
);
5307 guard
= isl_set_project_out(guard
, isl_dim_param
, n_param
, extra_param
);
5308 guard
= isl_set_compute_divs(guard
);
5309 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5311 list
= isl_ast_graft_list_from_ast_graft(graft
);
5316 /* Generate an AST that visits the elements in the domain of "executed"
5317 * in the relative order specified by the context node "node"
5318 * and its descendants.
5320 * The relation "executed" maps the outer generated loop iterators
5321 * to the domain elements executed by those iterations.
5323 * The context node may introduce additional parameters as well as
5324 * constraints on the outer schedule dimensions or original parameters.
5326 * We add the extra parameters to a new build and the context
5327 * constraints to both the build and (as a single disjunct)
5328 * to the domain of "executed". Since the context constraints
5329 * are specified in terms of the input schedule, we first need
5330 * to map them to the internal schedule domain.
5332 * After constructing the AST from the descendants of "node",
5333 * we combine the list of grafts into a single graft within
5334 * the new build, in order to be able to exploit the additional
5335 * context constraints during this combination.
5337 * Additionally, if the current node is the outermost node in
5338 * the schedule tree (apart from the root domain node), we generate
5339 * all pending guards, again to be able to exploit the additional
5340 * context constraints. We currently do not do this for internal
5341 * context nodes since we may still want to hoist conditions
5342 * to outer AST nodes.
5344 * If the context node introduced any new parameters, then they
5345 * are removed from the set of enforced constraints and guard
5346 * in hoist_out_of_context.
5348 static __isl_give isl_ast_graft_list
*build_ast_from_context(
5349 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5350 __isl_take isl_union_map
*executed
)
5354 isl_multi_aff
*internal2input
;
5355 isl_ast_build
*sub_build
;
5356 isl_ast_graft_list
*list
;
5360 depth
= isl_schedule_node_get_tree_depth(node
);
5362 build
= isl_ast_build_free(build
);
5363 space
= isl_ast_build_get_space(build
, 1);
5364 context
= isl_schedule_node_context_get_context(node
);
5365 context
= isl_set_align_params(context
, space
);
5366 sub_build
= isl_ast_build_copy(build
);
5367 space
= isl_set_get_space(context
);
5368 sub_build
= isl_ast_build_align_params(sub_build
, space
);
5369 internal2input
= isl_ast_build_get_internal2input(sub_build
);
5370 context
= isl_set_preimage_multi_aff(context
, internal2input
);
5371 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5372 isl_set_copy(context
));
5373 context
= isl_set_from_basic_set(isl_set_simple_hull(context
));
5374 executed
= isl_union_map_intersect_domain(executed
,
5375 isl_union_set_from_set(context
));
5377 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5379 n
= isl_ast_graft_list_n_ast_graft(list
);
5381 list
= isl_ast_graft_list_free(list
);
5383 list
= isl_ast_graft_list_fuse(list
, sub_build
);
5385 list
= isl_ast_graft_list_insert_pending_guard_nodes(list
,
5388 list
= hoist_out_of_context(list
, build
, sub_build
);
5390 isl_ast_build_free(build
);
5391 isl_ast_build_free(sub_build
);
5396 /* Generate an AST that visits the elements in the domain of "executed"
5397 * in the relative order specified by the expansion node "node" and
5400 * The relation "executed" maps the outer generated loop iterators
5401 * to the domain elements executed by those iterations.
5403 * We expand the domain elements by the expansion and
5404 * continue with the descendants of the node.
5406 static __isl_give isl_ast_graft_list
*build_ast_from_expansion(
5407 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5408 __isl_take isl_union_map
*executed
)
5410 isl_union_map
*expansion
;
5413 expansion
= isl_schedule_node_expansion_get_expansion(node
);
5414 expansion
= isl_union_map_align_params(expansion
,
5415 isl_union_map_get_space(executed
));
5417 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5418 executed
= isl_union_map_apply_range(executed
, expansion
);
5419 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5420 if (n1
< 0 || n2
< 0)
5423 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5424 "expansion node is not allowed to introduce "
5425 "new parameters", goto error
);
5427 return build_ast_from_child(build
, node
, executed
);
5429 isl_ast_build_free(build
);
5430 isl_schedule_node_free(node
);
5431 isl_union_map_free(executed
);
5435 /* Generate an AST that visits the elements in the domain of "executed"
5436 * in the relative order specified by the extension node "node" and
5439 * The relation "executed" maps the outer generated loop iterators
5440 * to the domain elements executed by those iterations.
5442 * Extend the inverse schedule with the extension applied to current
5443 * set of generated constraints. Since the extension if formulated
5444 * in terms of the input schedule, it first needs to be transformed
5445 * to refer to the internal schedule.
5447 static __isl_give isl_ast_graft_list
*build_ast_from_extension(
5448 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5449 __isl_take isl_union_map
*executed
)
5451 isl_union_set
*schedule_domain
;
5452 isl_union_map
*extension
;
5455 set
= isl_ast_build_get_generated(build
);
5456 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5457 schedule_domain
= isl_union_set_from_set(set
);
5459 extension
= isl_schedule_node_extension_get_extension(node
);
5461 extension
= isl_union_map_preimage_domain_multi_aff(extension
,
5462 isl_multi_aff_copy(build
->internal2input
));
5463 extension
= isl_union_map_intersect_domain(extension
, schedule_domain
);
5464 extension
= isl_ast_build_substitute_values_union_map_domain(build
,
5466 executed
= isl_union_map_union(executed
, extension
);
5468 return build_ast_from_child(build
, node
, executed
);
5471 /* Generate an AST that visits the elements in the domain of "executed"
5472 * in the relative order specified by the filter node "node" and
5475 * The relation "executed" maps the outer generated loop iterators
5476 * to the domain elements executed by those iterations.
5478 * We simply intersect the iteration domain (i.e., the range of "executed")
5479 * with the filter and continue with the descendants of the node,
5480 * unless the resulting inverse schedule is empty, in which
5481 * case we return an empty list.
5483 * If the result of the intersection is equal to the original "executed"
5484 * relation, then keep the original representation since the intersection
5485 * may have unnecessarily broken up the relation into a greater number
5488 static __isl_give isl_ast_graft_list
*build_ast_from_filter(
5489 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5490 __isl_take isl_union_map
*executed
)
5493 isl_union_set
*filter
;
5494 isl_union_map
*orig
;
5495 isl_ast_graft_list
*list
;
5500 orig
= isl_union_map_copy(executed
);
5501 if (!build
|| !node
|| !executed
)
5504 filter
= isl_schedule_node_filter_get_filter(node
);
5505 filter
= isl_union_set_align_params(filter
,
5506 isl_union_map_get_space(executed
));
5507 n1
= isl_union_map_dim(executed
, isl_dim_param
);
5508 executed
= isl_union_map_intersect_range(executed
, filter
);
5509 n2
= isl_union_map_dim(executed
, isl_dim_param
);
5510 if (n1
< 0 || n2
< 0)
5513 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5514 "filter node is not allowed to introduce "
5515 "new parameters", goto error
);
5517 unchanged
= isl_union_map_is_subset(orig
, executed
);
5518 empty
= isl_union_map_is_empty(executed
);
5519 if (unchanged
< 0 || empty
< 0)
5522 isl_union_map_free(executed
);
5523 return build_ast_from_child(build
, node
, orig
);
5525 isl_union_map_free(orig
);
5527 return build_ast_from_child(build
, node
, executed
);
5529 ctx
= isl_ast_build_get_ctx(build
);
5530 list
= isl_ast_graft_list_alloc(ctx
, 0);
5531 isl_ast_build_free(build
);
5532 isl_schedule_node_free(node
);
5533 isl_union_map_free(executed
);
5536 isl_ast_build_free(build
);
5537 isl_schedule_node_free(node
);
5538 isl_union_map_free(executed
);
5539 isl_union_map_free(orig
);
5543 /* Generate an AST that visits the elements in the domain of "executed"
5544 * in the relative order specified by the guard node "node" and
5547 * The relation "executed" maps the outer generated loop iterators
5548 * to the domain elements executed by those iterations.
5550 * Ensure that the associated guard is enforced by the outer AST
5551 * constructs by adding it to the guard of the graft.
5552 * Since we know that we will enforce the guard, we can also include it
5553 * in the generated constraints used to construct an AST for
5554 * the descendant nodes.
5556 static __isl_give isl_ast_graft_list
*build_ast_from_guard(
5557 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5558 __isl_take isl_union_map
*executed
)
5561 isl_set
*guard
, *hoisted
;
5562 isl_basic_set
*enforced
;
5563 isl_ast_build
*sub_build
;
5564 isl_ast_graft
*graft
;
5565 isl_ast_graft_list
*list
;
5568 space
= isl_ast_build_get_space(build
, 1);
5569 guard
= isl_schedule_node_guard_get_guard(node
);
5570 n1
= isl_space_dim(space
, isl_dim_param
);
5571 guard
= isl_set_align_params(guard
, space
);
5572 n2
= isl_set_dim(guard
, isl_dim_param
);
5573 if (n1
< 0 || n2
< 0)
5574 guard
= isl_set_free(guard
);
5576 isl_die(isl_ast_build_get_ctx(build
), isl_error_invalid
,
5577 "guard node is not allowed to introduce "
5578 "new parameters", guard
= isl_set_free(guard
));
5579 guard
= isl_set_preimage_multi_aff(guard
,
5580 isl_multi_aff_copy(build
->internal2input
));
5581 guard
= isl_ast_build_specialize(build
, guard
);
5582 guard
= isl_set_gist(guard
, isl_set_copy(build
->generated
));
5584 sub_build
= isl_ast_build_copy(build
);
5585 sub_build
= isl_ast_build_restrict_generated(sub_build
,
5586 isl_set_copy(guard
));
5588 list
= build_ast_from_child(isl_ast_build_copy(sub_build
),
5591 hoisted
= isl_ast_graft_list_extract_hoistable_guard(list
, sub_build
);
5592 n
= isl_set_n_basic_set(hoisted
);
5594 list
= isl_ast_graft_list_free(list
);
5596 list
= isl_ast_graft_list_gist_guards(list
,
5597 isl_set_copy(hoisted
));
5598 guard
= isl_set_intersect(guard
, hoisted
);
5599 enforced
= extract_shared_enforced(list
, build
);
5600 graft
= isl_ast_graft_alloc_from_children(list
, guard
, enforced
,
5603 isl_ast_build_free(sub_build
);
5604 isl_ast_build_free(build
);
5605 return isl_ast_graft_list_from_ast_graft(graft
);
5608 /* Call the before_each_mark callback, if requested by the user.
5610 * Return 0 on success and -1 on error.
5612 * The caller is responsible for recording the current inverse schedule
5615 static isl_stat
before_each_mark(__isl_keep isl_id
*mark
,
5616 __isl_keep isl_ast_build
*build
)
5619 return isl_stat_error
;
5620 if (!build
->before_each_mark
)
5622 return build
->before_each_mark(mark
, build
,
5623 build
->before_each_mark_user
);
5626 /* Call the after_each_mark callback, if requested by the user.
5628 * The caller is responsible for recording the current inverse schedule
5631 static __isl_give isl_ast_graft
*after_each_mark(
5632 __isl_take isl_ast_graft
*graft
, __isl_keep isl_ast_build
*build
)
5634 if (!graft
|| !build
)
5635 return isl_ast_graft_free(graft
);
5636 if (!build
->after_each_mark
)
5638 graft
->node
= build
->after_each_mark(graft
->node
, build
,
5639 build
->after_each_mark_user
);
5641 return isl_ast_graft_free(graft
);
5646 /* Generate an AST that visits the elements in the domain of "executed"
5647 * in the relative order specified by the mark node "node" and
5650 * The relation "executed" maps the outer generated loop iterators
5651 * to the domain elements executed by those iterations.
5653 * Since we may be calling before_each_mark and after_each_mark
5654 * callbacks, we record the current inverse schedule in the build.
5656 * We generate an AST for the child of the mark node, combine
5657 * the graft list into a single graft and then insert the mark
5658 * in the AST of that single graft.
5660 static __isl_give isl_ast_graft_list
*build_ast_from_mark(
5661 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5662 __isl_take isl_union_map
*executed
)
5665 isl_ast_graft
*graft
;
5666 isl_ast_graft_list
*list
;
5669 build
= isl_ast_build_set_executed(build
, isl_union_map_copy(executed
));
5671 mark
= isl_schedule_node_mark_get_id(node
);
5672 if (before_each_mark(mark
, build
) < 0)
5673 node
= isl_schedule_node_free(node
);
5675 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5676 list
= isl_ast_graft_list_fuse(list
, build
);
5677 n
= isl_ast_graft_list_n_ast_graft(list
);
5679 list
= isl_ast_graft_list_free(list
);
5683 graft
= isl_ast_graft_list_get_ast_graft(list
, 0);
5684 graft
= isl_ast_graft_insert_mark(graft
, mark
);
5685 graft
= after_each_mark(graft
, build
);
5686 list
= isl_ast_graft_list_set_ast_graft(list
, 0, graft
);
5688 isl_ast_build_free(build
);
5693 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5694 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5695 __isl_take isl_union_map
*executed
);
5697 /* Generate an AST that visits the elements in the domain of "executed"
5698 * in the relative order specified by the sequence (or set) node "node" and
5701 * The relation "executed" maps the outer generated loop iterators
5702 * to the domain elements executed by those iterations.
5704 * We simply generate an AST for each of the children and concatenate
5707 static __isl_give isl_ast_graft_list
*build_ast_from_sequence(
5708 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5709 __isl_take isl_union_map
*executed
)
5714 isl_ast_graft_list
*list
;
5716 ctx
= isl_ast_build_get_ctx(build
);
5717 list
= isl_ast_graft_list_alloc(ctx
, 0);
5719 n
= isl_schedule_node_n_children(node
);
5721 list
= isl_ast_graft_list_free(list
);
5722 for (i
= 0; i
< n
; ++i
) {
5723 isl_schedule_node
*child
;
5724 isl_ast_graft_list
*list_i
;
5726 child
= isl_schedule_node_get_child(node
, i
);
5727 list_i
= build_ast_from_schedule_node(isl_ast_build_copy(build
),
5728 child
, isl_union_map_copy(executed
));
5729 list
= isl_ast_graft_list_concat(list
, list_i
);
5731 isl_ast_build_free(build
);
5732 isl_schedule_node_free(node
);
5733 isl_union_map_free(executed
);
5738 /* Generate an AST that visits the elements in the domain of "executed"
5739 * in the relative order specified by the node "node" and its descendants.
5741 * The relation "executed" maps the outer generated loop iterators
5742 * to the domain elements executed by those iterations.
5744 * The node types are handled in separate functions.
5745 * Set nodes are currently treated in the same way as sequence nodes.
5746 * The children of a set node may be executed in any order,
5747 * including the order of the children.
5749 static __isl_give isl_ast_graft_list
*build_ast_from_schedule_node(
5750 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5751 __isl_take isl_union_map
*executed
)
5753 enum isl_schedule_node_type type
;
5755 type
= isl_schedule_node_get_type(node
);
5758 case isl_schedule_node_error
:
5760 case isl_schedule_node_leaf
:
5761 return build_ast_from_leaf(build
, node
, executed
);
5762 case isl_schedule_node_band
:
5763 return build_ast_from_band(build
, node
, executed
);
5764 case isl_schedule_node_context
:
5765 return build_ast_from_context(build
, node
, executed
);
5766 case isl_schedule_node_domain
:
5767 isl_die(isl_schedule_node_get_ctx(node
), isl_error_unsupported
,
5768 "unexpected internal domain node", goto error
);
5769 case isl_schedule_node_expansion
:
5770 return build_ast_from_expansion(build
, node
, executed
);
5771 case isl_schedule_node_extension
:
5772 return build_ast_from_extension(build
, node
, executed
);
5773 case isl_schedule_node_filter
:
5774 return build_ast_from_filter(build
, node
, executed
);
5775 case isl_schedule_node_guard
:
5776 return build_ast_from_guard(build
, node
, executed
);
5777 case isl_schedule_node_mark
:
5778 return build_ast_from_mark(build
, node
, executed
);
5779 case isl_schedule_node_sequence
:
5780 case isl_schedule_node_set
:
5781 return build_ast_from_sequence(build
, node
, executed
);
5784 isl_die(isl_ast_build_get_ctx(build
), isl_error_internal
,
5785 "unhandled type", goto error
);
5787 isl_union_map_free(executed
);
5788 isl_schedule_node_free(node
);
5789 isl_ast_build_free(build
);
5794 /* Generate an AST that visits the elements in the domain of "executed"
5795 * in the relative order specified by the (single) child of "node" and
5798 * The relation "executed" maps the outer generated loop iterators
5799 * to the domain elements executed by those iterations.
5801 * This function is never called on a leaf, set or sequence node,
5802 * so the node always has exactly one child.
5804 static __isl_give isl_ast_graft_list
*build_ast_from_child(
5805 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
,
5806 __isl_take isl_union_map
*executed
)
5808 node
= isl_schedule_node_child(node
, 0);
5809 return build_ast_from_schedule_node(build
, node
, executed
);
5812 /* Generate an AST that visits the elements in the domain of the domain
5813 * node "node" in the relative order specified by its descendants.
5815 * An initial inverse schedule is created that maps a zero-dimensional
5816 * schedule space to the node domain.
5817 * The input "build" is assumed to have a parametric domain and
5818 * is replaced by the same zero-dimensional schedule space.
5820 * We also add some of the parameter constraints in the build domain
5821 * to the executed relation. Adding these constraints
5822 * allows for an earlier detection of conflicts in some cases.
5823 * However, we do not want to divide the executed relation into
5824 * more disjuncts than necessary. We therefore approximate
5825 * the constraints on the parameters by a single disjunct set.
5827 static __isl_give isl_ast_node
*build_ast_from_domain(
5828 __isl_take isl_ast_build
*build
, __isl_take isl_schedule_node
*node
)
5831 isl_union_set
*domain
, *schedule_domain
;
5832 isl_union_map
*executed
;
5835 isl_ast_graft_list
*list
;
5842 ctx
= isl_ast_build_get_ctx(build
);
5843 space
= isl_ast_build_get_space(build
, 1);
5844 is_params
= isl_space_is_params(space
);
5845 isl_space_free(space
);
5849 isl_die(ctx
, isl_error_unsupported
,
5850 "expecting parametric initial context", goto error
);
5852 domain
= isl_schedule_node_domain_get_domain(node
);
5853 domain
= isl_union_set_coalesce(domain
);
5855 space
= isl_union_set_get_space(domain
);
5856 space
= isl_space_set_from_params(space
);
5857 build
= isl_ast_build_product(build
, space
);
5859 set
= isl_ast_build_get_domain(build
);
5860 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
5861 schedule_domain
= isl_union_set_from_set(set
);
5863 executed
= isl_union_map_from_domain_and_range(schedule_domain
, domain
);
5864 list
= build_ast_from_child(isl_ast_build_copy(build
), node
, executed
);
5865 ast
= isl_ast_node_from_graft_list(list
, build
);
5866 isl_ast_build_free(build
);
5870 isl_schedule_node_free(node
);
5871 isl_ast_build_free(build
);
5875 /* Generate an AST that visits the elements in the domain of "schedule"
5876 * in the relative order specified by the schedule tree.
5878 * "build" is an isl_ast_build that has been created using
5879 * isl_ast_build_alloc or isl_ast_build_from_context based
5880 * on a parametric set.
5882 * The construction starts at the root node of the schedule,
5883 * which is assumed to be a domain node.
5885 __isl_give isl_ast_node
*isl_ast_build_node_from_schedule(
5886 __isl_keep isl_ast_build
*build
, __isl_take isl_schedule
*schedule
)
5889 isl_schedule_node
*node
;
5891 if (!build
|| !schedule
)
5894 ctx
= isl_ast_build_get_ctx(build
);
5896 node
= isl_schedule_get_root(schedule
);
5899 isl_schedule_free(schedule
);
5901 build
= isl_ast_build_copy(build
);
5902 if (isl_schedule_node_get_type(node
) != isl_schedule_node_domain
)
5903 isl_die(ctx
, isl_error_unsupported
,
5904 "expecting root domain node",
5905 build
= isl_ast_build_free(build
));
5906 return build_ast_from_domain(build
, node
);
5908 isl_schedule_free(schedule
);