2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map
*isl_basic_map_implicit_equalities(
21 struct isl_basic_map
*bmap
)
28 bmap
= isl_basic_map_gauss(bmap
, NULL
);
29 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
31 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
))
33 if (bmap
->n_ineq
<= 1)
36 tab
= isl_tab_from_basic_map(bmap
);
37 if (isl_tab_detect_implicit_equalities(tab
) < 0)
39 bmap
= isl_basic_map_update_from_tab(bmap
, tab
);
41 bmap
= isl_basic_map_gauss(bmap
, NULL
);
42 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
);
46 isl_basic_map_free(bmap
);
50 struct isl_basic_set
*isl_basic_set_implicit_equalities(
51 struct isl_basic_set
*bset
)
53 return (struct isl_basic_set
*)
54 isl_basic_map_implicit_equalities((struct isl_basic_map
*)bset
);
57 struct isl_map
*isl_map_implicit_equalities(struct isl_map
*map
)
64 for (i
= 0; i
< map
->n
; ++i
) {
65 map
->p
[i
] = isl_basic_map_implicit_equalities(map
->p
[i
]);
76 /* Make eq[row][col] of both bmaps equal so we can add the row
77 * add the column to the common matrix.
78 * Note that because of the echelon form, the columns of row row
79 * after column col are zero.
81 static void set_common_multiple(
82 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
83 unsigned row
, unsigned col
)
87 if (isl_int_eq(bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]))
92 isl_int_lcm(m
, bset1
->eq
[row
][col
], bset2
->eq
[row
][col
]);
93 isl_int_divexact(c
, m
, bset1
->eq
[row
][col
]);
94 isl_seq_scale(bset1
->eq
[row
], bset1
->eq
[row
], c
, col
+1);
95 isl_int_divexact(c
, m
, bset2
->eq
[row
][col
]);
96 isl_seq_scale(bset2
->eq
[row
], bset2
->eq
[row
], c
, col
+1);
101 /* Delete a given equality, moving all the following equalities one up.
103 static void delete_row(struct isl_basic_set
*bset
, unsigned row
)
110 for (r
= row
; r
< bset
->n_eq
; ++r
)
111 bset
->eq
[r
] = bset
->eq
[r
+1];
112 bset
->eq
[bset
->n_eq
] = t
;
115 /* Make first row entries in column col of bset1 identical to
116 * those of bset2, using the fact that entry bset1->eq[row][col]=a
117 * is non-zero. Initially, these elements of bset1 are all zero.
118 * For each row i < row, we set
119 * A[i] = a * A[i] + B[i][col] * A[row]
122 * A[i][col] = B[i][col] = a * old(B[i][col])
124 static void construct_column(
125 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
126 unsigned row
, unsigned col
)
135 total
= 1 + isl_basic_set_n_dim(bset1
);
136 for (r
= 0; r
< row
; ++r
) {
137 if (isl_int_is_zero(bset2
->eq
[r
][col
]))
139 isl_int_gcd(b
, bset2
->eq
[r
][col
], bset1
->eq
[row
][col
]);
140 isl_int_divexact(a
, bset1
->eq
[row
][col
], b
);
141 isl_int_divexact(b
, bset2
->eq
[r
][col
], b
);
142 isl_seq_combine(bset1
->eq
[r
], a
, bset1
->eq
[r
],
143 b
, bset1
->eq
[row
], total
);
144 isl_seq_scale(bset2
->eq
[r
], bset2
->eq
[r
], a
, total
);
148 delete_row(bset1
, row
);
151 /* Make first row entries in column col of bset1 identical to
152 * those of bset2, using only these entries of the two matrices.
153 * Let t be the last row with different entries.
154 * For each row i < t, we set
155 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
156 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
158 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
160 static int transform_column(
161 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
,
162 unsigned row
, unsigned col
)
168 for (t
= row
-1; t
>= 0; --t
)
169 if (isl_int_ne(bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]))
174 total
= 1 + isl_basic_set_n_dim(bset1
);
178 isl_int_sub(b
, bset1
->eq
[t
][col
], bset2
->eq
[t
][col
]);
179 for (i
= 0; i
< t
; ++i
) {
180 isl_int_sub(a
, bset2
->eq
[i
][col
], bset1
->eq
[i
][col
]);
181 isl_int_gcd(g
, a
, b
);
182 isl_int_divexact(a
, a
, g
);
183 isl_int_divexact(g
, b
, g
);
184 isl_seq_combine(bset1
->eq
[i
], g
, bset1
->eq
[i
], a
, bset1
->eq
[t
],
186 isl_seq_combine(bset2
->eq
[i
], g
, bset2
->eq
[i
], a
, bset2
->eq
[t
],
192 delete_row(bset1
, t
);
193 delete_row(bset2
, t
);
197 /* The implementation is based on Section 5.2 of Michael Karr,
198 * "Affine Relationships Among Variables of a Program",
199 * except that the echelon form we use starts from the last column
200 * and that we are dealing with integer coefficients.
202 static struct isl_basic_set
*affine_hull(
203 struct isl_basic_set
*bset1
, struct isl_basic_set
*bset2
)
209 total
= 1 + isl_basic_set_n_dim(bset1
);
212 for (col
= total
-1; col
>= 0; --col
) {
213 int is_zero1
= row
>= bset1
->n_eq
||
214 isl_int_is_zero(bset1
->eq
[row
][col
]);
215 int is_zero2
= row
>= bset2
->n_eq
||
216 isl_int_is_zero(bset2
->eq
[row
][col
]);
217 if (!is_zero1
&& !is_zero2
) {
218 set_common_multiple(bset1
, bset2
, row
, col
);
220 } else if (!is_zero1
&& is_zero2
) {
221 construct_column(bset1
, bset2
, row
, col
);
222 } else if (is_zero1
&& !is_zero2
) {
223 construct_column(bset2
, bset1
, row
, col
);
225 if (transform_column(bset1
, bset2
, row
, col
))
229 isl_basic_set_free(bset2
);
230 isl_assert(bset1
->ctx
, row
== bset1
->n_eq
, goto error
);
231 bset1
= isl_basic_set_normalize_constraints(bset1
);
234 isl_basic_set_free(bset1
);
238 /* Find an integer point in the set represented by "tab"
239 * that lies outside of the equality "eq" e(x) = 0.
240 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
241 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
242 * The point, if found, is returned.
243 * If no point can be found, a zero-length vector is returned.
245 * Before solving an ILP problem, we first check if simply
246 * adding the normal of the constraint to one of the known
247 * integer points in the basic set represented by "tab"
248 * yields another point inside the basic set.
250 * The caller of this function ensures that the tableau is bounded or
251 * that tab->basis and tab->n_unbounded have been set appropriately.
253 static struct isl_vec
*outside_point(struct isl_tab
*tab
, isl_int
*eq
, int up
)
256 struct isl_vec
*sample
= NULL
;
257 struct isl_tab_undo
*snap
;
265 sample
= isl_vec_alloc(ctx
, 1 + dim
);
268 isl_int_set_si(sample
->el
[0], 1);
269 isl_seq_combine(sample
->el
+ 1,
270 ctx
->one
, tab
->bmap
->sample
->el
+ 1,
271 up
? ctx
->one
: ctx
->negone
, eq
+ 1, dim
);
272 if (isl_basic_map_contains(tab
->bmap
, sample
))
274 isl_vec_free(sample
);
277 snap
= isl_tab_snap(tab
);
280 isl_seq_neg(eq
, eq
, 1 + dim
);
281 isl_int_sub_ui(eq
[0], eq
[0], 1);
283 if (isl_tab_extend_cons(tab
, 1) < 0)
285 if (isl_tab_add_ineq(tab
, eq
) < 0)
288 sample
= isl_tab_sample(tab
);
290 isl_int_add_ui(eq
[0], eq
[0], 1);
292 isl_seq_neg(eq
, eq
, 1 + dim
);
294 if (isl_tab_rollback(tab
, snap
) < 0)
299 isl_vec_free(sample
);
303 struct isl_basic_set
*isl_basic_set_recession_cone(struct isl_basic_set
*bset
)
307 bset
= isl_basic_set_cow(bset
);
310 isl_assert(bset
->ctx
, bset
->n_div
== 0, goto error
);
312 for (i
= 0; i
< bset
->n_eq
; ++i
)
313 isl_int_set_si(bset
->eq
[i
][0], 0);
315 for (i
= 0; i
< bset
->n_ineq
; ++i
)
316 isl_int_set_si(bset
->ineq
[i
][0], 0);
318 ISL_F_CLR(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
319 return isl_basic_set_implicit_equalities(bset
);
321 isl_basic_set_free(bset
);
325 __isl_give isl_set
*isl_set_recession_cone(__isl_take isl_set
*set
)
334 set
= isl_set_remove_divs(set
);
335 set
= isl_set_cow(set
);
339 for (i
= 0; i
< set
->n
; ++i
) {
340 set
->p
[i
] = isl_basic_set_recession_cone(set
->p
[i
]);
351 /* Extend an initial (under-)approximation of the affine hull of basic
352 * set represented by the tableau "tab"
353 * by looking for points that do not satisfy one of the equalities
354 * in the current approximation and adding them to that approximation
355 * until no such points can be found any more.
357 * The caller of this function ensures that "tab" is bounded or
358 * that tab->basis and tab->n_unbounded have been set appropriately.
360 static struct isl_basic_set
*extend_affine_hull(struct isl_tab
*tab
,
361 struct isl_basic_set
*hull
)
371 if (isl_tab_extend_cons(tab
, 2 * dim
+ 1) < 0)
374 for (i
= 0; i
< dim
; ++i
) {
375 struct isl_vec
*sample
;
376 struct isl_basic_set
*point
;
377 for (j
= 0; j
< hull
->n_eq
; ++j
) {
378 sample
= outside_point(tab
, hull
->eq
[j
], 1);
381 if (sample
->size
> 0)
383 isl_vec_free(sample
);
384 sample
= outside_point(tab
, hull
->eq
[j
], 0);
387 if (sample
->size
> 0)
389 isl_vec_free(sample
);
391 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
398 tab
= isl_tab_add_sample(tab
, isl_vec_copy(sample
));
401 point
= isl_basic_set_from_vec(sample
);
402 hull
= affine_hull(hull
, point
);
407 isl_basic_set_free(hull
);
411 /* Drop all constraints in bset that involve any of the dimensions
412 * first to first+n-1.
414 static struct isl_basic_set
*drop_constraints_involving
415 (struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
422 bset
= isl_basic_set_cow(bset
);
424 for (i
= bset
->n_eq
- 1; i
>= 0; --i
) {
425 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + first
, n
) == -1)
427 isl_basic_set_drop_equality(bset
, i
);
430 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
) {
431 if (isl_seq_first_non_zero(bset
->ineq
[i
] + 1 + first
, n
) == -1)
433 isl_basic_set_drop_inequality(bset
, i
);
439 /* Look for all equalities satisfied by the integer points in bset,
440 * which is assumed to be bounded.
442 * The equalities are obtained by successively looking for
443 * a point that is affinely independent of the points found so far.
444 * In particular, for each equality satisfied by the points so far,
445 * we check if there is any point on a hyperplane parallel to the
446 * corresponding hyperplane shifted by at least one (in either direction).
448 static struct isl_basic_set
*uset_affine_hull_bounded(struct isl_basic_set
*bset
)
450 struct isl_vec
*sample
= NULL
;
451 struct isl_basic_set
*hull
;
452 struct isl_tab
*tab
= NULL
;
455 if (isl_basic_set_fast_is_empty(bset
))
458 dim
= isl_basic_set_n_dim(bset
);
460 if (bset
->sample
&& bset
->sample
->size
== 1 + dim
) {
461 int contains
= isl_basic_set_contains(bset
, bset
->sample
);
467 sample
= isl_vec_copy(bset
->sample
);
469 isl_vec_free(bset
->sample
);
474 tab
= isl_tab_from_basic_set(bset
);
479 isl_vec_free(sample
);
480 return isl_basic_set_set_to_empty(bset
);
482 if (isl_tab_track_bset(tab
, isl_basic_set_copy(bset
)) < 0)
486 struct isl_tab_undo
*snap
;
487 snap
= isl_tab_snap(tab
);
488 sample
= isl_tab_sample(tab
);
489 if (isl_tab_rollback(tab
, snap
) < 0)
491 isl_vec_free(tab
->bmap
->sample
);
492 tab
->bmap
->sample
= isl_vec_copy(sample
);
497 if (sample
->size
== 0) {
499 isl_vec_free(sample
);
500 return isl_basic_set_set_to_empty(bset
);
503 hull
= isl_basic_set_from_vec(sample
);
505 isl_basic_set_free(bset
);
506 hull
= extend_affine_hull(tab
, hull
);
511 isl_vec_free(sample
);
513 isl_basic_set_free(bset
);
517 /* Given an unbounded tableau and an integer point satisfying the tableau,
518 * construct an intial affine hull containing the recession cone
519 * shifted to the given point.
521 * The unbounded directions are taken from the last rows of the basis,
522 * which is assumed to have been initialized appropriately.
524 static __isl_give isl_basic_set
*initial_hull(struct isl_tab
*tab
,
525 __isl_take isl_vec
*vec
)
529 struct isl_basic_set
*bset
= NULL
;
536 isl_assert(ctx
, vec
->size
!= 0, goto error
);
538 bset
= isl_basic_set_alloc(ctx
, 0, vec
->size
- 1, 0, vec
->size
- 1, 0);
541 dim
= isl_basic_set_n_dim(bset
) - tab
->n_unbounded
;
542 for (i
= 0; i
< dim
; ++i
) {
543 k
= isl_basic_set_alloc_equality(bset
);
546 isl_seq_cpy(bset
->eq
[k
] + 1, tab
->basis
->row
[1 + i
] + 1,
548 isl_seq_inner_product(bset
->eq
[k
] + 1, vec
->el
+1,
549 vec
->size
- 1, &bset
->eq
[k
][0]);
550 isl_int_neg(bset
->eq
[k
][0], bset
->eq
[k
][0]);
553 bset
= isl_basic_set_gauss(bset
, NULL
);
557 isl_basic_set_free(bset
);
562 /* Given a tableau of a set and a tableau of the corresponding
563 * recession cone, detect and add all equalities to the tableau.
564 * If the tableau is bounded, then we can simply keep the
565 * tableau in its state after the return from extend_affine_hull.
566 * However, if the tableau is unbounded, then
567 * isl_tab_set_initial_basis_with_cone will add some additional
568 * constraints to the tableau that have to be removed again.
569 * In this case, we therefore rollback to the state before
570 * any constraints were added and then add the eqaulities back in.
572 struct isl_tab
*isl_tab_detect_equalities(struct isl_tab
*tab
,
573 struct isl_tab
*tab_cone
)
576 struct isl_vec
*sample
;
577 struct isl_basic_set
*hull
;
578 struct isl_tab_undo
*snap
;
580 if (!tab
|| !tab_cone
)
583 snap
= isl_tab_snap(tab
);
585 isl_mat_free(tab
->basis
);
588 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
589 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
590 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
591 isl_assert(tab
->mat
->ctx
, tab
->n_sample
> tab
->n_outside
, goto error
);
593 if (isl_tab_set_initial_basis_with_cone(tab
, tab_cone
) < 0)
596 sample
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
600 isl_seq_cpy(sample
->el
, tab
->samples
->row
[tab
->n_outside
], sample
->size
);
602 isl_vec_free(tab
->bmap
->sample
);
603 tab
->bmap
->sample
= isl_vec_copy(sample
);
605 if (tab
->n_unbounded
== 0)
606 hull
= isl_basic_set_from_vec(isl_vec_copy(sample
));
608 hull
= initial_hull(tab
, isl_vec_copy(sample
));
610 for (j
= tab
->n_outside
+ 1; j
< tab
->n_sample
; ++j
) {
611 isl_seq_cpy(sample
->el
, tab
->samples
->row
[j
], sample
->size
);
612 hull
= affine_hull(hull
,
613 isl_basic_set_from_vec(isl_vec_copy(sample
)));
616 isl_vec_free(sample
);
618 hull
= extend_affine_hull(tab
, hull
);
622 if (tab
->n_unbounded
== 0) {
623 isl_basic_set_free(hull
);
627 if (isl_tab_rollback(tab
, snap
) < 0)
630 if (hull
->n_eq
> tab
->n_zero
) {
631 for (j
= 0; j
< hull
->n_eq
; ++j
) {
632 isl_seq_normalize(tab
->mat
->ctx
, hull
->eq
[j
], 1 + tab
->n_var
);
633 tab
= isl_tab_add_eq(tab
, hull
->eq
[j
]);
637 isl_basic_set_free(hull
);
645 /* Compute the affine hull of "bset", where "cone" is the recession cone
648 * We first compute a unimodular transformation that puts the unbounded
649 * directions in the last dimensions. In particular, we take a transformation
650 * that maps all equalities to equalities (in HNF) on the first dimensions.
651 * Let x be the original dimensions and y the transformed, with y_1 bounded
654 * [ y_1 ] [ y_1 ] [ Q_1 ]
655 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
657 * Let's call the input basic set S. We compute S' = preimage(S, U)
658 * and drop the final dimensions including any constraints involving them.
659 * This results in set S''.
660 * Then we compute the affine hull A'' of S''.
661 * Let F y_1 >= g be the constraint system of A''. In the transformed
662 * space the y_2 are unbounded, so we can add them back without any constraints,
666 * [ F 0 ] [ y_2 ] >= g
669 * [ F 0 ] [ Q_2 ] x >= g
673 * The affine hull in the original space is then obtained as
674 * A = preimage(A'', Q_1).
676 static struct isl_basic_set
*affine_hull_with_cone(struct isl_basic_set
*bset
,
677 struct isl_basic_set
*cone
)
681 struct isl_basic_set
*hull
;
682 struct isl_mat
*M
, *U
, *Q
;
687 total
= isl_basic_set_total_dim(cone
);
688 cone_dim
= total
- cone
->n_eq
;
690 M
= isl_mat_sub_alloc(bset
->ctx
, cone
->eq
, 0, cone
->n_eq
, 1, total
);
691 M
= isl_mat_left_hermite(M
, 0, &U
, &Q
);
696 U
= isl_mat_lin_to_aff(U
);
697 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(U
));
699 bset
= drop_constraints_involving(bset
, total
- cone_dim
, cone_dim
);
700 bset
= isl_basic_set_drop_dims(bset
, total
- cone_dim
, cone_dim
);
702 Q
= isl_mat_lin_to_aff(Q
);
703 Q
= isl_mat_drop_rows(Q
, 1 + total
- cone_dim
, cone_dim
);
705 if (bset
&& bset
->sample
&& bset
->sample
->size
== 1 + total
)
706 bset
->sample
= isl_mat_vec_product(isl_mat_copy(Q
), bset
->sample
);
708 hull
= uset_affine_hull_bounded(bset
);
713 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
714 U
= isl_mat_drop_cols(U
, 1 + total
- cone_dim
, cone_dim
);
715 if (sample
&& sample
->size
> 0)
716 sample
= isl_mat_vec_product(U
, sample
);
719 hull
= isl_basic_set_preimage(hull
, Q
);
720 isl_vec_free(hull
->sample
);
721 hull
->sample
= sample
;
724 isl_basic_set_free(cone
);
728 isl_basic_set_free(bset
);
729 isl_basic_set_free(cone
);
733 /* Look for all equalities satisfied by the integer points in bset,
734 * which is assumed not to have any explicit equalities.
736 * The equalities are obtained by successively looking for
737 * a point that is affinely independent of the points found so far.
738 * In particular, for each equality satisfied by the points so far,
739 * we check if there is any point on a hyperplane parallel to the
740 * corresponding hyperplane shifted by at least one (in either direction).
742 * Before looking for any outside points, we first compute the recession
743 * cone. The directions of this recession cone will always be part
744 * of the affine hull, so there is no need for looking for any points
745 * in these directions.
746 * In particular, if the recession cone is full-dimensional, then
747 * the affine hull is simply the whole universe.
749 static struct isl_basic_set
*uset_affine_hull(struct isl_basic_set
*bset
)
751 struct isl_basic_set
*cone
;
753 if (isl_basic_set_fast_is_empty(bset
))
756 cone
= isl_basic_set_recession_cone(isl_basic_set_copy(bset
));
759 if (cone
->n_eq
== 0) {
760 struct isl_basic_set
*hull
;
761 isl_basic_set_free(cone
);
762 hull
= isl_basic_set_universe_like(bset
);
763 isl_basic_set_free(bset
);
767 if (cone
->n_eq
< isl_basic_set_total_dim(cone
))
768 return affine_hull_with_cone(bset
, cone
);
770 isl_basic_set_free(cone
);
771 return uset_affine_hull_bounded(bset
);
773 isl_basic_set_free(bset
);
777 /* Look for all equalities satisfied by the integer points in bmap
778 * that are independent of the equalities already explicitly available
781 * We first remove all equalities already explicitly available,
782 * then look for additional equalities in the reduced space
783 * and then transform the result to the original space.
784 * The original equalities are _not_ added to this set. This is
785 * the responsibility of the calling function.
786 * The resulting basic set has all meaning about the dimensions removed.
787 * In particular, dimensions that correspond to existential variables
788 * in bmap and that are found to be fixed are not removed.
790 static struct isl_basic_set
*equalities_in_underlying_set(
791 struct isl_basic_map
*bmap
)
793 struct isl_mat
*T1
= NULL
;
794 struct isl_mat
*T2
= NULL
;
795 struct isl_basic_set
*bset
= NULL
;
796 struct isl_basic_set
*hull
= NULL
;
798 bset
= isl_basic_map_underlying_set(bmap
);
802 bset
= isl_basic_set_remove_equalities(bset
, &T1
, &T2
);
806 hull
= uset_affine_hull(bset
);
813 struct isl_vec
*sample
= isl_vec_copy(hull
->sample
);
814 if (sample
&& sample
->size
> 0)
815 sample
= isl_mat_vec_product(T1
, sample
);
818 hull
= isl_basic_set_preimage(hull
, T2
);
819 isl_vec_free(hull
->sample
);
820 hull
->sample
= sample
;
826 isl_basic_set_free(bset
);
827 isl_basic_set_free(hull
);
831 /* Detect and make explicit all equalities satisfied by the (integer)
834 struct isl_basic_map
*isl_basic_map_detect_equalities(
835 struct isl_basic_map
*bmap
)
838 struct isl_basic_set
*hull
= NULL
;
842 if (bmap
->n_ineq
== 0)
844 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
846 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_ALL_EQUALITIES
))
848 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
849 return isl_basic_map_implicit_equalities(bmap
);
851 hull
= equalities_in_underlying_set(isl_basic_map_copy(bmap
));
854 if (ISL_F_ISSET(hull
, ISL_BASIC_SET_EMPTY
)) {
855 isl_basic_set_free(hull
);
856 return isl_basic_map_set_to_empty(bmap
);
858 bmap
= isl_basic_map_extend_dim(bmap
, isl_dim_copy(bmap
->dim
), 0,
860 for (i
= 0; i
< hull
->n_eq
; ++i
) {
861 j
= isl_basic_map_alloc_equality(bmap
);
864 isl_seq_cpy(bmap
->eq
[j
], hull
->eq
[i
],
865 1 + isl_basic_set_total_dim(hull
));
867 isl_vec_free(bmap
->sample
);
868 bmap
->sample
= isl_vec_copy(hull
->sample
);
869 isl_basic_set_free(hull
);
870 ISL_F_SET(bmap
, ISL_BASIC_MAP_NO_IMPLICIT
| ISL_BASIC_MAP_ALL_EQUALITIES
);
871 bmap
= isl_basic_map_simplify(bmap
);
872 return isl_basic_map_finalize(bmap
);
874 isl_basic_set_free(hull
);
875 isl_basic_map_free(bmap
);
879 __isl_give isl_basic_set
*isl_basic_set_detect_equalities(
880 __isl_take isl_basic_set
*bset
)
882 return (isl_basic_set
*)
883 isl_basic_map_detect_equalities((isl_basic_map
*)bset
);
886 struct isl_map
*isl_map_detect_equalities(struct isl_map
*map
)
888 struct isl_basic_map
*bmap
;
894 for (i
= 0; i
< map
->n
; ++i
) {
895 bmap
= isl_basic_map_copy(map
->p
[i
]);
896 bmap
= isl_basic_map_detect_equalities(bmap
);
899 isl_basic_map_free(map
->p
[i
]);
909 __isl_give isl_set
*isl_set_detect_equalities(__isl_take isl_set
*set
)
911 return (isl_set
*)isl_map_detect_equalities((isl_map
*)set
);
914 /* After computing the rational affine hull (by detecting the implicit
915 * equalities), we compute the additional equalities satisfied by
916 * the integer points (if any) and add the original equalities back in.
918 struct isl_basic_map
*isl_basic_map_affine_hull(struct isl_basic_map
*bmap
)
920 bmap
= isl_basic_map_detect_equalities(bmap
);
921 bmap
= isl_basic_map_cow(bmap
);
922 isl_basic_map_free_inequality(bmap
, bmap
->n_ineq
);
926 struct isl_basic_set
*isl_basic_set_affine_hull(struct isl_basic_set
*bset
)
928 return (struct isl_basic_set
*)
929 isl_basic_map_affine_hull((struct isl_basic_map
*)bset
);
932 struct isl_basic_map
*isl_map_affine_hull(struct isl_map
*map
)
935 struct isl_basic_map
*model
= NULL
;
936 struct isl_basic_map
*hull
= NULL
;
939 map
= isl_map_detect_equalities(map
);
940 map
= isl_map_align_divs(map
);
946 hull
= isl_basic_map_empty_like_map(map
);
951 model
= isl_basic_map_copy(map
->p
[0]);
952 set
= isl_map_underlying_set(map
);
953 set
= isl_set_cow(set
);
957 for (i
= 0; i
< set
->n
; ++i
) {
958 set
->p
[i
] = isl_basic_set_cow(set
->p
[i
]);
959 set
->p
[i
] = isl_basic_set_affine_hull(set
->p
[i
]);
960 set
->p
[i
] = isl_basic_set_gauss(set
->p
[i
], NULL
);
964 set
= isl_set_remove_empty_parts(set
);
966 hull
= isl_basic_map_empty_like(model
);
967 isl_basic_map_free(model
);
969 struct isl_basic_set
*bset
;
971 set
->p
[0] = affine_hull(set
->p
[0], set
->p
[--set
->n
]);
975 bset
= isl_basic_set_copy(set
->p
[0]);
976 hull
= isl_basic_map_overlying_set(bset
, model
);
979 hull
= isl_basic_map_simplify(hull
);
980 return isl_basic_map_finalize(hull
);
982 isl_basic_map_free(model
);
987 struct isl_basic_set
*isl_set_affine_hull(struct isl_set
*set
)
989 return (struct isl_basic_set
*)
990 isl_map_affine_hull((struct isl_map
*)set
);