isl_tab_basic_map_partial_lexopt: remove samples that are no longer useful
[isl.git] / isl_tab_pip.c
blob5886fd7ec2896b94bd08640782a13658a2d514e7
1 #include "isl_map_private.h"
2 #include "isl_seq.h"
3 #include "isl_tab.h"
5 /*
6 * The implementation of parametric integer linear programming in this file
7 * was inspired by the paper "Parametric Integer Programming" and the
8 * report "Solving systems of affine (in)equalities" by Paul Feautrier
9 * (and others).
11 * The strategy used for obtaining a feasible solution is different
12 * from the one used in isl_tab.c. In particular, in isl_tab.c,
13 * upon finding a constraint that is not yet satisfied, we pivot
14 * in a row that increases the constant term of row holding the
15 * constraint, making sure the sample solution remains feasible
16 * for all the constraints it already satisfied.
17 * Here, we always pivot in the row holding the constraint,
18 * choosing a column that induces the lexicographically smallest
19 * increment to the sample solution.
21 * By starting out from a sample value that is lexicographically
22 * smaller than any integer point in the problem space, the first
23 * feasible integer sample point we find will also be the lexicographically
24 * smallest. If all variables can be assumed to be non-negative,
25 * then the initial sample value may be chosen equal to zero.
26 * However, we will not make this assumption. Instead, we apply
27 * the "big parameter" trick. Any variable x is then not directly
28 * used in the tableau, but instead it its represented by another
29 * variable x' = M + x, where M is an arbitrarily large (positive)
30 * value. x' is therefore always non-negative, whatever the value of x.
31 * Taking as initial smaple value x' = 0 corresponds to x = -M,
32 * which is always smaller than any possible value of x.
34 * We use the big parameter trick both in the main tableau and
35 * the context tableau, each of course having its own big parameter.
36 * Before doing any real work, we check if all the parameters
37 * happen to be non-negative. If so, we drop the column corresponding
38 * to M from the initial context tableau.
41 /* isl_sol is an interface for constructing a solution to
42 * a parametric integer linear programming problem.
43 * Every time the algorithm reaches a state where a solution
44 * can be read off from the tableau (including cases where the tableau
45 * is empty), the function "add" is called on the isl_sol passed
46 * to find_solutions_main.
48 * The context tableau is owned by isl_sol and is updated incrementally.
50 * There are currently two implementations of this interface,
51 * isl_sol_map, which simply collects the solutions in an isl_map
52 * and (optionally) the parts of the context where there is no solution
53 * in an isl_set, and
54 * isl_sol_for, which calls a user-defined function for each part of
55 * the solution.
57 struct isl_sol {
58 struct isl_tab *context_tab;
59 struct isl_sol *(*add)(struct isl_sol *sol, struct isl_tab *tab);
60 void (*free)(struct isl_sol *sol);
63 static void sol_free(struct isl_sol *sol)
65 if (!sol)
66 return;
67 sol->free(sol);
70 struct isl_sol_map {
71 struct isl_sol sol;
72 struct isl_map *map;
73 struct isl_set *empty;
74 int max;
77 static void sol_map_free(struct isl_sol_map *sol_map)
79 isl_tab_free(sol_map->sol.context_tab);
80 isl_map_free(sol_map->map);
81 isl_set_free(sol_map->empty);
82 free(sol_map);
85 static void sol_map_free_wrap(struct isl_sol *sol)
87 sol_map_free((struct isl_sol_map *)sol);
90 static struct isl_sol_map *add_empty(struct isl_sol_map *sol)
92 struct isl_basic_set *bset;
94 if (!sol->empty)
95 return sol;
96 sol->empty = isl_set_grow(sol->empty, 1);
97 bset = isl_basic_set_copy(sol->sol.context_tab->bset);
98 bset = isl_basic_set_simplify(bset);
99 bset = isl_basic_set_finalize(bset);
100 sol->empty = isl_set_add(sol->empty, bset);
101 if (!sol->empty)
102 goto error;
103 return sol;
104 error:
105 sol_map_free(sol);
106 return NULL;
109 /* Add the solution identified by the tableau and the context tableau.
111 * The layout of the variables is as follows.
112 * tab->n_var is equal to the total number of variables in the input
113 * map (including divs that were copied from the context)
114 * + the number of extra divs constructed
115 * Of these, the first tab->n_param and the last tab->n_div variables
116 * correspond to the variables in the context, i.e.,
117 * tab->n_param + tab->n_div = context_tab->n_var
118 * tab->n_param is equal to the number of parameters and input
119 * dimensions in the input map
120 * tab->n_div is equal to the number of divs in the context
122 * If there is no solution, then the basic set corresponding to the
123 * context tableau is added to the set "empty".
125 * Otherwise, a basic map is constructed with the same parameters
126 * and divs as the context, the dimensions of the context as input
127 * dimensions and a number of output dimensions that is equal to
128 * the number of output dimensions in the input map.
129 * The divs in the input map (if any) that do not correspond to any
130 * div in the context do not appear in the solution.
131 * The algorithm will make sure that they have an integer value,
132 * but these values themselves are of no interest.
134 * The constraints and divs of the context are simply copied
135 * fron context_tab->bset.
136 * To extract the value of the output variables, it should be noted
137 * that we always use a big parameter M and so the variable stored
138 * in the tableau is not an output variable x itself, but
139 * x' = M + x (in case of minimization)
140 * or
141 * x' = M - x (in case of maximization)
142 * If x' appears in a column, then its optimal value is zero,
143 * which means that the optimal value of x is an unbounded number
144 * (-M for minimization and M for maximization).
145 * We currently assume that the output dimensions in the original map
146 * are bounded, so this cannot occur.
147 * Similarly, when x' appears in a row, then the coefficient of M in that
148 * row is necessarily 1.
149 * If the row represents
150 * d x' = c + d M + e(y)
151 * then, in case of minimization, an equality
152 * c + e(y) - d x' = 0
153 * is added, and in case of maximization,
154 * c + e(y) + d x' = 0
156 static struct isl_sol_map *sol_map_add(struct isl_sol_map *sol,
157 struct isl_tab *tab)
159 int i;
160 struct isl_basic_map *bmap = NULL;
161 struct isl_tab *context_tab;
162 unsigned n_eq;
163 unsigned n_ineq;
164 unsigned nparam;
165 unsigned total;
166 unsigned n_div;
167 unsigned n_out;
168 unsigned off;
170 if (!sol || !tab)
171 goto error;
173 if (tab->empty)
174 return add_empty(sol);
176 context_tab = sol->sol.context_tab;
177 off = 2 + tab->M;
178 n_out = isl_map_dim(sol->map, isl_dim_out);
179 n_eq = context_tab->bset->n_eq + n_out;
180 n_ineq = context_tab->bset->n_ineq;
181 nparam = tab->n_param;
182 total = isl_map_dim(sol->map, isl_dim_all);
183 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
184 tab->n_div, n_eq, 2 * tab->n_div + n_ineq);
185 if (!bmap)
186 goto error;
187 n_div = tab->n_div;
188 if (tab->rational)
189 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
190 for (i = 0; i < context_tab->bset->n_div; ++i) {
191 int k = isl_basic_map_alloc_div(bmap);
192 if (k < 0)
193 goto error;
194 isl_seq_cpy(bmap->div[k],
195 context_tab->bset->div[i], 1 + 1 + nparam);
196 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
197 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
198 context_tab->bset->div[i] + 1 + 1 + nparam, i);
200 for (i = 0; i < context_tab->bset->n_eq; ++i) {
201 int k = isl_basic_map_alloc_equality(bmap);
202 if (k < 0)
203 goto error;
204 isl_seq_cpy(bmap->eq[k], context_tab->bset->eq[i], 1 + nparam);
205 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
206 isl_seq_cpy(bmap->eq[k] + 1 + total,
207 context_tab->bset->eq[i] + 1 + nparam, n_div);
209 for (i = 0; i < context_tab->bset->n_ineq; ++i) {
210 int k = isl_basic_map_alloc_inequality(bmap);
211 if (k < 0)
212 goto error;
213 isl_seq_cpy(bmap->ineq[k],
214 context_tab->bset->ineq[i], 1 + nparam);
215 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
216 isl_seq_cpy(bmap->ineq[k] + 1 + total,
217 context_tab->bset->ineq[i] + 1 + nparam, n_div);
219 for (i = tab->n_param; i < total; ++i) {
220 int k = isl_basic_map_alloc_equality(bmap);
221 if (k < 0)
222 goto error;
223 isl_seq_clr(bmap->eq[k] + 1, isl_basic_map_total_dim(bmap));
224 if (!tab->var[i].is_row) {
225 /* no unbounded */
226 isl_assert(bmap->ctx, !tab->M, goto error);
227 isl_int_set_si(bmap->eq[k][0], 0);
228 if (sol->max)
229 isl_int_set_si(bmap->eq[k][1 + i], 1);
230 else
231 isl_int_set_si(bmap->eq[k][1 + i], -1);
232 } else {
233 int row, j;
234 row = tab->var[i].index;
235 /* no unbounded */
236 if (tab->M)
237 isl_assert(bmap->ctx,
238 isl_int_eq(tab->mat->row[row][2],
239 tab->mat->row[row][0]),
240 goto error);
241 isl_int_set(bmap->eq[k][0], tab->mat->row[row][1]);
242 for (j = 0; j < tab->n_param; ++j) {
243 int col;
244 if (tab->var[j].is_row)
245 continue;
246 col = tab->var[j].index;
247 isl_int_set(bmap->eq[k][1 + j],
248 tab->mat->row[row][off + col]);
250 for (j = 0; j < tab->n_div; ++j) {
251 int col;
252 if (tab->var[tab->n_var - tab->n_div+j].is_row)
253 continue;
254 col = tab->var[tab->n_var - tab->n_div+j].index;
255 isl_int_set(bmap->eq[k][1 + total + j],
256 tab->mat->row[row][off + col]);
258 if (sol->max)
259 isl_int_set(bmap->eq[k][1 + i],
260 tab->mat->row[row][0]);
261 else
262 isl_int_neg(bmap->eq[k][1 + i],
263 tab->mat->row[row][0]);
266 bmap = isl_basic_map_simplify(bmap);
267 bmap = isl_basic_map_finalize(bmap);
268 sol->map = isl_map_grow(sol->map, 1);
269 sol->map = isl_map_add(sol->map, bmap);
270 if (!sol->map)
271 goto error;
272 return sol;
273 error:
274 isl_basic_map_free(bmap);
275 sol_free(&sol->sol);
276 return NULL;
279 static struct isl_sol *sol_map_add_wrap(struct isl_sol *sol,
280 struct isl_tab *tab)
282 return (struct isl_sol *)sol_map_add((struct isl_sol_map *)sol, tab);
286 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
287 * i.e., the constant term and the coefficients of all variables that
288 * appear in the context tableau.
289 * Note that the coefficient of the big parameter M is NOT copied.
290 * The context tableau may not have a big parameter and even when it
291 * does, it is a different big parameter.
293 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
295 int i;
296 unsigned off = 2 + tab->M;
298 isl_int_set(line[0], tab->mat->row[row][1]);
299 for (i = 0; i < tab->n_param; ++i) {
300 if (tab->var[i].is_row)
301 isl_int_set_si(line[1 + i], 0);
302 else {
303 int col = tab->var[i].index;
304 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
307 for (i = 0; i < tab->n_div; ++i) {
308 if (tab->var[tab->n_var - tab->n_div + i].is_row)
309 isl_int_set_si(line[1 + tab->n_param + i], 0);
310 else {
311 int col = tab->var[tab->n_var - tab->n_div + i].index;
312 isl_int_set(line[1 + tab->n_param + i],
313 tab->mat->row[row][off + col]);
318 /* Check if rows "row1" and "row2" have identical "parametric constants",
319 * as explained above.
320 * In this case, we also insist that the coefficients of the big parameter
321 * be the same as the values of the constants will only be the same
322 * if these coefficients are also the same.
324 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
326 int i;
327 unsigned off = 2 + tab->M;
329 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
330 return 0;
332 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
333 tab->mat->row[row2][2]))
334 return 0;
336 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
337 int pos = i < tab->n_param ? i :
338 tab->n_var - tab->n_div + i - tab->n_param;
339 int col;
341 if (tab->var[pos].is_row)
342 continue;
343 col = tab->var[pos].index;
344 if (isl_int_ne(tab->mat->row[row1][off + col],
345 tab->mat->row[row2][off + col]))
346 return 0;
348 return 1;
351 /* Return an inequality that expresses that the "parametric constant"
352 * should be non-negative.
353 * This function is only called when the coefficient of the big parameter
354 * is equal to zero.
356 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
358 struct isl_vec *ineq;
360 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
361 if (!ineq)
362 return NULL;
364 get_row_parameter_line(tab, row, ineq->el);
365 if (ineq)
366 ineq = isl_vec_normalize(ineq);
368 return ineq;
371 /* Return a integer division for use in a parametric cut based on the given row.
372 * In particular, let the parametric constant of the row be
374 * \sum_i a_i y_i
376 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
377 * The div returned is equal to
379 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
381 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
383 struct isl_vec *div;
385 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
386 if (!div)
387 return NULL;
389 isl_int_set(div->el[0], tab->mat->row[row][0]);
390 get_row_parameter_line(tab, row, div->el + 1);
391 div = isl_vec_normalize(div);
392 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
393 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
395 return div;
398 /* Return a integer division for use in transferring an integrality constraint
399 * to the context.
400 * In particular, let the parametric constant of the row be
402 * \sum_i a_i y_i
404 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
405 * The the returned div is equal to
407 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
409 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
411 struct isl_vec *div;
413 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
414 if (!div)
415 return NULL;
417 isl_int_set(div->el[0], tab->mat->row[row][0]);
418 get_row_parameter_line(tab, row, div->el + 1);
419 div = isl_vec_normalize(div);
420 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
422 return div;
425 /* Construct and return an inequality that expresses an upper bound
426 * on the given div.
427 * In particular, if the div is given by
429 * d = floor(e/m)
431 * then the inequality expresses
433 * m d <= e
435 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
437 unsigned total;
438 unsigned div_pos;
439 struct isl_vec *ineq;
441 total = isl_basic_set_total_dim(bset);
442 div_pos = 1 + total - bset->n_div + div;
444 ineq = isl_vec_alloc(bset->ctx, 1 + total);
445 if (!ineq)
446 return NULL;
448 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
449 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
450 return ineq;
453 /* Given a row in the tableau and a div that was created
454 * using get_row_split_div and that been constrained to equality, i.e.,
456 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
458 * replace the expression "\sum_i {a_i} y_i" in the row by d,
459 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
460 * The coefficients of the non-parameters in the tableau have been
461 * verified to be integral. We can therefore simply replace coefficient b
462 * by floor(b). For the coefficients of the parameters we have
463 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
464 * floor(b) = b.
466 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
468 int col;
469 unsigned off = 2 + tab->M;
471 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
472 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
474 isl_int_set_si(tab->mat->row[row][0], 1);
476 isl_assert(tab->mat->ctx,
477 !tab->var[tab->n_var - tab->n_div + div].is_row, goto error);
479 col = tab->var[tab->n_var - tab->n_div + div].index;
480 isl_int_set_si(tab->mat->row[row][off + col], 1);
482 return tab;
483 error:
484 isl_tab_free(tab);
485 return NULL;
488 /* Check if the (parametric) constant of the given row is obviously
489 * negative, meaning that we don't need to consult the context tableau.
490 * If there is a big parameter and its coefficient is non-zero,
491 * then this coefficient determines the outcome.
492 * Otherwise, we check whether the constant is negative and
493 * all non-zero coefficients of parameters are negative and
494 * belong to non-negative parameters.
496 static int is_obviously_neg(struct isl_tab *tab, int row)
498 int i;
499 int col;
500 unsigned off = 2 + tab->M;
502 if (tab->M) {
503 if (isl_int_is_pos(tab->mat->row[row][2]))
504 return 0;
505 if (isl_int_is_neg(tab->mat->row[row][2]))
506 return 1;
509 if (isl_int_is_nonneg(tab->mat->row[row][1]))
510 return 0;
511 for (i = 0; i < tab->n_param; ++i) {
512 /* Eliminated parameter */
513 if (tab->var[i].is_row)
514 continue;
515 col = tab->var[i].index;
516 if (isl_int_is_zero(tab->mat->row[row][off + col]))
517 continue;
518 if (!tab->var[i].is_nonneg)
519 return 0;
520 if (isl_int_is_pos(tab->mat->row[row][off + col]))
521 return 0;
523 for (i = 0; i < tab->n_div; ++i) {
524 if (tab->var[tab->n_var - tab->n_div + i].is_row)
525 continue;
526 col = tab->var[tab->n_var - tab->n_div + i].index;
527 if (isl_int_is_zero(tab->mat->row[row][off + col]))
528 continue;
529 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
530 return 0;
531 if (isl_int_is_pos(tab->mat->row[row][off + col]))
532 return 0;
534 return 1;
537 /* Check if the (parametric) constant of the given row is obviously
538 * non-negative, meaning that we don't need to consult the context tableau.
539 * If there is a big parameter and its coefficient is non-zero,
540 * then this coefficient determines the outcome.
541 * Otherwise, we check whether the constant is non-negative and
542 * all non-zero coefficients of parameters are positive and
543 * belong to non-negative parameters.
545 static int is_obviously_nonneg(struct isl_tab *tab, int row)
547 int i;
548 int col;
549 unsigned off = 2 + tab->M;
551 if (tab->M) {
552 if (isl_int_is_pos(tab->mat->row[row][2]))
553 return 1;
554 if (isl_int_is_neg(tab->mat->row[row][2]))
555 return 0;
558 if (isl_int_is_neg(tab->mat->row[row][1]))
559 return 0;
560 for (i = 0; i < tab->n_param; ++i) {
561 /* Eliminated parameter */
562 if (tab->var[i].is_row)
563 continue;
564 col = tab->var[i].index;
565 if (isl_int_is_zero(tab->mat->row[row][off + col]))
566 continue;
567 if (!tab->var[i].is_nonneg)
568 return 0;
569 if (isl_int_is_neg(tab->mat->row[row][off + col]))
570 return 0;
572 for (i = 0; i < tab->n_div; ++i) {
573 if (tab->var[tab->n_var - tab->n_div + i].is_row)
574 continue;
575 col = tab->var[tab->n_var - tab->n_div + i].index;
576 if (isl_int_is_zero(tab->mat->row[row][off + col]))
577 continue;
578 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
579 return 0;
580 if (isl_int_is_neg(tab->mat->row[row][off + col]))
581 return 0;
583 return 1;
586 /* Given a row r and two columns, return the column that would
587 * lead to the lexicographically smallest increment in the sample
588 * solution when leaving the basis in favor of the row.
589 * Pivoting with column c will increment the sample value by a non-negative
590 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
591 * corresponding to the non-parametric variables.
592 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
593 * with all other entries in this virtual row equal to zero.
594 * If variable v appears in a row, then a_{v,c} is the element in column c
595 * of that row.
597 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
598 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
599 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
600 * increment. Otherwise, it's c2.
602 static int lexmin_col_pair(struct isl_tab *tab,
603 int row, int col1, int col2, isl_int tmp)
605 int i;
606 isl_int *tr;
608 tr = tab->mat->row[row] + 2 + tab->M;
610 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
611 int s1, s2;
612 isl_int *r;
614 if (!tab->var[i].is_row) {
615 if (tab->var[i].index == col1)
616 return col2;
617 if (tab->var[i].index == col2)
618 return col1;
619 continue;
622 if (tab->var[i].index == row)
623 continue;
625 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
626 s1 = isl_int_sgn(r[col1]);
627 s2 = isl_int_sgn(r[col2]);
628 if (s1 == 0 && s2 == 0)
629 continue;
630 if (s1 < s2)
631 return col1;
632 if (s2 < s1)
633 return col2;
635 isl_int_mul(tmp, r[col2], tr[col1]);
636 isl_int_submul(tmp, r[col1], tr[col2]);
637 if (isl_int_is_pos(tmp))
638 return col1;
639 if (isl_int_is_neg(tmp))
640 return col2;
642 return -1;
645 /* Given a row in the tableau, find and return the column that would
646 * result in the lexicographically smallest, but positive, increment
647 * in the sample point.
648 * If there is no such column, then return tab->n_col.
649 * If anything goes wrong, return -1.
651 static int lexmin_pivot_col(struct isl_tab *tab, int row)
653 int j;
654 int col = tab->n_col;
655 isl_int *tr;
656 isl_int tmp;
658 tr = tab->mat->row[row] + 2 + tab->M;
660 isl_int_init(tmp);
662 for (j = tab->n_dead; j < tab->n_col; ++j) {
663 if (tab->col_var[j] >= 0 &&
664 (tab->col_var[j] < tab->n_param ||
665 tab->col_var[j] >= tab->n_var - tab->n_div))
666 continue;
668 if (!isl_int_is_pos(tr[j]))
669 continue;
671 if (col == tab->n_col)
672 col = j;
673 else
674 col = lexmin_col_pair(tab, row, col, j, tmp);
675 isl_assert(tab->mat->ctx, col >= 0, goto error);
678 isl_int_clear(tmp);
679 return col;
680 error:
681 isl_int_clear(tmp);
682 return -1;
685 /* Return the first known violated constraint, i.e., a non-negative
686 * contraint that currently has an either obviously negative value
687 * or a previously determined to be negative value.
689 * If any constraint has a negative coefficient for the big parameter,
690 * if any, then we return one of these first.
692 static int first_neg(struct isl_tab *tab)
694 int row;
696 if (tab->M)
697 for (row = tab->n_redundant; row < tab->n_row; ++row) {
698 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
699 continue;
700 if (isl_int_is_neg(tab->mat->row[row][2]))
701 return row;
703 for (row = tab->n_redundant; row < tab->n_row; ++row) {
704 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
705 continue;
706 if (tab->row_sign) {
707 if (tab->row_sign[row] == 0 &&
708 is_obviously_neg(tab, row))
709 tab->row_sign[row] = isl_tab_row_neg;
710 if (tab->row_sign[row] != isl_tab_row_neg)
711 continue;
712 } else if (!is_obviously_neg(tab, row))
713 continue;
714 return row;
716 return -1;
719 /* Resolve all known or obviously violated constraints through pivoting.
720 * In particular, as long as we can find any violated constraint, we
721 * look for a pivoting column that would result in the lexicographicallly
722 * smallest increment in the sample point. If there is no such column
723 * then the tableau is infeasible.
725 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
727 int row, col;
729 if (!tab)
730 return NULL;
731 if (tab->empty)
732 return tab;
733 while ((row = first_neg(tab)) != -1) {
734 col = lexmin_pivot_col(tab, row);
735 if (col >= tab->n_col)
736 return isl_tab_mark_empty(tab);
737 if (col < 0)
738 goto error;
739 isl_tab_pivot(tab, row, col);
741 return tab;
742 error:
743 isl_tab_free(tab);
744 return NULL;
747 /* Given a row that represents an equality, look for an appropriate
748 * pivoting column.
749 * In particular, if there are any non-zero coefficients among
750 * the non-parameter variables, then we take the last of these
751 * variables. Eliminating this variable in terms of the other
752 * variables and/or parameters does not influence the property
753 * that all column in the initial tableau are lexicographically
754 * positive. The row corresponding to the eliminated variable
755 * will only have non-zero entries below the diagonal of the
756 * initial tableau. That is, we transform
758 * I I
759 * 1 into a
760 * I I
762 * If there is no such non-parameter variable, then we are dealing with
763 * pure parameter equality and we pick any parameter with coefficient 1 or -1
764 * for elimination. This will ensure that the eliminated parameter
765 * always has an integer value whenever all the other parameters are integral.
766 * If there is no such parameter then we return -1.
768 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
770 unsigned off = 2 + tab->M;
771 int i;
773 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
774 int col;
775 if (tab->var[i].is_row)
776 continue;
777 col = tab->var[i].index;
778 if (col <= tab->n_dead)
779 continue;
780 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
781 return col;
783 for (i = tab->n_dead; i < tab->n_col; ++i) {
784 if (isl_int_is_one(tab->mat->row[row][off + i]))
785 return i;
786 if (isl_int_is_negone(tab->mat->row[row][off + i]))
787 return i;
789 return -1;
792 /* Add an equality that is known to be valid to the tableau.
793 * We first check if we can eliminate a variable or a parameter.
794 * If not, we add the equality as two inequalities.
795 * In this case, the equality was a pure parameter equality and there
796 * is no need to resolve any constraint violations.
798 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
800 int i;
801 int r;
803 if (!tab)
804 return NULL;
805 r = isl_tab_add_row(tab, eq);
806 if (r < 0)
807 goto error;
809 r = tab->con[r].index;
810 i = last_var_col_or_int_par_col(tab, r);
811 if (i < 0) {
812 tab->con[r].is_nonneg = 1;
813 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
814 isl_seq_neg(eq, eq, 1 + tab->n_var);
815 r = isl_tab_add_row(tab, eq);
816 if (r < 0)
817 goto error;
818 tab->con[r].is_nonneg = 1;
819 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
820 } else {
821 isl_tab_pivot(tab, r, i);
822 isl_tab_kill_col(tab, i);
823 tab->n_eq++;
825 tab = restore_lexmin(tab);
828 return tab;
829 error:
830 isl_tab_free(tab);
831 return NULL;
834 /* Check if the given row is a pure constant.
836 static int is_constant(struct isl_tab *tab, int row)
838 unsigned off = 2 + tab->M;
840 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
841 tab->n_col - tab->n_dead) == -1;
844 /* Add an equality that may or may not be valid to the tableau.
845 * If the resulting row is a pure constant, then it must be zero.
846 * Otherwise, the resulting tableau is empty.
848 * If the row is not a pure constant, then we add two inequalities,
849 * each time checking that they can be satisfied.
850 * In the end we try to use one of the two constraints to eliminate
851 * a column.
853 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
855 int r1, r2;
856 int row;
857 struct isl_tab_undo *snap;
859 if (!tab)
860 return NULL;
861 snap = isl_tab_snap(tab);
862 r1 = isl_tab_add_row(tab, eq);
863 if (r1 < 0)
864 goto error;
865 tab->con[r1].is_nonneg = 1;
866 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]);
868 row = tab->con[r1].index;
869 if (is_constant(tab, row)) {
870 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
871 (tab->M && !isl_int_is_zero(tab->mat->row[row][2])))
872 return isl_tab_mark_empty(tab);
873 if (isl_tab_rollback(tab, snap) < 0)
874 goto error;
875 return tab;
878 tab = restore_lexmin(tab);
879 if (!tab || tab->empty)
880 return tab;
882 isl_seq_neg(eq, eq, 1 + tab->n_var);
884 r2 = isl_tab_add_row(tab, eq);
885 if (r2 < 0)
886 goto error;
887 tab->con[r2].is_nonneg = 1;
888 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]);
890 tab = restore_lexmin(tab);
891 if (!tab || tab->empty)
892 return tab;
894 if (!tab->con[r1].is_row)
895 isl_tab_kill_col(tab, tab->con[r1].index);
896 else if (!tab->con[r2].is_row)
897 isl_tab_kill_col(tab, tab->con[r2].index);
898 else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
899 unsigned off = 2 + tab->M;
900 int i;
901 int row = tab->con[r1].index;
902 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
903 tab->n_col - tab->n_dead);
904 if (i != -1) {
905 isl_tab_pivot(tab, row, tab->n_dead + i);
906 isl_tab_kill_col(tab, tab->n_dead + i);
910 if (tab->bset) {
911 tab->bset = isl_basic_set_add_ineq(tab->bset, eq);
912 isl_tab_push(tab, isl_tab_undo_bset_ineq);
913 isl_seq_neg(eq, eq, 1 + tab->n_var);
914 tab->bset = isl_basic_set_add_ineq(tab->bset, eq);
915 isl_seq_neg(eq, eq, 1 + tab->n_var);
916 isl_tab_push(tab, isl_tab_undo_bset_ineq);
917 if (!tab->bset)
918 goto error;
921 return tab;
922 error:
923 isl_tab_free(tab);
924 return NULL;
927 /* Add an inequality to the tableau, resolving violations using
928 * restore_lexmin.
930 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
932 int r;
934 if (!tab)
935 return NULL;
936 if (tab->bset) {
937 tab->bset = isl_basic_set_add_ineq(tab->bset, ineq);
938 isl_tab_push(tab, isl_tab_undo_bset_ineq);
939 if (!tab->bset)
940 goto error;
942 r = isl_tab_add_row(tab, ineq);
943 if (r < 0)
944 goto error;
945 tab->con[r].is_nonneg = 1;
946 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
947 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
948 isl_tab_mark_redundant(tab, tab->con[r].index);
949 return tab;
952 tab = restore_lexmin(tab);
953 if (tab && !tab->empty && tab->con[r].is_row &&
954 isl_tab_row_is_redundant(tab, tab->con[r].index))
955 isl_tab_mark_redundant(tab, tab->con[r].index);
956 return tab;
957 error:
958 isl_tab_free(tab);
959 return NULL;
962 /* Check if the coefficients of the parameters are all integral.
964 static int integer_parameter(struct isl_tab *tab, int row)
966 int i;
967 int col;
968 unsigned off = 2 + tab->M;
970 for (i = 0; i < tab->n_param; ++i) {
971 /* Eliminated parameter */
972 if (tab->var[i].is_row)
973 continue;
974 col = tab->var[i].index;
975 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
976 tab->mat->row[row][0]))
977 return 0;
979 for (i = 0; i < tab->n_div; ++i) {
980 if (tab->var[tab->n_var - tab->n_div + i].is_row)
981 continue;
982 col = tab->var[tab->n_var - tab->n_div + i].index;
983 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
984 tab->mat->row[row][0]))
985 return 0;
987 return 1;
990 /* Check if the coefficients of the non-parameter variables are all integral.
992 static int integer_variable(struct isl_tab *tab, int row)
994 int i;
995 unsigned off = 2 + tab->M;
997 for (i = 0; i < tab->n_col; ++i) {
998 if (tab->col_var[i] >= 0 &&
999 (tab->col_var[i] < tab->n_param ||
1000 tab->col_var[i] >= tab->n_var - tab->n_div))
1001 continue;
1002 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1003 tab->mat->row[row][0]))
1004 return 0;
1006 return 1;
1009 /* Check if the constant term is integral.
1011 static int integer_constant(struct isl_tab *tab, int row)
1013 return isl_int_is_divisible_by(tab->mat->row[row][1],
1014 tab->mat->row[row][0]);
1017 #define I_CST 1 << 0
1018 #define I_PAR 1 << 1
1019 #define I_VAR 1 << 2
1021 /* Check for first (non-parameter) variable that is non-integer and
1022 * therefore requires a cut.
1023 * For parametric tableaus, there are three parts in a row,
1024 * the constant, the coefficients of the parameters and the rest.
1025 * For each part, we check whether the coefficients in that part
1026 * are all integral and if so, set the corresponding flag in *f.
1027 * If the constant and the parameter part are integral, then the
1028 * current sample value is integral and no cut is required
1029 * (irrespective of whether the variable part is integral).
1031 static int first_non_integer(struct isl_tab *tab, int *f)
1033 int i;
1035 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1036 int flags = 0;
1037 int row;
1038 if (!tab->var[i].is_row)
1039 continue;
1040 row = tab->var[i].index;
1041 if (integer_constant(tab, row))
1042 ISL_FL_SET(flags, I_CST);
1043 if (integer_parameter(tab, row))
1044 ISL_FL_SET(flags, I_PAR);
1045 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1046 continue;
1047 if (integer_variable(tab, row))
1048 ISL_FL_SET(flags, I_VAR);
1049 *f = flags;
1050 return row;
1052 return -1;
1055 /* Add a (non-parametric) cut to cut away the non-integral sample
1056 * value of the given row.
1058 * If the row is given by
1060 * m r = f + \sum_i a_i y_i
1062 * then the cut is
1064 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1066 * The big parameter, if any, is ignored, since it is assumed to be big
1067 * enough to be divisible by any integer.
1068 * If the tableau is actually a parametric tableau, then this function
1069 * is only called when all coefficients of the parameters are integral.
1070 * The cut therefore has zero coefficients for the parameters.
1072 * The current value is known to be negative, so row_sign, if it
1073 * exists, is set accordingly.
1075 * Return the row of the cut or -1.
1077 static int add_cut(struct isl_tab *tab, int row)
1079 int i;
1080 int r;
1081 isl_int *r_row;
1082 unsigned off = 2 + tab->M;
1084 if (isl_tab_extend_cons(tab, 1) < 0)
1085 return -1;
1086 r = isl_tab_allocate_con(tab);
1087 if (r < 0)
1088 return -1;
1090 r_row = tab->mat->row[tab->con[r].index];
1091 isl_int_set(r_row[0], tab->mat->row[row][0]);
1092 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1093 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1094 isl_int_neg(r_row[1], r_row[1]);
1095 if (tab->M)
1096 isl_int_set_si(r_row[2], 0);
1097 for (i = 0; i < tab->n_col; ++i)
1098 isl_int_fdiv_r(r_row[off + i],
1099 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1101 tab->con[r].is_nonneg = 1;
1102 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1103 if (tab->row_sign)
1104 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1106 return tab->con[r].index;
1109 /* Given a non-parametric tableau, add cuts until an integer
1110 * sample point is obtained or until the tableau is determined
1111 * to be integer infeasible.
1112 * As long as there is any non-integer value in the sample point,
1113 * we add an appropriate cut, if possible and resolve the violated
1114 * cut constraint using restore_lexmin.
1115 * If one of the corresponding rows is equal to an integral
1116 * combination of variables/constraints plus a non-integral constant,
1117 * then there is no way to obtain an integer point an we return
1118 * a tableau that is marked empty.
1120 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1122 int row;
1123 int flags;
1125 if (!tab)
1126 return NULL;
1127 if (tab->empty)
1128 return tab;
1130 while ((row = first_non_integer(tab, &flags)) != -1) {
1131 if (ISL_FL_ISSET(flags, I_VAR))
1132 return isl_tab_mark_empty(tab);
1133 row = add_cut(tab, row);
1134 if (row < 0)
1135 goto error;
1136 tab = restore_lexmin(tab);
1137 if (!tab || tab->empty)
1138 break;
1140 return tab;
1141 error:
1142 isl_tab_free(tab);
1143 return NULL;
1146 /* Check whether all the currently active samples also satisfy the inequality
1147 * "ineq" (treated as an equality if eq is set).
1148 * Remove those samples that do not.
1150 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1152 int i;
1153 isl_int v;
1155 if (!tab)
1156 return NULL;
1158 isl_assert(tab->mat->ctx, tab->bset, goto error);
1159 isl_assert(tab->mat->ctx, tab->samples, goto error);
1160 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1162 isl_int_init(v);
1163 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1164 int sgn;
1165 isl_seq_inner_product(ineq, tab->samples->row[i],
1166 1 + tab->n_var, &v);
1167 sgn = isl_int_sgn(v);
1168 if (eq ? (sgn == 0) : (sgn >= 0))
1169 continue;
1170 tab = isl_tab_drop_sample(tab, i);
1171 if (!tab)
1172 break;
1174 isl_int_clear(v);
1176 return tab;
1177 error:
1178 isl_tab_free(tab);
1179 return NULL;
1182 /* Check whether the sample value of the tableau is finite,
1183 * i.e., either the tableau does not use a big parameter, or
1184 * all values of the variables are equal to the big parameter plus
1185 * some constant. This constant is the actual sample value.
1187 static int sample_is_finite(struct isl_tab *tab)
1189 int i;
1191 if (!tab->M)
1192 return 1;
1194 for (i = 0; i < tab->n_var; ++i) {
1195 int row;
1196 if (!tab->var[i].is_row)
1197 return 0;
1198 row = tab->var[i].index;
1199 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1200 return 0;
1202 return 1;
1205 /* Check if the context tableau of sol has any integer points.
1206 * Returns -1 if an error occurred.
1207 * If an integer point can be found and if moreover it is finite,
1208 * then it is added to the list of sample values.
1210 * This function is only called when none of the currently active sample
1211 * values satisfies the most recently added constraint.
1213 static int context_is_feasible(struct isl_sol *sol)
1215 struct isl_tab_undo *snap;
1216 struct isl_tab *tab;
1217 int feasible;
1219 if (!sol || !sol->context_tab)
1220 return -1;
1222 snap = isl_tab_snap(sol->context_tab);
1223 isl_tab_push_basis(sol->context_tab);
1225 sol->context_tab = cut_to_integer_lexmin(sol->context_tab);
1226 if (!sol->context_tab)
1227 goto error;
1229 tab = sol->context_tab;
1230 if (!tab->empty && sample_is_finite(tab)) {
1231 struct isl_vec *sample;
1233 sample = isl_tab_get_sample_value(tab);
1235 tab = isl_tab_add_sample(tab, sample);
1238 feasible = !sol->context_tab->empty;
1239 if (isl_tab_rollback(sol->context_tab, snap) < 0)
1240 goto error;
1242 return feasible;
1243 error:
1244 isl_tab_free(sol->context_tab);
1245 sol->context_tab = NULL;
1246 return -1;
1249 /* First check if any of the currently active sample values satisfies
1250 * the inequality "ineq" (an equality if eq is set).
1251 * If not, continue with check_integer_feasible.
1253 static int context_valid_sample_or_feasible(struct isl_sol *sol,
1254 isl_int *ineq, int eq)
1256 int i;
1257 isl_int v;
1258 struct isl_tab *tab;
1260 if (!sol || !sol->context_tab)
1261 return -1;
1263 tab = sol->context_tab;
1264 isl_assert(tab->mat->ctx, tab->bset, return -1);
1265 isl_assert(tab->mat->ctx, tab->samples, return -1);
1266 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1268 isl_int_init(v);
1269 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1270 int sgn;
1271 isl_seq_inner_product(ineq, tab->samples->row[i],
1272 1 + tab->n_var, &v);
1273 sgn = isl_int_sgn(v);
1274 if (eq ? (sgn == 0) : (sgn >= 0))
1275 break;
1277 isl_int_clear(v);
1279 if (i < tab->n_sample)
1280 return 1;
1282 return context_is_feasible(sol);
1285 /* For a div d = floor(f/m), add the constraints
1287 * f - m d >= 0
1288 * -(f-(m-1)) + m d >= 0
1290 * Note that the second constraint is the negation of
1292 * f - m d >= m
1294 static struct isl_tab *add_div_constraints(struct isl_tab *tab, unsigned div)
1296 unsigned total;
1297 unsigned div_pos;
1298 struct isl_vec *ineq;
1300 if (!tab)
1301 return NULL;
1303 total = isl_basic_set_total_dim(tab->bset);
1304 div_pos = 1 + total - tab->bset->n_div + div;
1306 ineq = ineq_for_div(tab->bset, div);
1307 if (!ineq)
1308 goto error;
1310 tab = add_lexmin_ineq(tab, ineq->el);
1312 isl_seq_neg(ineq->el, tab->bset->div[div] + 1, 1 + total);
1313 isl_int_set(ineq->el[div_pos], tab->bset->div[div][0]);
1314 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1315 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1316 tab = add_lexmin_ineq(tab, ineq->el);
1318 isl_vec_free(ineq);
1320 return tab;
1321 error:
1322 isl_tab_free(tab);
1323 return NULL;
1326 /* Add a div specified by "div" to both the main tableau and
1327 * the context tableau. In case of the main tableau, we only
1328 * need to add an extra div. In the context tableau, we also
1329 * need to express the meaning of the div.
1330 * Return the index of the div or -1 if anything went wrong.
1332 static int add_div(struct isl_tab *tab, struct isl_tab **context_tab,
1333 struct isl_vec *div)
1335 int i;
1336 int r;
1337 int k;
1338 struct isl_mat *samples;
1340 if (isl_tab_extend_vars(*context_tab, 1) < 0)
1341 goto error;
1342 r = isl_tab_allocate_var(*context_tab);
1343 if (r < 0)
1344 goto error;
1345 (*context_tab)->var[r].is_nonneg = 1;
1346 (*context_tab)->var[r].frozen = 1;
1348 samples = isl_mat_extend((*context_tab)->samples,
1349 (*context_tab)->n_sample, 1 + (*context_tab)->n_var);
1350 (*context_tab)->samples = samples;
1351 if (!samples)
1352 goto error;
1353 for (i = (*context_tab)->n_outside; i < samples->n_row; ++i) {
1354 isl_seq_inner_product(div->el + 1, samples->row[i],
1355 div->size - 1, &samples->row[i][samples->n_col - 1]);
1356 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1357 samples->row[i][samples->n_col - 1], div->el[0]);
1360 (*context_tab)->bset = isl_basic_set_extend_dim((*context_tab)->bset,
1361 isl_basic_set_get_dim((*context_tab)->bset), 1, 0, 2);
1362 k = isl_basic_set_alloc_div((*context_tab)->bset);
1363 if (k < 0)
1364 goto error;
1365 isl_seq_cpy((*context_tab)->bset->div[k], div->el, div->size);
1366 isl_tab_push((*context_tab), isl_tab_undo_bset_div);
1367 *context_tab = add_div_constraints(*context_tab, k);
1368 if (!*context_tab)
1369 goto error;
1371 if (isl_tab_extend_vars(tab, 1) < 0)
1372 goto error;
1373 r = isl_tab_allocate_var(tab);
1374 if (r < 0)
1375 goto error;
1376 if (!(*context_tab)->M)
1377 tab->var[r].is_nonneg = 1;
1378 tab->var[r].frozen = 1;
1379 tab->n_div++;
1381 return tab->n_div - 1;
1382 error:
1383 isl_tab_free(*context_tab);
1384 *context_tab = NULL;
1385 return -1;
1388 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1390 int i;
1391 unsigned total = isl_basic_set_total_dim(tab->bset);
1393 for (i = 0; i < tab->bset->n_div; ++i) {
1394 if (isl_int_ne(tab->bset->div[i][0], denom))
1395 continue;
1396 if (!isl_seq_eq(tab->bset->div[i] + 1, div, total))
1397 continue;
1398 return i;
1400 return -1;
1403 /* Return the index of a div that corresponds to "div".
1404 * We first check if we already have such a div and if not, we create one.
1406 static int get_div(struct isl_tab *tab, struct isl_tab **context_tab,
1407 struct isl_vec *div)
1409 int d;
1411 d = find_div(*context_tab, div->el + 1, div->el[0]);
1412 if (d != -1)
1413 return d;
1415 return add_div(tab, context_tab, div);
1418 /* Add a parametric cut to cut away the non-integral sample value
1419 * of the give row.
1420 * Let a_i be the coefficients of the constant term and the parameters
1421 * and let b_i be the coefficients of the variables or constraints
1422 * in basis of the tableau.
1423 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1425 * The cut is expressed as
1427 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1429 * If q did not already exist in the context tableau, then it is added first.
1430 * If q is in a column of the main tableau then the "+ q" can be accomplished
1431 * by setting the corresponding entry to the denominator of the constraint.
1432 * If q happens to be in a row of the main tableau, then the corresponding
1433 * row needs to be added instead (taking care of the denominators).
1434 * Note that this is very unlikely, but perhaps not entirely impossible.
1436 * The current value of the cut is known to be negative (or at least
1437 * non-positive), so row_sign is set accordingly.
1439 * Return the row of the cut or -1.
1441 static int add_parametric_cut(struct isl_tab *tab, int row,
1442 struct isl_tab **context_tab)
1444 struct isl_vec *div;
1445 int d;
1446 int i;
1447 int r;
1448 isl_int *r_row;
1449 int col;
1450 unsigned off = 2 + tab->M;
1452 if (!*context_tab)
1453 goto error;
1455 if (isl_tab_extend_cons(*context_tab, 3) < 0)
1456 goto error;
1458 div = get_row_parameter_div(tab, row);
1459 if (!div)
1460 return -1;
1462 d = get_div(tab, context_tab, div);
1463 if (d < 0)
1464 goto error;
1466 if (isl_tab_extend_cons(tab, 1) < 0)
1467 return -1;
1468 r = isl_tab_allocate_con(tab);
1469 if (r < 0)
1470 return -1;
1472 r_row = tab->mat->row[tab->con[r].index];
1473 isl_int_set(r_row[0], tab->mat->row[row][0]);
1474 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1475 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1476 isl_int_neg(r_row[1], r_row[1]);
1477 if (tab->M)
1478 isl_int_set_si(r_row[2], 0);
1479 for (i = 0; i < tab->n_param; ++i) {
1480 if (tab->var[i].is_row)
1481 continue;
1482 col = tab->var[i].index;
1483 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1484 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1485 tab->mat->row[row][0]);
1486 isl_int_neg(r_row[off + col], r_row[off + col]);
1488 for (i = 0; i < tab->n_div; ++i) {
1489 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1490 continue;
1491 col = tab->var[tab->n_var - tab->n_div + i].index;
1492 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1493 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1494 tab->mat->row[row][0]);
1495 isl_int_neg(r_row[off + col], r_row[off + col]);
1497 for (i = 0; i < tab->n_col; ++i) {
1498 if (tab->col_var[i] >= 0 &&
1499 (tab->col_var[i] < tab->n_param ||
1500 tab->col_var[i] >= tab->n_var - tab->n_div))
1501 continue;
1502 isl_int_fdiv_r(r_row[off + i],
1503 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1505 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1506 isl_int gcd;
1507 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1508 isl_int_init(gcd);
1509 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1510 isl_int_divexact(r_row[0], r_row[0], gcd);
1511 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1512 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1513 r_row[0], tab->mat->row[d_row] + 1,
1514 off - 1 + tab->n_col);
1515 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1516 isl_int_clear(gcd);
1517 } else {
1518 col = tab->var[tab->n_var - tab->n_div + d].index;
1519 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1522 tab->con[r].is_nonneg = 1;
1523 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1524 if (tab->row_sign)
1525 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1527 isl_vec_free(div);
1529 return tab->con[r].index;
1530 error:
1531 isl_tab_free(*context_tab);
1532 *context_tab = NULL;
1533 return -1;
1536 /* Construct a tableau for bmap that can be used for computing
1537 * the lexicographic minimum (or maximum) of bmap.
1538 * If not NULL, then dom is the domain where the minimum
1539 * should be computed. In this case, we set up a parametric
1540 * tableau with row signs (initialized to "unknown").
1541 * If M is set, then the tableau will use a big parameter.
1542 * If max is set, then a maximum should be computed instead of a minimum.
1543 * This means that for each variable x, the tableau will contain the variable
1544 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1545 * of the variables in all constraints are negated prior to adding them
1546 * to the tableau.
1548 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1549 struct isl_basic_set *dom, unsigned M, int max)
1551 int i;
1552 struct isl_tab *tab;
1554 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1555 isl_basic_map_total_dim(bmap), M);
1556 if (!tab)
1557 return NULL;
1559 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1560 if (dom) {
1561 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1562 tab->n_div = dom->n_div;
1563 tab->row_sign = isl_calloc_array(bmap->ctx,
1564 enum isl_tab_row_sign, tab->mat->n_row);
1565 if (!tab->row_sign)
1566 goto error;
1568 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1569 return isl_tab_mark_empty(tab);
1571 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1572 tab->var[i].is_nonneg = 1;
1573 tab->var[i].frozen = 1;
1575 for (i = 0; i < bmap->n_eq; ++i) {
1576 if (max)
1577 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1578 bmap->eq[i] + 1 + tab->n_param,
1579 tab->n_var - tab->n_param - tab->n_div);
1580 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1581 if (max)
1582 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1583 bmap->eq[i] + 1 + tab->n_param,
1584 tab->n_var - tab->n_param - tab->n_div);
1585 if (!tab || tab->empty)
1586 return tab;
1588 for (i = 0; i < bmap->n_ineq; ++i) {
1589 if (max)
1590 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1591 bmap->ineq[i] + 1 + tab->n_param,
1592 tab->n_var - tab->n_param - tab->n_div);
1593 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
1594 if (max)
1595 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1596 bmap->ineq[i] + 1 + tab->n_param,
1597 tab->n_var - tab->n_param - tab->n_div);
1598 if (!tab || tab->empty)
1599 return tab;
1601 return tab;
1602 error:
1603 isl_tab_free(tab);
1604 return NULL;
1607 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
1609 struct isl_tab *tab;
1611 bset = isl_basic_set_cow(bset);
1612 if (!bset)
1613 return NULL;
1614 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
1615 if (!tab)
1616 goto error;
1617 tab->bset = bset;
1618 tab = isl_tab_init_samples(tab);
1619 return tab;
1620 error:
1621 isl_basic_set_free(bset);
1622 return NULL;
1625 /* Construct an isl_sol_map structure for accumulating the solution.
1626 * If track_empty is set, then we also keep track of the parts
1627 * of the context where there is no solution.
1628 * If max is set, then we are solving a maximization, rather than
1629 * a minimization problem, which means that the variables in the
1630 * tableau have value "M - x" rather than "M + x".
1632 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
1633 struct isl_basic_set *dom, int track_empty, int max)
1635 struct isl_sol_map *sol_map;
1636 struct isl_tab *context_tab;
1637 int f;
1639 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
1640 if (!sol_map)
1641 goto error;
1643 sol_map->max = max;
1644 sol_map->sol.add = &sol_map_add_wrap;
1645 sol_map->sol.free = &sol_map_free_wrap;
1646 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
1647 ISL_MAP_DISJOINT);
1648 if (!sol_map->map)
1649 goto error;
1651 context_tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
1652 context_tab = restore_lexmin(context_tab);
1653 sol_map->sol.context_tab = context_tab;
1654 f = context_is_feasible(&sol_map->sol);
1655 if (f < 0)
1656 goto error;
1658 if (track_empty) {
1659 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
1660 1, ISL_SET_DISJOINT);
1661 if (!sol_map->empty)
1662 goto error;
1665 isl_basic_set_free(dom);
1666 return sol_map;
1667 error:
1668 isl_basic_set_free(dom);
1669 sol_map_free(sol_map);
1670 return NULL;
1673 /* For each variable in the context tableau, check if the variable can
1674 * only attain non-negative values. If so, mark the parameter as non-negative
1675 * in the main tableau. This allows for a more direct identification of some
1676 * cases of violated constraints.
1678 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
1679 struct isl_tab *context_tab)
1681 int i;
1682 struct isl_tab_undo *snap, *snap2;
1683 struct isl_vec *ineq = NULL;
1684 struct isl_tab_var *var;
1685 int n;
1687 if (context_tab->n_var == 0)
1688 return tab;
1690 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
1691 if (!ineq)
1692 goto error;
1694 if (isl_tab_extend_cons(context_tab, 1) < 0)
1695 goto error;
1697 snap = isl_tab_snap(context_tab);
1698 isl_tab_push_basis(context_tab);
1700 snap2 = isl_tab_snap(context_tab);
1702 n = 0;
1703 isl_seq_clr(ineq->el, ineq->size);
1704 for (i = 0; i < context_tab->n_var; ++i) {
1705 isl_int_set_si(ineq->el[1 + i], 1);
1706 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
1707 var = &context_tab->con[context_tab->n_con - 1];
1708 if (!context_tab->empty &&
1709 !isl_tab_min_at_most_neg_one(context_tab, var)) {
1710 int j = i;
1711 if (i >= tab->n_param)
1712 j = i - tab->n_param + tab->n_var - tab->n_div;
1713 tab->var[j].is_nonneg = 1;
1714 n++;
1716 isl_int_set_si(ineq->el[1 + i], 0);
1717 if (isl_tab_rollback(context_tab, snap2) < 0)
1718 goto error;
1721 if (isl_tab_rollback(context_tab, snap) < 0)
1722 goto error;
1724 if (n == context_tab->n_var) {
1725 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
1726 context_tab->M = 0;
1729 isl_vec_free(ineq);
1730 return tab;
1731 error:
1732 isl_vec_free(ineq);
1733 isl_tab_free(tab);
1734 return NULL;
1737 /* Check whether all coefficients of (non-parameter) variables
1738 * are non-positive, meaning that no pivots can be performed on the row.
1740 static int is_critical(struct isl_tab *tab, int row)
1742 int j;
1743 unsigned off = 2 + tab->M;
1745 for (j = tab->n_dead; j < tab->n_col; ++j) {
1746 if (tab->col_var[j] >= 0 &&
1747 (tab->col_var[j] < tab->n_param ||
1748 tab->col_var[j] >= tab->n_var - tab->n_div))
1749 continue;
1751 if (isl_int_is_pos(tab->mat->row[row][off + j]))
1752 return 0;
1755 return 1;
1758 /* Check whether the inequality represented by vec is strict over the integers,
1759 * i.e., there are no integer values satisfying the constraint with
1760 * equality. This happens if the gcd of the coefficients is not a divisor
1761 * of the constant term. If so, scale the constraint down by the gcd
1762 * of the coefficients.
1764 static int is_strict(struct isl_vec *vec)
1766 isl_int gcd;
1767 int strict = 0;
1769 isl_int_init(gcd);
1770 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
1771 if (!isl_int_is_one(gcd)) {
1772 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
1773 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
1774 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
1776 isl_int_clear(gcd);
1778 return strict;
1781 /* Determine the sign of the given row of the main tableau.
1782 * The result is one of
1783 * isl_tab_row_pos: always non-negative; no pivot needed
1784 * isl_tab_row_neg: always non-positive; pivot
1785 * isl_tab_row_any: can be both positive and negative; split
1787 * We first handle some simple cases
1788 * - the row sign may be known already
1789 * - the row may be obviously non-negative
1790 * - the parametric constant may be equal to that of another row
1791 * for which we know the sign. This sign will be either "pos" or
1792 * "any". If it had been "neg" then we would have pivoted before.
1794 * If none of these cases hold, we check the value of the row for each
1795 * of the currently active samples. Based on the signs of these values
1796 * we make an initial determination of the sign of the row.
1798 * all zero -> unk(nown)
1799 * all non-negative -> pos
1800 * all non-positive -> neg
1801 * both negative and positive -> all
1803 * If we end up with "all", we are done.
1804 * Otherwise, we perform a check for positive and/or negative
1805 * values as follows.
1807 * samples neg unk pos
1808 * <0 ? Y N Y N
1809 * pos any pos
1810 * >0 ? Y N Y N
1811 * any neg any neg
1813 * There is no special sign for "zero", because we can usually treat zero
1814 * as either non-negative or non-positive, whatever works out best.
1815 * However, if the row is "critical", meaning that pivoting is impossible
1816 * then we don't want to limp zero with the non-positive case, because
1817 * then we we would lose the solution for those values of the parameters
1818 * where the value of the row is zero. Instead, we treat 0 as non-negative
1819 * ensuring a split if the row can attain both zero and negative values.
1820 * The same happens when the original constraint was one that could not
1821 * be satisfied with equality by any integer values of the parameters.
1822 * In this case, we normalize the constraint, but then a value of zero
1823 * for the normalized constraint is actually a positive value for the
1824 * original constraint, so again we need to treat zero as non-negative.
1825 * In both these cases, we have the following decision tree instead:
1827 * all non-negative -> pos
1828 * all negative -> neg
1829 * both negative and non-negative -> all
1831 * samples neg pos
1832 * <0 ? Y N
1833 * any pos
1834 * >=0 ? Y N
1835 * any neg
1837 static int row_sign(struct isl_tab *tab, struct isl_sol *sol, int row)
1839 int i;
1840 struct isl_tab_undo *snap = NULL;
1841 struct isl_vec *ineq = NULL;
1842 int res = isl_tab_row_unknown;
1843 int critical;
1844 int strict;
1845 int sgn;
1846 int row2;
1847 isl_int tmp;
1848 struct isl_tab *context_tab = sol->context_tab;
1850 if (tab->row_sign[row] != isl_tab_row_unknown)
1851 return tab->row_sign[row];
1852 if (is_obviously_nonneg(tab, row))
1853 return isl_tab_row_pos;
1854 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
1855 if (tab->row_sign[row2] == isl_tab_row_unknown)
1856 continue;
1857 if (identical_parameter_line(tab, row, row2))
1858 return tab->row_sign[row2];
1861 critical = is_critical(tab, row);
1863 isl_assert(tab->mat->ctx, context_tab->samples, goto error);
1864 isl_assert(tab->mat->ctx, context_tab->samples->n_col == 1 + context_tab->n_var, goto error);
1866 ineq = get_row_parameter_ineq(tab, row);
1867 if (!ineq)
1868 goto error;
1870 strict = is_strict(ineq);
1872 isl_int_init(tmp);
1873 for (i = context_tab->n_outside; i < context_tab->n_sample; ++i) {
1874 isl_seq_inner_product(context_tab->samples->row[i], ineq->el,
1875 ineq->size, &tmp);
1876 sgn = isl_int_sgn(tmp);
1877 if (sgn > 0 || (sgn == 0 && (critical || strict))) {
1878 if (res == isl_tab_row_unknown)
1879 res = isl_tab_row_pos;
1880 if (res == isl_tab_row_neg)
1881 res = isl_tab_row_any;
1883 if (sgn < 0) {
1884 if (res == isl_tab_row_unknown)
1885 res = isl_tab_row_neg;
1886 if (res == isl_tab_row_pos)
1887 res = isl_tab_row_any;
1889 if (res == isl_tab_row_any)
1890 break;
1892 isl_int_clear(tmp);
1894 if (res != isl_tab_row_any) {
1895 if (isl_tab_extend_cons(context_tab, 1) < 0)
1896 goto error;
1898 snap = isl_tab_snap(context_tab);
1899 isl_tab_push_basis(context_tab);
1902 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
1903 /* test for negative values */
1904 int feasible;
1905 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1906 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1908 isl_tab_push_basis(context_tab);
1909 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1910 feasible = context_is_feasible(sol);
1911 if (feasible < 0)
1912 goto error;
1913 context_tab = sol->context_tab;
1914 if (!feasible)
1915 res = isl_tab_row_pos;
1916 else
1917 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
1918 : isl_tab_row_any;
1919 if (isl_tab_rollback(context_tab, snap) < 0)
1920 goto error;
1922 if (res == isl_tab_row_neg) {
1923 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1924 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1928 if (res == isl_tab_row_neg) {
1929 /* test for positive values */
1930 int feasible;
1931 if (!critical && !strict)
1932 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1934 isl_tab_push_basis(context_tab);
1935 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1936 feasible = context_is_feasible(sol);
1937 if (feasible < 0)
1938 goto error;
1939 context_tab = sol->context_tab;
1940 if (feasible)
1941 res = isl_tab_row_any;
1942 if (isl_tab_rollback(context_tab, snap) < 0)
1943 goto error;
1946 isl_vec_free(ineq);
1947 return res;
1948 error:
1949 isl_vec_free(ineq);
1950 return 0;
1953 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab);
1955 /* Find solutions for values of the parameters that satisfy the given
1956 * inequality.
1958 * We currently take a snapshot of the context tableau that is reset
1959 * when we return from this function, while we make a copy of the main
1960 * tableau, leaving the original main tableau untouched.
1961 * These are fairly arbitrary choices. Making a copy also of the context
1962 * tableau would obviate the need to undo any changes made to it later,
1963 * while taking a snapshot of the main tableau could reduce memory usage.
1964 * If we were to switch to taking a snapshot of the main tableau,
1965 * we would have to keep in mind that we need to save the row signs
1966 * and that we need to do this before saving the current basis
1967 * such that the basis has been restore before we restore the row signs.
1969 static struct isl_sol *find_in_pos(struct isl_sol *sol,
1970 struct isl_tab *tab, isl_int *ineq)
1972 struct isl_tab_undo *snap;
1974 snap = isl_tab_snap(sol->context_tab);
1975 isl_tab_push_basis(sol->context_tab);
1976 isl_tab_save_samples(sol->context_tab);
1977 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
1978 goto error;
1980 tab = isl_tab_dup(tab);
1981 if (!tab)
1982 goto error;
1984 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq);
1985 sol->context_tab = check_samples(sol->context_tab, ineq, 0);
1987 sol = find_solutions(sol, tab);
1989 isl_tab_rollback(sol->context_tab, snap);
1990 return sol;
1991 error:
1992 isl_tab_rollback(sol->context_tab, snap);
1993 sol_free(sol);
1994 return NULL;
1997 /* Record the absence of solutions for those values of the parameters
1998 * that do not satisfy the given inequality with equality.
2000 static struct isl_sol *no_sol_in_strict(struct isl_sol *sol,
2001 struct isl_tab *tab, struct isl_vec *ineq)
2003 int empty;
2004 int f;
2005 struct isl_tab_undo *snap;
2006 snap = isl_tab_snap(sol->context_tab);
2007 isl_tab_push_basis(sol->context_tab);
2008 isl_tab_save_samples(sol->context_tab);
2009 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
2010 goto error;
2012 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2014 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
2015 f = context_valid_sample_or_feasible(sol, ineq->el, 0);
2016 if (f < 0)
2017 goto error;
2019 empty = tab->empty;
2020 tab->empty = 1;
2021 sol = sol->add(sol, tab);
2022 tab->empty = empty;
2024 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
2026 if (isl_tab_rollback(sol->context_tab, snap) < 0)
2027 goto error;
2028 return sol;
2029 error:
2030 sol_free(sol);
2031 return NULL;
2034 /* Given a main tableau where more than one row requires a split,
2035 * determine and return the "best" row to split on.
2037 * Given two rows in the main tableau, if the inequality corresponding
2038 * to the first row is redundant with respect to that of the second row
2039 * in the current tableau, then it is better to split on the second row,
2040 * since in the positive part, both row will be positive.
2041 * (In the negative part a pivot will have to be performed and just about
2042 * anything can happen to the sign of the other row.)
2044 * As a simple heuristic, we therefore select the row that makes the most
2045 * of the other rows redundant.
2047 * Perhaps it would also be useful to look at the number of constraints
2048 * that conflict with any given constraint.
2050 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2052 struct isl_tab_undo *snap, *snap2;
2053 int split;
2054 int row;
2055 int best = -1;
2056 int best_r;
2058 if (isl_tab_extend_cons(context_tab, 2) < 0)
2059 return -1;
2061 snap = isl_tab_snap(context_tab);
2062 isl_tab_push_basis(context_tab);
2063 snap2 = isl_tab_snap(context_tab);
2065 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2066 struct isl_tab_undo *snap3;
2067 struct isl_vec *ineq = NULL;
2068 int r = 0;
2070 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2071 continue;
2072 if (tab->row_sign[split] != isl_tab_row_any)
2073 continue;
2075 ineq = get_row_parameter_ineq(tab, split);
2076 if (!ineq)
2077 return -1;
2078 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2079 isl_vec_free(ineq);
2081 snap3 = isl_tab_snap(context_tab);
2083 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2084 struct isl_tab_var *var;
2086 if (row == split)
2087 continue;
2088 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2089 continue;
2090 if (tab->row_sign[row] != isl_tab_row_any)
2091 continue;
2093 ineq = get_row_parameter_ineq(tab, row);
2094 if (!ineq)
2095 return -1;
2096 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2097 isl_vec_free(ineq);
2098 var = &context_tab->con[context_tab->n_con - 1];
2099 if (!context_tab->empty &&
2100 !isl_tab_min_at_most_neg_one(context_tab, var))
2101 r++;
2102 if (isl_tab_rollback(context_tab, snap3) < 0)
2103 return -1;
2105 if (best == -1 || r > best_r) {
2106 best = split;
2107 best_r = r;
2109 if (isl_tab_rollback(context_tab, snap2) < 0)
2110 return -1;
2113 if (isl_tab_rollback(context_tab, snap) < 0)
2114 return -1;
2116 return best;
2119 /* Compute the lexicographic minimum of the set represented by the main
2120 * tableau "tab" within the context "sol->context_tab".
2121 * On entry the sample value of the main tableau is lexicographically
2122 * less than or equal to this lexicographic minimum.
2123 * Pivots are performed until a feasible point is found, which is then
2124 * necessarily equal to the minimum, or until the tableau is found to
2125 * be infeasible. Some pivots may need to be performed for only some
2126 * feasible values of the context tableau. If so, the context tableau
2127 * is split into a part where the pivot is needed and a part where it is not.
2129 * Whenever we enter the main loop, the main tableau is such that no
2130 * "obvious" pivots need to be performed on it, where "obvious" means
2131 * that the given row can be seen to be negative without looking at
2132 * the context tableau. In particular, for non-parametric problems,
2133 * no pivots need to be performed on the main tableau.
2134 * The caller of find_solutions is responsible for making this property
2135 * hold prior to the first iteration of the loop, while restore_lexmin
2136 * is called before every other iteration.
2138 * Inside the main loop, we first examine the signs of the rows of
2139 * the main tableau within the context of the context tableau.
2140 * If we find a row that is always non-positive for all values of
2141 * the parameters satisfying the context tableau and negative for at
2142 * least one value of the parameters, we perform the appropriate pivot
2143 * and start over. An exception is the case where no pivot can be
2144 * performed on the row. In this case, we require that the sign of
2145 * the row is negative for all values of the parameters (rather than just
2146 * non-positive). This special case is handled inside row_sign, which
2147 * will say that the row can have any sign if it determines that it can
2148 * attain both negative and zero values.
2150 * If we can't find a row that always requires a pivot, but we can find
2151 * one or more rows that require a pivot for some values of the parameters
2152 * (i.e., the row can attain both positive and negative signs), then we split
2153 * the context tableau into two parts, one where we force the sign to be
2154 * non-negative and one where we force is to be negative.
2155 * The non-negative part is handled by a recursive call (through find_in_pos).
2156 * Upon returning from this call, we continue with the negative part and
2157 * perform the required pivot.
2159 * If no such rows can be found, all rows are non-negative and we have
2160 * found a (rational) feasible point. If we only wanted a rational point
2161 * then we are done.
2162 * Otherwise, we check if all values of the sample point of the tableau
2163 * are integral for the variables. If so, we have found the minimal
2164 * integral point and we are done.
2165 * If the sample point is not integral, then we need to make a distinction
2166 * based on whether the constant term is non-integral or the coefficients
2167 * of the parameters. Furthermore, in order to decide how to handle
2168 * the non-integrality, we also need to know whether the coefficients
2169 * of the other columns in the tableau are integral. This leads
2170 * to the following table. The first two rows do not correspond
2171 * to a non-integral sample point and are only mentioned for completeness.
2173 * constant parameters other
2175 * int int int |
2176 * int int rat | -> no problem
2178 * rat int int -> fail
2180 * rat int rat -> cut
2182 * int rat rat |
2183 * rat rat rat | -> parametric cut
2185 * int rat int |
2186 * rat rat int | -> split context
2188 * If the parametric constant is completely integral, then there is nothing
2189 * to be done. If the constant term is non-integral, but all the other
2190 * coefficient are integral, then there is nothing that can be done
2191 * and the tableau has no integral solution.
2192 * If, on the other hand, one or more of the other columns have rational
2193 * coeffcients, but the parameter coefficients are all integral, then
2194 * we can perform a regular (non-parametric) cut.
2195 * Finally, if there is any parameter coefficient that is non-integral,
2196 * then we need to involve the context tableau. There are two cases here.
2197 * If at least one other column has a rational coefficient, then we
2198 * can perform a parametric cut in the main tableau by adding a new
2199 * integer division in the context tableau.
2200 * If all other columns have integral coefficients, then we need to
2201 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
2202 * is always integral. We do this by introducing an integer division
2203 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
2204 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
2205 * Since q is expressed in the tableau as
2206 * c + \sum a_i y_i - m q >= 0
2207 * -c - \sum a_i y_i + m q + m - 1 >= 0
2208 * it is sufficient to add the inequality
2209 * -c - \sum a_i y_i + m q >= 0
2210 * In the part of the context where this inequality does not hold, the
2211 * main tableau is marked as being empty.
2213 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab)
2215 struct isl_tab **context_tab;
2217 if (!tab || !sol)
2218 goto error;
2220 context_tab = &sol->context_tab;
2222 if (tab->empty)
2223 goto done;
2224 if ((*context_tab)->empty)
2225 goto done;
2227 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
2228 int flags;
2229 int row;
2230 int sgn;
2231 int split = -1;
2232 int n_split = 0;
2234 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2235 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2236 continue;
2237 sgn = row_sign(tab, sol, row);
2238 if (!sgn)
2239 goto error;
2240 tab->row_sign[row] = sgn;
2241 if (sgn == isl_tab_row_any)
2242 n_split++;
2243 if (sgn == isl_tab_row_any && split == -1)
2244 split = row;
2245 if (sgn == isl_tab_row_neg)
2246 break;
2248 if (row < tab->n_row)
2249 continue;
2250 if (split != -1) {
2251 struct isl_vec *ineq;
2252 if (n_split != 1)
2253 split = best_split(tab, *context_tab);
2254 if (split < 0)
2255 goto error;
2256 ineq = get_row_parameter_ineq(tab, split);
2257 if (!ineq)
2258 goto error;
2259 is_strict(ineq);
2260 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2261 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2262 continue;
2263 if (tab->row_sign[row] == isl_tab_row_any)
2264 tab->row_sign[row] = isl_tab_row_unknown;
2266 tab->row_sign[split] = isl_tab_row_pos;
2267 sol = find_in_pos(sol, tab, ineq->el);
2268 tab->row_sign[split] = isl_tab_row_neg;
2269 row = split;
2270 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2271 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2272 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2273 *context_tab = check_samples(*context_tab, ineq->el, 0);
2274 isl_vec_free(ineq);
2275 if (!sol)
2276 goto error;
2277 continue;
2279 if (tab->rational)
2280 break;
2281 row = first_non_integer(tab, &flags);
2282 if (row < 0)
2283 break;
2284 if (ISL_FL_ISSET(flags, I_PAR)) {
2285 if (ISL_FL_ISSET(flags, I_VAR)) {
2286 tab = isl_tab_mark_empty(tab);
2287 break;
2289 row = add_cut(tab, row);
2290 } else if (ISL_FL_ISSET(flags, I_VAR)) {
2291 struct isl_vec *div;
2292 struct isl_vec *ineq;
2293 int d;
2294 if (isl_tab_extend_cons(*context_tab, 3) < 0)
2295 goto error;
2296 div = get_row_split_div(tab, row);
2297 if (!div)
2298 goto error;
2299 d = get_div(tab, context_tab, div);
2300 isl_vec_free(div);
2301 if (d < 0)
2302 goto error;
2303 ineq = ineq_for_div((*context_tab)->bset, d);
2304 sol = no_sol_in_strict(sol, tab, ineq);
2305 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2306 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2307 *context_tab = check_samples(*context_tab, ineq->el, 0);
2308 isl_vec_free(ineq);
2309 if (!sol)
2310 goto error;
2311 tab = set_row_cst_to_div(tab, row, d);
2312 } else
2313 row = add_parametric_cut(tab, row, context_tab);
2314 if (row < 0)
2315 goto error;
2317 done:
2318 sol = sol->add(sol, tab);
2319 isl_tab_free(tab);
2320 return sol;
2321 error:
2322 isl_tab_free(tab);
2323 sol_free(sol);
2324 return NULL;
2327 /* Compute the lexicographic minimum of the set represented by the main
2328 * tableau "tab" within the context "sol->context_tab".
2330 * As a preprocessing step, we first transfer all the purely parametric
2331 * equalities from the main tableau to the context tableau, i.e.,
2332 * parameters that have been pivoted to a row.
2333 * These equalities are ignored by the main algorithm, because the
2334 * corresponding rows may not be marked as being non-negative.
2335 * In parts of the context where the added equality does not hold,
2336 * the main tableau is marked as being empty.
2338 static struct isl_sol *find_solutions_main(struct isl_sol *sol,
2339 struct isl_tab *tab)
2341 int row;
2343 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2344 int p;
2345 struct isl_vec *eq;
2347 if (tab->row_var[row] < 0)
2348 continue;
2349 if (tab->row_var[row] >= tab->n_param &&
2350 tab->row_var[row] < tab->n_var - tab->n_div)
2351 continue;
2352 if (tab->row_var[row] < tab->n_param)
2353 p = tab->row_var[row];
2354 else
2355 p = tab->row_var[row]
2356 + tab->n_param - (tab->n_var - tab->n_div);
2358 if (isl_tab_extend_cons(sol->context_tab, 2) < 0)
2359 goto error;
2361 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
2362 get_row_parameter_line(tab, row, eq->el);
2363 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
2364 eq = isl_vec_normalize(eq);
2366 sol = no_sol_in_strict(sol, tab, eq);
2368 isl_seq_neg(eq->el, eq->el, eq->size);
2369 sol = no_sol_in_strict(sol, tab, eq);
2370 isl_seq_neg(eq->el, eq->el, eq->size);
2372 sol->context_tab = add_lexmin_eq(sol->context_tab, eq->el);
2373 context_valid_sample_or_feasible(sol, eq->el, 1);
2374 sol->context_tab = check_samples(sol->context_tab, eq->el, 1);
2376 isl_vec_free(eq);
2378 isl_tab_mark_redundant(tab, row);
2380 if (!sol->context_tab)
2381 goto error;
2382 if (sol->context_tab->empty)
2383 break;
2385 row = tab->n_redundant - 1;
2388 return find_solutions(sol, tab);
2389 error:
2390 isl_tab_free(tab);
2391 sol_free(sol);
2392 return NULL;
2395 static struct isl_sol_map *sol_map_find_solutions(struct isl_sol_map *sol_map,
2396 struct isl_tab *tab)
2398 return (struct isl_sol_map *)find_solutions_main(&sol_map->sol, tab);
2401 /* Check if integer division "div" of "dom" also occurs in "bmap".
2402 * If so, return its position within the divs.
2403 * If not, return -1.
2405 static int find_context_div(struct isl_basic_map *bmap,
2406 struct isl_basic_set *dom, unsigned div)
2408 int i;
2409 unsigned b_dim = isl_dim_total(bmap->dim);
2410 unsigned d_dim = isl_dim_total(dom->dim);
2412 if (isl_int_is_zero(dom->div[div][0]))
2413 return -1;
2414 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
2415 return -1;
2417 for (i = 0; i < bmap->n_div; ++i) {
2418 if (isl_int_is_zero(bmap->div[i][0]))
2419 continue;
2420 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
2421 (b_dim - d_dim) + bmap->n_div) != -1)
2422 continue;
2423 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
2424 return i;
2426 return -1;
2429 /* The correspondence between the variables in the main tableau,
2430 * the context tableau, and the input map and domain is as follows.
2431 * The first n_param and the last n_div variables of the main tableau
2432 * form the variables of the context tableau.
2433 * In the basic map, these n_param variables correspond to the
2434 * parameters and the input dimensions. In the domain, they correspond
2435 * to the parameters and the set dimensions.
2436 * The n_div variables correspond to the integer divisions in the domain.
2437 * To ensure that everything lines up, we may need to copy some of the
2438 * integer divisions of the domain to the map. These have to be placed
2439 * in the same order as those in the context and they have to be placed
2440 * after any other integer divisions that the map may have.
2441 * This function performs the required reordering.
2443 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
2444 struct isl_basic_set *dom)
2446 int i;
2447 int common = 0;
2448 int other;
2450 for (i = 0; i < dom->n_div; ++i)
2451 if (find_context_div(bmap, dom, i) != -1)
2452 common++;
2453 other = bmap->n_div - common;
2454 if (dom->n_div - common > 0) {
2455 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
2456 dom->n_div - common, 0, 0);
2457 if (!bmap)
2458 return NULL;
2460 for (i = 0; i < dom->n_div; ++i) {
2461 int pos = find_context_div(bmap, dom, i);
2462 if (pos < 0) {
2463 pos = isl_basic_map_alloc_div(bmap);
2464 if (pos < 0)
2465 goto error;
2466 isl_int_set_si(bmap->div[pos][0], 0);
2468 if (pos != other + i)
2469 isl_basic_map_swap_div(bmap, pos, other + i);
2471 return bmap;
2472 error:
2473 isl_basic_map_free(bmap);
2474 return NULL;
2477 /* Compute the lexicographic minimum (or maximum if "max" is set)
2478 * of "bmap" over the domain "dom" and return the result as a map.
2479 * If "empty" is not NULL, then *empty is assigned a set that
2480 * contains those parts of the domain where there is no solution.
2481 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
2482 * then we compute the rational optimum. Otherwise, we compute
2483 * the integral optimum.
2485 * We perform some preprocessing. As the PILP solver does not
2486 * handle implicit equalities very well, we first make sure all
2487 * the equalities are explicitly available.
2488 * We also make sure the divs in the domain are properly order,
2489 * because they will be added one by one in the given order
2490 * during the construction of the solution map.
2492 struct isl_map *isl_tab_basic_map_partial_lexopt(
2493 struct isl_basic_map *bmap, struct isl_basic_set *dom,
2494 struct isl_set **empty, int max)
2496 struct isl_tab *tab;
2497 struct isl_map *result = NULL;
2498 struct isl_sol_map *sol_map = NULL;
2500 if (empty)
2501 *empty = NULL;
2502 if (!bmap || !dom)
2503 goto error;
2505 isl_assert(bmap->ctx,
2506 isl_basic_map_compatible_domain(bmap, dom), goto error);
2508 bmap = isl_basic_map_detect_equalities(bmap);
2510 if (dom->n_div) {
2511 dom = isl_basic_set_order_divs(dom);
2512 bmap = align_context_divs(bmap, dom);
2514 sol_map = sol_map_init(bmap, dom, !!empty, max);
2515 if (!sol_map)
2516 goto error;
2518 if (isl_basic_set_fast_is_empty(sol_map->sol.context_tab->bset))
2519 /* nothing */;
2520 else if (isl_basic_map_fast_is_empty(bmap))
2521 sol_map = add_empty(sol_map);
2522 else {
2523 tab = tab_for_lexmin(bmap,
2524 sol_map->sol.context_tab->bset, 1, max);
2525 tab = tab_detect_nonnegative_parameters(tab,
2526 sol_map->sol.context_tab);
2527 sol_map = sol_map_find_solutions(sol_map, tab);
2528 if (!sol_map)
2529 goto error;
2532 result = isl_map_copy(sol_map->map);
2533 if (empty)
2534 *empty = isl_set_copy(sol_map->empty);
2535 sol_map_free(sol_map);
2536 isl_basic_map_free(bmap);
2537 return result;
2538 error:
2539 sol_map_free(sol_map);
2540 isl_basic_map_free(bmap);
2541 return NULL;
2544 struct isl_sol_for {
2545 struct isl_sol sol;
2546 int (*fn)(__isl_take isl_basic_set *dom,
2547 __isl_take isl_mat *map, void *user);
2548 void *user;
2549 int max;
2552 static void sol_for_free(struct isl_sol_for *sol_for)
2554 isl_tab_free(sol_for->sol.context_tab);
2555 free(sol_for);
2558 static void sol_for_free_wrap(struct isl_sol *sol)
2560 sol_for_free((struct isl_sol_for *)sol);
2563 /* Add the solution identified by the tableau and the context tableau.
2565 * See documentation of sol_map_add for more details.
2567 * Instead of constructing a basic map, this function calls a user
2568 * defined function with the current context as a basic set and
2569 * an affine matrix reprenting the relation between the input and output.
2570 * The number of rows in this matrix is equal to one plus the number
2571 * of output variables. The number of columns is equal to one plus
2572 * the total dimension of the context, i.e., the number of parameters,
2573 * input variables and divs. Since some of the columns in the matrix
2574 * may refer to the divs, the basic set is not simplified.
2575 * (Simplification may reorder or remove divs.)
2577 static struct isl_sol_for *sol_for_add(struct isl_sol_for *sol,
2578 struct isl_tab *tab)
2580 struct isl_tab *context_tab;
2581 struct isl_basic_set *bset;
2582 struct isl_mat *mat = NULL;
2583 unsigned n_out;
2584 unsigned off;
2585 int row, i;
2587 if (!sol || !tab)
2588 goto error;
2590 if (tab->empty)
2591 return sol;
2593 off = 2 + tab->M;
2594 context_tab = sol->sol.context_tab;
2596 n_out = tab->n_var - tab->n_param - tab->n_div;
2597 mat = isl_mat_alloc(tab->mat->ctx, 1 + n_out, 1 + tab->n_param + tab->n_div);
2598 if (!mat)
2599 goto error;
2601 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
2602 isl_int_set_si(mat->row[0][0], 1);
2603 for (row = 0; row < n_out; ++row) {
2604 int i = tab->n_param + row;
2605 int r, j;
2607 isl_seq_clr(mat->row[1 + row], mat->n_col);
2608 if (!tab->var[i].is_row)
2609 continue;
2611 r = tab->var[i].index;
2612 /* no unbounded */
2613 if (tab->M)
2614 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
2615 tab->mat->row[r][0]),
2616 goto error);
2617 isl_int_set(mat->row[1 + row][0], tab->mat->row[r][1]);
2618 for (j = 0; j < tab->n_param; ++j) {
2619 int col;
2620 if (tab->var[j].is_row)
2621 continue;
2622 col = tab->var[j].index;
2623 isl_int_set(mat->row[1 + row][1 + j],
2624 tab->mat->row[r][off + col]);
2626 for (j = 0; j < tab->n_div; ++j) {
2627 int col;
2628 if (tab->var[tab->n_var - tab->n_div+j].is_row)
2629 continue;
2630 col = tab->var[tab->n_var - tab->n_div+j].index;
2631 isl_int_set(mat->row[1 + row][1 + tab->n_param + j],
2632 tab->mat->row[r][off + col]);
2634 if (!isl_int_is_one(tab->mat->row[r][0]))
2635 isl_seq_scale_down(mat->row[1 + row], mat->row[1 + row],
2636 tab->mat->row[r][0], mat->n_col);
2637 if (sol->max)
2638 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
2639 mat->n_col);
2642 bset = isl_basic_set_dup(context_tab->bset);
2643 bset = isl_basic_set_finalize(bset);
2645 if (sol->fn(bset, isl_mat_copy(mat), sol->user) < 0)
2646 goto error;
2648 isl_mat_free(mat);
2649 return sol;
2650 error:
2651 isl_mat_free(mat);
2652 sol_free(&sol->sol);
2653 return NULL;
2656 static struct isl_sol *sol_for_add_wrap(struct isl_sol *sol,
2657 struct isl_tab *tab)
2659 return (struct isl_sol *)sol_for_add((struct isl_sol_for *)sol, tab);
2662 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
2663 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
2664 void *user),
2665 void *user)
2667 struct isl_sol_for *sol_for = NULL;
2668 struct isl_dim *dom_dim;
2669 struct isl_basic_set *dom = NULL;
2670 struct isl_tab *context_tab;
2671 int f;
2673 sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for);
2674 if (!sol_for)
2675 goto error;
2677 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
2678 dom = isl_basic_set_universe(dom_dim);
2680 sol_for->fn = fn;
2681 sol_for->user = user;
2682 sol_for->max = max;
2683 sol_for->sol.add = &sol_for_add_wrap;
2684 sol_for->sol.free = &sol_for_free_wrap;
2686 context_tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2687 context_tab = restore_lexmin(context_tab);
2688 sol_for->sol.context_tab = context_tab;
2689 f = context_is_feasible(&sol_for->sol);
2690 if (f < 0)
2691 goto error;
2693 isl_basic_set_free(dom);
2694 return sol_for;
2695 error:
2696 isl_basic_set_free(dom);
2697 sol_for_free(sol_for);
2698 return NULL;
2701 static struct isl_sol_for *sol_for_find_solutions(struct isl_sol_for *sol_for,
2702 struct isl_tab *tab)
2704 return (struct isl_sol_for *)find_solutions_main(&sol_for->sol, tab);
2707 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
2708 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
2709 void *user),
2710 void *user)
2712 struct isl_sol_for *sol_for = NULL;
2714 bmap = isl_basic_map_copy(bmap);
2715 if (!bmap)
2716 return -1;
2718 bmap = isl_basic_map_detect_equalities(bmap);
2719 sol_for = sol_for_init(bmap, max, fn, user);
2721 if (isl_basic_map_fast_is_empty(bmap))
2722 /* nothing */;
2723 else {
2724 struct isl_tab *tab;
2725 tab = tab_for_lexmin(bmap,
2726 sol_for->sol.context_tab->bset, 1, max);
2727 tab = tab_detect_nonnegative_parameters(tab,
2728 sol_for->sol.context_tab);
2729 sol_for = sol_for_find_solutions(sol_for, tab);
2730 if (!sol_for)
2731 goto error;
2734 sol_for_free(sol_for);
2735 isl_basic_map_free(bmap);
2736 return 0;
2737 error:
2738 sol_for_free(sol_for);
2739 isl_basic_map_free(bmap);
2740 return -1;
2743 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
2744 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
2745 void *user),
2746 void *user)
2748 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
2751 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
2752 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
2753 void *user),
2754 void *user)
2756 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);