add transitive closure example from Kelly's 1996 paper
[isl.git] / isl_transitive_closure.c
blobd16523192c4de79999bc12e85881b048453c972b
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
16 * The transitive closure implementation is based on the paper
17 * "Computing the Transitive Closure of a Union of Affine Integer
18 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
19 * Albert Cohen.
22 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
23 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
24 * that maps an element x to any element that can be reached
25 * by taking a non-negative number of steps along any of
26 * the extended offsets v'_i = [v_i 1].
27 * That is, construct
29 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
31 * For any element in this relation, the number of steps taken
32 * is equal to the difference in the final coordinates.
34 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
35 __isl_keep isl_mat *steps)
37 int i, j, k;
38 struct isl_basic_map *path = NULL;
39 unsigned d;
40 unsigned n;
41 unsigned nparam;
43 if (!dim || !steps)
44 goto error;
46 d = isl_dim_size(dim, isl_dim_in);
47 n = steps->n_row;
48 nparam = isl_dim_size(dim, isl_dim_param);
50 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
52 for (i = 0; i < n; ++i) {
53 k = isl_basic_map_alloc_div(path);
54 if (k < 0)
55 goto error;
56 isl_assert(steps->ctx, i == k, goto error);
57 isl_int_set_si(path->div[k][0], 0);
60 for (i = 0; i < d; ++i) {
61 k = isl_basic_map_alloc_equality(path);
62 if (k < 0)
63 goto error;
64 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
65 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
66 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
67 if (i == d - 1)
68 for (j = 0; j < n; ++j)
69 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
70 else
71 for (j = 0; j < n; ++j)
72 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
73 steps->row[j][i]);
76 for (i = 0; i < n; ++i) {
77 k = isl_basic_map_alloc_inequality(path);
78 if (k < 0)
79 goto error;
80 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
81 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
84 isl_dim_free(dim);
86 path = isl_basic_map_simplify(path);
87 path = isl_basic_map_finalize(path);
88 return isl_map_from_basic_map(path);
89 error:
90 isl_dim_free(dim);
91 isl_basic_map_free(path);
92 return NULL;
95 #define IMPURE 0
96 #define PURE_PARAM 1
97 #define PURE_VAR 2
99 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
100 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
101 * Return IMPURE otherwise.
103 static int purity(__isl_keep isl_basic_set *bset, isl_int *c)
105 unsigned d;
106 unsigned n_div;
107 unsigned nparam;
109 n_div = isl_basic_set_dim(bset, isl_dim_div);
110 d = isl_basic_set_dim(bset, isl_dim_set);
111 nparam = isl_basic_set_dim(bset, isl_dim_param);
113 if (isl_seq_first_non_zero(c + 1 + nparam + d, n_div) != -1)
114 return IMPURE;
115 if (isl_seq_first_non_zero(c + 1, nparam) == -1)
116 return PURE_VAR;
117 if (isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
118 return PURE_PARAM;
119 return IMPURE;
122 /* Given a set of offsets "delta", construct a relation of the
123 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
124 * is an overapproximation of the relations that
125 * maps an element x to any element that can be reached
126 * by taking a non-negative number of steps along any of
127 * the elements in "delta".
128 * That is, construct an approximation of
130 * { [x] -> [y] : exists f \in \delta, k \in Z :
131 * y = x + k [f, 1] and k >= 0 }
133 * For any element in this relation, the number of steps taken
134 * is equal to the difference in the final coordinates.
136 * In particular, let delta be defined as
138 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
139 * C x + C'p + c >= 0 }
141 * then the relation is constructed as
143 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
144 * A f + k a >= 0 and B p + b >= 0 and k >= 1 }
145 * union { [x] -> [x] }
147 * Existentially quantified variables in \delta are currently ignored.
148 * This is safe, but leads to an additional overapproximation.
150 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
151 __isl_take isl_basic_set *delta)
153 isl_basic_map *path = NULL;
154 unsigned d;
155 unsigned n_div;
156 unsigned nparam;
157 unsigned off;
158 int i, k;
160 if (!delta)
161 goto error;
162 n_div = isl_basic_set_dim(delta, isl_dim_div);
163 d = isl_basic_set_dim(delta, isl_dim_set);
164 nparam = isl_basic_set_dim(delta, isl_dim_param);
165 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
166 d + 1 + delta->n_eq, delta->n_ineq + 1);
167 off = 1 + nparam + 2 * (d + 1) + n_div;
169 for (i = 0; i < n_div + d + 1; ++i) {
170 k = isl_basic_map_alloc_div(path);
171 if (k < 0)
172 goto error;
173 isl_int_set_si(path->div[k][0], 0);
176 for (i = 0; i < d + 1; ++i) {
177 k = isl_basic_map_alloc_equality(path);
178 if (k < 0)
179 goto error;
180 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
181 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
182 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
183 isl_int_set_si(path->eq[k][off + i], 1);
186 for (i = 0; i < delta->n_eq; ++i) {
187 int p = purity(delta, delta->eq[i]);
188 if (p == IMPURE)
189 continue;
190 k = isl_basic_map_alloc_equality(path);
191 if (k < 0)
192 goto error;
193 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
194 if (p == PURE_VAR) {
195 isl_seq_cpy(path->eq[k] + off,
196 delta->eq[i] + 1 + nparam, d);
197 isl_int_set(path->eq[k][off + d], delta->eq[i][0]);
198 } else
199 isl_seq_cpy(path->eq[k], delta->eq[i], 1 + nparam);
202 for (i = 0; i < delta->n_ineq; ++i) {
203 int p = purity(delta, delta->ineq[i]);
204 if (p == IMPURE)
205 continue;
206 k = isl_basic_map_alloc_inequality(path);
207 if (k < 0)
208 goto error;
209 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
210 if (p == PURE_VAR) {
211 isl_seq_cpy(path->ineq[k] + off,
212 delta->ineq[i] + 1 + nparam, d);
213 isl_int_set(path->ineq[k][off + d], delta->ineq[i][0]);
214 } else
215 isl_seq_cpy(path->ineq[k], delta->ineq[i], 1 + nparam);
218 k = isl_basic_map_alloc_inequality(path);
219 if (k < 0)
220 goto error;
221 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
222 isl_int_set_si(path->ineq[k][0], -1);
223 isl_int_set_si(path->ineq[k][off + d], 1);
225 isl_basic_set_free(delta);
226 path = isl_basic_map_finalize(path);
227 return isl_basic_map_union(path,
228 isl_basic_map_identity(isl_dim_domain(dim)));
229 error:
230 isl_dim_free(dim);
231 isl_basic_set_free(delta);
232 isl_basic_map_free(path);
233 return NULL;
236 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
237 * construct a map that equates the parameter to the difference
238 * in the final coordinates and imposes that this difference is positive.
239 * That is, construct
241 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
243 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
244 unsigned param)
246 struct isl_basic_map *bmap;
247 unsigned d;
248 unsigned nparam;
249 int k;
251 d = isl_dim_size(dim, isl_dim_in);
252 nparam = isl_dim_size(dim, isl_dim_param);
253 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
254 k = isl_basic_map_alloc_equality(bmap);
255 if (k < 0)
256 goto error;
257 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
258 isl_int_set_si(bmap->eq[k][1 + param], -1);
259 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
260 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
262 k = isl_basic_map_alloc_inequality(bmap);
263 if (k < 0)
264 goto error;
265 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
266 isl_int_set_si(bmap->ineq[k][1 + param], 1);
267 isl_int_set_si(bmap->ineq[k][0], -1);
269 bmap = isl_basic_map_finalize(bmap);
270 return isl_map_from_basic_map(bmap);
271 error:
272 isl_basic_map_free(bmap);
273 return NULL;
276 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
277 * construct a map that is an overapproximation of the map
278 * that takes an element from the space D to another
279 * element from the same space, such that the difference between
280 * them is a strictly positive sum of differences between images
281 * and pre-images in one of the R_i.
282 * The number of differences in the sum is equated to parameter "param".
283 * That is, let
285 * \Delta_i = { y - x | (x, y) in R_i }
287 * then the constructed map is an overapproximation of
289 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
290 * d = \sum_i k_i and k = \sum_i k_i > 0 }
292 * We first construct an extended mapping with an extra coordinate
293 * that indicates the number of steps taken. In particular,
294 * the difference in the last coordinate is equal to the number
295 * of steps taken to move from a domain element to the corresponding
296 * image element(s).
297 * In the final step, this difference is equated to the parameter "param"
298 * and made positive. The extra coordinates are subsequently projected out.
300 * The elements of the singleton \Delta_i's are collected as the
301 * rows of the steps matrix. For all these \Delta_i's together,
302 * a single path is constructed.
303 * For each of the other \Delta_i's, we compute an overapproximation
304 * of the paths along elements of \Delta_i.
305 * Since each of these paths performs an addition, composition is
306 * symmetric and we can simply compose all resulting paths in any order.
308 static __isl_give isl_map *construct_path(__isl_keep isl_map *map,
309 unsigned param)
311 struct isl_mat *steps = NULL;
312 struct isl_map *path = NULL;
313 struct isl_map *diff;
314 struct isl_dim *dim = NULL;
315 unsigned d;
316 int i, j, n;
318 if (!map)
319 return NULL;
321 dim = isl_map_get_dim(map);
323 d = isl_dim_size(dim, isl_dim_in);
324 dim = isl_dim_add(dim, isl_dim_in, 1);
325 dim = isl_dim_add(dim, isl_dim_out, 1);
327 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
329 steps = isl_mat_alloc(map->ctx, map->n, d);
330 if (!steps)
331 goto error;
333 n = 0;
334 for (i = 0; i < map->n; ++i) {
335 struct isl_basic_set *delta;
337 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
339 for (j = 0; j < d; ++j) {
340 int fixed;
342 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
343 &steps->row[n][j]);
344 if (fixed < 0) {
345 isl_basic_set_free(delta);
346 goto error;
348 if (!fixed)
349 break;
353 if (j < d) {
354 path = isl_map_apply_range(path,
355 path_along_delta(isl_dim_copy(dim), delta));
356 } else {
357 isl_basic_set_free(delta);
358 ++n;
362 if (n > 0) {
363 steps->n_row = n;
364 path = isl_map_apply_range(path,
365 path_along_steps(isl_dim_copy(dim), steps));
368 diff = equate_parameter_to_length(dim, param);
369 path = isl_map_intersect(path, diff);
370 path = isl_map_project_out(path, isl_dim_in, d, 1);
371 path = isl_map_project_out(path, isl_dim_out, d, 1);
373 isl_mat_free(steps);
374 return path;
375 error:
376 isl_dim_free(dim);
377 isl_map_free(path);
378 return NULL;
381 /* Check whether "path" is acyclic.
382 * That is, check whether
384 * { d | d = y - x and (x,y) in path }
386 * does not contain the origin.
388 static int is_acyclic(__isl_take isl_map *path)
390 int i;
391 int acyclic;
392 unsigned dim;
393 struct isl_set *delta;
395 delta = isl_map_deltas(path);
396 dim = isl_set_dim(delta, isl_dim_set);
397 for (i = 0; i < dim; ++i)
398 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
400 acyclic = isl_set_is_empty(delta);
401 isl_set_free(delta);
403 return acyclic;
406 /* Shift variable at position "pos" up by one.
407 * That is, replace the corresponding variable v by v - 1.
409 static __isl_give isl_basic_map *basic_map_shift_pos(
410 __isl_take isl_basic_map *bmap, unsigned pos)
412 int i;
414 bmap = isl_basic_map_cow(bmap);
415 if (!bmap)
416 return NULL;
418 for (i = 0; i < bmap->n_eq; ++i)
419 isl_int_sub(bmap->eq[i][0], bmap->eq[i][0], bmap->eq[i][pos]);
421 for (i = 0; i < bmap->n_ineq; ++i)
422 isl_int_sub(bmap->ineq[i][0],
423 bmap->ineq[i][0], bmap->ineq[i][pos]);
425 for (i = 0; i < bmap->n_div; ++i) {
426 if (isl_int_is_zero(bmap->div[i][0]))
427 continue;
428 isl_int_sub(bmap->div[i][1],
429 bmap->div[i][1], bmap->div[i][1 + pos]);
432 return bmap;
435 /* Shift variable at position "pos" up by one.
436 * That is, replace the corresponding variable v by v - 1.
438 static __isl_give isl_map *map_shift_pos(__isl_take isl_map *map, unsigned pos)
440 int i;
442 map = isl_map_cow(map);
443 if (!map)
444 return NULL;
446 for (i = 0; i < map->n; ++i) {
447 map->p[i] = basic_map_shift_pos(map->p[i], pos);
448 if (!map->p[i])
449 goto error;
451 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
452 return map;
453 error:
454 isl_map_free(map);
455 return NULL;
458 /* Check whether the overapproximation of the power of "map" is exactly
459 * the power of "map". Let R be "map" and A_k the overapproximation.
460 * The approximation is exact if
462 * A_1 = R
463 * A_k = A_{k-1} \circ R k >= 2
465 * Since A_k is known to be an overapproximation, we only need to check
467 * A_1 \subset R
468 * A_k \subset A_{k-1} \circ R k >= 2
471 static int check_power_exactness(__isl_take isl_map *map,
472 __isl_take isl_map *app, unsigned param)
474 int exact;
475 isl_map *app_1;
476 isl_map *app_2;
478 app_1 = isl_map_fix_si(isl_map_copy(app), isl_dim_param, param, 1);
480 exact = isl_map_is_subset(app_1, map);
481 isl_map_free(app_1);
483 if (!exact || exact < 0) {
484 isl_map_free(app);
485 isl_map_free(map);
486 return exact;
489 app_2 = isl_map_lower_bound_si(isl_map_copy(app),
490 isl_dim_param, param, 2);
491 app_1 = map_shift_pos(app, 1 + param);
492 app_1 = isl_map_apply_range(map, app_1);
494 exact = isl_map_is_subset(app_2, app_1);
496 isl_map_free(app_1);
497 isl_map_free(app_2);
499 return exact;
502 /* Check whether the overapproximation of the power of "map" is exactly
503 * the power of "map", possibly after projecting out the power (if "project"
504 * is set).
506 * If "project" is set and if "steps" can only result in acyclic paths,
507 * then we check
509 * A = R \cup (A \circ R)
511 * where A is the overapproximation with the power projected out, i.e.,
512 * an overapproximation of the transitive closure.
513 * More specifically, since A is known to be an overapproximation, we check
515 * A \subset R \cup (A \circ R)
517 * Otherwise, we check if the power is exact.
519 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
520 __isl_take isl_map *path, unsigned param, int project)
522 isl_map *test;
523 int exact;
525 if (project) {
526 project = is_acyclic(path);
527 if (project < 0)
528 goto error;
529 } else
530 isl_map_free(path);
532 if (!project)
533 return check_power_exactness(map, app, param);
535 map = isl_map_project_out(map, isl_dim_param, param, 1);
536 app = isl_map_project_out(app, isl_dim_param, param, 1);
538 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
539 test = isl_map_union(test, isl_map_copy(map));
541 exact = isl_map_is_subset(app, test);
543 isl_map_free(app);
544 isl_map_free(test);
546 isl_map_free(map);
548 return exact;
549 error:
550 isl_map_free(app);
551 isl_map_free(map);
552 return -1;
555 /* Compute the positive powers of "map", or an overapproximation.
556 * The power is given by parameter "param". If the result is exact,
557 * then *exact is set to 1.
558 * If project is set, then we are actually interested in the transitive
559 * closure, so we can use a more relaxed exactness check.
561 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
562 int *exact, int project)
564 struct isl_set *domain = NULL;
565 struct isl_set *range = NULL;
566 struct isl_map *app = NULL;
567 struct isl_map *path = NULL;
569 if (exact)
570 *exact = 1;
572 map = isl_map_remove_empty_parts(map);
573 if (!map)
574 return NULL;
576 if (isl_map_fast_is_empty(map))
577 return map;
579 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param), goto error);
580 isl_assert(map->ctx,
581 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
582 goto error);
584 domain = isl_map_domain(isl_map_copy(map));
585 domain = isl_set_coalesce(domain);
586 range = isl_map_range(isl_map_copy(map));
587 range = isl_set_coalesce(range);
588 app = isl_map_from_domain_and_range(isl_set_copy(domain),
589 isl_set_copy(range));
591 path = construct_path(map, param);
592 app = isl_map_intersect(app, isl_map_copy(path));
594 if (exact &&
595 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
596 isl_map_copy(path), param, project)) < 0)
597 goto error;
599 isl_set_free(domain);
600 isl_set_free(range);
601 isl_map_free(path);
602 isl_map_free(map);
603 return app;
604 error:
605 isl_set_free(domain);
606 isl_set_free(range);
607 isl_map_free(path);
608 isl_map_free(map);
609 isl_map_free(app);
610 return NULL;
613 /* Compute the positive powers of "map", or an overapproximation.
614 * The power is given by parameter "param". If the result is exact,
615 * then *exact is set to 1.
617 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
618 int *exact)
620 return map_power(map, param, exact, 0);
623 /* Compute the transitive closure of "map", or an overapproximation.
624 * If the result is exact, then *exact is set to 1.
625 * Simply compute the powers of map and then project out the parameter
626 * describing the power.
628 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
629 int *exact)
631 unsigned param;
633 if (!map)
634 goto error;
636 param = isl_map_dim(map, isl_dim_param);
637 map = isl_map_add(map, isl_dim_param, 1);
638 map = map_power(map, param, exact, 1);
639 map = isl_map_project_out(map, isl_dim_param, param, 1);
641 return map;
642 error:
643 isl_map_free(map);
644 return NULL;