doc: fix typos
[isl.git] / isl_transitive_closure.c
blob065d42f309ce1e6c5849bac8bcc8589f2a5deb03
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
14 #include <isl_lp.h>
16 /* Given a map that represents a path with the length of the path
17 * encoded as the difference between the last output coordindate
18 * and the last input coordinate, set this length to either
19 * exactly "length" (if "exactly" is set) or at least "length"
20 * (if "exactly" is not set).
22 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
23 int exactly, int length)
25 struct isl_dim *dim;
26 struct isl_basic_map *bmap;
27 unsigned d;
28 unsigned nparam;
29 int k;
30 isl_int *c;
32 if (!map)
33 return NULL;
35 dim = isl_map_get_dim(map);
36 d = isl_dim_size(dim, isl_dim_in);
37 nparam = isl_dim_size(dim, isl_dim_param);
38 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
39 if (exactly) {
40 k = isl_basic_map_alloc_equality(bmap);
41 c = bmap->eq[k];
42 } else {
43 k = isl_basic_map_alloc_inequality(bmap);
44 c = bmap->ineq[k];
46 if (k < 0)
47 goto error;
48 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
49 isl_int_set_si(c[0], -length);
50 isl_int_set_si(c[1 + nparam + d - 1], -1);
51 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
53 bmap = isl_basic_map_finalize(bmap);
54 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
56 return map;
57 error:
58 isl_basic_map_free(bmap);
59 isl_map_free(map);
60 return NULL;
63 /* Check whether the overapproximation of the power of "map" is exactly
64 * the power of "map". Let R be "map" and A_k the overapproximation.
65 * The approximation is exact if
67 * A_1 = R
68 * A_k = A_{k-1} \circ R k >= 2
70 * Since A_k is known to be an overapproximation, we only need to check
72 * A_1 \subset R
73 * A_k \subset A_{k-1} \circ R k >= 2
75 * In practice, "app" has an extra input and output coordinate
76 * to encode the length of the path. So, we first need to add
77 * this coordinate to "map" and set the length of the path to
78 * one.
80 static int check_power_exactness(__isl_take isl_map *map,
81 __isl_take isl_map *app)
83 int exact;
84 isl_map *app_1;
85 isl_map *app_2;
87 map = isl_map_add(map, isl_dim_in, 1);
88 map = isl_map_add(map, isl_dim_out, 1);
89 map = set_path_length(map, 1, 1);
91 app_1 = set_path_length(isl_map_copy(app), 1, 1);
93 exact = isl_map_is_subset(app_1, map);
94 isl_map_free(app_1);
96 if (!exact || exact < 0) {
97 isl_map_free(app);
98 isl_map_free(map);
99 return exact;
102 app_1 = set_path_length(isl_map_copy(app), 0, 1);
103 app_2 = set_path_length(app, 0, 2);
104 app_1 = isl_map_apply_range(map, app_1);
106 exact = isl_map_is_subset(app_2, app_1);
108 isl_map_free(app_1);
109 isl_map_free(app_2);
111 return exact;
114 /* Check whether the overapproximation of the power of "map" is exactly
115 * the power of "map", possibly after projecting out the power (if "project"
116 * is set).
118 * If "project" is set and if "steps" can only result in acyclic paths,
119 * then we check
121 * A = R \cup (A \circ R)
123 * where A is the overapproximation with the power projected out, i.e.,
124 * an overapproximation of the transitive closure.
125 * More specifically, since A is known to be an overapproximation, we check
127 * A \subset R \cup (A \circ R)
129 * Otherwise, we check if the power is exact.
131 * Note that "app" has an extra input and output coordinate to encode
132 * the length of the part. If we are only interested in the transitive
133 * closure, then we can simply project out these coordinates first.
135 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
136 int project)
138 isl_map *test;
139 int exact;
140 unsigned d;
142 if (!project)
143 return check_power_exactness(map, app);
145 d = isl_map_dim(map, isl_dim_in);
146 app = set_path_length(app, 0, 1);
147 app = isl_map_project_out(app, isl_dim_in, d, 1);
148 app = isl_map_project_out(app, isl_dim_out, d, 1);
150 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
151 test = isl_map_union(test, isl_map_copy(map));
153 exact = isl_map_is_subset(app, test);
155 isl_map_free(app);
156 isl_map_free(test);
158 isl_map_free(map);
160 return exact;
161 error:
162 isl_map_free(app);
163 isl_map_free(map);
164 return -1;
168 * The transitive closure implementation is based on the paper
169 * "Computing the Transitive Closure of a Union of Affine Integer
170 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
171 * Albert Cohen.
174 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
175 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
176 * that maps an element x to any element that can be reached
177 * by taking a non-negative number of steps along any of
178 * the extended offsets v'_i = [v_i 1].
179 * That is, construct
181 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
183 * For any element in this relation, the number of steps taken
184 * is equal to the difference in the final coordinates.
186 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
187 __isl_keep isl_mat *steps)
189 int i, j, k;
190 struct isl_basic_map *path = NULL;
191 unsigned d;
192 unsigned n;
193 unsigned nparam;
195 if (!dim || !steps)
196 goto error;
198 d = isl_dim_size(dim, isl_dim_in);
199 n = steps->n_row;
200 nparam = isl_dim_size(dim, isl_dim_param);
202 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
204 for (i = 0; i < n; ++i) {
205 k = isl_basic_map_alloc_div(path);
206 if (k < 0)
207 goto error;
208 isl_assert(steps->ctx, i == k, goto error);
209 isl_int_set_si(path->div[k][0], 0);
212 for (i = 0; i < d; ++i) {
213 k = isl_basic_map_alloc_equality(path);
214 if (k < 0)
215 goto error;
216 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
217 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
218 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
219 if (i == d - 1)
220 for (j = 0; j < n; ++j)
221 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
222 else
223 for (j = 0; j < n; ++j)
224 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
225 steps->row[j][i]);
228 for (i = 0; i < n; ++i) {
229 k = isl_basic_map_alloc_inequality(path);
230 if (k < 0)
231 goto error;
232 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
233 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
236 isl_dim_free(dim);
238 path = isl_basic_map_simplify(path);
239 path = isl_basic_map_finalize(path);
240 return isl_map_from_basic_map(path);
241 error:
242 isl_dim_free(dim);
243 isl_basic_map_free(path);
244 return NULL;
247 #define IMPURE 0
248 #define PURE_PARAM 1
249 #define PURE_VAR 2
250 #define MIXED 3
252 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
253 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
254 * Return MIXED if only the coefficients of the parameters and the set
255 * variables are non-zero and if moreover the parametric constant
256 * can never attain positive values.
257 * Return IMPURE otherwise.
259 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
260 int eq)
262 unsigned d;
263 unsigned n_div;
264 unsigned nparam;
265 int k;
266 int empty;
267 int i;
268 int p = 0, v = 0;
270 n_div = isl_basic_set_dim(bset, isl_dim_div);
271 d = isl_basic_set_dim(bset, isl_dim_set);
272 nparam = isl_basic_set_dim(bset, isl_dim_param);
274 for (i = 0; i < n_div; ++i) {
275 if (isl_int_is_zero(c[1 + nparam + d + i]))
276 continue;
277 switch (div_purity[i]) {
278 case PURE_PARAM: p = 1; break;
279 case PURE_VAR: v = 1; break;
280 default: return IMPURE;
283 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
284 return PURE_VAR;
285 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
286 return PURE_PARAM;
287 if (eq)
288 return IMPURE;
290 bset = isl_basic_set_copy(bset);
291 bset = isl_basic_set_cow(bset);
292 bset = isl_basic_set_extend_constraints(bset, 0, 1);
293 k = isl_basic_set_alloc_inequality(bset);
294 if (k < 0)
295 goto error;
296 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
297 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
298 for (i = 0; i < n_div; ++i) {
299 if (div_purity[i] != PURE_PARAM)
300 continue;
301 isl_int_set(bset->ineq[k][1 + nparam + d + i],
302 c[1 + nparam + d + i]);
304 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
305 empty = isl_basic_set_is_empty(bset);
306 isl_basic_set_free(bset);
308 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
309 error:
310 isl_basic_set_free(bset);
311 return -1;
314 /* Return an array of integers indicating the type of each div in bset.
315 * If the div is (recursively) defined in terms of only the parameters,
316 * then the type is PURE_PARAM.
317 * If the div is (recursively) defined in terms of only the set variables,
318 * then the type is PURE_VAR.
319 * Otherwise, the type is IMPURE.
321 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
323 int i, j;
324 int *div_purity;
325 unsigned d;
326 unsigned n_div;
327 unsigned nparam;
329 if (!bset)
330 return NULL;
332 n_div = isl_basic_set_dim(bset, isl_dim_div);
333 d = isl_basic_set_dim(bset, isl_dim_set);
334 nparam = isl_basic_set_dim(bset, isl_dim_param);
336 div_purity = isl_alloc_array(bset->ctx, int, n_div);
337 if (!div_purity)
338 return NULL;
340 for (i = 0; i < bset->n_div; ++i) {
341 int p = 0, v = 0;
342 if (isl_int_is_zero(bset->div[i][0])) {
343 div_purity[i] = IMPURE;
344 continue;
346 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
347 p = 1;
348 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
349 v = 1;
350 for (j = 0; j < i; ++j) {
351 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
352 continue;
353 switch (div_purity[j]) {
354 case PURE_PARAM: p = 1; break;
355 case PURE_VAR: v = 1; break;
356 default: p = v = 1; break;
359 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
362 return div_purity;
365 /* Given a path with the as yet unconstrained length at position "pos",
366 * check if setting the length to zero results in only the identity
367 * mapping.
369 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
371 isl_basic_map *test = NULL;
372 isl_basic_map *id = NULL;
373 int k;
374 int is_id;
376 test = isl_basic_map_copy(path);
377 test = isl_basic_map_extend_constraints(test, 1, 0);
378 k = isl_basic_map_alloc_equality(test);
379 if (k < 0)
380 goto error;
381 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
382 isl_int_set_si(test->eq[k][pos], 1);
383 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
384 is_id = isl_basic_map_is_subset(test, id);
385 isl_basic_map_free(test);
386 isl_basic_map_free(id);
387 return is_id;
388 error:
389 isl_basic_map_free(test);
390 return -1;
393 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
394 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
395 unsigned d, int *div_purity, int eq)
397 int i, k;
398 int n = eq ? delta->n_eq : delta->n_ineq;
399 isl_int **delta_c = eq ? delta->eq : delta->ineq;
400 isl_int **path_c = eq ? path->eq : path->ineq;
401 unsigned n_div;
403 n_div = isl_basic_set_dim(delta, isl_dim_div);
405 for (i = 0; i < n; ++i) {
406 int p = purity(delta, delta_c[i], div_purity, eq);
407 if (p < 0)
408 goto error;
409 if (p == IMPURE)
410 continue;
411 if (eq)
412 k = isl_basic_map_alloc_equality(path);
413 else
414 k = isl_basic_map_alloc_inequality(path);
415 if (k < 0)
416 goto error;
417 isl_seq_clr(path_c[k], 1 + isl_basic_map_total_dim(path));
418 if (p == PURE_VAR) {
419 isl_seq_cpy(path_c[k] + off,
420 delta_c[i] + 1 + nparam, d);
421 isl_int_set(path_c[k][off + d], delta_c[i][0]);
422 } else if (p == PURE_PARAM) {
423 isl_seq_cpy(path_c[k], delta_c[i], 1 + nparam);
424 } else {
425 isl_seq_cpy(path_c[k] + off,
426 delta_c[i] + 1 + nparam, d);
427 isl_seq_cpy(path_c[k], delta_c[i], 1 + nparam);
429 isl_seq_cpy(path_c[k] + off - n_div,
430 delta_c[i] + 1 + nparam + d, n_div);
433 return path;
434 error:
435 isl_basic_map_free(path);
436 return NULL;
439 /* Given a set of offsets "delta", construct a relation of the
440 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
441 * is an overapproximation of the relations that
442 * maps an element x to any element that can be reached
443 * by taking a non-negative number of steps along any of
444 * the elements in "delta".
445 * That is, construct an approximation of
447 * { [x] -> [y] : exists f \in \delta, k \in Z :
448 * y = x + k [f, 1] and k >= 0 }
450 * For any element in this relation, the number of steps taken
451 * is equal to the difference in the final coordinates.
453 * In particular, let delta be defined as
455 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
456 * C x + C'p + c >= 0 and
457 * D x + D'p + d >= 0 }
459 * where the constraints C x + C'p + c >= 0 are such that the parametric
460 * constant term of each constraint j, "C_j x + C'_j p + c_j",
461 * can never attain positive values, then the relation is constructed as
463 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
464 * A f + k a >= 0 and B p + b >= 0 and
465 * C f + C'p + c >= 0 and k >= 1 }
466 * union { [x] -> [x] }
468 * If the zero-length paths happen to correspond exactly to the identity
469 * mapping, then we return
471 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
472 * A f + k a >= 0 and B p + b >= 0 and
473 * C f + C'p + c >= 0 and k >= 0 }
475 * instead.
477 * Existentially quantified variables in \delta are handled by
478 * classifying them as independent of the parameters, purely
479 * parameter dependent and others. Constraints containing
480 * any of the other existentially quantified variables are removed.
481 * This is safe, but leads to an additional overapproximation.
483 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
484 __isl_take isl_basic_set *delta)
486 isl_basic_map *path = NULL;
487 unsigned d;
488 unsigned n_div;
489 unsigned nparam;
490 unsigned off;
491 int i, k;
492 int is_id;
493 int *div_purity = NULL;
495 if (!delta)
496 goto error;
497 n_div = isl_basic_set_dim(delta, isl_dim_div);
498 d = isl_basic_set_dim(delta, isl_dim_set);
499 nparam = isl_basic_set_dim(delta, isl_dim_param);
500 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
501 d + 1 + delta->n_eq, delta->n_ineq + 1);
502 off = 1 + nparam + 2 * (d + 1) + n_div;
504 for (i = 0; i < n_div + d + 1; ++i) {
505 k = isl_basic_map_alloc_div(path);
506 if (k < 0)
507 goto error;
508 isl_int_set_si(path->div[k][0], 0);
511 for (i = 0; i < d + 1; ++i) {
512 k = isl_basic_map_alloc_equality(path);
513 if (k < 0)
514 goto error;
515 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
516 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
517 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
518 isl_int_set_si(path->eq[k][off + i], 1);
521 div_purity = get_div_purity(delta);
522 if (!div_purity)
523 goto error;
525 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
526 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
528 is_id = empty_path_is_identity(path, off + d);
529 if (is_id < 0)
530 goto error;
532 k = isl_basic_map_alloc_inequality(path);
533 if (k < 0)
534 goto error;
535 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
536 if (!is_id)
537 isl_int_set_si(path->ineq[k][0], -1);
538 isl_int_set_si(path->ineq[k][off + d], 1);
540 free(div_purity);
541 isl_basic_set_free(delta);
542 path = isl_basic_map_finalize(path);
543 if (is_id) {
544 isl_dim_free(dim);
545 return isl_map_from_basic_map(path);
547 return isl_basic_map_union(path,
548 isl_basic_map_identity(isl_dim_domain(dim)));
549 error:
550 free(div_purity);
551 isl_dim_free(dim);
552 isl_basic_set_free(delta);
553 isl_basic_map_free(path);
554 return NULL;
557 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
558 * construct a map that equates the parameter to the difference
559 * in the final coordinates and imposes that this difference is positive.
560 * That is, construct
562 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
564 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
565 unsigned param)
567 struct isl_basic_map *bmap;
568 unsigned d;
569 unsigned nparam;
570 int k;
572 d = isl_dim_size(dim, isl_dim_in);
573 nparam = isl_dim_size(dim, isl_dim_param);
574 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
575 k = isl_basic_map_alloc_equality(bmap);
576 if (k < 0)
577 goto error;
578 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
579 isl_int_set_si(bmap->eq[k][1 + param], -1);
580 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
581 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
583 k = isl_basic_map_alloc_inequality(bmap);
584 if (k < 0)
585 goto error;
586 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
587 isl_int_set_si(bmap->ineq[k][1 + param], 1);
588 isl_int_set_si(bmap->ineq[k][0], -1);
590 bmap = isl_basic_map_finalize(bmap);
591 return isl_map_from_basic_map(bmap);
592 error:
593 isl_basic_map_free(bmap);
594 return NULL;
597 /* Check whether "path" is acyclic, where the last coordinates of domain
598 * and range of path encode the number of steps taken.
599 * That is, check whether
601 * { d | d = y - x and (x,y) in path }
603 * does not contain any element with positive last coordinate (positive length)
604 * and zero remaining coordinates (cycle).
606 static int is_acyclic(__isl_take isl_map *path)
608 int i;
609 int acyclic;
610 unsigned dim;
611 struct isl_set *delta;
613 delta = isl_map_deltas(path);
614 dim = isl_set_dim(delta, isl_dim_set);
615 for (i = 0; i < dim; ++i) {
616 if (i == dim -1)
617 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
618 else
619 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
622 acyclic = isl_set_is_empty(delta);
623 isl_set_free(delta);
625 return acyclic;
628 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
629 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
630 * construct a map that is an overapproximation of the map
631 * that takes an element from the space D \times Z to another
632 * element from the same space, such that the first n coordinates of the
633 * difference between them is a sum of differences between images
634 * and pre-images in one of the R_i and such that the last coordinate
635 * is equal to the number of steps taken.
636 * That is, let
638 * \Delta_i = { y - x | (x, y) in R_i }
640 * then the constructed map is an overapproximation of
642 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
643 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
645 * The elements of the singleton \Delta_i's are collected as the
646 * rows of the steps matrix. For all these \Delta_i's together,
647 * a single path is constructed.
648 * For each of the other \Delta_i's, we compute an overapproximation
649 * of the paths along elements of \Delta_i.
650 * Since each of these paths performs an addition, composition is
651 * symmetric and we can simply compose all resulting paths in any order.
653 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
654 __isl_keep isl_map *map, int *project)
656 struct isl_mat *steps = NULL;
657 struct isl_map *path = NULL;
658 unsigned d;
659 int i, j, n;
661 d = isl_map_dim(map, isl_dim_in);
663 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
665 steps = isl_mat_alloc(map->ctx, map->n, d);
666 if (!steps)
667 goto error;
669 n = 0;
670 for (i = 0; i < map->n; ++i) {
671 struct isl_basic_set *delta;
673 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
675 for (j = 0; j < d; ++j) {
676 int fixed;
678 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
679 &steps->row[n][j]);
680 if (fixed < 0) {
681 isl_basic_set_free(delta);
682 goto error;
684 if (!fixed)
685 break;
689 if (j < d) {
690 path = isl_map_apply_range(path,
691 path_along_delta(isl_dim_copy(dim), delta));
692 path = isl_map_coalesce(path);
693 } else {
694 isl_basic_set_free(delta);
695 ++n;
699 if (n > 0) {
700 steps->n_row = n;
701 path = isl_map_apply_range(path,
702 path_along_steps(isl_dim_copy(dim), steps));
705 if (project && *project) {
706 *project = is_acyclic(isl_map_copy(path));
707 if (*project < 0)
708 goto error;
711 isl_dim_free(dim);
712 isl_mat_free(steps);
713 return path;
714 error:
715 isl_dim_free(dim);
716 isl_mat_free(steps);
717 isl_map_free(path);
718 return NULL;
721 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
722 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
723 * construct a map that is the union of the identity map and
724 * an overapproximation of the map
725 * that takes an element from the dom R \times Z to an
726 * element from ran R \times Z, such that the first n coordinates of the
727 * difference between them is a sum of differences between images
728 * and pre-images in one of the R_i and such that the last coordinate
729 * is equal to the number of steps taken.
730 * That is, let
732 * \Delta_i = { y - x | (x, y) in R_i }
734 * then the constructed map is an overapproximation of
736 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
737 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
738 * x in dom R and x + d in ran R } union
739 * { (x) -> (x) }
741 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
742 __isl_keep isl_map *map, int *exact, int project)
744 struct isl_set *domain = NULL;
745 struct isl_set *range = NULL;
746 struct isl_set *overlap;
747 struct isl_map *app = NULL;
748 struct isl_map *path = NULL;
750 domain = isl_map_domain(isl_map_copy(map));
751 domain = isl_set_coalesce(domain);
752 range = isl_map_range(isl_map_copy(map));
753 range = isl_set_coalesce(range);
754 overlap = isl_set_intersect(isl_set_copy(domain), isl_set_copy(range));
755 if (isl_set_is_empty(overlap) == 1) {
756 isl_set_free(domain);
757 isl_set_free(range);
758 isl_set_free(overlap);
760 map = isl_map_copy(map);
761 map = isl_map_add(map, isl_dim_in, 1);
762 map = isl_map_add(map, isl_dim_out, 1);
763 map = set_path_length(map, 1, 1);
764 map = isl_map_union(map, isl_map_identity(isl_dim_domain(dim)));
765 return map;
767 isl_set_free(overlap);
768 app = isl_map_from_domain_and_range(domain, range);
769 app = isl_map_add(app, isl_dim_in, 1);
770 app = isl_map_add(app, isl_dim_out, 1);
772 path = construct_extended_path(isl_dim_copy(dim), map,
773 exact && *exact ? &project : NULL);
774 app = isl_map_intersect(app, path);
776 if (exact && *exact &&
777 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
778 project)) < 0)
779 goto error;
781 return isl_map_union(app, isl_map_identity(isl_dim_domain(dim)));
782 error:
783 isl_dim_free(dim);
784 isl_map_free(app);
785 return NULL;
788 /* Structure for representing the nodes in the graph being traversed
789 * using Tarjan's algorithm.
790 * index represents the order in which nodes are visited.
791 * min_index is the index of the root of a (sub)component.
792 * on_stack indicates whether the node is currently on the stack.
794 struct basic_map_sort_node {
795 int index;
796 int min_index;
797 int on_stack;
799 /* Structure for representing the graph being traversed
800 * using Tarjan's algorithm.
801 * len is the number of nodes
802 * node is an array of nodes
803 * stack contains the nodes on the path from the root to the current node
804 * sp is the stack pointer
805 * index is the index of the last node visited
806 * order contains the elements of the components separated by -1
807 * op represents the current position in order
809 struct basic_map_sort {
810 int len;
811 struct basic_map_sort_node *node;
812 int *stack;
813 int sp;
814 int index;
815 int *order;
816 int op;
819 static void basic_map_sort_free(struct basic_map_sort *s)
821 if (!s)
822 return;
823 free(s->node);
824 free(s->stack);
825 free(s->order);
826 free(s);
829 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
831 struct basic_map_sort *s;
832 int i;
834 s = isl_calloc_type(ctx, struct basic_map_sort);
835 if (!s)
836 return NULL;
837 s->len = len;
838 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
839 if (!s->node)
840 goto error;
841 for (i = 0; i < len; ++i)
842 s->node[i].index = -1;
843 s->stack = isl_alloc_array(ctx, int, len);
844 if (!s->stack)
845 goto error;
846 s->order = isl_alloc_array(ctx, int, 2 * len);
847 if (!s->order)
848 goto error;
850 s->sp = 0;
851 s->index = 0;
852 s->op = 0;
854 return s;
855 error:
856 basic_map_sort_free(s);
857 return NULL;
860 /* Check whether in the computation of the transitive closure
861 * "bmap1" (R_1) should follow (or be part of the same component as)
862 * "bmap2" (R_2).
864 * That is check whether
866 * R_1 \circ R_2
868 * is a subset of
870 * R_2 \circ R_1
872 * If so, then there is no reason for R_1 to immediately follow R_2
873 * in any path.
875 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
876 __isl_keep isl_basic_map *bmap2)
878 struct isl_map *map12 = NULL;
879 struct isl_map *map21 = NULL;
880 int subset;
882 map21 = isl_map_from_basic_map(
883 isl_basic_map_apply_range(
884 isl_basic_map_copy(bmap2),
885 isl_basic_map_copy(bmap1)));
886 subset = isl_map_is_empty(map21);
887 if (subset < 0)
888 goto error;
889 if (subset) {
890 isl_map_free(map21);
891 return 0;
894 map12 = isl_map_from_basic_map(
895 isl_basic_map_apply_range(
896 isl_basic_map_copy(bmap1),
897 isl_basic_map_copy(bmap2)));
899 subset = isl_map_is_subset(map21, map12);
901 isl_map_free(map12);
902 isl_map_free(map21);
904 return subset < 0 ? -1 : !subset;
905 error:
906 isl_map_free(map21);
907 return -1;
910 /* Perform Tarjan's algorithm for computing the strongly connected components
911 * in the graph with the disjuncts of "map" as vertices and with an
912 * edge between any pair of disjuncts such that the first has
913 * to be applied after the second.
915 static int power_components_tarjan(struct basic_map_sort *s,
916 __isl_keep isl_map *map, int i)
918 int j;
920 s->node[i].index = s->index;
921 s->node[i].min_index = s->index;
922 s->node[i].on_stack = 1;
923 s->index++;
924 s->stack[s->sp++] = i;
926 for (j = s->len - 1; j >= 0; --j) {
927 int f;
929 if (j == i)
930 continue;
931 if (s->node[j].index >= 0 &&
932 (!s->node[j].on_stack ||
933 s->node[j].index > s->node[i].min_index))
934 continue;
936 f = basic_map_follows(map->p[i], map->p[j]);
937 if (f < 0)
938 return -1;
939 if (!f)
940 continue;
942 if (s->node[j].index < 0) {
943 power_components_tarjan(s, map, j);
944 if (s->node[j].min_index < s->node[i].min_index)
945 s->node[i].min_index = s->node[j].min_index;
946 } else if (s->node[j].index < s->node[i].min_index)
947 s->node[i].min_index = s->node[j].index;
950 if (s->node[i].index != s->node[i].min_index)
951 return 0;
953 do {
954 j = s->stack[--s->sp];
955 s->node[j].on_stack = 0;
956 s->order[s->op++] = j;
957 } while (j != i);
958 s->order[s->op++] = -1;
960 return 0;
963 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
964 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
965 * construct a map that is the union of the identity map and
966 * an overapproximation of the map
967 * that takes an element from the dom R \times Z to an
968 * element from ran R \times Z, such that the first n coordinates of the
969 * difference between them is a sum of differences between images
970 * and pre-images in one of the R_i and such that the last coordinate
971 * is equal to the number of steps taken.
972 * That is, let
974 * \Delta_i = { y - x | (x, y) in R_i }
976 * then the constructed map is an overapproximation of
978 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
979 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
980 * x in dom R and x + d in ran R } union
981 * { (x) -> (x) }
983 * We first split the map into strongly connected components, perform
984 * the above on each component and the join the results in the correct
985 * order. The power of each of the components needs to be extended
986 * with the identity map because a path in the global result need
987 * not go through every component.
988 * The final result will then also contain the identity map, but
989 * this part will be removed when the length of the path is forced
990 * to be strictly positive.
992 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
993 __isl_keep isl_map *map, int *exact, int project)
995 int i, n;
996 struct isl_map *path = NULL;
997 struct basic_map_sort *s = NULL;
999 if (!map)
1000 goto error;
1001 if (map->n <= 1)
1002 return construct_component(dim, map, exact, project);
1004 s = basic_map_sort_alloc(map->ctx, map->n);
1005 if (!s)
1006 goto error;
1007 for (i = map->n - 1; i >= 0; --i) {
1008 if (s->node[i].index >= 0)
1009 continue;
1010 if (power_components_tarjan(s, map, i) < 0)
1011 goto error;
1014 i = 0;
1015 n = map->n;
1016 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
1017 while (n) {
1018 struct isl_map *comp;
1019 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1020 while (s->order[i] != -1) {
1021 comp = isl_map_add_basic_map(comp,
1022 isl_basic_map_copy(map->p[s->order[i]]));
1023 --n;
1024 ++i;
1026 path = isl_map_apply_range(path,
1027 construct_component(isl_dim_copy(dim), comp,
1028 exact, project));
1029 isl_map_free(comp);
1030 ++i;
1033 basic_map_sort_free(s);
1034 isl_dim_free(dim);
1036 return path;
1037 error:
1038 basic_map_sort_free(s);
1039 isl_dim_free(dim);
1040 return NULL;
1043 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1044 * construct a map that is an overapproximation of the map
1045 * that takes an element from the space D to another
1046 * element from the same space, such that the difference between
1047 * them is a strictly positive sum of differences between images
1048 * and pre-images in one of the R_i.
1049 * The number of differences in the sum is equated to parameter "param".
1050 * That is, let
1052 * \Delta_i = { y - x | (x, y) in R_i }
1054 * then the constructed map is an overapproximation of
1056 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1057 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1059 * We first construct an extended mapping with an extra coordinate
1060 * that indicates the number of steps taken. In particular,
1061 * the difference in the last coordinate is equal to the number
1062 * of steps taken to move from a domain element to the corresponding
1063 * image element(s).
1064 * In the final step, this difference is equated to the parameter "param"
1065 * and made positive. The extra coordinates are subsequently projected out.
1067 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1068 unsigned param, int *exact, int project)
1070 struct isl_map *app = NULL;
1071 struct isl_map *diff;
1072 struct isl_dim *dim = NULL;
1073 unsigned d;
1075 if (!map)
1076 return NULL;
1078 dim = isl_map_get_dim(map);
1080 d = isl_dim_size(dim, isl_dim_in);
1081 dim = isl_dim_add(dim, isl_dim_in, 1);
1082 dim = isl_dim_add(dim, isl_dim_out, 1);
1084 app = construct_power_components(isl_dim_copy(dim), map,
1085 exact, project);
1087 diff = equate_parameter_to_length(dim, param);
1088 app = isl_map_intersect(app, diff);
1089 app = isl_map_project_out(app, isl_dim_in, d, 1);
1090 app = isl_map_project_out(app, isl_dim_out, d, 1);
1092 return app;
1095 /* Compute the positive powers of "map", or an overapproximation.
1096 * The power is given by parameter "param". If the result is exact,
1097 * then *exact is set to 1.
1098 * If project is set, then we are actually interested in the transitive
1099 * closure, so we can use a more relaxed exactness check.
1101 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
1102 int *exact, int project)
1104 struct isl_map *app = NULL;
1106 if (exact)
1107 *exact = 1;
1109 map = isl_map_coalesce(map);
1110 if (!map)
1111 return NULL;
1113 if (isl_map_fast_is_empty(map))
1114 return map;
1116 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param), goto error);
1117 isl_assert(map->ctx,
1118 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
1119 goto error);
1121 app = construct_power(map, param, exact, project);
1123 isl_map_free(map);
1124 return app;
1125 error:
1126 isl_map_free(map);
1127 isl_map_free(app);
1128 return NULL;
1131 /* Compute the positive powers of "map", or an overapproximation.
1132 * The power is given by parameter "param". If the result is exact,
1133 * then *exact is set to 1.
1135 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
1136 int *exact)
1138 return map_power(map, param, exact, 0);
1141 /* Check whether equality i of bset is a pure stride constraint
1142 * on a single dimensions, i.e., of the form
1144 * v = k e
1146 * with k a constant and e an existentially quantified variable.
1148 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
1150 int k;
1151 unsigned nparam;
1152 unsigned d;
1153 unsigned n_div;
1154 int pos1;
1155 int pos2;
1157 if (!bset)
1158 return -1;
1160 if (!isl_int_is_zero(bset->eq[i][0]))
1161 return 0;
1163 nparam = isl_basic_set_dim(bset, isl_dim_param);
1164 d = isl_basic_set_dim(bset, isl_dim_set);
1165 n_div = isl_basic_set_dim(bset, isl_dim_div);
1167 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
1168 return 0;
1169 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
1170 if (pos1 == -1)
1171 return 0;
1172 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
1173 d - pos1 - 1) != -1)
1174 return 0;
1176 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
1177 if (pos2 == -1)
1178 return 0;
1179 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
1180 n_div - pos2 - 1) != -1)
1181 return 0;
1182 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
1183 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
1184 return 0;
1186 return 1;
1189 /* Given a map, compute the smallest superset of this map that is of the form
1191 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
1193 * (where p ranges over the (non-parametric) dimensions),
1194 * compute the transitive closure of this map, i.e.,
1196 * { i -> j : exists k > 0:
1197 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1199 * and intersect domain and range of this transitive closure with
1200 * domain and range of the original map.
1202 * If with_id is set, then try to include as much of the identity mapping
1203 * as possible, by computing
1205 * { i -> j : exists k >= 0:
1206 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1208 * instead (i.e., allow k = 0) and by intersecting domain and range
1209 * with the union of the domain and the range of the original map.
1211 * In practice, we compute the difference set
1213 * delta = { j - i | i -> j in map },
1215 * look for stride constraint on the individual dimensions and compute
1216 * (constant) lower and upper bounds for each individual dimension,
1217 * adding a constraint for each bound not equal to infinity.
1219 static __isl_give isl_map *box_closure(__isl_take isl_map *map, int with_id)
1221 int i;
1222 int k;
1223 unsigned d;
1224 unsigned nparam;
1225 unsigned total;
1226 isl_dim *dim;
1227 isl_set *delta;
1228 isl_set *domain = NULL;
1229 isl_set *range = NULL;
1230 isl_map *app = NULL;
1231 isl_basic_set *aff = NULL;
1232 isl_basic_map *bmap = NULL;
1233 isl_vec *obj = NULL;
1234 isl_int opt;
1236 isl_int_init(opt);
1238 delta = isl_map_deltas(isl_map_copy(map));
1240 aff = isl_set_affine_hull(isl_set_copy(delta));
1241 if (!aff)
1242 goto error;
1243 dim = isl_map_get_dim(map);
1244 d = isl_dim_size(dim, isl_dim_in);
1245 nparam = isl_dim_size(dim, isl_dim_param);
1246 total = isl_dim_total(dim);
1247 bmap = isl_basic_map_alloc_dim(dim,
1248 aff->n_div + 1, aff->n_div, 2 * d + 1);
1249 for (i = 0; i < aff->n_div + 1; ++i) {
1250 k = isl_basic_map_alloc_div(bmap);
1251 if (k < 0)
1252 goto error;
1253 isl_int_set_si(bmap->div[k][0], 0);
1255 for (i = 0; i < aff->n_eq; ++i) {
1256 if (!is_eq_stride(aff, i))
1257 continue;
1258 k = isl_basic_map_alloc_equality(bmap);
1259 if (k < 0)
1260 goto error;
1261 isl_seq_clr(bmap->eq[k], 1 + nparam);
1262 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
1263 aff->eq[i] + 1 + nparam, d);
1264 isl_seq_neg(bmap->eq[k] + 1 + nparam,
1265 aff->eq[i] + 1 + nparam, d);
1266 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
1267 aff->eq[i] + 1 + nparam + d, aff->n_div);
1268 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
1270 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
1271 if (!obj)
1272 goto error;
1273 isl_seq_clr(obj->el, 1 + nparam + d);
1274 for (i = 0; i < d; ++ i) {
1275 enum isl_lp_result res;
1277 isl_int_set_si(obj->el[1 + nparam + i], 1);
1279 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
1280 NULL, NULL);
1281 if (res == isl_lp_error)
1282 goto error;
1283 if (res == isl_lp_ok) {
1284 k = isl_basic_map_alloc_inequality(bmap);
1285 if (k < 0)
1286 goto error;
1287 isl_seq_clr(bmap->ineq[k],
1288 1 + nparam + 2 * d + bmap->n_div);
1289 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
1290 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
1291 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
1294 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
1295 NULL, NULL);
1296 if (res == isl_lp_error)
1297 goto error;
1298 if (res == isl_lp_ok) {
1299 k = isl_basic_map_alloc_inequality(bmap);
1300 if (k < 0)
1301 goto error;
1302 isl_seq_clr(bmap->ineq[k],
1303 1 + nparam + 2 * d + bmap->n_div);
1304 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
1305 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
1306 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
1309 isl_int_set_si(obj->el[1 + nparam + i], 0);
1311 k = isl_basic_map_alloc_inequality(bmap);
1312 if (k < 0)
1313 goto error;
1314 isl_seq_clr(bmap->ineq[k],
1315 1 + nparam + 2 * d + bmap->n_div);
1316 if (!with_id)
1317 isl_int_set_si(bmap->ineq[k][0], -1);
1318 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
1320 domain = isl_map_domain(isl_map_copy(map));
1321 domain = isl_set_coalesce(domain);
1322 range = isl_map_range(isl_map_copy(map));
1323 range = isl_set_coalesce(range);
1324 if (with_id) {
1325 domain = isl_set_union(domain, range);
1326 domain = isl_set_coalesce(domain);
1327 range = isl_set_copy(domain);
1329 app = isl_map_from_domain_and_range(domain, range);
1331 isl_vec_free(obj);
1332 isl_basic_set_free(aff);
1333 isl_map_free(map);
1334 bmap = isl_basic_map_finalize(bmap);
1335 isl_set_free(delta);
1336 isl_int_clear(opt);
1338 map = isl_map_from_basic_map(bmap);
1339 map = isl_map_intersect(map, app);
1341 return map;
1342 error:
1343 isl_vec_free(obj);
1344 isl_basic_map_free(bmap);
1345 isl_basic_set_free(aff);
1346 isl_map_free(map);
1347 isl_set_free(delta);
1348 isl_int_clear(opt);
1349 return NULL;
1352 /* Check whether app is the transitive closure of map.
1353 * In particular, check that app is acyclic and, if so,
1354 * check that
1356 * app \subset (map \cup (map \circ app))
1358 static int check_exactness_omega(__isl_keep isl_map *map,
1359 __isl_keep isl_map *app)
1361 isl_set *delta;
1362 int i;
1363 int is_empty, is_exact;
1364 unsigned d;
1365 isl_map *test;
1367 delta = isl_map_deltas(isl_map_copy(app));
1368 d = isl_set_dim(delta, isl_dim_set);
1369 for (i = 0; i < d; ++i)
1370 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
1371 is_empty = isl_set_is_empty(delta);
1372 isl_set_free(delta);
1373 if (is_empty < 0)
1374 return -1;
1375 if (!is_empty)
1376 return 0;
1378 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
1379 test = isl_map_union(test, isl_map_copy(map));
1380 is_exact = isl_map_is_subset(app, test);
1381 isl_map_free(test);
1383 return is_exact;
1386 /* Check if basic map M_i can be combined with all the other
1387 * basic maps such that
1389 * (\cup_j M_j)^+
1391 * can be computed as
1393 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
1395 * In particular, check if we can compute a compact representation
1396 * of
1398 * M_i^* \circ M_j \circ M_i^*
1400 * for each j != i.
1401 * Let M_i^? be an extension of M_i^+ that allows paths
1402 * of length zero, i.e., the result of box_closure(., 1).
1403 * The criterion, as proposed by Kelly et al., is that
1404 * id = M_i^? - M_i^+ can be represented as a basic map
1405 * and that
1407 * id \circ M_j \circ id = M_j
1409 * for each j != i.
1411 * If this function returns 1, then tc and qc are set to
1412 * M_i^+ and M_i^?, respectively.
1414 static int can_be_split_off(__isl_keep isl_map *map, int i,
1415 __isl_give isl_map **tc, __isl_give isl_map **qc)
1417 isl_map *map_i, *id;
1418 int j = -1;
1420 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1421 *tc = box_closure(isl_map_copy(map_i), 0);
1422 *qc = box_closure(map_i, 1);
1423 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
1425 if (!id || !*qc)
1426 goto error;
1427 if (id->n != 1 || (*qc)->n != 1)
1428 goto done;
1430 for (j = 0; j < map->n; ++j) {
1431 isl_map *map_j, *test;
1432 int is_ok;
1434 if (i == j)
1435 continue;
1436 map_j = isl_map_from_basic_map(
1437 isl_basic_map_copy(map->p[j]));
1438 test = isl_map_apply_range(isl_map_copy(id),
1439 isl_map_copy(map_j));
1440 test = isl_map_apply_range(test, isl_map_copy(id));
1441 is_ok = isl_map_is_equal(test, map_j);
1442 isl_map_free(map_j);
1443 isl_map_free(test);
1444 if (is_ok < 0)
1445 goto error;
1446 if (!is_ok)
1447 break;
1450 done:
1451 isl_map_free(id);
1452 if (j == map->n)
1453 return 1;
1455 isl_map_free(*qc);
1456 isl_map_free(*tc);
1457 *qc = NULL;
1458 *tc = NULL;
1460 return 0;
1461 error:
1462 isl_map_free(id);
1463 isl_map_free(*qc);
1464 isl_map_free(*tc);
1465 *qc = NULL;
1466 *tc = NULL;
1467 return -1;
1470 /* Compute an overapproximation of the transitive closure of "map"
1471 * using a variation of the algorithm from
1472 * "Transitive Closure of Infinite Graphs and its Applications"
1473 * by Kelly et al.
1475 * We first check whether we can can split of any basic map M_i and
1476 * compute
1478 * (\cup_j M_j)^+
1480 * as
1482 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
1484 * using a recursive call on the remaining map.
1486 * If not, we simply call box_closure on the whole map.
1488 static __isl_give isl_map *compute_closure_omega(__isl_take isl_map *map)
1490 int i, j;
1492 if (!map)
1493 return NULL;
1494 if (map->n == 1)
1495 return box_closure(map, 0);
1497 map = isl_map_cow(map);
1498 if (!map)
1499 goto error;
1501 for (i = 0; i < map->n; ++i) {
1502 int ok;
1503 isl_map *qc, *tc;
1504 ok = can_be_split_off(map, i, &tc, &qc);
1505 if (ok < 0)
1506 goto error;
1507 if (!ok)
1508 continue;
1510 isl_basic_map_free(map->p[i]);
1511 if (i != map->n - 1)
1512 map->p[i] = map->p[map->n - 1];
1513 map->n--;
1515 map = isl_map_apply_range(isl_map_copy(qc), map);
1516 map = isl_map_apply_range(map, qc);
1518 return isl_map_union(tc, compute_closure_omega(map));
1521 return box_closure(map, 0);
1522 error:
1523 isl_map_free(map);
1524 return NULL;
1527 /* Compute an overapproximation of the transitive closure of "map"
1528 * using a variation of the algorithm from
1529 * "Transitive Closure of Infinite Graphs and its Applications"
1530 * by Kelly et al. and check whether the result is definitely exact.
1532 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
1533 int *exact)
1535 isl_map *app;
1537 app = compute_closure_omega(isl_map_copy(map));
1539 if (exact)
1540 *exact = check_exactness_omega(map, app);
1542 isl_map_free(map);
1543 return app;
1546 /* Compute the transitive closure of "map", or an overapproximation.
1547 * If the result is exact, then *exact is set to 1.
1548 * Simply compute the powers of map and then project out the parameter
1549 * describing the power.
1551 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
1552 int *exact)
1554 unsigned param;
1556 if (!map)
1557 goto error;
1559 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
1560 return transitive_closure_omega(map, exact);
1562 param = isl_map_dim(map, isl_dim_param);
1563 map = isl_map_add(map, isl_dim_param, 1);
1564 map = map_power(map, param, exact, 1);
1565 map = isl_map_project_out(map, isl_dim_param, param, 1);
1567 return map;
1568 error:
1569 isl_map_free(map);
1570 return NULL;